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Abstract. Nowadays a plethora of health data is available for clinical
and research usage. Such existing datasets can be augmented through
artificial-intelligence-based methods by automatic, personalised annota-
tions and recommendations. This huge amount of data lends itself to new
usage scenarios outside the boundaries where it was created; just to give
some examples: to aggregate data sources in order to make research work
more relevant; to incorporate a diversity of datasets in training of Ma-
chine Learning algorithms; to support expert decisions in telemedicine.
In such a context, there is a growing need for a paradigm shift towards
means to interrogate medical databases in a semantically meaningful
way, fulfilling privacy and legal requirements, and transparently with
respect to ethical concerns. In the specific domain of Medical Imaging,
we envisage the adoption of query languages that can unambiguously ex-
press semantically rich queries on possibly multi-dimensional images, in a
human-readable, expert-friendly and concise way. Our approach is based
on querying images using Topological Spatial Logics, building upon a
novel spatial model checker called VoxLogicA, to execute such queries in
a fully automated way.

Keywords: Open health data platforms, Spatial Logics, Model Check-
ing

1 Introduction and related work

A number of technologies with proven disruptive impact in Computer Science
have revolved around domain-specific data models and query languages. Let
us just name a few. The Structured Query Language SQL [40] revolutionised
data representation and access, and is nowadays one of the pillars of modern
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Information Technology. The eXtensible Markup Language XML [41] and its
query/transformation languages XQuery, XPath, XPointer, and siblings, provide
solid grounds to any modern data-centric or document-centrinc infrastructure.
The javascript library jQuery4 is the de-facto standard for traversing HTML
documents and identifying elements to be transformed using javascript. These
technologies (and many others) have in common the adoption of a concise, unam-
biguous, declarative query language that domain experts, without any particular
computer programming skill, can use, enabling widespread adoption of a num-
ber of transformative key functionalities. It is not an overstatement to say that
without the invention of such fundamental technologies, most of the modern
applications of Computer Science as we know them would not exist.

In the medical domain, data may be available in several forms, ranging from
diagnostic reports written in natural language to electronic health records, multi-
omics data, and so on. Among these, medical images constitute a large portion of
the data that can be related to patients, or used for research purposes. The rise of
Artificial-Intelligence (AI) based methods has widely augmented these datasets
with computer-generated images (e.g. identifying lesions or regions of interest) or
annotations. With respect to Medical Imaging, we mention a notable research
effort towards querying and information retrieval (see the literature review in
[19] and the citations therein). A major role in this area is currently played by
content-based information retrieval (CBIR) [36, 31, 3, 20, 30].

The survey [25] mentions four key issues for research in the field, among
which two are of interest to this paper: the lack of effective representation of
medical content by low-level mathematical features and the absence of appropriate
tools for medical experts to experiment with a CBIR application. In the present
paper, we present a research line that aims at addressing these issues, among
others, by the adoption of a coherent, user-oriented, expert-centric declarative
computation paradigm. In doing so, we would like to emphasize an underlying
problem when managing large, diverse medical imaging datasets: the lack of
a general-purpose query language for images. Such a language should
be able to identify regions of interest either by value, by imaging features (e.g.
statistical texture analysis), and by spatial/topological characteristics (relative
distance, contact, boolean operations, inter-reachability through other regions).
Furthermore, it should make use of a diversity of data sources, ranging from
patients datasets, to manually annotated ground truth, to the output of Machine
Learning methods, and connect the information therein through expert-driven
declarative queries and procedures.

Our proposed approach embraces a classic tenet of AI: that of spatial logics,
that we shall discuss in the remainder of this work, and that constitutes the core
of our initiative. More precisely, our work stems from the so-called topological
spatial logics [1], where the object of reasoning are points, not regions (see [15]
for an encoding of the region calculus of [33] into an extended topological spa-
tial logic). Notably, we propose model checking to automatically identify sets of
points (therefore, ultimately regions) satisfying user-specified properties. This

4 See https://jquery.com
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is similar to how other fully-automated methods, such as Machine Learning,
are used nowadays, and significantly diverges from deduction , which is the
traditional approach of Symbolic Reasoning in AI.

