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Abstract The Requirements Engineering (RE) process starts with initial require-
ments elicited from stakeholders—however conflicting, unattainable, incomplete and
ambiguous—and successively refines them until a consistent, complete, valid, and
unambiguous specification is reached. This is achieved by balancing stakeholders’
viewpoints and preferences to reach compromises through negotiation. Several frame-
works have been developed to support this process in a structured way, such as KAOS,
i*, and RationalGLR. However, none provides the means to model the dialectic ne-
gotiation inherent to the RE process, so that the derivation of specifications from
requirements is fully explicit and traceable. To address this gap, we propose CaRE,
a refinement calculus for requirements engineering based on argumentation theory.
CaRE casts the RE refinement problem as an iterative argument between all relevant
stakeholders, who point out defects (ambiguity, incompleteness, etc.) of existing re-
quirements, and then propose suitable refinements to address them, thereby leading
to the construction of a refinement graph. This graph is then a conceptual model of
the RE process. The semantics of refinement graphs is provided using Argumenta-
tion Theory, enabling reasoning over the RE process and the automatic computation
of software specifications. An alternate semantics is also presented based on abduc-
tion and using Horn Theory. The application of CaRE is showcased with an extensive
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example from the railway domain, and a prototype tool for identifying specifications
in a refinement graph is presented.

Keywords requirements engineering · requirements refinement · RE process · RE
calculus · argumentation theory · formal semantics

1 Introduction

Software requirements engineering (RE) constitutes a critical phase for any software
development project. The original core problem in RE consists of transforming the
initial requirements R elicited from stakeholders—however informal, ambiguous,
unattainable, etc.— through a systematic refinement process into a specification S
that (a) consists of functional requirements, quality constraints and domain assump-
tions, (b) is consistent, complete, and realizable, and (c) fulfills or satisfies R.

Variants of this problem constitute the backbone of RE research, and several con-
ceptual notations and techniques have been proposed since the 70s (e.g., Structured
Analysis by Douglas Ross [41]) to engineer the refinement process. To begin with,
consider two RE techniques that can be viewed as research baseline and analogues
for our work, namely SADT [41] and the family of goal-oriented RE (GORE) tech-
niques [9,49]. In each case, we note 1) the basic ontology underlying each approach,
2) the refinement process by which the requirements are built, and 3) the “require-
ments document” resulting from the enactment of this process.

SADT (1977) [41] was the first widely known requirements specification nota-
tion and methodology. The modeling ontology of SADT consists of data and activity
boxes, connected by input/output/control arrows. The refinement methodology is a
structured decomposition of non-atomic boxes into labelled sub-boxes, which are
interconnected by labelled arrows in appropriate ways. Therefore, the final require-
ments document/model consists of a number of pages, each describing the internal
content of a box; all unexpanded boxes are viewed as atomic/realizable. Ross [41]
explicitly stated that SADT can be used to describe not just software requirements
but to communicate any idea/conceptual model, and showed how to describe the pro-
cess of model building in SADT itself. RML (1992) [22] expanded the ontology of
SADT by adding assertion objects, and extended its methodology with refinement
by specialization, supported by subclass hierarchies and inheritance. Rather than us-
ing boxes, RML’s language was explicitly based on Knowledge Representation, and
formalized in logic.

Goal-Oriented RE—GORE (1993) [9,49] is an influential RE paradigm which,
in its simplest form, has an ontology consisting of goals, connected by reduction and
conflict relations. The methodology suggests refining non-realizable goals (ones that
cannot be implemented directly) using AND/OR decomposition. The final require-
ments model then consists of a graph of goals and decomposition relationships, with
operationalizable goals as leafs.

All prior RE approaches, starting with [30], viewed initial requirements R as
being satisfied by specification S under domain assumptions A, if A and S together
logically entailedR. This notion of fulfillment runs counter to requirements engineer-
ing practice, where stakeholder requirements are routinely weakened because they
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are unnecessarily strong (e.g., “system shall be available 7/24”), or even dropped
altogether. Such decisions are not accounted for in existing requirements engineer-
ing models and frameworks, often resulting in an incomplete documentation of the
process, lack of transparency and traceability with respect to important decisions or
design choices made, and a difficulty to trace and analyze the evolution of the refine-
ment process at later-stages of software development. Indeed, incomplete and hidden
requirements have been recognized as one of the most common and challenging prob-
lems in RE practice [17].

To address the aforementioned limitations of existing methods, the present paper
proposes an approach, called CaRE, whose ontology consists of requirements/goals,
defects and refinements, the latter two of various sub-types. CaRE offers a novel
calculus of operators that can be used to critique requirements using various defect
types, and to address such defects using assorted refinements1 The CaRE refinement
methodology suggests viewing the use of the operators as a dialectic argument be-
tween stakeholders, including requirements engineers, each of whom may point out
defects in the current requirements, or add new requirements that address posited
defects. The result of enacting this argument is a refinement graph, which records
requirements, defects and refinements, and for which we define a notion of “accept-
ability” that replaces the notion of “satisfaction”/“fulfillment” for GORE approaches.

The set of defect subtypes in CaRE is inspired by the IEEE/ISO Standards on
Software Requirements Specifications (SRS) [1,2], which have detailed “defects”
to be addressed during the software requirements refinement process. The set of re-
finements addressing them is gathered from the RE literature, which contains many
proposals for dealing with specific types of defects. These include techniques for
eliminating forms of conflict, such as inconsistencies [28] and obstacles [45]. Still
others focus on recognizing ambiguity introduced by natural language, for example
[43]. Such refinements can’t be accounted for explicitly by proposals in the litera-
ture. Note that basic GORE technique is covered in CaRE by the nonAtomic defect
(marking non-operationalizable goals) and the reduce operator, which can be used to
perform AND-decomposition of a goal.

The CaRE process results in a refinement graph with a set of nodes R, each rep-
resenting a requirement; some are initial, some are leaf nodes, with no defects, and
others are intermediate requirements. A specification set S, consists of some leaf
nodes, which is said to address R if there is an “acceptable argument” that involves
refining S from R. This renders the derivation of S from R a Hegelian dialectic pro-
cess of thesis-antithesis-synthesis [25], also similar in spirit to the inquiry cycle [40],
though our proposal includes more structure, technical detail, and reasoning sup-
port. Addressing a given set of requirements by offering an acceptable argument is
a weaker notion of fulfillment than satisfying it, because it allows a requirement to
be weakened or altogether dropped, as long as there is an acceptable argument for
this. Towards this end, we adopt argumentation semantics from Dung [11], and we
provide an alternate semantics through abduction, based on a Horn Theory involving
requirements and handled defects [42].

1 It is important to note that the term “refinement” means “improvement”, not just “elaboration”, so that
requirements can be weakened or even dropped.
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Furthermore, prior RE approaches do not account for defects—the rationales be-
hind refinements. In contrast, in CaRE, defects are explicit first-class entities, pro-
viding a comprehensive documentation of the RE refinement process and improving
its review and comprehension by stakeholders. In addition, building of refinement
graphs in CaRE is a monotonic process, not requiring modification nor revision of
previous steps, as identification of defects allows a disciplined refinement or even re-
jection of previously introduced refinements. This greatly simplifies change manage-
ment, a major challenge in requirements engineering which most current frameworks
fail to address adequately.

