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Abstract

Explainable AI consists in developing mechanisms allowing for an in-
teraction between decision systems and humans by making the decisions
of the formers understandable. This is particularly important in sensitive
contexts like in the medical domain. We propose a use case study, for
skin lesion diagnosis, illustrating how it is possible to provide the practi-
tioner with explanations on the decisions of a state of the art deep neural
network classifier trained to characterize skin lesions from examples. Our
framework consists of a trained classifier onto which an explanation mod-
ule operates. The latter is able to offer the practitioner exemplars and
counterexemplars for the classification diagnosis thus allowing the physi-
cian to interact with the automatic diagnosis system. The exemplars are
generated via an adversarial autoencoder. We illustrate the behavior of
the system on representative examples.

Image classification, Explainable AI, Machine Learning, Skin Lesion Image
Classification, Adversarial Autoencoders

1 Introduction

In the last years, AI based decision support systems have gained a huge impact
in different domains, in many cases providing high accuracy predictions, classi-
fication, and recommendation. However, their adoption in high-stake scenario
that involves decision on humans has raised several ethical concerns about the
fairness, bias, transparency and dependable decisions taken on the basis of AI
suggestions [1]. These concerns are even more relevant in mission-critical do-
mains, like in healthcare. Thus, it is necessary to develop AI systems that are
able to assist the doctors to take informative decisions, complementing their
own knowledge with the information and suggestion yielded by the AI system.

Our proposal starts from the design and development of a classification
model for the ISIC 2019 Challenge. The objective of the challenge is to in-
vite research to develop automated systems to provide accurate classification
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of skin cancers from dermoscopic images. Our system consists of two main
modules: a) a CNN model to classify each input image as a class among eight
possibilities; b) an explainer based on exemplars and counter exemplars synthe-
sis that exploit and adversarial autoencoder (AAE) to produce the images for
the explanation. In this paper we introduce the models and their structures. In
particular, we have used two separate learning processes: a) a learning phase for
the CNN, starting from the ResNet50 architecture; and b) a training phase for
an Adversarial AutoEncorder (AAE). Since the image produced by the AAE
are intended to be used as exemplars, it is crucial to have a wide catalog of
neighborhood instances. For this reason, we developed a progressive growing
AAE to maximize the diversification of the generated images. The two train-
ing processes are intentionally kept separated since two different loss functions
are used (the first for accuracy, the second for discrimination). We also want
to demonstrate that the explainer may be effective even if the original train-
ing set was not available. In the paper we show that accurately designing the
AAE is crucial for obtaining an explanation based on realistic exemplars and
counter-exemplars, especially in a specialistic domain as healthcare.

The rest of the paper is organized as follows. In Section 2 we list recent con-
tributions in the field of explainability for image classification. Section 3 recalls
basic notions related with the approach exploited in this paper. In Section 4
we illustrate in detail the settings of the case study addressed, while Section 5
shows the results. Finally, Section 6 summarizes the contribution and proposes
future research directions.

2 Related Work

Image classification can be widely applied in health for various purposes ranging
from heart disease diagnosis to skin cancer detection [2–4]. In order to have high
performance in these tasks, AI systems relying on machine learning models are
more and more used. Unfortunately, these models are typically black boxes
handing the rationale of their behavior. For this reason, research on black box
explanation has recently received much attention [5–7]. This interest is driven
by the idea of adopting into AI systems explanation methods such that high
performance and interpretability can coexist. Explainability is practically useful
in social sensitive context like the medical one [8].

In image classification, typical explanations are saliency maps, i.e., images
that show each pixel’s positive (or negative) contribution. At a high level,
explanation methods can be categorized as model-specific or model-agnostic,
depending on whether the explanation method exploits knowledge of the internal
structure of the black box or not; global or local, depending on whether the
explanation is provided for the black box as a whole or for any specific instance.
The explainer abele adopted in this paper is a local model-agnostic method.

With respect to the literature, lime [9] and shap [10] are two of the most
well known data agnostic local explanation methods. lime randomly generates a
local neighborhood “around” the instance to explain, labels them using the black
box under analysis and returns an explanation using as surrogate model a linear
regressor. On the other hand, shap adopts game theory and exploits the Shapley
values of a conditional expectation function of the black box, providing for each
feature the unique additive importance. Besides being model-agnostic, lime

2



Figure 1: Left : AAE architecture. Right : Discriminator and Decoder module.

and shap are also theoretically not tied to a specific type of data. Indeed, they
can be applied to explain image classifiers and return explanation in the form of
saliency maps by turning the features importance into pixels importance. They
achieve this objective by using for the process “superpixels”, i.e., areas of the
image under analysis with similar colors. Unfortunately, the usage of superpixels
requires a segmentation procedure that affects the explanation. Moreover, the
neighborhoods considered when investigating the black box behavior are no
longer plausible instances but simply the image under analysis with some pixels
“obscured” [11]. The fact that the explanation procedure relies on not plausible
images is generally unpleasant in medical applications. abele overcomes these
issues relying on a realistic procedure for generating images similar to the one
under analysis and does not require any a priori segmentation [12].

