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Abstract: The RE.S.I.STO project targets visitors of Pisa medieval city, with the goal of providing
high-quality digital contents accessible with smart devices. We describe the design, implementation
and the test phases of the RE.S.I.STO application, whose goal is to automatically detect the proximity
between visitors and artworks. Proximity is detected with a set of algorithms based on the analysis
of Bluetooth Low Energy beacons. We detail our experimental campaigns which reproduce several
museum layouts of increasing complexity at two pilot sites, and we compute the performance of
the implemented algorithms to detect the nearby artworks. In particular, we test our solution in
a wide open space located in our research institute and by performing a real deployment at the
Camposanto Monumentale located in Pisa (Italy). The obtained performance varies in the range of
40% to perfect accuracy, according to the complexity of the considered museum layouts. We also
describe a set of stress and stability tests aimed at verifying the robustness of the application during
the data collection process. Our results show that the mobile application is able to reduce the beacon
loss rate, with an average value of 77% of collected beacons.

Keywords: location-based services; BLE beacons; proximity detection; ambient intelligence; cultural
heritage

1. Introduction

With the growing number of IoT-ready devices and their rapid diffusion in our daily
lives, in the last decades, we witnessed the pervasive adoption of mobile apps delivering
location-based services [1]. The possibility of determining the location and the proximity
of a user represents a key-factor to deliver context-aware services, thus improving the
user-experience [2].

Therefore, in the last few years, a growing interest has been observed in research
topics addressing the estimation of the location of mobile users both indoor and outdoor.
This goal still represents a challenging task for indoor scenarios, where solutions based
on Global Navigation Satellite System (GNSS) are unfeasible. Estimating the location of a
target requires the adoption of technologies and data analytic tools that most often cannot
exploit satellites as walls, wireless signal interference and obstacles significantly reduce
the strength of satellite signals in indoor settings. To overcome this issue, in the last years
several methods have been proposed, exploiting different kinds of wireless signals and
technologies. Furthermore, the design of indoor proximity/localization solutions strictly
depends on the target service. For example, the accuracy required to identify the occupancy
of a room might be far lower than that required to guide a robot along a path. As a matter
of fact, there is no standard de facto localization solution for indoor spaces (similarly to GPS),
leading to a still active and attractive research question.

Indoor proximity detection systems are of remarkable importance since they allow
to provide the users with space-bounded services in a wide number of scenarios, such as
health sector, industrial safety, urban mobility, emergency management, contact tracing,
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etc. For what concerns cultural environments such as museums or exhibitions, proximity
detection systems can provide the users with context-aware information based on their
closeness to points of interest thus improving both their experience and entertainment. To
be easily adoptable in this kind of environments, proximity systems should be based on
widely diffused technologies, be easy to use for the visitors, require a straightforward setup
phase, provide high level of effectiveness and the user devices should be able to work
for sustained periods of time on battery power. Despite that a multitude of techniques
are available in the literature, they always entail a trade-off among those aspects. These
challenging tasks keep this research field open to new approaches which can provide
further analysis in real experimental scenarios.

In this paper, we design and test a mobile cross-platform application, based on the
Bluetooth Low Energy (BLE) technology, to automatically detect the proximity between
visitors and points of interest, e.g., museum’s artworks. In turn, such application will be
adopted to provide to visitors the correct digital content of the available artworks. Some
remarkable works already addressed the problem of localizing people in a museum or to
estimate their proximity with artworks, we refer to [3–5] for further details.

Our goal is to be able to correctly estimate the proximity with artworks without any
prior knowledge about the followed path. To this purpose, we describe in this paper the
design and test of the RE.S.I.STO app. We implement two different proximity detection
algorithms and we compare their performance in terms of a classification problem in two
pilot sites. More specifically, we measure how much our algorithms are able to correctly
identify the nearby artworks against a detailed ground truth. Each artwork is equipped
with a Bluetooth tag that emits BLE signals at periodic intervals with a pre-defined power
of emission. Our tests also include a stress and a stability assessment of the performance of
the app. In particular, we quantitatively measure the beacon loss rate at different conditions
with the goal of measuring the amount of collected beacons with respect to the expected
number of beacons. More specifically, we set up stress and the stability tests: stress tests
measure the maximum number of collected beacons for a relatively short time period.
Differently, stability tests aim at measuring the amount of collected beacons for a long
period. We compute the beacon loss rate, as the ratio between collected and expected
beacons averaged with respect to the different runs of each test typology. Our experimental
results return an average of 77% of expected beacons with commercial smart devices and
we reach an accuracy and F1 score varying between 100% and 40% according to the type of
museum layout and of the pilot site. We report below the main contribution of this work:

• The performance assessment of two proximity detection algorithms based on the RSS
analysis of the collected beacons. More specifically, we compare the results in two
pilot sites with different museum’s layouts of increasing complexity and we show
how the performance varies when the target artwork is identified within the first,
second and third option;

• The analysis of RSS’s fluctuations in which we study two key-metrics: the beacon loss
rate measured with commercial BLE tags and smartphones and the RSS variation in
indoor environments caused by the usage of three advertisement channels. Under
this respect, it is worth noticing that we propose a possible strategy implemented in
the RE.S.I.STO app to limit the side-effect of such frequency hopping based on the use
of a specific quantile of the beacon’s RSS values.

The paper is organized as follows: Section 2 reports the Related Work organized
according to different proximity technologies. Section 3 describes the design of both the
mobile app and the proximity algorithms. Section 4 details the experimental settings, the
testing session and the performance assessment of the implemented algorithms.

2. Related Work

Digital guide applications are available for most museums worldwide. However,
solutions designed to deliver recommended contents based on the user’s proximity with
artworks are much less frequent [6]. By exploiting the smartphones capabilities existing
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today, several approaches are available to implement artwork proximity detection systems
which could be broadly classified into three main groups: radio-frequency-based, vision-
based and others (e.g., infrared, ultrasonic). Each of these techniques have benefits and
limitations that are discussed hereafter.

We report in Table 1 a summary of the technologies we considered for the purpose
of this work. We report their limitations and the advantages and the list of those works
adopting such technologies.

Table 1. Summary of the main proximity detection technologies used in the literature.

Technology Main Advantages Main Limitations Related
Works

BLE Widely diffused, low
power consumption

Requires the physical deployment of
the tags, RSS is affected by both
crowd and signal reflections

[7–10]

WiFi
Widely diffused, no
dedicated infrastructure
required

Low proximity detection accuracy [6,11–15]

UWB Reaches few centimeters of
accuracy

Requires an extensive infrastructure
setup, compatible end-user devices
are still not very diffused

[16–18]

NFC Highly available on market
devices

Restricted interaction in crowd
environments [19–21]

Visual
detection Intuitive user experience

Extensive training phase required,
susceptible to partial visual
occlusion

[6,22,23]

Bar/QR
Codes

Cheap technology, easy to
deploy

Might interfere with the artwork
visual, taking a photo could be
prohibited in the museums

[24,25]

Ultrasonic

No dedicated hardware on
the user’s mobile device,
signals can be generated
with off-the-shelf speakers

Requires the infrastructure
deployment, low accuracy [25,26]

Infrared Cheap technology
Highly directional beams, requires
line-of-sight, many devices lacking
of IR transceivers

[27–29]

2.1. Radiofrequency-Based Techniques

Bluetooth Low Energy (BLE) beaconing is a technique based on compact wireless
devices (tags) able to periodically broadcast, in the surrounding environment, a radio signal
containing a predefined message. This procedure is called advertisement and the transmitted
packets can be received from any BLE-enabled device, which are today extremely diffused.
Several works are based on BLE beaconing such as [7–9]. In [10], BLE beacons are used
to implement a system for proximity target marketing based on the iBeacon advertising
messages. These approaches, based on the Received Signal Strength (RSS), allow a rather
precise proximity estimation, especially, when beacons are individually calibrated. The
main limitations include the need to physically deploy the BLE tags in the environment and
the fact that the RSS could be affected by both the museum crowd and the signal reflections
caused by wall or obstacles. Tags count, position, transmission frequency and power have
to be tuned, during the preliminary study phase, to reduce the side effects.