The calculus is intended to be used in a process that involve all stakeholders (or
a representative subset thereof in case of large numbers) who consider the initial
stakeholder requirements and iteratively critique and refine them to generate new
requirements that remove defects. The process terminates when there is a derived
specification that is acceptable to all concerned.

The CaRE proposal fits well the paradigm of model-driven software engineering
and tackles the first step of the software engineering process: going from stakeholder
requirements to a specification. This step is different from others that follow down-
stream in that stakeholder participation is essential and there are no prospects for full
automation. All that can be hoped for, which CaRE supports, is suitable conceptual-
ization and systematization of the process, along with reasoning support over models
of process enactment.

The contributions of this work include:

– A comprehensive refinement calculus for RE, inspired by goal-oriented RE but
which adds: (i) “defects” and “refinements” to its ontology, based on a full set
of defect types from IEEE/ISO standards; (ii) a comprehensive set of refinement
operators for defects; (iii) refinement graphs, which are conceptual models of the
RE process enactment, and can serve as explanation/rationale for derived specifi-
cations.

– An argumentation-based semantics of what it means for a specification to address
a set of stakeholder requirements, and an equivalent semantics based on Horn
abduction. The systematic process for constructing CaRE refinement graphs, in-
spired by its argumentation-based semantics, supports negotiation and conver-
gence towards agreement among stakeholders. This leads to an environment where
all stakeholders are involved, in contrast with most previous approaches, where
only requirements engineers conduct requirements analysis.

– Reasoning support that, given an initial set of requirements R and a constructed
refinement graph, returns all specifications S that addressR. This is implemented
as a prototype tool that is available on the web.

– A scenario from the railway domain illustrating the elements of our calculus and
how they can be used to derive specifications from requirements.

This paper extends a recent contribution to the ER conference [13]. With respect
to the original submission the current paper adds more information and explanation
about the proposed calculus, a complementary abduction-based semantics (Sect. 4)
which is provably equivalent in simpler cases, a realistic application scenario based
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on the railway domain in which CaRE is showcased (Sect. 5), and an extended related
work section to better frame our work with respect to existing literature (Sect. 6).

The remainder of the paper is structured as follows. In Sect. 2, we illustrate the
fundamental ingredients of the proposed calculus, namely defects, operators, and re-
finement graphs. In Sect. 3, we provide a semantics for the calculus based on Ar-
gumentation Theory. Sect. 4 presents the alternative semantics based on abduction.
Sect. 5 showcases the calculus on a realistic scenario. Sect. 6 presents related works,
while Sect. 7 concludes and discusses limitations and future work.

2 CaRE Requirements Calculus

The proposed approach consists of a calculus and a systematic process for require-
ments critiquing and refinement. The calculus is based on a collection of defect types
and refinements. The defect types are inspired by the IEEE/ISO standards and rep-
resent issues that could be identified by stakeholders for one or more requirements.
Refinements, on the other hand, are the means for fixing defects. By means of an
iterative process of defect identification and refinement, a refinement graph is con-
structed and zero or more specifications are derived.

2.1 CaRE Metamodel

Figure 1 shows a metamodel of CaRE refinement graphs, composed of: (1) Require-
ments, (2) Defects, and (3) Refinements. We distinguish initial requirements gathered
at the start of the refinement process, and those with no defects. In the metamodel,
this is represented using the Boolean attributes isInitial and isFinal respectively. The
various elements of the metamodel are detailed in the following.

Defect Types: Defects are classified into single target defects that critique a single
requirement, (e.g. “System shall be user-friendly” is ambiguous), and multi-target de-
fects that critique a collection of requirements (e.g., {“System shall be user-friendly”,
“System shall be highly secure”} are conflicting). Moreover, the defect hierarchy in
the CaRE metamodel is disjoint and complete in the sense that each defect belongs
to exactly one defect type.

The single target defects are:
– nonAtomic: target requirement is not operationalisable. For example, 〈g1:“System

shall schedule a meeting upon request”〉 may not be atomic since there is no sin-
gle action the system-to-be or an agent in the environment can perform to address
it.

– ambiguous: the requirement admits many interpretations because it is vague, im-
precise, or otherwise ambiguous. For example, 〈g2:“The authentication process
shall be easy”〉 is ambiguous since the term easy is vague.

– unattainable: the requirement is not feasible, i.e. doesn’t have a realistic solution.
For example, 〈g3:“The system shall be available at all times”〉 is unattainable
because it assumes eternal availability of power and other resources.
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Fig. 1 CaRE Metamodel

– unjustified: the requirement does not have an explicit motivation. For example,
〈g4:“The system shall run on Windows operating system”〉 is missing an explicit
justification why other operating systems are not considered.

– incomplete: the requirement is missing information. For example, 〈g5:“In case
of fault, the system shall send an error message”〉 is incomplete because it does
not specify a recipient for the message.

– tooStrong: the requirement is over-restrictive. For example, 〈g6:“The website
shall use HTTPS protocol”〉, may be too strong if there is no sensitive data.

– tooWeak: the requirement is too weak. For example, 〈g7:“The DB system shall
process 500 transactions/sec”〉 is too weak if the expected workload for the system-
to-be is 1,000 transactions/sec.

– rejected: the requirement is unacceptable and is therefore rejected. For example,
in the context of an app recommending nearby restaurants to users, a requirement
such as 〈g8:“The app shall support chatting between user and restaurant”〉 may
be deemed unacceptable to a restaurant stakeholder.

The multitarget defects are:

– mConflict: the target set of requirements doesn’t admit any solutions, even though
subsets may do so. For example, the requirements 〈g9:“The train control system
shall stop the train if a red signal is missed”〉 and 〈g10:“The train control system
shall not apply brakes if the speed is below 30 km/h”〉 are conflicting if a red
signal is missed while the train’s speed was less than 30 km/h.

– mMissing: the set of requirements is incomplete. For example, a set of require-
ments for a social network platform is mMissing if it does not include any privacy
requirements.
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– mRedundant: here a set of requirements is too strong or redundant, as in 〈g11:“The
system shall support authentication through fingerprint recognition”〉 and 〈g12:“The
system shall support authentication through iris recognition”〉.

IEEE Software Requirement Specification The set of defects in CaRE is inspired
by the IEEE Standard 830-1998 on Software Requirements Specifications (SRSs)
which lists 8 desirable properties are proposed for SRSs: Correctness, Unambigu-
ity, Completeness, Consistency, Ranking. Verifiability, Modifiability and Traceability.
Of these, the first four are addressed by CaRE at a finer granularity to make CaRE
more user-friendly. Specifically, Correctness is decoupled into tooStrong, tooWeak,
mRedundant, Unambiguity by ambiguous, Completeness by unjustified,incomplete
and mMissing while Consistency is decoupled into unattainability and mConflict.
Three other desired properties of the standard (Ranking, Modifiability, Traceabil-
ity) concern the SRS document rather than requirements. Finally, Verifiability, was
deemed to be subsumed by Unambiguity. The CaRE list of defects also includes non-
atomicity which is the defect addressed by GORE.

Refinement Operators: A refinement operator invocation, op(d, newR), addresses a
defect d of some existing requirement(s), and introduces new requirement(s) newR
that address the defect and are hopefully acceptable. Note that currently newR may
contain an existing requirement as long as this doesn’t introduce cycles in the refine-
ment graph.