Other explanation methods widely used to build saliency maps are model-
specific approaches such as IntGrad [13], GradInput [14], and ε-LRP [15]. In
brief, to retrieve the saliency map, they redistribute the prediction backwards
using local rules until it assigns a relevance score to each pixel value. These
approaches are designed for deep neural networks and cannot be employed for
explaining image classifiers for which the type of the model is unknown. On
the other hand, being model-agnostic, abele overcomes this limitation and
also allows playing with the components of the explanation while these model-
specific approaches are more limited.

3 Setting The Stage

3.1 Adversarial Autoencoders

An important issue arising in the use of synthetic instances when developing
black box explanations is the question of maintaining the identity of the dis-
tribution of the examples that are generated with the prior distribution of the
original examples. In [12] this issue is approached by using an Adversarial
Autoencoder (AAE) [16], which combines a Generative Adversarial Network
(GAN) [17] with the autoencoder representation learning algorithm.

AAEs are probabilistic autoencoders that aim at generating new random
items that are highly similar to the training data. They are regularized by
matching the aggregated posterior distribution of the latent representation of the
input data to an arbitrary prior distribution. The AAE architecture (Figure 1-
left) includes an encoder : Rn→Rk, a decoder : Rk→Rn and a discriminator :
Rk→[0, 1] where n is the number of pixels in an image and k is the number
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Figure 2: Latent Local Rules Extractor (llore) module.

of latent features. Let x be an instance of the training data, we name z the
corresponding latent data representation obtained by the encoder . We can
describe the AAE with the following distributions [16]: the prior distribution
p(z) to be imposed on z, the data distribution pd(x), the model distribution p(x),
and the encoding and decoding distributions q(z|x) and p(x|z), respectively.
The encoding function q(z|x) defines an aggregated posterior distribution of
q(z) on the latent feature space: q(z)=

∫
x
q(z|x)pd(x)dx. The AAE guarantees

that the aggregated posterior distribution q(z) matches the prior distribution
p(z), through the latent instances and by minimizing the reconstruction error.
The AAE generator corresponds to the encoder q(z|x) and ensures that the
aggregated posterior distribution can confuse the discriminator in deciding if
the latent instance q(z) comes from the true distribution p(z).

The AAE learning involves two phases: the reconstruction aimed at training
the encoder and decoder to minimize the reconstruction loss; the regularization
aimed at training the discriminator using training data and encoded values.
After the learning, the decoder defines a generative model mapping the prior
distribution p(z) to distribution pd(x).

3.2 ABELE

abele (Adversarial Black box Explainer generating Latent Exemplars) is a local
model agnostic explainer for image classifiers [12]. Given an image x to explain
and a black box b, the explanation provided by abele is composed of (i) a set of
exemplars and counter-exemplars, (ii) a saliency map. Exemplars and counter-
exemplars show instances classified with the same outcome as x, and with an
outcome other than x, respectively. They can be visually analyzed to understand
the reasons for the decision. The saliency map highlights the areas of x that
contribute to its classification and areas that push it into another class. The
explanation process is as follows. First, abele generates a neighborhood in the
latent feature space exploiting an Adversarial Autoencoder (AAE) [16]. Then,
it learns a decision tree on that latent neighborhood providing local decision
and counterfactual rules [18]. Finally, abele selects and decodes exemplars
and counter-exemplars satisfying these rules and extracts from them a saliency
map.

4



Figure 3: Left : Exemplar Generator (eg) module. Right : abele architecture.

3.2.1 Encoding

The image x∈Rn to be explained is passed as input to the AAE where the
encoder returns the latent representation z ∈ Rk using k latent features with
k � n.