WiFi is a common solution for avoiding heavy infrastructures, as the existing WiFi
access points (AP) are exploited for the localization and proximity purposes. Such solutions
do not require that the user device and the AP are in line-of-sight, rather a combination of
lateration and fingerprinting techniques can be used to obtain enough accuracy [6]. In [11],
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the authors present a technique for evaluating proximity detection through WiFi in mobile
web-based applications that requires zero configuration on the client device. Although the
proposed approach is low-cost and easy to implement, it lacks in accuracy since it cannot
directly estimate the distance of the user from the artwork. SmARTweet [12] is a smart
multimedia guide and a location-based application developed to automatically suggest
contents to the visitors by letting the artworks “tweeting” their story to the users. The
system, although quite promising, requires the deployment of many WiFi anchor nodes
in the environment requiring main power and maintenance. Further WiFi approaches,
based on RSS fingerprinting, are presented in [13,14]. Fingerprinting requires a prior
offline phase during which a database, containing the RSS of every detected AP in several
locations, is built. For very large environments such as museums, this technique could
be burdensome due to the extensive preliminary data collection campaign that has to
be carried out. We also mention the use of WiFi probes to detect the proximity as done
in [15]. These authors deploy a number of WiFi probe receivers and analyze the WiFi
probes emitted by commercial smartphones for the localization purpose.

Ultra-wideband (UWB) is a radio technology for transmitting very short pulsed
messages that are spread over a large radio spectrum. UWB-based systems employ the
trilateration approach which can estimate the position of a device within few centimeters
of accuracy and do not require a line-of-sight path between the transmitter and the re-
ceiver, even though, in this latter case, the performance deteriorates. The works presented
in [16,17] explore this approach in museum settings. UWB is the most accurate ranging
system available today for indoor scenarios [18] but requires an extensive infrastructure
setup with several UWB anchors deployed in the environment and, to date, compatible
end-user devices are still not very diffused on the market.

Near Field Communication (NFC), based on RFID close-range contactless connection,
is another technique used for proximity detection. These systems use the radio waves
emitted by a reader (smartphone) to detect and query the data stored on RFID tags which
are embedded in compact enclosures such as buttons or cards. Several works such as
SMART VILLA [19], Wolfsoniana Smart Museum [20] and iMuseumA [21] proposed a
proximity detection approach for museum scenarios. NFC, although very diffused on
today’s smartphones, has a sensing range typically limited to a couple of centimeters,
which restricts the possibilities of interaction, especially in museums where spaces might
get very crowded.

We further analyze the BLE-based works we previously surveyed with the purpose of
highlighting the distinguishing features of such systems running in a museum environment.
To this purpose, we report in Table 2 a comparison of the selected BLE proximity solutions
evaluated against seven criteria describing the complexity behind realistic experimental
tests in indoor environments:

• Realistic scenario: we analyze if the solutions have been tested in a real museum or in
a simplistic environment;

• Device heterogeneity: we report if authors tested their solution with a variety of
devices or, differently, if only a specific device model has been used, e.g., ad hoc
hardware. This aspect is crucial for the performance evaluation as BLE-based solutions
might be affected by different BLE chipsets estimating the signal strength of BLE
messages differently;

• Complex path: the complexity of the path followed to test the proximity with points
of interests also affect the overall performance. We analyze if authors selected a trivial
or nontrivial experimental path;

• Commercial devices: we further analyze the device adopted in order to report if
commercial devices have been adopted;

• Robustness tests: we report if the proposed work also provides information about the
robustness of the proposed solution. More specifically, we are interested in solutions
working with long-lasting monitoring sessions, reproducing a realistic museum visit;
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• Preliminary RSS data analytics: we analyze if the works provide a preliminary RSS
analysis of the collected data so that to characterize the signal’s features of the BLE
messages used to estimate the proximity. This analysis is important to better under-
stand the indoor signal propagation for the considered testing scenario;

• Real-time outcome: we finally analyze if the solutions are designed for a real-time
proximity estimation or for off-line evaluation. In the first case, the solution can notify
to the user the proximity with a specific point of interest, while, in the second case,
the proximity is detected off-line.

In [7], the authors propose a system to gather information about the behavior of
museum visitors. The solution was deployed at the Cobra Museum of Modern Art (NL)
and tested with a realistic path involving several rooms and artworks. The devices used are
only ad hoc mobile nodes worn by the visitors and ad hoc anchor points placed in the rooms.
No robustness tests have been performed since the device performance is already known.
The system processes the data offline to provide a service to the museum manager and
exploits a filtering pipeline to handle the bursty and noisy raw data collected. The system
proposed in [8] was also deployed in a real world scenario such as the Louvre Museum
(France) and exploits the beacons collected from the visitors personal devices to track the
visiting path. The monitored route is realistic since it comprises several spaces within the
museum even at different floors. The authors are using customized Bluetooth sensing
devices and no robustness tests nor preliminary RSS analysis are reported. The system is
designed to provide offline results to highlight the visitors most covered routes. In [9], the
authors present a BLE Direction-of-Departure-based system able to exploit only the RSSI
observed at the receiving terminal. The experimental results are obtained in a lab setup
consisting of a single room. A laptop is used as the receiving device and few positions at the
center of the room are tested for a very short period of time. The transmitting BLE device
is a custom-made node with a prototype antenna to generate different radiation patterns.
A preliminary RSS analysis is reported in order to perform the real-time triangulation
technique using DODs from multiple beacons. In [10], the authors explore the iBeacon
message format to propose a proximity detection application that, although designed for
marketing purposes, can be used in the museum scenario. The proposed solution was
demonstrated in a lab environment by using a custom-developed BLE beacon transmitter
and an iOS device running the proximity detection application. No robustness tests nor
preliminary RSS analysis are reported. The application is able to estimate the proximity to
a point of interest in real time and provide the user with the detailed product information.
The solution proposed in [18] exploits the Estimote commercial tags to analyze the received
RSS signal and uses the path-loss model formula to apply the ranging approach. The system
is tested in a corridor in laboratory conditions, a single device model has been used and
few points of interest, placed on the walls, are tested. Although the system robustness
test is not reported, a preliminary RSS analysis is performed to fit the path-loss model to
the environment and correct the bias due to noisy RSS measurements. The algorithm is
able to estimate the output in real-time. Eventually, in [30], the authors propose a mobile
application, exploiting the commercial Gimbal Series 21 beacon to estimate the proximity
to points of interest by implementing a ranging algorithm supported with a Kalman filter.
The results are obtained in a laboratory environment consisting of a room and a corridor.
A single smartphone model is used as the receiving device and, even in this case, few
locations are tested. The developed application is able to generate the proximity outcome
in real-time although no long duration robustness test is reported.

With our proposed solution we try to address all these critical aspects and provide a
robust and commercially available architecture ready to be deployed in a real world scenario.
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Table 2. Comparison of selected BLE proximity detection solutions for indoor museums.