Each refinement operator concerns a (set of) defective requirement(s), and is ap-
plicable to one or more defect types. Conversely, each defect type has at least one
refinement operator that is applicable to it, i.e., can eliminate defects of that type.
Defects of type rejected are an exception: in this case there is no possible fix, as
the rejected requirement constitutes a dead end. Note that the set of operators is not
“minimal” – some operators behave similarly, but we have chosen to keep them in
order to make the calculus more readily usable. The operators are as follows:

– weaken: introduces a weaker requirement. For example, the unattainable require-
ment g3 may be weakened into 〈g13:“The system shall be available at all times,
with interruptions of ≤2 hours”〉. weaken is applicable to defects of the type
Inaccessible, which concretely are tooStrong or unattainable defects.

– strengthen: introduces a stronger requirement. For instance, g7 may be strength-
ened into 〈g14:“The system shall process 1,200 tps”〉. strengthen is applicable to
defects of type tooWeak.

– reduce: decomposes a requirement into a set g1, ..., gn using AND-refinement.
reduce is applicable to defects of type nonAtomic.

– add: is applicable to defects of type mMissing, and introduces a new requirement
(that was missing), as well as copies of its input requirements.

– clarify: is applicable to Obscure defects, which, concretely, include incomplete
and ambiguous defects; and introduces a, presumably, improved requirement.

– justify: introduces a new requirement that represents an explicit motivation for
another requirement, and is applicable to unjustified defects.

– resolve: applies to defects of type mConflict, typically moderating or dropping
some of the original requirements.
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Fig. 2 Overview of the Approach

– drop: given a set of mRedundant requirements, produces copies of a proper
subset of R excluding redundant elements.

2.2 Incremental Construction of a Refinement Graph

In this section, we provide an overview of the incremental process of building a re-
finement graph, and give intuitions of what it means for a requirement to be accept-
able. Formal definitions appear in Sect. 3.

Fig. 2 depicts the steps that lead to the construction of a refinement graph. Given
an initial set of requirements, these are critiqued by stakeholders to identify defects
(step Defect Identification). Then, requirements – or sets of requirements – that have
defects are refined by applying refinement operators (step Refinement), producing
new requirements. If the new requirements are acceptable to all stakeholders, i.e.
have no defects, their respective isFinal attribute is set to true. This process is re-
peated until no new defects are identified, or all stakeholders are satisfied with de-
rived specifications. Thus, the result of the process is a refinement graph where some
of the leaf nodes are requirements that have no defects, are therefore acceptable and
are labelled as such. Intuitively, acceptability of requirements is propagated from leaf
nodes towards higher-level nodes: whenever every defect of a requirement g has been
addressed by a refinement with requirements which themselves are acceptable, g is
acceptable. (A formal definition of “acceptable” is given in Section 3.) Finally, spec-
ifications of a refinement graph are determined by identifying minimal sets of leaf
nodes2 that make the initial requirements acceptable.

2.3 Graphical Notation and Running Example

This section presents a simple example used to illustrate our proposal and its graphi-
cal expression. The basic elements of the graphical notation are shown in Fig. 3, and
consist of requirements, defects (single- and multi-target), and refinements. Each in-
stance of these elements is associated with a unique id (REQ-id, DEF-id, REF-id in
Fig. 3). As the elements are mostly self-explanatory, we will illustrate them through
the example.

2 Identification of leaf nodes is detailed in Sect. 3.
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The example, which is based on a simple elicitation case, is represented by the
refinement graph in Fig. 4. In the running example, a customer requires a new app
to be installed on the tablets of factory workers, to be used for sharing workflow in-
formation. The customer requires that the app runs on Android (g00). Furthermore,
the customer wants the system to be delivered within six months (g01). The require-
ments analyst asks why Android is required (unjustified(d00) defect), and the cus-
tomer replies that the tablets currently used by the workers are all Android tablets
(g10, introduced with the jusify refinement r10). The requirements analyst knows
that their software company has a very similar app for iOS, but that porting and adap-
tation would require twelve months. Hence, g00 and g01 are considered conflicting.
In the refinement graph, an mConflict defect is specified, and a textual motivation
(the optional <“claim”> in Fig. 3) is used to explain the nature of the defect: mCon-
flict(d01:“cannot deliver Android app in 6 months”). To comply with the deadline,
the requirements analyst suggests to develop the app for iOS (g20), so that its adap-
tation to the customer’s needs is feasible within 6 months (g21). However, this would
require replacing the tablets at the factory with iPad tablets (g22). Alternatively, the
requirements analyst suggests to develop the app for Android (g23), but to deliver
it in twelve months (g24). These two options aim at resolving conflict d01, and are
represented as alternative refinements r20 and r21. Assuming that no other defects
are found, according to the approach provided in Sect. 2.2, we have two possible
specifications: {g20, g21, g22} and {g23, g24}.

2.4 Discussion of Design Choices

Firstly, we gained a claim of completeness with respect to the defect types of our
calculus by using the IEEE/ISO standards. However, there is no claim of minimality
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for defect types since, e.g., unattainability constitutes a form of too strong, while
ambiguity is a special case of incompleteness.

The set of refinement operators is not minimal since, e.g., add and justify modify
the graph in similar ways. However, operators guide users on how to deal with de-
fects. For example, if g is attacked as being incomplete with respect to privacy con-
cerns, then use of add should introduce some privacy requirements. If, on the other
hand, g is deemed unjustified, the new requirement introduced by justify should serve
as justification for g. In short, add and justify do similar things, but for very different
purposes.

It is also worth noting that, from an ontological standpoint, a statement expressing
a justification (as for the justify refinement) should not be considered as requirement.
However, in practice, stakeholders requirements often present intermediate require-
ments rather than root needs. Consider for example the following case. 〈g1:“Train
shall maintain a distance of ≥1000m from other trains”〉, given as initial requirement
by a train company. Analysts may wonder where did this requirement come from, to
determine whether it is defective. A justify refinement may generate 〈g2:“Trains shall
maintain a safe distance at all times”〉. Here, g2 justifies g1 because g1 contributes to
the fulfilment of g2. This is an idea adopted from GORE, specifically why questions
by Letier and Lamsweerde [35] where a goal is justified by the goal whose fulfilment
it contributes to.

Sometimes the outputs of a refinement operation involve requirements that are
also inputs, e.g., for mMissing, or even requirements higher up in the refinement
chain. To avoid the introduction of cycles, CaRE supports the introduction of re-
quirements copies that share the same description with an existing requirement but
have a different identifier. For example, consider a set of requirements for a social
media system that are missing privacy requirements. On applying the add operator,
the outputs include not only the new privacy requirements but also copies of all input
requirements. The copies propagate the intent of their respective original require-
ments but are different in an important sense: they no longer share the missing defect
for which they were critiqued.

The reject defect type is different from all others in more ways than it not being
refinable. Specifically, if it is applied to an initial requirement, then that requirement
is unacceptable and there is no specification for the problem-at-hand. This may be
a reasonable outcome in some cases. However, there is also the alternative of cri-
tiquing the unacceptable requirement as tooStrong and refining it to true, the null
requirement. The two alternatives are different in that the first treats the requirement
as unacceptable and requires a single stakeholder, while the second simply ignores
the requirement, but requires the consent of all stakeholders since anyone can reject
the null solution.

