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Abstract—Smart mobility applications, such as intelligent
parking and road traffic management, are nowadays widely
employed worldwide, making our cities more livable, bringing
benefits to our lives, reducing costs, and improving energy
usage. We propose a multi-camera system to automatically count
vehicles in a parking lot using images captured by smart cameras.
Unlike most of the literature on this task, which focuses on
the analysis of single images, this paper proposes the use of
multiple visual sources to monitor a wider parking area from
different perspectives. Experiments show that our solution is
robust, flexible, and can benefit from redundant information from
different cameras while improving overall performance.

I. INTRODUCTION

In this work, we propose a novel solution to automatically
estimate the number of vehicles present in a parking lot using
images captured by smart cameras. This counting task is chal-
lenging as the process of understanding the captured images
faces many problems, such as shadows, light variation, weather
conditions, and inter-object occlusions [1]. Most of the existing
works concerning the vehicles counting task focus on the
analysis of single images [2]–[4]. However, in many real-
world scenarios, one can benefit from using multiple cameras
to monitor the same parking lot from different perspectives
and viewpoints. Furthermore, multiple neighboring cameras
can also be helpful to cover a wider area. At the same time,
such an approach introduces issues related to merging the
knowledge extracted from the single cameras with partially
overlapping fields of views (FOVs).

In this paper, we discuss a multi-camera system that
combines a CNN-based technique, in charge of locate and
count vehicles present in images belonging to individual
cameras, along with a decentralized geometry-based approach,
responsible for merge the data from nearby devices with an
overlapping field of view and, finally, estimate the number of
cars present in the entire parking lot. Our solution performs
the task directly on the edge devices (i.e., the smart cameras)
without using a central server or cloud, consequently reducing
the communication overhead. Hence, our system scales better
when the number of monitored parking spaces increases.
Moreover, our solution does not require any extra information
about the monitored parking area, such as the location of
the parking spaces, nor any geometric information about the
camera positions in the parking lot. In short, it is a flexible
and ready-to-use solution that allows a simple “plug-and-
play” insertion of new cameras into the system, and that
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takes advantage of the redundant information deriving from
the different visual sources.

II. PROPOSED METHOD

We model our system as a graph G, comprised of n nodes
νi and one Sink node S, V = {ν1, ν2, . . . , νn, S}. An example
is shown in Figure 1. Each node νi represents an independent
edge device, i.e., a smart camera in our case. Two nodes νi
and νj are considered neighbors if their FOVs overlap, and
in this case, a directed edge of the graph connects them.
Each edge device νi can capture images, localize and count
the vehicles present in its FOV exploiting a deep learning-
based detector, and communicate with its neighboring nodes
through messages mi containing the computed detections.
Furthermore, each node νi can also run a local counting
algorithm in charge of computing partial counting results
concerning the estimation of the number of vehicles present in
overlapped areas between its FOV and the ones belonging to
its neighbors. The fusion of the partial results is performed
by the Sink node S, which provides the final result and
synchronizes all the algorithm steps through synchronization
signals headed towards the other nodes νi. On the other hand,
the nodes νi can also communicate through messages with the
Sink node. They can be of two types: i) messages ηi containing
the number of cars captured by the node νi in its FOV, and
ii) messages µj,i representing the partial counting estimation
related to the overlapping area between two neighboring nodes
νi and νj .

In the next, we describe the steps of our solution. Firstly, the
node S starts the initialization phase of the system, sending a
synchronization signal to all the other nodes. Once received,
each smart camera captures an image of the scene it monitors
and sends it to all its neighbors. Once a smart camera i
receives an image from a neighboring camera j, it computes
a homographic transformation Hj,i between the image j and
the image i describing its monitored scene. This allows us to
establish a correspondence between the points belonging to the
pair of images taken by the two cameras, which will be used
subsequently in the algorithm. Then, each node νi exploits
a CNN-based counting technique that analyzes the monitored
view and outputs a set of masks masksi localizing the vehicles
present in the scene. The cardinality of this set of masks
corresponds to the number of cars present in the monitored
area, i.e., the quantity ηi, that is sent through a message to
the Sink node S. Next, the node νi packs this set of masks
masksi in a message mi, sending it to all its neighboring nodes
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Fig. 1: An example of our multi-camera counting system with
n = 5 smart cameras, together with its graph modeling.