Realistic Scenario Device Heterogeneity Complex Path Commercial Devices Robustness Tests Preliminary RSS Data
Analytics Real-Time Outcome

Martella, C. et al. [7]
YES

Cobra Museum of
Modern Art (NL)

NO
Single device model

used

YES
Several artworks spread

in multiple museum
rooms

NO
Ad-hoc solutions for
both the anchors and

tags

NO
Device performance are

known

YES
Filtering pipeline to

handle bursty and noisy
data

NO

Yoshimura Y. et al. [8] YES
Louvre Museum (FR)

YES
Several visitors’ devices

detected

YES
Points of interest along

the museum rooms

NO
Custom device

employed

NO
Not considered

NO
Not considered NO

Kikuchi K. et al. [9] NO
Lab environment

NO
Only laptop PC used

NO
Few positions tested

NO
Experimental BLE

transmitter

NO
Very short testing

period

YES
Triangulation by

exploiting beacon’s
Direction-of-Departure

YES

Allurwar N. et al. [10] NO
Lab environment

NO
Single device model

used

NO
Small lab test

NO
Ad-hoc solutions for the

BLE tags

NO
Not considered

NO
Not considered YES

Jiménez A.R. et al. [18] NO
Lab environment

NO
Single device model

used

NO
Few points of interest in

a corridor

YES
Estimote beacons

NO
Not considered

YES
Path-loss model fitting

and bias correction
YES

Spachos P. et al. [30] NO
Lab environment

NO
Single device model

used

NO
Few positions tested

YES
Gimbal Series 21

beacons

NO
Not considered

YES
Path-loss model fitting
and Kalman filtering

YES

Proposed solution

YES
Camposanto

Monumentale of Pisa
(IT)

YES
Multiple devices used

YES
Artworks along a path

in the museum

YES
GlobalTag beacons

YES
Duration and stress test

performed

YES
Beacon RSS distribution

analysis for channel
hopping mitigation

YES
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2.2. Vision-Based Techniques

Vision-based techniques rely on the detection of both peculiar image features, such as
points, edges or regions, or on visual two-dimensional pattern such as bar codes or QR
codes [24]. To acquire the images, cameras can be mounted on smartphones or wearable
models provided to the visitors. Artwork image detection has been proposed in [22,23],
these approaches require a training phase and are susceptible to partial visual obstruction
caused for instance by a crowded environment. In [23], the authors present an approach
for image retrieval and object detection based on fully convolutional networks but it is
particularly targeted at small datasets with low object variability. Moreover, it should be
taken into account that museums are complex environments, which might expose plenty of
artworks, and each of them requires to be classified from different perspectives, distances
and lighting conditions [6].

QR or bar codes represent a cheap technology and the physical tag is able to store
enough data, such as an ID or a website URL, to fetch the description of the artwork from
the back-end server. However, in a museum environment, the usage of QR codes might
not be a viable solution since they both interfere with the artistic visual and they require
the user to take a photo, which is often prohibited in this kind of scenarios [25].

2.3. Other Techniques

The authors of [26] present an ultrasonic indoor location tracking system for mobile de-
vices based on off-the-shelf audio speakers, while in [25], the authors developed a smartphone
museum guide that identifies surrounding artworks by receiving a modulated ultrasonic sig-
nal. Their approach requires no special hardware on the receiver side, and the sound signal
can be generated via cheap stand-alone devices. The main limitation of these approaches is
that they require an infrastructure to be deployed to generate the ultrasound signals. An-
other technique, mainly used in early systems, is based on the infrared signals and employs
beacons emitting a modulated IR light based on a unique identifier code [27–29]. The emitted
beams have several limitations since they are highly directional, require line-of-sight and
many devices are not equipped with IR transceivers.

As reported in Table 1, many solutions for proximity detection have been proposed.
We observe that in many cases the conducted experiments are limited to prototypes tested
with dedicated software and hardware components. In this work, we try to further explore
this research domain by focusing on two main aspects. On the one hand, the adoption of a
cross-platform framework able to abstract from the underlying mobile Operating System.
On the other hand, we analyze the performance and the collected data at two pilot sites
reproducing realistic conditions both in a laboratory and in a real scenario. We assess
the platform beacon loss rate and we address the frequency hopping behavior of the BLE
advertising by adopting a methodology to mitigate such fluctuations based on the use of a
specific statistic of the collected RSS values.

3. Application Design, Tools and Methods

We now describe the design of the RE.S.I.STO app with specific attention to the
technology used and the proximity detection algorithms that we implemented and tested.

3.1. The Design of the RE.S.I.STO App

The RE.S.I.STO app implements a multi-platform mobile application based on the
React Native Framework (see Section 3.2). The application is designed to automatically
detect the proximity between visitors and a number of points of interests available in a
region, for example, artworks in a indoor museum. The app is based on three services,
namely:

• the Beacon Logger Service (BL);
• the Proximity Detection Service (PD);
• the UI Content Viewer Service (UI).
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The cooperation between the three services is implemented with a set of API. We
report in Figure 1 an overview of the design of the RE.S.I.STO app. The BL module is
designed to continuously gather Bluetooth beacons for the proximity detection purpose.
BL is designed to collect the maximum number of beacons emitted by nearby tags, without
negatively affecting the performance of PD and of the UI services. Moreover, the BL service
filters beacons emitted only by the tags belonging to our experiment, avoiding gathering
data from unrelated devices. Filtering the collected beacons reduces the overhead of the
application and, at the same time, it allows to increase the performance of the PD and of
the UI service. The BL service reacts as soon as new beacons are collected, and it performs
the following operations:

• Parsing the beacon payload;
• Extracting the information required for the PD service;
• Notifying the PD service with a set of the received beacons.

BL interacts with the PD service by invoking the ProximityDetectionInterface. PD
elaborates the received information, by running a suite of proximity detection algorithms
(see Section 3.3 for a description of the implemented algorithms). More specifically, the
beacon’s information is elaborated at periodic intervals. We report in Figure 2 how the BL
and the PD services interact. BL listens for beacons in a time window of ∆t seconds, after
which it invokes PD for processing the collected information. The interaction between PD
and UI is implemented through the UILogicInterface.

Figure 1. Design of the RE.S.I.STO app.

The UI service visualizes the information elaborated by PD, by showing the closest
k tags in proximity. The UI service refreshes the information as soon as PD finishes its
computation, as shown in Figure 2. The UI flowchart is reported in Figure 3, it comprises
three screens: a splash page, the main page with the set of the top k tags and the artwork
page with a detailed description of the information associated with the selected tag.

Finally, our design comprises an external database to fetch the information to be dis-
played by the UI service. We refer to it as the back-end module, as shown in Figure 1. The
back-end can be queried with GraphQL API to download the meta-information associated
with the selected tag.
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Figure 2. Interactions between the BL and PD services.

Figure 3. Blueprints of the three views composing the app UI flow.

3.2. The React Native Framework

React Native is an open source Javascript framework used to develop native mobile
applications running both on iOS and Android operating systems. The framework is based
on the Facebook’s widely used Javascript library, that targets web browsers, called React.
The main advantage of React Native is the portability of the code among the current mobile
platforms, allowing the creation on mobile apps that look, feel and perform like real native
apps rather than typical web apps. The basic concept underneath the portability is the
Virtual Document Object Model (Virtual DOM). The DOM is the logical tree structure that
describes all the elements in a page while the Virtual DOM is a layer of abstraction on
top of the DOM which allows to translate abstract components to platform-specific native
components during the rendering phase. The translation is performed by the so-called
render bridge, which talks to the platform’s native API to generate the native components
and render them on the screen. The bridge sits between two other main components: native
modules and the Javascript virtual machine. These two components run in separate threads
and they communicate through the bridge as shown in Figure 4. During the app execution,
the code running within the JavaScript thread invokes the bridge component to perform
instructions (e.g., creating components, showing views, etc.) on the native modules. The
native modules, in turn, satisfy the request and subsequently acknowledge the completion
of the task back through the bridge to the Javascript thread [31]. React Native allows to
reduce the development time by:

• Providing a large and ready to use component repository;
• Reusing at most the codebase to target both iOS and Android platforms;
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• Allowing the hot reload of the app when modified without the need of compiling
every time.