Several publications related to spatial model checking, and in particular to
healthcare-related applications, appeared recently. For instance, in [23], spiral
electric waves – a precursor to atrial and ventricular fibrillation – are detected
and specified using a spatial logic and model-checking tools. The formulas of
the logic are learned from the spatial patterns under investigation and the onset
of spiral waves is detected using bounded model checking. In [34] (see also the
references in that paper), the authors describe mereotopological methods to pro-
grammatically correct image segmentation errors, exploiting a spatial logic called
discrete mereotopology to integrate a number of qualitative spatial reasoning and
constraint satisfaction methods into imaging procedures.

The group of authors of this paper have participated in joint publications on
spatial logics and related model-checking approaches. The Spatial Logic of Clo-
sure Spaces (SLCS) has been defined in [13, 14], and used in several applications
related to smart cities (see e.g. [12]). Recently, these methods were adapted to
the efficient analysis of medical images based on Expert Knowledge [8, 9, 4]. The
Free and Open Source spatial model checker VoxLogicA5 has been developed to
support an innovative methodology to analyse medical images. Such methodol-
ogy obtained excellent experimental results. More precisely, in [9] the accurate
contouring of brain tumour tissue obtained using VoxLogicA has been compared
to the best performing algorithms (among which many based on deep learning)
on a very relevant public benchmark data set for brain tumours (BraTS 2017
[35]). The obtained results are well in line with the state of the art, both in
terms of accuracy and in terms of computational efficiency (on a related note,
recent efforts have been devoted to running VoxLogicA on GPUs obtaining a
substantial speed-up, see [11]). Furthermore, in [6, 7], VoxLogicA has been used
for nevus segmentation, again obtaining results in line with the state of the art.
It is also worth noting that the logic SLCS has been adopted, and extended, also
in other contexts and by other groups of authors; for instance, for cyber-physical
systems ([37]), or for run-time monitoring [32, 5].

The intended applications of VoxLogicA are not only novel autocontour-
ing methods, but also the formalization of inter and intra-site workflows and
collaboration patterns, and monitoring or quality assurance of autocontouring
procedures, by encoding well-established protocols or guidelines. In future work,
we aim at leveraging the spatial model checker VoxLogicA [9] as the distributed
execution engine for an Open Platform for collaboration and data management
in novel data-centric healthcare applications.

2 Spatial Logics for Medical Imaging

Our approach to the analysis of medical images is based on the fact that digital
images can be seen as 2D or 3D regular grids, i.e. graphs where each node

5 See https://github.com/vincenzoml/VoxLogicA
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corresponds to a voxel and has a fixed number of adjacent nodes. The exact set
of nodes adjacent to any given one depends on the particular adjacency relation
between nodes one chooses. For instance, for 2D images, this set is composed
of the pixel itself plus those other pixels with which it shares an edge, if the
so called orthogonal adjacency relation is chosen, whereas it is composed of the
pixel itself plus those other pixels with which it shares an edge or a vertex, if the
orthodiagonal adjacency relation is considered. As these examples suggest, any
adjacency relation must be a reflexive and symmetric binary relation over the
nodes of the graph. Graphs, in turn, can be seen as a subclass of closure spaces,
a generalisation of topological spaces; whenever the edge relation of the graph
is an adjacency relation, we speak of adjacency spaces6. Thus, the theoretical
foundations of our approach have their roots in topology and related notions [21].
It is convenient to associate each node of any such graph with some specific
information, that can be represented as an atomic predicate, possibly expressing
a property of some attribute of the node. For instance, in the case of black &
white digital images, the relevant attribute of any voxel is the intensity, which
has typically a value in the range 0 − 255, whereas predicates of interest could
be those expressing the fact that the voxel is in the border of the image, or that
its intensity is lower than a certain threshold.

SLCS offers specific operators for reasoning about (points in) closure mod-
els, i.e. closure spaces enriched with atomic predicates. Besides general logical
operators like conjunction (∧), disjunction (∨) and negation (¬), the most basic
one for adjacency spaces is the reachability operator ρ; the formula ρΦ1 [Φ2] is
satisfied by a voxel x in an image M if there is a voxel t in M and a (possibly
empty) sequence of adjacent voxels x1, . . . , xn in M such that x1 is adjacent
to x, xn is adjacent to t that satisfies Φ1 and all xj satisfy Φ2. For instance,
ρ red[blue ∨ green] means that we are interested in those voxels that can reach
any red voxel through a sequence of points that must be blue or green. The near
operator (N ) expresses the fact that any point satisfying N Φ satisfies Φ or is
adjacent to a point satisfying Φ; in fact, N Φ is equivalent to ρΦ [⊥]. Similary,
the formula Φ1 S Φ2, expressing that fact the the relevant point lays in an area
the points of which satisfy Φ1 and this area is surrounded by points satisfying
Φ2, is equivalent to Φ1 ∧ ¬(ρ¬(Φ1 ∨ Φ2)[¬Φ2]).