Still about the tooStrong defect, a requirement can be too strong in one sense and
too weak in another. Consider the following case. The requirement 〈g1:“The server
shall process 1000 transactions/sec”〉may be, at the same time, tooStrong(d01: “The
server can’t process 1000 transactions/sec”), and tooWeak(d02: “App will have a
workload of ≥ 2000 transactions/sec”). Both these defects need to be addressed by
adding improved requirements via refinements. For example, the former defect could
be refined into 〈g2:“The server shall process 800 transactions/sec”〉, whereas the latter
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could be refined into the new requirements: 〈g3:“The app shall run on three servers”〉,
〈g4:“The system shall include a load-balancing server”〉, and 〈g5:“The app shall pro-
cess up to 2400 transcactions/sec”〉.

In CaRE, we do not provide an order of precedence for the application of de-
fects and refinements types. However, in some cases, we can have ‘partial’ conflicts
between requirements, and in these cases it can be useful to first apply the reduce
operator, before resolving the conflict. For example, the two requirements 〈g1:“The
device shall be lightweight and black”〉 and 〈g2:“The device shall be gray and have a
large screen”〉 have a partial conflict for what concerns the color of the device. Both
requirements are first critiqued as nonAtomic, and decomposed as 〈g3:“The device
shall be lightweight”〉, 〈g4:“The device shall have a large screen”〉, 〈g5:“The device
shall be black”〉, 〈g6:“The device shall be gray”〉. The conflict between g5 and g6
can then be resolved with one or more requirements that result from a compromise
between the stakeholders.

CaRE might be criticized as too cumbersome for users compared to, say, GORE
approaches. This may well be the case—we need empirical studies to determine this.
However, as discussed above, CaRE is the only proposal in the RE literature for
solving the requirements problem, as defined in the introduction, in its full generality.

3 Argumentation Semantics

Dung [11] introduced a formal Argumentation Framework (DAF), whose basic no-
tions are arguments and attacks (conflicts between arguments), and where the key
reasoning task is the acceptability of arguments, i.e, whether and which arguments
should or should not be accepted by an intelligent agent. Sets of collectively accept-
able arguments are called extensions3

The semantics of the CaRE calculus will be given in the form of a translation
from a refinement graph RG into an ASPIC+ argumentation theory, a structured vari-
ant of Dung’s DAF [11]. Informally, in the translation arguments correspond to the
requirements, defects and refinements of the RG. Attacks between these arguments
correspond to (i) the identification of a defect in a requirement or set of requirements,
and (ii) the application of a refinement to address a defect. In other words, an argu-
ment d that represents a defect in a requirement g attacks the argument representing
g; similarly, an argument r that represents a refinement to address a defect d attacks
the argument representing d, thus possibly restoring the acceptability of the attacked
requirement. The sub-goals g1, ..., gn proposed by the refinement in the RG willbe
captured by a default implication g1, ..., gn ⇒ r (See Sec.3.3 for precise details.)

Eventually, the specifications resulting from a refinement graph are computed by
considering all minimal extensions where the initial requirements are acceptable.

The formalization of CaRE using ASPIC+ is motivated by (i) the dialectic na-
ture of requirements engineering, for which argumentation theory is a natural formal
choice; (ii) the flexibility of ASPIC+ being a meta-reasoning tool for reasoning over
a freely chosen underlying logic, which enables us to easily consider more structured

3 At the least, an extension S contains no arguments a and b such that a attacks b; and every argument
b outside S that attacks an a ∈ S is in turn attacked by an element of S.
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RE languages, e.g. [36], in the future; (iii) the non-monotonic nature of argumentation
theories, which enables extending the framework to incorporate other important fea-
tures, e.g., support of conflict and dependency relations between requirements [37].

This section first introduces the formal definition of the ASPIC+ structured ar-
gumentation framework, and the formal representation of a refinement graph and its
well-formedness conditions. It then describes how a refinement graph is translated
into an ASPIC+ argumentation theory and, thereby, into a DAF. We define how this
enables determining the acceptability of requirements and computing specification
sets. Finally, we conclude by describing a prototype tool implementing our calculus.

3.1 Basics of Argumentation Theory

In a DAF, arguments have an abstract representation in the form of simple propo-
sitions, e.g., the argument “It is raining today, therefore I should stay home”can be
represented using a simple propositional symbol a. Conflicts between arguments are
given in a relation D over the set of arguments. For example, consider another argu-
ment b, “I have to buy food, so I must go to the store”, which obviously conflicts with
a. In DAF’s terminology, this conflict is called an attack, and is represented in the
form of a tuple (a, b) in D. Given arguments and attacks, the following is one way to
specify the acceptability of arguments [8]: an argument is IN (acceptable) if it is not
attacked or if all its attackers are OUT (not acceptable). An argument is OUT if it is
attacked by an argument that is IN. Otherwise, an argument is UNDECIDED.

Though powerful, the abstract representation of arguments in DAF makes it often
less practical for modeling real-world problems. The ASPIC+ framework for struc-
tured argumentation [38]4 therefore extends DAF to enable the representation of basic
arguments in the form of inference rules, each having a set of premises and a con-
clusion. For example, argument a above can be represented using an inference rule,
having a single premise “it is raining today” and a conclusion “I should stay home”.
One advantage of this representation is that it explicates the structure of arguments
and enables the automatic construction of complex arguments by chaining inference
rules. ASPIC+ relies on DAF to determine acceptability of arguments. In particular,
given an argumentation theory that includes inference rules, ASPIC+ identifies the
different basic and complex arguments as well as conflicts between them. Then, it
constructs a DAF and uses it to determine which arguments are accepted and which
are not.

3.2 Formal Description of Refinement Graphs

We start with disjoint sets of unique identifiers Idg, Idd and Idr for elements of the
three fundamental ontological classes of Care: requirements, defects and refinements.
A refinement graph RG is then tuple 〈Req,Defect,Ref〉 where:

– Req ⊆ Idg × Text is a set of requirements, which includes a natural language
text description.

– Defect ⊆ Idd×DType×P(Text)×P(Idg) is a set of defects. A defect includes
a defect type, some natural language explanations of the defect’s nature, and the
set of requirements found to have the defect.

4 In this paper, we adopt a simplified version of ASPIC+.
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Table 1 Mapping of Elements of Refinement Graphs to ASPIC+ Argumentation Theory.

Element Type Refinement Graph Element ASPIC+ Representation

requirement (g) Req(g, txt) ⇒ g
defect (d) Defect(d , , ,Gdefective) ⇒ d , plus contrary(d, gi) for every gi ∈ Gdefective

refinement (r) Ref(r , , d , Greplace) (
∧

gi∈Greplace
gi)⇒ r , plus contrary(r, d)

– Ref ⊆ Idr × RType × Idd × P(Idg) is a set of refinements. A refinement has
(i) an identifier; (ii) a refinement type; (iii) a defect that it aims at addressing, and
(iv) a set of other requirements, which are meant to replace the defective one(s).

So, for example, from Fig. 4, we have the formal requirementReq(g23, The app shall
run on Android)5.

Henceforth, given a refinement graph RG=〈Req,Defect,Ref〉, the set IdRG is
used to denote Idg ∪ Idd ∪ Idr.

A refinement graph is well-formed iff every refinement addressing a defect matches
its type, as described in Sect. 2.

3.3 Refinement Graph Semantics by Translation to Argumentation Theory

Each refinement graph RG has a corresponding ASPIC+ argumentation theory repre-
sentation, denotedAT (RG). An ASPIC+ argumentation theory is a tuple 〈L, IR,name〉
where

– L is a logical language (in our case simple propositional symbols). Instead of tra-
ditional negation,L is equipped with a “directional” conflict relation contrary(q, p),
where contrary(q, p) and contrary(p, q) would both be needed in order to make
q behave as ¬p.