B
ri

dg
e

JavaScript

App

OEM 
Widgets

Canvas

Events

Location

Audio

Camera

Sensors

Bluetooth etc.

Platform OS

Components 
Tree

JS Thread Native Thread

Figure 4. Overview of the React Native architecture.

Concerning the performances, although Javascript is not as fast as native code, differ-
ences will not be noticeable in most cases. Moreover, the most demanding code could still
be moved to a native module to remove the performance bottlenecks. On the negative side,
React Native requires a not negligible effort to setup the initial development environment
and might expose compatibility, dependency and debugging issues, especially, when deal-
ing with some platform-specific modules. Overall, to develop cross-platform UI rich apps,
it is among the most indicated platforms.

3.3. Proximity Detection Algorithms

In this subsection, we describe the algorithms we implemented to detect proximity
between visitors and artworks. Such algorithms have been integrated with the RE.S.I.STO
app. The objective of these algorithms is detecting the proximity between visitors and
artworks in historical museums. More specifically, we do not track the position of the
visitor in real-time, as generally done with indoor localization algorithms. This helps us
to avoid one of the classical issues in this kind of algorithms such as a time-consuming
calibration phase.

Most of the commercial devices natively allow estimating the strength of Bluetooth
signals emitted by tags, this measure is generally referred to as Received Signal Strength
(RSS) and it is expressed in dBm units. Our algorithms rely on the RSS values collected
from the app to obtain accurate proximity estimations. However, in order to mitigate
the non-linearity between the RSS value and the distance of the emitting device, state
estimation filtering techniques are applied, in order to provide better proximity estimation.

The most common and simplest filtering technique that we exploit is a simple moving
average (SMA). This is an arithmetic moving average calculated by adding recent RSS
values, and dividing that value by the number of time periods in the calculation average
N. Even if this is the most adopted filtering technique, it is not enough to stabilize the
RSS values. To this purpose, we introduce the p-percentile filter [32]. Generally, this
approach is adopted in computer vision to remove outliers without degrading the resulting
image. Differently, in this work, we use such a filter to minimize the variance of the RSS
values so that to obtain stables values during the visiting path. More formally, given
a set of beacons Bi = {b1, b2, . . . , bi} and a sequence of noisy RSS values RSSi(k) =
{rssi(0), rssi(1), . . . , rssi(k)} ∀i ∈ Bi, the p-percentile filter is given as:

RSSp
i = P(RSSi(k)) ∀i ∈ Bi (1)

The p-th percentile is thus that value RSSp
i such that p percent of the RSSi(k) measures

have a value lower than or equal to RSSp
i .
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The p-percentile filter is implemented to be used as a simple and energy-saving
filtering technique, in comparison with other techniques. Through experimentation, it was
found that a window size of 20 measures, i.e., k = 20, equivalent to 10 s considering a 2 Hz
beacon advertising frequency, is ideal in our application scenario.

We estimate the proximity between a visitor and a reference artwork over time for
k observations, px(1), px(2), . . . , px(k), given a sequence of noisy RSS values RSSi(k), by
using two energy-saving algorithms.

Distance-based Proximity Technique: The goal of the following algorithm is to infer the
artworks nearest to the user by exploiting the RSS of the beacons installed close by the
artworks. The idea of this algorithm is to convert the RSS values into distance for each
beacon and, later, choose the beacon representing the closest artwork. We chose the path
loss model [33] in order to model the relationship between RSS and distance:

RSS = RSS0 − 10nlog10(d/d0), d > d0 (2)

where d0 is the reference distance, such that the emitter and the receiver are always in line
of sight (typically 1 m), RSS0 is the RSS at a reference distance d0, and n is the path loss
exponent that regulates how severe is the attenuation in a given environment. The distance
function between each artworks i and the user can be estimated as:

fi(d) = e−
RSSp

i −RSS0
10n ∀i ∈ Bi (3)

The nearest artwork px(k) at time k is given by

px = argmin
d

fi(d) (4)

while a ranking of the “most near” artworks could be easily generated by sorting Equation (3).
It is worth noticing that finding the minimum distance of a decreasing function such as
Equation (2) is equivalent of choosing:

px = argmax
i

RSSp
i (5)

Threshold-based Proximity Technique: Another simple and energy-saving algorithm we
used in this work is based on fixing a range in meters which represents a reasonable value
to visit artworks. The nearest artworks are given by:

pxi = ∀i ∃ RSSp
i ≥ RSSTh (6)

where RSSTh is the RSS value for which the user can be considered in the range. Unlike
the distance-based proximity technique, this algorithm generates a list of possible nearest
artworks.

4. Identifying Artwork Proximity with the Bluetooth Tags

We conduct a set of experiments to test the functionalities of the RE.S.I.STO app as well
as to test the performance of the implemented proximity detection algorithms. We detail in
this section the experimental settings (Section 4.1) and the obtained results (Section 4.2).

4.1. Preliminary Settings

We initially set up a preliminary data collection campaign whose goal is to verify that
the mobile app correctly collects beacons without any abnormal interruption. In this case,
our goal is to identify possible software/hardware issues reducing the amount of collected
beacons. Such a preliminary assessment is obtained in a controlled environment without
considering environmental conditions, such as obstacles, interferences, and any source of
signal attenuation. We consider the following 3 test typologies:
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• Stress test (Ts): the objective is measuring the maximum amount of collected beacons
in a relatively short time period;

• Stability test (Tst): the objective is testing the consistency of the number of collected
beacons for a long time period;

• Calibration test (Tc): the objective is calibrating the proximity detection algorithms to
compute a reference benchmark for the RSS features.

Tests are conducted with Bluetooth tags produced by GlobalTag and configured with
power of transmission varying according to the test typology (e.g., from −23 dBm to
0 dBm). We set the tag advertising interval to 2 Hz. Tags are powered with a CC2032-type
battery, with a battery level higher than 2.9 V. Tags are configured with the iBeacon payload,
piggybacking the major number associated with the tag. Figure 5 shows the tags we used
during our experiments.

Figure 5. Bluetooth tags used during our experiments.

During our data collection campaign, we use 2 smartphones to collect and store
beacons:

• Honor 9 (H9) running Android 8, equipped with Bluetooth 4.2 chip-set;
• Google Pixel 4a (GP) running Android 12, equipped with Bluetooth 5.0 chip-set.

We report in Table 3 a summary of all the test settings.

Table 3. Overview of the experimental data collection campaign.

Test ID Type Runs Devices Duration (min) Adv. Freq. (Hz) Power (dBm) Tags

T1 Ts 5 2(H9,GP) 150 2 0 5

T2 Tst 1 2(H9,GP) 252 2 0 5

T3 Tst 1 1(GP) 301 2 0 5

T8 Tc 1 1(GP) 10 2 −23 5

4.1.1. Stress Test

The purpose of the T1 test is measuring the maximum number of beacons that can be
collected and, in turn, to derive the beacon loss rate. Such rate is a crucial aspect for the
proximity detection, as it determines the expected number of beacons to analyze. We repeat
T1 for 5 runs, each run lasts for 30 min. The tags and the receiving devices are positioned
on a desk at a distance of approximately 50–70 cm. Results are reported in Table 4. Results
of T1 show that the average beacon loss rate is about 28% for the 5 tags used, a value far
below 50% that guarantees the possibility of successfully running the proximity detection
algorithms. We refer to [34,35] for a real-world Bluetooth beacon dataset in which we
describe some issues in collecting data with an Android native mobile application. We also
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analyze if the beacons are collected continuously in time or if the RE.S.I.STO app receives
data in burst. We report in Figure 6 a time series for each of the 5 runs showing the amount
of collected beacons in a time window of 15 s. From the figure, it is possible to observe the
continuous monitoring of the app without interruptions for each of the runs.