The Image Query Language (ImgQL) comprises SLCS but is enriched with
the distance operator DI and the statistical similarity operator44. Formula DI Φ
is satisfied by any point x whose distance d(x, [[Φ]]) from the set [[Φ]] of points sat-
isfying Φ falls in interval I. Intuitively, a point x satisfies the similarity operator
44 if a region of interest around x correlates with a sample area. More precisely,
given a sample area [[Φ]] specified by formula Φ and a region of interest defined
as the sphere S(x, r) of given radius r around x, the cross-correlation7 between
the histogram of an attribute a of the points in S(x, r) and the histogram of

6 For the purposes of this paper, the terms “voxel”, “pixel”, “node”, and “point” can
be considered synonims.

7 In ImgQL, the normalised Pearson’s correlation coefficient is used; 1 means perfect
correlation, −1 means perfect anti-correlation, and 0 indicates no correlation.
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an attribute b of the points in [[Φ]] is compared with a given threshold c. The
histogram of a given attribute of an image is a representation of the distribution
of the values of the attribute; in practice, the range [m,M ] of interest of the
attribute is split in a certain number k of adjacent intervals B1, . . . , Bk of the
same size, called bins. The histogram of the image is then the function H such
that H(j) gives the number of voxels with the value of that attribute falling
within Bj . For example, 44=1

[
160 250 10
0.2 intensity intensity

]
Φ identifies all the voxels whose

neighbourhood of radius 0.2 units perfectly correlates with [[Φ]]; for the compar-
ison, the chosen range of the intensity is [160, 250] (for both the neighbourhoods
and [[Φ]]) and has been split into 10 bins (of size 9 units). On the other hand,
44<0.3

[
160 250 10
0.2 intensity intensity

]
Φ requires that the cross-correlation be less than 0.3.

3 The spatial model checker VoxLogicA

VoxLogicA is a framework for image analysis, that embeds the logic SLCS
into ImgQL, a user-oriented expression language to manipulate images. The
latter also includes additional selected imaging primitives. More precisely, the
VoxLogicA type system distinguishes between boolean-valued images, that can
be arguments or results of the application of SLCS operators, and number-valued
images, resulting from imaging primitives. The underlying execution engine is
a global model checker, that is, the set of all points satisfying a logic formula is
computed at once. Functionality-wise, VoxLogicA specialises the former proto-
type spatio-temporal model checker topochecker8 to the case of spatial analysis
of multi-dimensional images. It interprets a specification using a set of multi-
dimensional images9 as models of the spatial logic, and produces as output a set
of multi-dimensional images representing the valuation of user-specified expres-
sions. For logical operators, such images are Boolean-valued, that is, regions of
interest or masks in medical imaging terminology, which may be loaded as over-
lays in medical image viewers. Non-logical operators result in standard, number-
valued images. Additionally, VoxLogicA offers file loading and saving primitives,
and a set of additional operators, specifically aimed at image analysis, that is
destined to grow along with future developments of the tool. The main execution
modality of VoxLogicA is batch execution. A (currently experimental) graphical
user interface is under development. A planned future development is interactive
execution, in particular for semi-automated analysis, by letting a domain expert
calibrate numeric parameters in real-time, while seeing the intermediate and
final results. Implementation-wise, the tool achieves a two-orders-of-magnitude
speedup with respect to topochecker. Such speedup has permitted the rapid
development of a novel procedures for automatic segmentation that, besides be-
ing competitive with respect to the state-of-the-art in the field (see Section 4),

8 See https://github.com/vincenzoml/topochecker
9 Besides common bitmap formats, the model loader of VoxLogicA currently

supports the NIfTI (Neuro-imaging Informatics Technology Initiative) format
(https://nifti.nimh.nih.gov/, version 1 and 2). 3D MR-FLAIR images in this for-
mat very often have a slice size of 256 by 256 pixels, multiplied by 20 to 30 slices.
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are also easily replicable and explainable to humans, and therefore amenable of
improvement by the community of medical imaging practitioners.

VoxLogicA is free software and it is available in binary form for the operating
systems Linux, OSX, and Windows.