– IR is a set of defeasible inference rules of the form ϕ1, ..., ϕn ⇒ ϕ, n ≥ 0,
where ϕ1, ..., ϕn, ϕ are from L. In case n = 0,⇒ ϕ is equivalent to true ⇒ ϕ,
and defeasibly asserts ϕ. The intended meaning of a defeasible rule is that if one
accepts all antecedents/premises, then one must accept the consequent/conclusion
unless there is sufficient reason to reject it. Defeasible rules with empty premises,
of the form⇒ ϕ, are called assumptions.

– name is a partial function that gives names to (some) defeasible rules.
Translation of Refinement Graphs to ASPIC+. The argumentation theoryAT (RG) =
〈LRG, IRRG,nameRG〉 corresponding to a refinement graph RG = 〈Req,Defect,Ref〉
is constructed using IdRG as the proposition symbols L, and the translation given in
Table 1.

Thus, the above formalization represents requirements and defects as defeasible
assumptions, while refinements have premises which are the requirements that the
refinement introduces.
Construction of Arguments and Attacks.

ASPIC+ constructs arguments that take the form of inference trees. In our case, re-
quirements and defects are simple one-node trees, while refinements give rise to more

5 Henceforth, we will use Req, Defect and Ref as predicates in Prolog: variables (in italics) match
possible values, and underscores are wildcards. In logical formulas, wildcards are existentially quantified
anonymous variables.
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R1

G0
g00: The app shall run on 

Android
d00 

(unjustified)

G2
g10: The app shall run on 
existing tablets, which use 

Android

d01 
(mConflict)

G1
g01: The app shall be 

delivered in six months

G3
g23: The app shall run on 

Android
G4

g24: The app shall be 
delivered within 12 months

r01
(resolve)

r1

G5
g23: The app shall run on 

iOS
G6

g23: The app shall be 
delivered within 6 months

G7
g22: Tablets of the factory 

replaced with iPads

r02
(resolve)

r2

D0

R2

r00
(justify)

R0

r0

D1

Fig. 5 Example of Construction of ASPIC+ Arguments

complex trees, having as conclusion the refinement, and as premises the replacement
requirements. The “contrary” relation gives rise to attacks, as described below.

Fig. 5 depicts the arguments constructed on the basis of the refinement graph
shown in Fig. 4. The figure shows that all the requirements in the refinement graph
correspond to arguments {G0, G1, G2, G3, G4, G5, G6, G7} in the theory, and de-
fects correspond to {D0, D1}. Refinements take the form of defeasible rules whose
premises are (non-initial) requirements. These lead to inference trees where the premises
are the leaves of the tree, as in {R0, R1, R2}. Notice the structure of every argument:
it includes a set of premises, a conclusion, and a set of defeasible rules. For example,
the premises of argument R2 are G5, G6 and G7, its conclusion is r02, and it has a
single defeasible rule r2.
Identification of Attacks. Given two ASPIC+ arguments A and B, A attacks B if
the conclusion of A conflicts with the conclusion or premises of the rule for B. Note
that formula φ conflicts with ψ if it contradicts it: contrary(φ, ψ).

Accordingly, defects attack requirements that they point to, whereas refinements
attack defects that they address. So, for example, Fig. 5 shows that defect D0 at-
tacks requirement G0, and then the refinement R0 attacks the defect D0. Though not
shown in Fig. 5, a defect can attack (“rebut”) not just requirement g, but also attack
(“undermine”) any refinement that uses g.
Construction of DAFs. The purpose of argument construction and attack identifica-
tion in ASPIC+ is to enable the construction of a DAF.

We present the construction process by example here (for details, see [38]): start-
ing from the theory above, one obtains a DAF that can be represented graphically as
in Fig. 6, where nodes represent arguments, and edges represent attacks. One can eas-
ily see in the graph how arguments {D0, D1}, representing defects, attack arguments
{G0, G1}, representing requirements. Similarly, arguments {R0, R1, R2}, denoting
refinements, attack arguments {D0, D1 }, denoting defects.
Computation of DAF Extensions The computation of the extensions of a DAF
enables determining which arguments should be accepted and which should not. The
computation of extensions is based on the following concepts and definitions.
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G2G0

G3

G4

G1

D0 D1

R0 R2R1

G5

G6

G7

Fig. 6 DAF Example

– A set A of arguments is conflict-free if it does not include two arguments that
attack each other.

– An argument a is acceptable w.r.t. to a set of arguments A iff whenever a is
attacked by an argument b then b must be attacked by some element in A.

– A set of argumentsA is admissible iffA is conflict-free and every argument a ∈ A
is acceptable w.r.t. A.

– A set of arguments is complete iff if is admissible and includes every argument a
that is acceptable w.r.t. to it.

In this paper, we are interested in the computation of the complete extensions. In the
previous example, the only complete extension is the set {G0, G1, G2, G3, G4, G5,
G6, G7, R0, R1, R2}. In general, if a DAF graph is acyclic then it is guaranteed to
have a single complete extension.

In general, the acceptable requirements in a refinement graph RG, denoted by
AR(AT (RG)), will be the set of requirements appearing in the conclusions of the
arguments of its complete extension.

After the identification of acceptable arguments, we determine acceptable re-
quirements by checking the ones that appear as conclusions of acceptable arguments.
Thus, we determine that all the requirements {G0,...,G7} are acceptable since they
are the conclusions of such arguments .

3.4 Identification of Specification Sets

The acceptability of requirements only indicates that either they are free of defects
or their defects have been addressed. To determine the minimal sets of requirements
necessary to make the initial requirements acceptable, we compute the minimal spec-
ification sets. In the following, suppose we are given a specific requirements graph
RG = 〈Req, Defect, Ref〉.

The initial requirements InitR are those that are not introduced by a refinement.
Formally, InitR={g | ¬∃RF , id . Ref( , , ,RF ) ∧ g ∈ RF }, where RF is a
variable ranging over sets of requirements in the refinement graph, more precisely
RF ∈ P(Idg)6.

6 Note that we adopt the Prolog notation of using symbols starting with upper-case letters to represent
variables and the underscore symbol to denote an anonymous variable.
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The specification elements SpecE are leaves of a refinement graph that have
isF inal true, and are therefore “acceptable”. As such, they have no defects that are
unaccounted for.

Note that SpecE contains, among others, what would normally be called the func-
tional requirements. If a functional requirement (e.g., compute the square root) is
faulted (e.g., for ambiguity) then the result of refining it (e.g., compute the positive
square root) replaces it in SpecE. So functional requirements require no special treat-
ment in CaRE.

Let a minimal set of requirements be a (minimal) subset of the requirements Req
that lead to the acceptance of the initial requirements. Formally, it is one of the sub-
sets of RR which is minimal w.r.t. set inclusion:

RR = {R′ |RG ′ = 〈R′,Fault,Ref〉 ∧R′ ⊆ Req ∧ InitR ⊆ AR(AT (RG ′))}
Intuitively, the set RR is the set of all subsets of the requirements proposed during re-
finements that lead to the acceptance of the initial requirements. In the running exam-
ple, the sets {G3, G4, G5}, {G2, G3, G4, G5}, and {G2, G3, G4, G5, G6} represent
some of the elements of RR. The minimal requirements sets are {G2, G3, G4} and
{G2, G5, G6, G7}. Finally, the specification sets, SS, are identified by taking the in-
tersection of specification elements and minimal requirements, i.e., SS = {S | ∃R.R ∈
RR ,S = (R∩SpecE)}. In the running example, the sets {G3, G4} and {G5, G6, G7}
represent the only specification sets.