Table 4. Results of stress test T1.

Beacon ID #Beacons Beacon Loss Rate

1 13,427 25%

2 12,123 32%

3 12,090 32%

4 13,251 26%

5 13,314 26%

avg 12,841 28%

Figure 6. Number of beacons collected in T1 for each run.

4.1.2. Stability Test

Concerning stability tests T2 and T3, the purpose is collecting beacons for a long
time period, so that to assess the stability of the data collection. In particular, test T2 is
composed by 2 runs executed with H9 and GP devices, for a total monitoring time of
2 h. Differently, test T3 is composed by 1 single run executed with GP device for a total
monitoring time of 5 h. The tags and the receiving devices are positioned on a desk at
a distance of approximately 50–70 centimeters. We first report the number of collected
beacon and the beacon loss rate and, then, we analyze the obtained time series. Table 5
reports the obtained results for both of the tests. In these cases, the beacon loss rate is
below 50%, T2 reports an average beacon loss rate of 33.3%, while T3 of 16%. We then
analyze the time series of the collected beacons in order to identify anomalies during the
beacon collection. Figures 7 and 8 show respectively the number of collected beacons
aggregated in a time window of 15 s and the number of collected beacons for each of
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the 5 tags aggregated in a time window of 60 s. As a general trend, the app is able to
continuously collect beacons without any significant interruption. However, we notice four
time intervals during which the number of collected beacons drops. Such interruptions are
caused by the stopping of the Kontaktio React Native library used to gather beacons. We
observe that after 30 min of monitoring, the library does not collect any more data. We fix
this issue by programmatically restarting the Beacon Logger service after its interruption.
We report in Figure 8 the number of collected beacons for each of the five tags. In addition,
in this figure, it is possible to observe the previously described issue. In particular, as soon
as the app stops collecting data, the number of received beacons drops for all the tags,
confirming that the problem is not caused by tag malfunction.

Table 5. Results of stability tests T2 and T3.

Test T2 Test T3

Beacon ID #Beacons Beacon Loss Rate #Beacons Beacon Loss Rate

1 21,737 28.2% 30,378 15.9%

2 19,953 34.1% 30,071 16.8%

3 19,157 36.7% 30,029 16.9%

4 19,027 37.1% 30,112 16.7%

5 21,053 30% 30,447 15.8%

Avg 20,185 33.3% 30,207 16.4%

Figure 7. Cumulative number of beacons collected in T2 for each run.

Similar considerations also apply for the T3 test. Differently from T2, in this case, we
execute a long-lasting run of 5 h, as shown in Figure 9. We still observe several interruptions
during the beacon collection that slightly reduce the expected number of beacons. However,
such interruptions are restricted to the order of a few seconds.
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Figure 8. Number of beacons collected in T2 for each run and for each of the 5 tags.

Figure 9. Cumulative number of beacons collected in T3.

4.1.3. Calibration Test

The purpose of the calibration test T8 is analyzing the variation of the beacon’s RSS at
stationary conditions. More specifically, we position 5 tags, configured with a transmission
power of −23 dBm and 2 Hz advertisement frequency, in vertical position at 1.5 m distance
from the receiving device. We use the GP device to collect the beacons for a total test
duration of 10 min.

We first compute the number of collected beacons and we derive the beacon loss
rate. Then, we analyze the aggregated RSS distribution and the same distribution split for
each of the tags. Table 6 reports the number of collected beacons and the beacon loss rate.
We observe that the obtained values match with the test results in T1 · · · T4 (reported in
Tables 4 and 5). In particular, the average number of collected beacons in T4 is 1048 with a
beacon loss rate of 15%.



Sensors 2021, 21, 7089 16 of 24

Table 6. Results of calibration test T8.

Beacon ID #Beacons Beacon Loss Rate

1 1025 17.2%

2 1055 14.8%

3 1050 15.2%

4 10,741 13.3%

5 10,384 16.2%

Avg 1048 15%

We show in Figure 10 the distribution of the beacon’s RSS. The distribution peaks at
−74.6 dBm (such value is used for the configuration of the Threshold algorithm), with
a standard deviation of 5.3 dBm, 25-th percentile of −78 dBm and 75-th percentile of
−71 dBm.

Figure 10. Cumulative distribution of beacon’s RSS for T8.

Although the RSS distribution provides a reference value for determining the proxim-
ity between the visitor and the artwork, we observe a notable dispersion of the RSS values.
To this purpose, we further investigate the RSS values estimated for single tags. We report
in Figure 11 and in Figure 12 the RSS distributions for the 5 tags. From the figures, we
observe that the range of the RSS values varies from −102 dBm (tag with major number 5)
to −64 dBm (tag with major number 1).

Figure 11. Box plots of the beacon’s RSS distribution for T8.
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As representative examples, tags with major numbers 1 and 4 remarkably differ. In
the first case, the RSS distribution shows a mean and standard deviation of −76.7 dBm and
6.4 dBm, respectively, while in the second case of −73.5 dBm 3.89 dBm, respectively.

Figure 12. Distributions of beacon’s RSS for T8 for each tag.

We finally analyze the time series of the tag’s RSS in order to better understand
the variations reported in Figures 11 and 12. Figure 13 shows the RSS time series of
the 5 tags. Time series are 8-s re-samples so that to recognize the different tags and to
observe the RSS fluctuations. From the figure, we recognize an oscillating pattern with
increasing/decreasing values, however the RSS range varies for each tag in a different dBm
interval. Furthermore, we report in Figure 13 an inset showing the aggregated time series
with a red band reporting the aggregated RSS standard deviation.

The previous analysis clearly shows a strong variation of RSS value for different
tags. According to the Bluetooth Low Energy specification (https://www.bluetooth.com/
specifications/specs/core-specification/ (accessed on 1 September 2021)), tags can adver-
tise beacons on different channels. More specifically, the channels used for beaconing range
in the following frequencies: 2.402 Ghz (channel 37), 2.426 Ghz (channel 38) and 2.480 Ghz
(channel 39). Generally, emitting devices select the channel following a Round-Robin
scheduling (referred to as frequency hopping), starting from channel 37. The channel used
for propagating the beacon messages affects the received signal strength on the receiving
device, giving rise to the pattern reported in Figure 13. To the best of our knowledge, the
Android API does not provide any channel information, therefore, it is not possible to filter
out beacons emitted only on a specific channel, as discussed in [36].

Figure 13. RSS time series of 5 tags.

4.2. Experimental Results

We now detail how we conduct our experimental tests in order to assess the perfor-
mance of the implemented proximity detection algorithms in two pilot sites reproducing
a typical museum experience. A museum is generally organized with a suggested path
designed to guide a visitor through the exposed artworks. However, the proposed path is

https://www.bluetooth.com/specifications/specs/core-specification/
https://www.bluetooth.com/specifications/specs/core-specification/
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not mandatory; hence, visitors are also allowed to alter the order of the visited artworks.
Moreover, since the goal of the museum supervisor is to highlight the beauty of the exposed
artworks, the artworks are typically well-spaced so that visitors can enjoy the museum
experience.

To this purpose, we identify two pilot sites in which we deploy Bluetooth tags for
detecting proximity with artworks. More specifically, we test our solution in:

• Pilot 1: a wide open space of approximately 190 m2 located in our research institute;
• Pilot 2: Camposanto Monumentale of Pisa, located in Piazza dei Miracoli, Pisa (Italy).