νj , and receiving from them their corresponding set of masks
masksj packed in a message mj . Once received a message
mj , the node νi is responsible for analyzing the potential
vehicles present in the overlapped area between its FOV and
one of the nodes νj . To this end, it employs the homographic
transformation Hj,i computed during the system initialization,
projecting the masks belonging to the set masksj into its image
plane, filtering them and discarding the ones that overlap with
the masks belonging to the set masksi having a value of
Intersection over Union (IoU) greater than a fixed threshold.
These masks indeed localize vehicles already detected, and
that should not be considered a second time. On the other
hand, the cars left after this filtering are vehicles that were not
detected in the FOV underlying the node νi, but instead found
by the node νj , probably because of having a better view of
this object. Referring to our graph modeling the system and
reported in Figure 1, the number of the discarded cars after this
filtering operation corresponds to the message µj,i, that is sent
to the Sink node S. Finally, the Sink node S starts the final
phase. In particular, for each overlapped area shared between
a pair of nodes νi, νj , the node S receives two messages µj,i

and µi,j , the contents of which are computed by the two nodes
employing two homographic transformations Hj,i and Hi,j ,
respectively. These two quantities can be potentially different.
We choose the best value aggregating them, choosing between
three different functions - max, min and mean, finding that the
latter is the best one. Lastly, the node S builds the final result,
i.e., the estimation of the number of vehicles present in the
entire parking lot, by summing up all the ηi, and subtracting
the aggregated values.

III. EXPERIMENTAL EVALUATION

To validate our solution, we employ the CNRPark-EXT
dataset [5], a collection of images taken from the parking

lot on the campus of the National Research Council (CNR)
in Pisa, Italy. The pictures are acquired by multiple cameras
having partially overlapping fields of views and describing
challenging scenarios, with different perspectives, illumina-
tions, weather conditions, and many occlusions. Since the
annotations of this dataset concern single images, we extended
it by relabeling a part of it to be consistent with our algorithm
that instead considers the entire parking area.

We compare our solution against a system that is not aware
of the other cameras’ overlapped areas, and so it just sums
all the vehicles detected by all the cameras belonging to
a sequence (Baseline). Then, we consider a more conser-
vative approach, where the nodes employ the homographic
transformations only to black-masking the overlapped areas
(Simplified algorithm). This latter baseline then loses the
ability to take advantage of monitoring the same lots from
different views. However, it is still aware of the locations of
the overlapping areas, and it considers the vehicles inside them
only once. Table III shows the results terms of Mean Absolute
Error, Mean Squared Error and Mean Relative Error (the lower
is better).

MAE MSE MRE (%)
Baseline 111.6 12,736.6 63.9

Simplified algorithm 1,351.6 20.7 2.86
Our Method 2.8 10.5 1.6

IV. CONCLUSIONS

This paper presented a distributed artificial intelligence-
based system that automatically counts the vehicles present in
an entire parking area using images taken by multiple smart
cameras. The main peculiarities of this approach are that all
the computation is performed in a distributed manner at the
edge of the network and that there is no need for any extra
information of the monitored parking area, such as the location
of the parking spaces, nor any geometric information about
the position of the cameras in the parking lot. Our solution
is simple but effective, combining a deep-learning technique
with a distributed geometry-based approach. We evaluated our
algorithm on the CNRPark-EXT dataset, which we specifically
extended to show how we benefit from redundant information
from different cameras while improving overall performance.
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