3.5 Tool Description

We have implemented a prototype tool of the calculus. The tool aims at helping re-
quirements engineers to systematically refine, negotiate, and document the require-
ments refinement process (in the form of a refinement graph). The tool also provides
reasoning support by determining acceptability of requirements and computing mini-
mal specifications. A brief description of the tool is presented below. The tool, as well
a description of the examples in this paper and use instructions, can be downloaded
at [12] (requires Java SE Development Kit 9 to run). The tool’s input is a textual
description of a refinement graph—a GUI is left as future work. An “Argumentation
Theory Generator” module then generates an ASPIC+ argumentation theory for every
possible configuration of requirements. A requirements configuration is a subset of
the requirements that could lead to the acceptance of the initial requirements. On the
basis of these argumentation theories, an “ASPIC+ module” identifies the ASPIC+ ar-
guments, attacks, and generates a Dung Argumentation Framework (DAF). A “DAF
module” then determines acceptability of abstract arguments by computing complete
extensions of the DAF. Finally, a “Compute Minimal Specifications” module stores
all (subsets of) requirements (RR) that make the initial requirements acceptable and
determines minimal specification sets (SS) by taking the intersection of specification
elements and minimal requirements (as explained in Sec. 3.4).

4 A (sometimes) Complementary Semantics using Horn Logic

An argumentation-based semantics is the most appropriate for CaRE because the en-
tire calculus is dialectic: a cycle of pointing out defects and then arguing against them
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through refinements. However, in the past most requirements modeling languages
were given semantics using some form of logic based on predicates/propositions
combined with the usual logical connectives, and accompanied by special inference
rules: in addition to standard First Order Logic (e.g., for RML [21]), requirements
which permitted inconsistencies (as does CaRE) were formalized using some form
of para-consistent logic; this includes default-logic (Zowghi and Offen [53], Ghose
[20]), labeled quasi-classical logic [27], and maximal consistent subsets [15]. The
last was implemented using Assumption-based Truth Maintenance Systems, which
perform abductive reasoning.

In this section, we show how to translate a refinement graph RG into a proposi-
tional Horn logic theoryHT (RG), and define a solution to the requirements problem
as corresponding to performing abduction over a version ofHT (RG). The important
property of this new definition of “solution” is that it can be proven to be equivalent
to the specification sets defined earlier in Sec. 3.4, based on argumentation theory,
though the proof only holds in a special case.

The importance of providing such “consistent complementary semantics” is that
it increases our confidence in both, since we approach the problem from two different
viewpoints, each of which might let us overlook (different) things. This was first
used in Mathematical Logic, where soundness and completeness results connected
Tarskian semantics with proof theory; Hoare & Lauer [26] were the first to prove
consistent complimentary formal semantics in the field of Programming Languages,
where this paradigm continues till this day.

4.1 Translation of Refinement Graphs into Propositional Logic.

The intuition behind the translation lies in the observation that a requirement without
any defects is always acceptable; and if the requirement has defects, it can only be
deemed acceptable if all of such defects have been addressed by refinements, whose
subgoals are themselves acceptable. So basically, we do not need propositions for
refinements.

For example, consider the CaRE graph in Fig. 4. The following shows the trans-
lation of its left portion in view of the above intuitions. (For increased readability,
we have used more mnemonic identifiers, and added surrounding predicate names
Acceptable( ) and Addressed( ) for requirements and defects respectively.). The first
three axioms indicate requirements without defects; the next one shows one with 2
defects; and the last two rules show how defects have been addressed.

Acceptable(g10 .forAllAndroidTblets) ← true
Acceptable(g23 .runOnAndroid) ← true
Acceptable(g24 .deliveredIn12Mo) ← true

Acceptable(g00 .runOnAndroid) ← Addressed(d00 .unjustified) ∧
Addressed(d01 .cannotDeliverIn6mo)

Addressed(d00 .unjustified) ← Acceptable(g10 .forAllAndroidTablets)
Addressed(d01 .cannotDeliverIn6mo) ← Acceptable(g23 .runOnAndroid) ∧

Acceptable(g24 .deliveredIn12Mo)

In general, given a formal description of a refinement graph RG, the logical theory
HT (RG) will have as propositional symbols the set of identifiers for requirements
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Table 2 Mapping of Elements of Refinement Graphs to Propositional Logic

Element Type Refinement Graph Element Horn representation

requirement (g) Req(g, txt) g ← true
defect (d) Defect(d , , ,Gdefective) Replace gi ← ϕ with gi ← ϕ ∧ d

for every gi ∈ Gdefective

refinement (r) Ref(r, , d , Greplace) d←
∧

gi∈Greplace
gi

and defects in RG. For each element of RG, we add or modify a rule in the theory
HT (RG) being built, according to Table 2. Essentially, when a defect of requirement
r appears in RG, it is conjoined to the antecedent of the implication for r to indicate
that all defects of a requirement must be handled before it can be considered to be
addressed. As an aside, we note that the above construction could no longer be carried
out in the case when CaRE would be extended to allow refinements themselves to be
attacked as defective by other agents — a quite reasonable scenario (see Fig.4 in [50])
which we plan to consider in future work.

The following theorem connects the two semantics in the case of requirement
graphs that are trees

Theorem 1 Given a requirements graph RG that is a tree/forest, the set of require-
ments derivable from HT (RG) is identical to the set of requirements appearing in
the unique complete and grounded extension of AT (RG).

The theorem can be extended to acyclic requirement graphs by duplicating nodes, as
illustrated in [47] for example.

The proof of this result can be found at [12], and relies on generalizing refinement
graphs to allow defect (resp. refinement) nodes to exist without being connected to
the requirement (resp. defect) nodes they target (resp. address), and then proceeds by
a form of induction on the number of target and address edges.

4.2 Requirements Problem Solutions and Abduction

As stated in Sec. 3.4, solutions to the requirements problem in CaRE correspond to
minimal subsets of leaf requirements (which can be viewed as specifications) that
make the initial requirements InitR acceptable.

Note that leaf requirements g, which have no defects, can be identified inHT (RG)
by the fact that their rules have the form g ← true. If we define Abd(HT (RG)) as
the subset of HT (RG) that omits such rules, then abduction identifies exactly such
minimal subsets for “explaining” InitR. More formally (cf. [42])

Definition 1 Given a consistent (Horn) theory T (called the background theory) over
alphabet Σ, a formula ξ, (called the query), and a set of literals A ⊆ Σ (called the
abducibles), an explanation of ξ with respect to A from T is a minimal set of literals
E ⊆ A, such that (i) Σ ∪ E |= ξ and (ii) Σ ∪ E is satisfiable.

In the case when Theorem 1 holds, the problem of finding the specification sets SS
of RG is then identical to the problem of finding explanations SS of

∧
idg i∈InitR idg i

with respect to Leafs(RG) from Abd(HT (RG)).
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Although there may be exponentially many such explanations SS, the problem of
finding each one is actually in PTIME for definite Horn theories [42] such as ours –
ones where there are no rules of the form⊥ ← ϕ. These solutions can be found using
an Assumption-based Truth Maintenance System (ATMS) [10].