For what concerns Pilot 1, the selected open space well reproduces an indoor artwork
collection deployed in a single room, in which visitors are free to move and get in proximity
of the artworks. In this pilot site, visitors can only observe artworks with face-to-face
orientation, meaning that it is not possible to watch the scene from behind of sideways.
Differently, Pilot 2 is characterized by an open gallery bounding a central cloister. The
exposed artworks are all positioned below the open gallery. Visitors are free to move
and watch the scene from different perspectives. As an example, the exposed half-length
statues are installed on a stand and visitors can turn around the stand. This aspect, further
increases the complexity of the proximity detection because we cannot assume to deploy
the Bluetooth tags with a specific orientation with respect to the visitor. Pilot 2 comprises
different typologies of artworks, for the purpose of this work, we considered: half-length
statues, altars, sarcophagus and wall slabs.

All the artworks are associated with a Bluetooth tag (with major numbers ranging
from 1 to 10), and we assume that each visit consists of 2 min at 1.5 m distant from the
artwork, as shown in Figure 14. The visitor moves from an artwork to the next one with a
pedestrian speed of approximately 1.8 m/s. Tags are located at 1.5 m from the ground and
they are set with a power of emission of−23 dBm at 2 Hz and a battery level of at least 80%.
We use the GP (Google Pixel 4) as receiving device and we test different visiting layouts for
the two pilot sites. In particular, as reported in Figures 15 and 16, we considered:

• Layout 1: 4 artworks for pilot 1 and 2;
• Layout 2: 5 artworks for pilot 1 and 7 artworks for pilot 2;
• Layout 3: 10 artworks for pilot 1 and 2.

During the visits, the visitor holds the GP device in hand and we collect both the
output of the proximity algorithms (Max and Threshold) and the ground truth (GT), namely
the starting and ending time of an artwork’s visit. It is worth noticing that we calibrate the
Threshold algorithm only once. More specifically, from the calibration analysis reported
in Section 4.1.3, we conclude that setting a threshold to −75 dBm provides the optimal
performance. We adopt such setting in pilot 1 and 2 in order to verify the robustness of
such setting at very different conditions.

Figure 14. Artwork visit and deployment of a BLE tag in Pilot 1.
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Figure 15. The three visiting layouts for Pilot 1.
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Figure 16. The three visiting layouts for Pilot 2.

The ground truth is used to evaluate the outcome of the implemented proximity
algorithms. As described in Section 3.1, the app performs two main tasks: collecting
beacons for a time window of ∆ seconds and analyzing the collected data so that to
detect the artwork proximity. As a result, the GT and the output might result with de-
synchronized timestamps. In order to temporally align the GT with the output of the
algorithms, we re-sampled the two time series so that to have at each timestamp (one
for each second) both the GT and the algorithm’s results. We compute two well-adopted
metrics to evaluate a classification process, namely: Accuracy (Ac) and F1 score (F1,
obtained as a combination of the Precision and the Recall metrics) [37].

As some errors during the proximity detection might be possible, we implement our
proximity algorithms to return not only the most probable artwork in proximity, but also
the second and the third artwork in proximity. More specifically, the result is a vector of
three items: [a1, a2, a3] corresponding to the first, second and third artwork. In this way,
we are able to compute the performance by considering three options. Finally, in order
to mitigate the negative effect of the frequency hopping discussed in Section 4.1.3, the
proximity algorithms consider a specific statistic of the beacons collected from each tag.
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More specifically, our objective is being able to consider only beacons emitted on a specific
channel, as they are supposed to have lower RSS variations (see time series in Figure 13).
Given B, the beacons received from tag j during the time window [t, t + ∆] (see Section 3.1),
we compute the 75th percentile of the beacon’s RSS of set B. Such statistic allows us to
consider only the left-side of the RSS distributions reported in Figure 12, hence, we only
consider beacons with higher RSS values.

Figures 17 and 18 show the obtained results for pilot 1 and 2, respectively. We report
the evaluation metrics in the rows, while in the columns, we report the implemented
algorithms. The bar plots inside each graph show the metric values by varying two
settings:

• The option: we compute the metrics by considering if the correct artwork is contained
in the first option, in the first 2 options or if it is contained in the 3 options;

• The layout: we compute the metrics by considering 3 layouts of increasing complexity.

Concerning the pilot 1 reported in Figure 17, we observe that by increasing the number
of considered options, the obtained results increase for all the layouts and for the two
implemented algorithms. More specifically, the max algorithm provides the best results
for all the layouts. When we consider only the first option with layout 1, we obtain an
accuracy and F1 score of 0.95, while with the second and the third option, with layout
1, we obtain perfect accuracy and F1 scores. Differently, the performance degrades with
more complex layouts, such as layouts 2 and 3. With layout 2 and with the first option,
the accuracy decreases to 0.68 and F1 to 0.62, while when we consider options 2 and 3, the
accuracy and F1 score still are perfect. Finally, layout 3 is more challenging. As reported
in Figure 14, we consider 10 artworks during the museum visit. Some of the artworks are
in close proximity, such as the pairs (#1, #10) and (#10, #9). When we consider only the
first option, the accuracy value decreases to 0.4 and F1 to 0.3, while when considering
the options 2 and 3, the obtained accuracies and F1 values are 0.78 and 0.7 and 0.98 and
0.83, respectively. We observe a similar trend for the values obtained with the Threshold
algorithm. We now analyze the results obtained for pilot 2 reported in Figure 18. In this
case, the performance tends to decrease by increasing the complexity of the tested layout.
However, we observe that the obtained results (in terms of Accuracy and F1 score) are
generally higher with respect to pilot 1. In particular, the Accuracy score returned by
the Max algorithm with layout 3 is 0.69 considering option 1, 0.93 with option 2 and 0.99
with option 3. The Max algorithm also provides strong results with layouts 1 and 2, as
expected in these cases, the accuracy scores are higher than the ones obtained for the most
challenging layout. Similar considerations also apply for the Threshold algorithm. In this
case, the Accuracy score with layout 3 is 0.61 considering option 1, 0.79 with option 2 and
0.8 with option 3. We also observe that the Threshold algorithm does not reach perfect
Accuracy in none of the layouts and the options.
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Figure 17. Performance results of the proximity algorithms with pilot 1.

Figure 18. Performance results of the proximity algorithms with pilot 2.
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5. Discussion and Conclusions