4 Applications in Medical Imaging

4.1 Case study: Brain Tumour Segmentation

Glioblastoma multiforme (GBM) is the most common brain malignancy and is
almost always lethal [43]. Survival after 2 years is achieved in only about 9% of
patients. Medical images play a crucial role in the characterisation and in the
treatment of the disease.

The first-line treatment of Glioblastoma is Surgery followed by radiother-
apy. Crucial for radiotherapy is the accurate contouring of tissues and organs
at risk, employing Magnetic Resonance (MR) and Computed Tomography (CT)
images. Recent research efforts in the field have therefore been focused on the in-
troduction of automatic or semi-automatic contouring procedures. More broadly
speaking, such procedures can be used to identify particular kinds of tissues, such
as parts of the brain (white matter, grey matter) or brain tumour related tissues.
Such (semi-)automatic procedures would lead to an increase in accuracy and a
considerable reduction in time and costs, compared to the current practice of
manual contouring [38]. Automatic contouring of GBM is an open and challeng-
ing topic, since GBM is an intrinsically heterogeneous brain tumour, both in
appearance, in shape, and in histology. The MICCAI Conference is organising a
yearly challenge for brain tumour segmentation, since 2012, providing a common
benchmark of brain lesion images, together with their ground truth segmenta-
tion approved by experienced neuro-radiologists, in the Brain Tumor Image Seg-
mentation Benchmark (BraTS). One of our specifications in ImgQL has been
validated in [9] using the 2017 BraTS dataset [28] containing multi-institutional
pre-operative MRI scans of 210 patients affected by high grade gliomas. A priori,
17 cases have been excluded as they present multi-focal tumours or artifacts in
the acquisition that the current procedure is not meant to deal with. The exe-
cutable specification of the segmentation procedure consists of a concise, 30 lines
long, text-file where the part concerning segmentation occupies only 10 lines, as
shown in Specification 1, explained by the following steps:

1. Initial identification of the hyperintense regions (lines 2-5) in the MRI (of
type FLAIR). These are areas with voxel intensity > 0.95 centile grown up
to areas > 0.86 centile (growTum in line 6);

2. Search for voxels with a surrounding histogram similar (cross correlation >
0.6) to the area growTum (tumStatCC in line 8);

3. Identification of Gross Tumor Volume (GTV) by growing growTum up to
the tumStatCC area. The GTV is then enlarged by 2.5 cm to simulate the
Clinical Target Volume (CTV) in radiotherapy (line 9).
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ImgQL Specification 1: Tumour segmentation method

1 let pflair = percentiles(flair,brain,0)

2 let hI = pflair > . 0.95

3 let vI = pflair > . 0.86

4 let hyperIntense = flt(5.0,hI)

5 let veryIntense = flt(2.0,vI)

6 let growTum = grow(hyperIntense,veryIntense)

7 let tumSim = similarTo(5,growTum,flair)

8 let tumStatCC = flt(2.0,(tumSim > . 0.6))

9 let gtv= grow(growTum,tumStatCC)

10 let ctv = distlt(25,gtv) & brain

Figure 1 shows an example of the segmentation, together with the ground truth.

Fig. 1: GTV for patient TCIA 471 from the BraTS 2017 dataset. Top row:
original image. Middle row: ground truth. Bottom row: VoxLogicA segmentation.

The segmentation results for the Brats 2017 benchmark are reproduced from [9]
in Table 1 where they are compared to the ground truth images based on the
common similarity coefficients Dice, Sensitivity and Specificity for the GTV and
CTV areas. The 3D images consist of 240 × 240 × 155 voxels (ca. 9 M voxels) and
the evaluation for each patient takes about 10 seconds on a desktop computer
with an Intel Core I7 7700 processor and 16GB of RAM.

Sensitivity Specificity Dice Sensitivity Specificity Dice
(193 cases) (193 cases) (193 cases) (210 cases) (210 cases) (210 cases)

GTV 0.89(0.10) 1.0(0.00) 0.85(0.10) 0.86(0.16) 1.0(0.0) 0.81(0.18)

CTV 0.95(0.07) 0.99(0.01) 0.90(0.09) 0.93(0.14) 0.99(0.2) 0.87(0.15)

Table 1: VoxLogicA evaluation on the BraTS 2017 data set. Adapted from [9].
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4.2 Case study: Nevus Segmentation

Melanoma is the most serious form of skin cancer, the incidence of which has
been increasing for many decades [26, 22]. While the disease may be lethal, its
correct and early detection, and its consequent treatment, results in no change
in life expectancy [29]. Disease recognition is performed through dermoscopy, a
specialized technique of high-resolution imaging of the skin, allowing specialists
to visualize deeper underlying structures of the skin lesions. This technique has
been proved to have diagnostic accuracy of up to 84% when carried out by
specially trained clinicians [2]. However, one of the main issues is that in many
countries, there is only a limited number of such specialists available. Therefore,
there is a clear need for automated methods that can help to recognise the disease
reliably and at an early stage so that more lives could be saved [17].