5 Application Scenario

We showcase the proposed calculus on an example of a train control system, inspired
from the ERTMS/ETCS Level 3 moving block system [16]. The ERTMS/ETCS sys-
tem is the European standard for train control and management. In its deployed Level
2 implementations, the location of trains is identified by means of fixed devices,
called balises, which are positioned along the track. The balise communicates its
location when the train passes over it, so that the train has an accurate, yet intermit-
tent, information about its position, which is shared with the central control system.
In this way, the central system can provide train separation by allocating fixed seg-
ments of line, called block sections, to each single train. The length of the segment
is established based on the distance between balises. With the ERTMS/ETCS Level
3, currently under study, the location of trains is identified by means of satellite navi-
gation, which enables continuous train positioning. If the central system can identify
the exact location of each train, more trains can be safely routed along the same track.
This concept is known as moving block, since the block section, i.e., the segment of
line allocated to a train, can vary in a continuous and dynamic way, depending on the
position of the preceding train.

In our scenario, we consider a fictional negotiation process between the stake-
holders involved in the definition of the requirements of ERTMS/ETCS Level 3,
showing how our approach could be applied. Although based on a simplification of
the problem, we believe that the example is representative of issues that may emerge
in a real-world requirements negotiation scenario. We consider only two subjects in-
volved in the negotiation, the stakeholder (S), representative of the different parties
who have an interest in the development of the system, and the requirements analyst
(A), representative of the party who will develop the system. Through the example,
we discuss evolution of the refinement graph by depicting results obtained using the
tool described in Section 3.5.

The basic graphical elements of the refinement graph are in Fig. 3. Fig. 7 reports
the refinement graph for the scenario. Numbers in boxes associated to requirements—
not currently part of the notation—identify the step in which a certain refinement took
place. To facilitate the reader, we will also report part of the intermediate steps of the
refinement procedure.

Step 0: The initial requirements proposed by S are:
– g00: The system shall ensure safety distance between trains
– g01: The distance between trains shall be minimal
– g02: The train location shall be identified through satellite navigation

Step 1: A argues that the provided requirements are not associated to justifications
(unjustified defects d01, d02, d03), and S provides them for each requirement (justify
refinements r10, r11, r12). Fig. 8 reports the refinement graph at this step.
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Fig. 7 Refinement Graph for the ERTMS/ETCS Level 3 application scenario.
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g00: the system shall 
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g01: the distance between 
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g02: the train location 

shall be identified through 
satellite navigation
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11 1 1

0 0 0

Fig. 8 Refinement Graph for the ERTMS/ETCS Level 3 application scenario - Step 1.

– g00→ g10: avoid train collisions
– g01→ g11: maximise line capacity
– g02→ g12: reduce deployment costs
– g02→ g13: reduce maintenance costs
– g02→ g11: maximise line capacity

Step 2: g00 is too abstract (nonAtomic(d03)), and S performs a first attempt to
decompose it to come towards more refined requirements (reduce(r20)).

– g00→ g20: the system shall be composed of a wayside system and an onboard system
– g00→ g21: the wayside system shall indicate to the onboard system the distance that the train can

safely travel (Movement Authority, MA)
– g00→ g22: the onboard system shall ensure that the train is stopped at the end of the MA

Step 3: g21 and g22 are still too abstract, and further decomposition is performed.

– g21→ g30: the wayside system shall identify the location of each train on the track
– g21→ g31: the wayside system shall compute the MA for each train on the track
– g22→ g32: the onboard system shall identify its location
– g22→ g33: the onboard system shall compute the breaking curve to ensure that the train is stopped

at the end of the MA

Step 4: Further refinements are the following. An excerpt of the refinement graph
at this step is reported in Fig. 9. The excerpt does not report the refinements stemming
from g01 as these did not further evolve at this stage.

– g30→ g40 the onboard system shall send the location of the train to the wayside system
– g30→ g41 the wayside system shall receive the location of each train on the track

Step 5: A argues that the term “minimal”, used in g01, is vague (ambiguous(d04)),
so S clarifies it (clarify(r50)).

– g01→ g50: the distance between trains is the distance between the front of a train and the rear of the
preceding train

– g01→ g51: the breaking distance is the distance that the train needs to travel to come to a stop from
its current speed

– g01→ g52: the distance between trains is minimal if it is equal to the breaking distance

Step 6: A argues that satellite navigation required by g02 may not work in case
of galleries, and this makes the requirement unattainable. A specific requirement for
galleries is defined that weakens the original requirement (weaken(r60)).

– g02→ g60: in case of a gallery the location of the train is assumed to be the last location identified
by the satellite system
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Fig. 9 Refinement Graph for the ERTMS/ETCS Level 3 application scenario - Step 4 (Excerpt).

Step 7: g60 is not acceptable for S, since it implies that only one train is al-
lowed to move in a gallery (the requirement is considered tooWeak). To strengthen
this requirement, A proposes to either use the traditional fixed balise system to locate
the train in galleries (strengthen(r70)), or to use visual tags placed along the gallery
(strengthen(r71)), which should be detected by a camera on the train. This second
option is rejected, as this system may not be sufficiently reliable. the relevant ex-
cerpt of the refinement graph at this step is reported in Fig. 10. We do not report the
refinements stemming from g00 as these did not further evolve at this stage

– g60→ g70: the onboard system shall use fixed balises to identify its location in case of galleries
– g60→ g71: the onboard system shall use visual tags to identify its location in case of galleries

Step 8: By reviewing the requirements, A notices that g33 does not specify who is
stopping the train. The requirement is deemed incomplete (incomplete(d31)). S spec-
ifies that the driver is in charge of driving and stopping the train, while the onboard
system monitors that the breaking curve is respected. If the driver violates the brak-
ing curve, the onboard system brakes the train. Hence, the requirement is clarified as
follows:

– g33 → g80: the onboard system shall notify to the driver the maximum speed as allowed by the
braking curve to stop at the end of the MA

– g33 → g81: the driver shall drive the train without exceeding the maximum speed allowed by the
braking curve

– g33→ g82: if the train speed exceeds the maximum speed allowed by the braking curve, the onboard
system shall brake the train
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Fig. 10 Refinement Graph for the ERTMS/ETCS Level 3 application scenario - Step 7 (Excerpt).

Step 9: A understands that there is a human agent in the system (the train driver),
but no requirement is specified concerning the communication with this agent. The
requirements set is considered incomplete (mMissing(d80)). Therefore, A solicits S
to discuss driver-related requirements. The following requirements are introduced
(add(r90)):

– g90: the onboard system shall include a Driver Machine Interface (DMI) to notify information to the
driver

– g91: the DMI background shall be light blue
– g92: the DMI text shall be white

Step 10: A observes that the contrast may be insufficient if the background is
light blue and the text is white (mConflict(d90)). Two options are proposed to resolve
the conflict.

– g91, g92→ g100, g101: the DMI background shall be black, the DMI text shall be white
– g91, g92→ g102, g103: the DMI brackgroun shall be blue, the DMI text shall be yellow

We run the tool on the previous example using a MacBook pro, with a 2.2 GHz
Intel i7 processor and 32 GB of DDR RAM. The tool read the refinement graph and
identified its initial and specification nodes in approximately 23ms. The computation
of the minimal specifications took around 280ms producing the two specifications:
{g20, g31, g32, g40, g41, g50, g51, g52, g70, g80, g81, g82, g90, g100, g101}, and
{g20, g31, g32, g40, g41, g50, g51, g52, g70, g80, g81, g82, g90, g102, g103}.