Location-based services offer the possibility of delivering functionalities to end-users
by inferring their location or the proximity with specific points of interest. In this paper,
we present the design and a quantitative assessment of the reliability and performance of
the RE.S.I.STO application, which is used to automatically detect the proximity between
visitors and artworks. In particular, we present the RE.S.I.STO app, which is targeted to
visitors of museums in the medieval city of Pisa (Italy). We first present the design of
our cross-platform mobile application, based on the React-Native framework. We detail
the architectural design and how we logically split the implemented software modules
to collect sensing information and to elaborate on it for the purpose of detecting the
artwork proximity. Our mobile application relies on the Bluetooth Low Energy protocol
and, specifically, on the iBeacon technology. We implement two proximity algorithms
and we detail our experiments composed of stress, stability and calibration tests. We
show the performance of the app both in terms of beacon loss rate, accuracy and F1
scores. In particular, our stress and stability tests demonstrate the robustness of the app
during the beacon collection task. We test the app with long-lasting session (up to 5 h
of continuous monitoring) and we measure the ratio between expected and collected
beacons. We then analyze the performance of the app during the proximity detection. This
work also investigates some issues related to the calibration caused by the use of multiple
advertising channels which imply a high variation of the RSS values at fixed distance. We
also discuss how to mitigate the RSS fluctuations by computing a statistic of the received
beacons’ RSS. To this purpose, we reproduce three typical museum layouts in a wide
indoor environment and we compare the artwork ground truth with the outcome of the
algorithms. Our results show that we can successfully detect the correct artwork with an
accuracy up 95% for layout 1 and by considering the first option provided by the app. As
well reported in Table 2, the proposed solution has been validated in a realistic scenario
with a nontrivial experimental path. These features are also taken into consideration
by [7,8], while [18,30] evaluated the system performance in a more controlled environment
such as a laboratory. Moreover, as in [8], we validated the performance results by using
different mobile devices, but usually this feature is not analyzed in the literature. The use
of commercial devices and the robustness test we conducted are other characteristics of
the proposed system that are usually not evaluated and reported in the literature [9,10].
The table has been defined by considering those features, making the proximity detection a
challenging task in indoor environments, such as the complexity of the path, the realistic
scenario and the adopted devices to estimate the signal strength of beacon messages. We
then designed our system trying to address such features as compared in Table 2. Our
experimental settings demonstrate all the complexity behind the use of Bluetooth tags for
the proximity detection. In particular, we observe a high variability of the received signal
strength of beacons emitted by commercial tags at similar condition. Such variability is
caused not only by environmental conditions (obstacles, fading and signal reflections),
but also from the use of multiple advertising frequencies. As a result, we experience
values of RSS ranging in a considerable dBm interval. We discuss in the paper how we
mitigate such a behavior. However, we argue that more advanced techniques can be
used to further increase the performance of our algorithms. We consider two possible
lines of investigation. On the one hand, the use of data fusion techniques enables us to
merge information obtained from heterogeneous sensors such as in inertial and proximity
sensors. Such data can be elaborated with filtering techniques so that to filter out noisy
data and improve the identification of the closest artwork. Furthermore, knowledge of the
indoor map can be exploited to contain the errors by avoiding unfeasible outcomes of the
mobile app. Moreover, data fusion techniques can be also applied to image sources. More
specifically, we consider the possibility of using 3D indoor maps as a reference background
and to augment them with contextual information about the artwork a visitor is looking
at. These experiences can be further enriched by using 3D visors, e.g., Epson Moverio
as an alternative rendering device. On the other hand, promising mobile technologies
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can increase the performance of the proposed solutions. We argue that the Bluetooth 5.1
protocol, introducing two key-features, namely the angle of arrival (AoA) and the angle
of departure (AoD), will allow to obtain a significance reduction of the localization error,
reshaping the context of location-based services and the visitor’s experience. Another
technology that we believe is useful to point out and which could revolutionize the next
generation proximity systems is UWB. Leveraging the time-of-flight (ToF) or the time-
difference-of-arrival (TDoA) measured between the mobile and the UWB tags, we argue
that this technology could increase the accuracy in all the indoor localization fields.

Author Contributions: Conceptualization, P.B., D.L.R. and M.G.; methodology, P.B., D.L.R. and M.G.;
software, M.G. and D.L.R.; validation, P.B., D.L.R. and M.G.; investigation, P.B., D.L.R. and M.G.; data
curation, P.B., D.L.R. and M.G.; writing—review and editing, P.B., D.L.R. and M.G.; visualization,
M.G. and D.L.R.; project administration, P.B. All authors have read and agreed to the published
version of the manuscript.

Funding: This work is partially funded by RE.S.I.STO project: “Recupero di Sistemi Informativi
STOrico-artistici per una rinnovata comunicazione del patrimonio”, funded by Regione Toscana,
progetti POR FSE 2014-2020.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Furfari, F.; Crivello, A.; Baronti, P.; Barsocchi, P.; Girolami, M.; Palumbo, F.; Quezada-Gaibor, D.; Silva, G.M.M.; Torres-Sospedra, J.

Discovering location based services: A unified approach for heterogeneous indoor localization systems. Internet Things 2021,
13, 100334. [CrossRef]

2. Barsocchi, P.; Crivello, A.; Girolami, M.; Mavilia, F. Detecting Social Interactions in Indoor Environments with the Red-HuP
Algorithm. In Proceedings of the 2020 IEEE International Conference on Pervasive Computing and Communications Workshops
(PerCom Workshops), Austin, TX, USA, 23–27 March 2020; pp. 1–6.

3. Xia, H.; Zuo, J.; Liu, S.; Qiao, Y. Indoor localization on smartphones using built-in sensors and map constraints. IEEE Trans.
Instrum. Meas. 2018, 68, 1189–1198. [CrossRef]

4. Alletto, S.; Cucchiara, R.; Del Fiore, G.; Mainetti, L.; Mighali, V.; Patrono, L.; Serra, G. An indoor location-aware system for an
IoT-based smart museum. IEEE Internet Things J. 2015, 3, 244–253. [CrossRef]

5. Wu, X.; Shen, R.; Fu, L.; Tian, X.; Liu, P.; Wang, X. iBILL: Using iBeacon and inertial sensors for accurate indoor localization in
large open areas. IEEE Access 2017, 5, 14589–14599. [CrossRef]

6. Kosmopoulos, D.; Styliaras, G. A survey on developing personalized content services in museums. Pervasive Mob. Comput. 2018,
47, 54–77. [CrossRef]

7. Martella, C.; Miraglia, A.; Frost, J.; Cattani, M.; van Steen, M. Visualizing, clustering, and predicting the behavior of museum
visitors. Pervasive Mob. Comput. 2017, 38, 430–443. [CrossRef]

8. Yoshimura, Y.; Girardin, F.; Carrascal, J.P.; Ratti, C.; Blat, J. New Tools for Studying Visitor Behaviours in Museums: A Case Study at the
Louvre; Springer: Berlin/Heidelberg, Germany, 2012.

9. Kikuchi, K.; Tazawa, R.; Honma, N.; Minamizawa, H.; Miura, A. DOD-Based Indoor Localization Using BLE Beacons. Available
online: https://www.microsoft.com/en-us/research/wp-content/uploads/2016/11/Naoki_Honma.pdf (accessed on 19 October
2021).

10. Allurwar, N.; Nawale, B.; Patel, S. Beacon for proximity target marketing. Int. J. Eng. Comput. Sci 2016, 15, 16359–16364. [CrossRef]
11. Klokmose, C.N.; Korn, M.; Blunck, H. WiFi proximity detection in mobile web applications. In Proceedings of the 2014 ACM

SIGCHI Symposium on Engineering Interactive Computing Systems, Rome, Italy, 17–20 June 2014; pp. 123–128.
12. Chianese, A.; Marulli, F.; Moscato, V.; Piccialli, F. SmARTweet: A location-based smart application for exhibits and museums.

In Proceedings of the 2013 International Conference on Signal-Image Technology & Internet-Based Systems, Kyoto, Japan, 2–5
December 2013; pp. 408–415.