The International Skin Imaging Collaboration (ISIC) is a collaboration be-
tween academia and industry to find automatic techniques to detect melanoma
from dermoscopy images. Since 2016 ISIC organizes challenges titled “Skin Le-
sion Analysis toward Melanoma Detection” [17]. The first task involved in the
challenges, and more in general in the diagnosis of melanoma, is the skin lesion
segmentation. In [6] we investigate the feasibility of the application of a proce-
dure implemented in ImgQL for the segmentation of images of nevi from two
datasets released by ISIC for the 2016 challenge: a training set and a test set of
900 and 379 images, respectively. Both datasets contain annotated dermoscopic
images and the corresponding ground truth (i.e. a segmentation performed man-
ually by experts) for each image. One of the challenges with such datasets, and,
more in general, with dermoscopic images of skin lesions, is their great inhomo-
geneity. Nevi may show nonuniform colour ranges, their colour may have more
or less contrast with the colour of skin, may have different sizes, may have more
or less smooth borders, and may be composed of different parts; moreover, the
skin may be more or less regular, with the presence of hairs or sebaceous folli-
cles. Furthermore, images may also show heterogeneity due to the dermoscope
used: they may be of different size, showing black corners, rings, shadows, or ul-
trasound gel drops, showing more or less contrast and intensity. Finally, images
may also show extraneous elements such as patches or ink marks. The images in
Figure 2 show a few examples of this inhomogeneity.

(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 2: Example images from the ISIC datasets illustrating the inhomogeneity of
nevi.

Due to such great variability in the dermoscopic images datasets, our pro-
cedure starts from two basic assumptions: (at least part of) the nevus is in the
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middle of the image; pixels belonging to the skin are close to the border of the
image. Our aim is to distinguish skin tissue from nevus tissue with the help
of the texture analysis and other spatial operators. The executable procedure
consists of less than 30 lines of code and consists essentially of five parts:

1. Identify a sample of the skin.
First, the black corners that can be observed in many images (see for instance
Fig. 2b) are identified as all the dark pixels having an intensity below 40
that can reach the border of the image exclusively ‘passing by’ further dark
pixels. Then all pixels that are at most at relative distance 200 from the
black borders of the image are taken. Due to the differences in the size of
the images all the distances are scaled taking for reference an image of 1022
pixels of width and 767 pixels of height.
Patches present in some of the images (see for instance Fig. 2e) are excluded
from the sample of the skin. Patches are identified using the information
about their colour (or their brightness in case of white patches), their size
(they cover less than 40% of the image), their position (they are at the border
of the image), and their compactness.

2. Identify pixels belonging to the skin.
The similarity score of each pixel in the image with respect to the sample
of the skin identified in the previous phase is computed using the similarity
operator. Pixels with a cross-correlation higher than 0.05 are considered skin.

3. Preliminary nevus segmentation.
To identify a preliminary segmentation of the nevus we use the information
about the area around the nevus, where some of the pixels belong to the
nevus and some to the healthy skin. From the histogram of the intensity of
the image resulting from the similarity score computed in the second phase,
we can identify the value which works like a watershed between pixels that
are part of the nevus and pixels that are part of the skin.

4. Final nevus segmentation.
The segmentation obtained so far is extended with points that are sufficiently
similar to the nevus.

5. Comparing the segmentation with the ground truth.
The segmentation obtained (nevSegm) is compared with the ground truth
provided by the ISIC 2016 challenge for both the training and test sets.
For this comparison common similarity indexes were used: Dice, Jaccard,
Accuracy, Sensitivity (SE), and Specificity (SP). Table 2 shows the mean
values for these indexes.