This scenario can be run using the tool that is made available at the following
DOI: 10.5281/zenodo.3856402.
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6 Related Work

RE Models and Refinement The use of models to support the RE refinement pro-
cess has been extensively studied. Early contributions include the SADT methodol-
ogy [41] and its extension RML[22], where activity blocks are hierarchically decom-
posed into sub-blocks until atomic and operationalisable entities are obtained. Sim-
ilarly, basic Goal-Oriented Requirements Engineering (GORE) [9,49] relies mainly
on and-or decomposition of high-level goals until all implementable atomic require-
ments, domain assumptions and properties needed to satisfy the high-level goals are
identified. Around GORE, a whole family of methods and tools was developed, each
with a different focus. For instance, KAOS [34,46] is a basic GORE model aug-
mented with obstacles to model issues that can prevent satisfaction of a goal [45];
support of quantitative aspects and uncertainty are studied in [24] and [6,7] respec-
tively. The i* modelling framework [48] and its related software engineering method
Tropos [5] focus on modeling of social aspects and analysis. None of these frame-
works accounts for the argumentative and dialectic aspects of the RE process. In
contrast, CaRE makes the various requirement defects explicit first-class entities in
the model and provides a comprehensive set of refinement operators to address each.
This is a more comprehensive and arguably a more natural modeling of the actual
refinement process, allowing a better documentation of its evolution over time. Fur-
thermore, change management in CaRE is simpler than in these frameworks since
change can always be made through additions to the model, as opposed to a revision
or deletion of already existing elements. In other words, building of models, namely
CaRE refinement graphs, is monotonic.

Argumentation and RE Argumentation has been often used for modeling and reason-
ing about RE artifacts and processes. One of the earliest works that used argumenta-
tion in RE was [23], where security satisfaction arguments, based on Toulmin argu-
ments [44], are used to convince a reader of the satisfaction of security requirements
in a system. This work was extended in [19] with a risk assessment method called
(RISA), which enables identification of rebuttals and mitigations needed to satisfy se-
curity requirements. In [29], a five-step iterative process is defined to systematically
establish compliance of system requirements with law through discussions among
stakeholders. In [14], argumentation is used to model requirements elicitation and ex-
plain common cases of ambiguity. Dung’s abstract argumentation framework is used
in Bagheri and Ensan [3] to model interaction and inconsistencies between require-
ment statements, and to rank possible (consistent) subsets of requirement statements.
These contributions have a different focus than ours as they target requirements elic-
itation [14], assessment [23,19], regulatory compliance [29], security [23,19], and
requirements conflicts [3,39].

Closer to the spirit of our work are the Goal Argumentation Method (GAM) by
Jureta et al. [31,32], the RationalGLR method by van Zee et al. [50,52,51], Mir-
bel & Villeta [37], and the Desirée proposal by Li et al. [36]. In Jureta et al. [31,
32], the GAM framework supports definition of goal models and representation of
information exchanged in a discussion about the relative validity of an RE artifact,
and defines algorithms to label information produced as accepted, inconclusive or
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rejected. RationalGRL [50,52,51] captures not only traditional GORE model refine-
ment, but also arguments about design decisions (e.g., “This refinement should be
OR rather than AND”), and the rationale behind them. It also proposes the use of
argumentation patterns to point out defects in goal models. Mirbel & Villeta [37],
given a traditional GORE model extended with Conflict, Requires, and Equivalence
relations, relies on Argumentation Theory to identify possible sets of requirements
that are consistent. The main feature distinguishing our work from all of the above is
its scope and approach: CaRE aims at covering the complete RE refinement process
by providing a comprehensive calculus for deriving specifications from stakeholder
requirements. Thus, CaRE supports the set of defects identified in IEEE standards, as
well as refinement operators needed for addressing each specific defect type.

The only other work we know of that offers a refinement calculus for the require-
ments problem is the Desirée proposal [36], which generalizes GORE approaches
with a rich set of operators for refinement and operationalization. The main differ-
ences between CaRE and Desirée are that CaRE (a) includes defects and defect types
in its ontology, which Desirée does not, (b) casts the refinement process as a dialectic
argument among stakeholders, and (c) gives a formal semantics of what it means for
S to satisfy R based on Argumentation Theory.

Finally, we mention two papers that foresaw the importance of processes for gen-
erating specifications. Finkelstein et al. [18] argue that such processes are inherently
ill-understood and require formal models with precise, unambiguous and analyzable
semantics. The paper also argues that conventional deductive logics are not adequate
for the semantics of these processes and suggests that non-standard logics should
be tried instead. Among the non-standard logics discussed are dialogue logics, since
Dung’s Argumentation Theory was proposed later. Black et al. [4] also focus on the
process of generating specifications and cast such processes as agent dialogues con-
sisting of moves that participating agents make about elements of a specification.
This work adopts a very different ontology from CaRE, missing the notions of re-
quirement, defect and refinement. It also leaves open the question of semantics for
process enactment.

7 Conclusion

This paper presents a novel calculus for RE to support the derivation of a specifica-
tions from initial stakeholder requirements through a dialectic process founded on the
notions of requirement/goal, defect and refinement. One important advantage of our
proposal is that it covers the full range of defects recognized in RE standards, and of-
fers refinement operators to address each defect type. It also makes the stakeholders—
or their representative in case of large numbers—active participants in the refinement
process, as opposed to traditional approaches where typically only requirements an-
alysts participate in the analysis of stakeholder requirements.

CaRE refinement graphs capture a comprehensive view of RE process enactments
and provide excellent support for RE documentation, traceability, and change man-
agement since new defects or refinements can be added to the graph monotonically,
without a need to revise any of its previous elements.
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The semantics of the calculus is given in terms of Argumentation Theory, by
defining a mapping from elements of refinement graphs into constructs of the ASPIC+

argumentation framework. In our proposal, the notion of requirements satisfaction or
fulfillment typical of earlier approaches, is replaced by the weaker notion of accept-
ability. Our contributions include a Java implementation of a prototype tool for the
calculus and a realistic application scenario, as preliminary evidence of the sound-
ness and viability of our proposal. We also offer a complementary semantics for
CaRE based on a more traditional translation of refinement graphs into Horn Logic,
whereby specifications are derived from initial requirements through abduction.

We are aware of a number of limitations of the current work: many are issues
addressed for the KAOS GORE technique by van Lamsweerde [33] (e.g., integra-
tion with use-cases, industrial strength tool support and UI design, full empirical
evaluation); others are more general RE issues, such as accounting for stakeholder
preferences and negotiations. At a lower level, we want to look at the effect of var-
ious argumentation semantics, and for a systematic approach to propose refinement
operators for each step of the refinement process.

Thus, future work includes a preliminary assessment of CaRE on an industrial
case-study, and a consolidation assessment of domain experts using CaRE. Other
future work includes adding further aspects of GORE ontologies (e.g., soft-goals,
agents), relations (equivalence, requires, conflicts, etc), and global consistency con-
ditions on requirements graphs (e.g., what are valid refinements and attaching logical
meaning to ”weaken”, ”strengthen”, ”conflict”, esp. once we interpret requirements
as formulas that are part of a domain theory). We also plan to improve the prototype
implementation tool through development of a Graphical User Interface, and to study
the use of CaRE for training and education of requirements engineers.
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