13. Kaemarungsi, K.; Krishnamurthy, P. Analysis of WLAN’s received signal strength indication for indoor location fingerprinting.
Pervasive Mob. Comput. 2012, 8, 292–316. [CrossRef]

14. Xia, S.; Liu, Y.; Yuan, G.; Zhu, M.; Wang, Z. Indoor fingerprint positioning based on Wi-Fi: An overview. ISPRS Int. J.-Geo-Inf.
2017, 6, 135. [CrossRef]

15. Potortì, F.; Crivello, A.; Girolami, M.; Traficante, E.; Barsocchi, P. Wi-Fi probes as digital crumbs for crowd localisation. In
Proceedings of the 2016 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Sapporo, Japan, 18–21
September 2016; pp. 1–8. [CrossRef]

16. Dimitrova, R. Sensor Application for Museum Guidance. Available online: https://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.495.319&rep=rep1&type=pdf (accessed on 19 October 2021).

http://doi.org/10.1016/j.iot.2020.100334
http://dx.doi.org/10.1109/TIM.2018.2863478
http://dx.doi.org/10.1109/JIOT.2015.2506258
http://dx.doi.org/10.1109/ACCESS.2017.2726088
http://dx.doi.org/10.1016/j.pmcj.2018.05.002
http://dx.doi.org/10.1016/j.pmcj.2016.08.011
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/11/Naoki_Honma.pdf
http://dx.doi.org/10.18535/ijecs/v5i5.08
http://dx.doi.org/10.1016/j.pmcj.2011.09.003
http://dx.doi.org/10.3390/ijgi6050135
http://dx.doi.org/10.1109/IPIN.2016.7743599
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.495.319&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.495.319&rep=rep1&type=pdf


Sensors 2021, 21, 7089 24 of 24

17. Bueno, D.R.; Viruete, E.; Montano, L. An autonomous tour guide robot in a next generation smart museum. In Proceedings
of the 5th International Symposium on Ubiquitous Computing and Ambient Intelligence (UCAmI), Riviera Maya, Mexico,
6–9 December 2011.

18. Jiménez, A.R.; Seco, F. Finding objects using UWB or BLE localization technology: A museum-like use case. In Proceedings of
the 2017 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Sapporo, Japan, 18–21 September 2017;
pp. 1–8.

19. Angelaccio, M.; Basili, A.; Buttarazzi, B.; Liguori, W. Smart and mobile access to cultural heritage resources: A case study
on ancient Italian renaissance villas. In Proceedings of the 2012 IEEE 21st International Workshop on Enabling Technologies:
Infrastructure for Collaborative Enterprises, Toulouse, France, 25–27 June 2012; pp. 310–314.

20. Ceipidor, U.B.; Medaglia, C.; Volpi, V.; Moroni, A.; Sposato, S.; Carboni, M.; Caridi, A. NFC technology applied to touristic-cultural
field: A case study on an Italian museum. In Proceedings of the 2013 5th International Workshop on Near Field Communication
(NFC), Zurich, Switzerland, 5 February 2013; pp. 1–6.

21. Ayala, I.; Amor, M.; Pinto, M.; Fuentes, L.; Gámez, N. imuseuma: An agent-based context-aware intelligent museum system.
Sensors 2014, 14, 21213–21246. [CrossRef] [PubMed]

22. Taverriti, G.; Lombini, S.; Seidenari, L.; Bertini, M.; Del Bimbo, A. Real-time wearable computer vision system for improved
museum experience. In Proceedings of the 24th ACM International Conference on Multimedia, Amsterdam, The Netherlands,
15–19 October 2016; pp. 703–704.

23. Portaz, M.; Kohl, M.; Quénot, G.; Chevallet, J.P. Fully convolutional network and region proposal for instance identification
with egocentric vision. In Proceedings of the IEEE International Conference on Computer Vision Workshops, Venice, Italy, 22–29
October 2017; pp. 2383–2391.

24. Rubino, I.; Xhembulla, J.; Martina, A.; Bottino, A.; Malnati, G. Musa: Using indoor positioning and navigation to enhance cultural
experiences in a museum. Sensors 2013, 13, 17445–17471. [CrossRef] [PubMed]

25. Bihler, P.; Imhoff, P.; Cremers, A.B. SmartGuide—A smartphone museum guide with ultrasound control. Procedia Comput. Sci.
2011, 5, 586–592. [CrossRef]

26. Lazik, P.; Rowe, A. Indoor pseudo-ranging of mobile devices using ultrasonic chirps. In Proceedings of the 10th ACM Conference
on Embedded Network Sensor Systems, Toronto, CA, USA, 6–9 November 2012; pp. 99–112.

27. Rocchi, C.; Stock, O.; Zancanaro, M.; Kruppa, M.; Krüger, A. The museum visit: Generating seamless personalized presentations
on multiple devices. In Proceedings of the 9th International Conference on Intelligent User Interfaces, Madeira, Portugal, 13–16
January 2004; pp. 316–318.

28. Oppermann, R.; Specht, M. A nomadic information system for adaptive exhibition guidance. Arch. Mus. Inform. 1999, 13, 127–138.
[CrossRef]

29. Petrelli, D.; Not, E. User-centred design of flexible hypermedia for a mobile guide: Reflections on the HyperAudio experience.
User Model.-User-Adapt. Interact. 2005, 15, 303–338. [CrossRef]

30. Spachos, P.; Plataniotis, K.N. BLE beacons for indoor positioning at an interactive IoT-based smart museum. IEEE Syst. J. 2020,
14, 3483–3493. [CrossRef]

31. Zammetti, F. Practical React Native: Build Two Full Projects and One Full Game Using React Native; Springer: Berlin/Heidelberg,
Germany, 2018.

32. Appiah, O.; Asante, M.; Hayfron-Acquah, J.B. Improved approximated median filter algorithm for real-time computer vision
applications. J. King Saud Univ.-Comput. Inf. Sci. 2020. [CrossRef]

33. Barsocchi, P.; Lenzi, S.; Chessa, S.; Giunta, G. Virtual Calibration for RSSI-Based Indoor Localization with IEEE 802.15.4. In
Proceedings of the IEEE International Conference on Communications, Dresden, Germany, 14–18 June 2009; pp. 1–5. [CrossRef]

34. Girolami, M.; Mavilia, F.; Delmastro, F. A bluetooth low energy dataset for the analysis of social interactions with commercial
devices. Data Brief 2020, 32, 106102. [CrossRef] [PubMed]

35. Girolami, M.; Mavilia, F.; Delmastro, F. Sensing social interactions through BLE beacons and commercial mobile devices. Pervasive
Mob. Comput. 2020, 67, 101198. [CrossRef] [PubMed]

36. Gentner, C.; Günther, D.; Kindt, P.H. Identifying the BLE Advertising Channel for Reliable Distance Estimation on Smartphones.
arXiv 2020, arXiv:2006.09099.

37. Kelleher, J.D.; Namee, B.M.; D’Arcy, A. Fundamentals of Machine Learning for Predictive Data Analytics: Algorithms, Worked Examples,
and Case Studies; The MIT Press: Cambridge, MA, USA, 2020.

http://dx.doi.org/10.3390/s141121213
http://www.ncbi.nlm.nih.gov/pubmed/25390409
http://dx.doi.org/10.3390/s131217445
http://www.ncbi.nlm.nih.gov/pubmed/24351645
http://dx.doi.org/10.1016/j.procs.2011.07.076
http://dx.doi.org/10.1023/A:1016619506241
http://dx.doi.org/10.1007/s11257-005-8816-1
http://dx.doi.org/10.1109/JSYST.2020.2969088
http://dx.doi.org/10.1016/j.jksuci.2020.04.005
http://dx.doi.org/10.1109/ICC.2009.5199566
http://dx.doi.org/10.1016/j.dib.2020.106102
http://www.ncbi.nlm.nih.gov/pubmed/32793784
http://dx.doi.org/10.1016/j.pmcj.2020.101198
http://www.ncbi.nlm.nih.gov/pubmed/32834802

	Introduction
	Related Work
	Radiofrequency-Based Techniques
	Vision-Based Techniques
	Other Techniques

	Application Design, Tools and Methods
	The Design of the RE.S.I.STO App
	The React Native Framework
	Proximity Detection Algorithms

	Identifying Artwork Proximity with the Bluetooth Tags
	Preliminary Settings
	Stress Test
	Stability Test
	Calibration Test

	Experimental Results

	Discussion and Conclusions
	References