The images in Figure 3 show the resulting images for each step in the segmen-
tation procedure of image ISIC 0008294

5 Querying medical image datasets

As of today, the toolkit of a Medical Imaging practitioner mostly consists of
traditional programming languages, such as the ubiquitous python10. Program-

10 See https://www.python.org/
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Accuracy Dice Jaccard SE SP

nevSegm: Mean Training set 0.902 0.818 0.726 0.810 0.965

nevSegm: Mean Test set 0.899 0.809 0.717 0.802 0.960

Table 2: Average similarity scores of nevSegm for images of the ISIC 2016 train-
ing set (all 900 images) and test set (all 379 images).

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3: Segmentation of image ISIC 0008294. Figure (a) shows the nevus inten-
sities (greyscale); (b) shows the border of the image (red); (c) shows the sample
of the skin (blue); (d) shows the similarity score of each pixels w.r.t. the sample
of the skin (variation of the score is shown as the varying intensity of yellow);
(e) shows pixels with a similarity higher than 0.05 w.r.t. the sample of the skin
(green); (f) shows the pre segmentation of the nevus (magenta); (g) shows the
final nevus segmentation (cyan); (h) shows the comparison between the auto-
matic segmentation (cyan) and the ground truth (blue).

ming languages are used in conjunction with libraries of imaging primitives11,
and with Machine Learning (ML) libraries, such as Keras12.

Although such a setup is quite well-established from a programmer’s per-
spective, it is not meant to be used by non-programmers. Domain experts such
as Medical Doctors (for instance: Radiotherapists), MRI technologists, Medical
Physicists, Healthcare researchers, and even end-users lack a general ability to
interrogate medical imaging databases, for instance, in order to search for spe-
cific features in images, compose results from different methods to explore the
design space of novel analysis techniques, or evaluate the impact of changes in
an imaging workflow.

11 See, for instance, the Insight Toolkit (ITK), https://itk.org/, also used under-the-
hood in VoxLogicA, and the Open Source Computer Vision Library (OpenCV), https:
//opencv.org/.

12 See https://keras.io/.
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It is worth noting that, even if ML is nowadays a widespread methodology
in (medical) image analysis, there are a number of interesting problems that, as
of today, are not meant not be addressed using ML alone.

Example 1. As a concrete example, consider clinical guidelines (see e.g. [18]).
These usually consist of a series of steps and checks that the Radiotherapist
should execute in order to get to an acceptable contouring of a tumour. A hos-
pital may want to perform monitoring and routine checks, and to prepare for
changing such guidelines when new ones are published. Before embracing a new
set of guidelines, in order to evaluate their impact, the Radiotherapy department
might want to investigate how much their standard practice obeys to the new
guideline, and how much in practice the old and new guidelines differ on their
own patients. A language is needed that can express such guidelines in a concise,
human-friendly, expert-oriented way, and that can execute them automatically,
highlighting their interpretation on patient images. ML alone cannot currently
be used for such tasks, as the encoding of guidelines is, more broadly speaking,
a matter of expert knowledge. In [42], a model checker is used for the purpose.

Example 2. A declarative, unambiguous, executable encoding of specific guide-
lines would also be extremely important for quality assurance of ML-based
methods (e.g., autocontouring for Radiotherapy), enabling those who are respon-
sible for the treatment to monitor and assess the operation of such algorithms
in accordance with selected protocols.

Example 3. A research-oriented example is that of identifying relevant cases
to test a research hypothesis. Imagine for instance, that a researcher needs to
check a novel hypothesis relating a spatial feature (say: “the proximity of a brain
tumour to the cerebellum”), with an aspect of the treatment (e.g., the survival
rate of patients, or the outcome of radiotherapy). For this, it is necessary to filter
an existing dataset to find all the cases that satisfy the hypothesis. This is a kind
of spatial query on images that cannot be carried on using ML, for the simple
reason that there is no training data for detecting such a specific feature as “the
tumour is very close to the cerebellum”. Traditional programming can be used
to identify such cases. However, writing a full program for each such query is not
only time consuming, but also practically impossible for researchers who are not
expert programmers. Also note that it is not guaranteed that such a program
would be efficient enough to analyse the full dataset under time constraints. A
specifically designed, declarative, optimizing query engine such as VoxLogicA

is better suited for the task. Techniques such as memoization[39], automatic
parallel execution (see [9]), on-disk caching, and graphical processing units (see
[11]), are used to speed up computation.

Example 4. Healthcare authorities might want to evaluate the potential im-
pact of new therapies, by identifying the number of patients that may get
benefits. Imaging features could be used to identify such cases; consider e.g.
the case of tumours invading specific organs at risk. For instance, consider the
query: “find all the cases in which a brain tumour invaded the patient’s eye”.
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Once again, there is no training data specific to this query, even if it is likely that
Machine Learning will provide in the near future very good methods to identify
the simpler concepts of “brain tumour”, and “patient’s eye’. In this case, a query
language would be an excellent solution to coordinate different machine learning
algorithms in order to answer more complex, expert-driven questions.

Example 5. An easy-to-use query system for healthcare datasets definitely cre-
ates ethical concerns about its usage. But at the same time, the human readabil-
ity of the query language makes it transparent with respect to such concerns and
would ease ethical scrutiny when deemed necessary, giving to an ethics com-
mittee the ability to know exactly which questions have been asked to the system,
and what do they mean. Compare and contrast this to a black-box method, such
as ML; or to the complexity of a traditional computer program interfaced to a
database of clinical data.

Example 6. Remote collaboration in telemedicine could benefit of an auto-
mated system to identify and share regions of interest among several treatment
centres. In this case, the flexibility of a query language would be fundamental
to integrate different queries into a comprehensive personalized knowledge base
for each patient.

6 Outlook: VoxLogicA as a distributed query engine

In our opinion, the tool VoxLogicA as is, would already constitute a good starting
point for querying medical imaging datasets (and, possibly, their augmentation
with information derived from ML algorithms). However, we also take into ac-
count a number of improvements, briefly introduced below, which could direct
future research more closely to the field of Information Retrieval, in order to be
used in the way that we anticipated throughout Examples 1 – 6 of the previous
section, namely:

Integration with clinical databases. Information systems such as RIS-PACS [24]
are of vital importance for the functioning of modern healthcare. Therein, all
the information available about patients that undergo treatments is archived. In
a clinical setting, therefore, a query language for medical imaging would be way
more useful if enabled to query such information systems directly.

Indexing. In SQL databases, data is indexed in order to speed up queries. In
VoxLogicA, the most expensive queries are related to the computation of distance
maps, to connected components and to statistical texture analysis. Therefore,
the identification of data structures to be computed in advance from medical
images (e.g., when such images are added to a dataset) in order to speed up
such operations, would be a relevant research line. In this respect, a first step
is to observe that minimization may be used to reduce models up-to logical
equivalence. In [16], and more recent work (to appear), a minimization algorithm
is proposed that minimizes images up-to proximity (“near”) and reachability
queries.
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Distributed execution. Distributed execution of VoxLogicA queries could be very
relevant for broadly known, widespread datasets, such as those that are com-
monly used for research and benchmarking purposes (see e.g. the BraTS dataset
[35]). Also for multi-centric studies, in order to respect privacy and intellectual
property concerns, it would be worthwile to implement a fully distributed vari-
ant of VoxLogicA that can be used to interrogate remote medical systems and
draw statistical conclusions, without having to share the whole dataset across
all the participants in a study.

Computational Efficiency. In order to improve efficiency of queries, the strat-
egy that is currently under investigation is that of GPU computing. The cur-
rent on-GPU implementation of VoxLogicA [11] exploits Graphical Processing
Units to improve the performance of image analysis. As software portability is
a major issue, VoxLogicA GPU is currently implemented using OpenCL13, an
open standard by Kronos, known to be executable on GPUs from any vendor.
The prototype is currently being improved. A major bottle-neck is the com-
putation of Connected Components of a binary image; this is used to resolve
inter-reachability queries on image regions, and it requires iterative calls to the
GPU and comparisons between images, which is particularly computationally
intensive. However, the speed-up achieved by the propotype is quite substantial,
and may become as high as two orders of magnitude, depending on the size and
type of the evaluated formula.

Human-computer interaction. The experience of our group in using VoxLogicA

for medical image analysis against a large datasets, is that a major hurdle is
constituted by HCI issues related to the visualization of intermediate results,
the interactive construction of queries, and to comparing and exchanging sev-
eral different versions of the same analysis between a group of interested users.
Furthermore, the target group of users for our project is that of healthcare
practitioners, where user interfaces for image visualization employ some highly
standardised concepts (such as viewing images slice by slice, using axial, coro-
nal and sagittal projections, or using overlays on images to visualize regions of
interest). Such aspects need to be carefully evaluated in order to design a query
system for medical images which is effective (see e.g. the usability study in [27],
and the cognitive load issues investigated in [10]).
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