3.2.2 Neighborhood Generation

abele generates a set H of N instances in the latent feature space, with char-
acteristics close to those of z. Since the goal is to learn a predictor on H able to
simulate the local behavior of b, the neighborhood includes instances with both
decisions, i.e., H = H=∪H6= where instances h ∈ H= are such that b(h̃) = b(x),

and h ∈ H6= are such that b(h̃) 6= b(x). We name h̃ ∈ Rn the decoded version of
an instance h ∈ Rk in the latent feature space. The neighborhood generation of
H (neighgen module in Fig. 2) may be accomplished using different strategies
ranging from pure random strategy using a given distribution to a genetic ap-
proach maximizing a fitness function [18]. In our experiments we adopt the last
strategy. After the generation process, for any instance h ∈ H, abele exploits
the disde module (Fig. 1-right) for both checking the validity of h by querying

the discriminator and decoding it into h̃. Then, it queries the black box b with
h̃ to get the class y, i.e., b(h̃) = y.

3.2.3 Local Classifier Rule Extraction

Given the local neighborhood H, abele builds a decision tree classifier c trained
on H labeled with b(H̃). The surrogate tree is intended to locally mimic the
behavior of b in the neighborhood H. It extracts the decision rule r and counter-
factual rules Φ enabling the generation of exemplars and counter-exemplars.
Fig. 2 shows the process that, starting from the image to be explained, leads
to the decision tree learning, and to the extraction of the decision and counter-
factual rules. We name this module llore, as a variant of lore [18].

3.2.4 Explanation Extraction

Often, e.g. in medical or managerial decision making, people explain their de-
cisions by pointing to exemplars with the same (or different) decision outcome.
We follow this approach and we model the explanation of an image x returned by
abele as a triple e = 〈H̃e, H̃c, s〉 composed by exemplars H̃e, counter-exemplars
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Figure 4: Melanocytic nevus preprocessed samples

H̃c and a saliency map s. Exemplars and counter-exemplars are images repre-
senting instances similar to x, leading to an outcome equal to or different from
b(x). Exemplars and counter-exemplars are generated by abele exploiting the
eg module (Fig. 3-left). It first generates a set of latent instances H satisfying
the decision rule r (or a set of counter-factual rules Φ), as shown in Fig. 2.

Then, it validates and decodes them into exemplars H̃e (or counter-exemplars

H̃c) using the disde module. The saliency map s highlights areas of x that
contribute to its outcome and areas that push it into another class. The map is
obtained by the saliency extractor se module (Fig. 3-right) that first computes

the pixel-to-pixel-difference between x and each exemplar in the set H̃e, and
then, it assigns to each pixel of the saliency map s the median value of all dif-
ferences calculated for that pixel. Thus, formally for each pixel i of the saliency
map s we have: s[i] = median∀h̃e∈H̃e

(x[i]− h̃e[i]).

4 Case Study

We present here a description of all the components involved in the training
process of the black box model used to classify instances of the ISIC dataset
in eight different classes, and of the AAE used by abele trained on the same
dataset.

4.1 ISIC Dataset, Prerocessing and Classifier

Skin Lesion Analysis Towards Melanoma Detection is a challenge proposed by
the International Skin Imaging Collaboration (ISIC), an international effort to
improve melanoma diagnosis, sponsored by the International Society for Digital
Imaging of the Skin (ISDIS). ISIC has developed an international repository
of dermoscopic images, for both the purposes of clinical training, and for sup-
porting technical research toward automated algorithmic analysis. The goal
for ISIC 2019 is to classify dermoscopic images among nine different diagnostic
categories: MEL (Melanoma), NV (Melanocytic nevus), BCC (Basal cell carci-
noma), AK (Actinic keratosis), BKL (Benign keratosis), DF (Dermatofibroma),
VASC (Vascular lesion), SCC (Squamous cell carcinoma), UNK (None of the
others / out-of-distribution).
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4.1.1 Dataset

The dataset is composed of a training set of 25,331 JPEG images of skin lesions
and their category (labels); a test set of 8,238 unlabelled JPEG images of skin
lesions. In our experiments we relied on the training set for which ground
truth is directly available. In particular, from the training set, we used 80% for
training and 20% for validation. For the evaluation, we use the same evaluation
protocols as the submission system.

4.1.2 Data Preprocessing

Since the images have different resolutions. We preprocess them as follows:

• For the training process, the images are randomly rescaled, rotated and
cropped to generate the input to the network. Note that such preprocess-
ing does not deform the lesions in the image. Resolution of the prepro-
cessed images is 224×224.

• For the validation and test process, each image is firstly rescaled to 256×256
according to the shorter edge, then cropped at the center into a 224×224
image.

Since the UNK category is a reject option and is not available in the training
we focused on the 8 other categories.

4.1.3 Image Classifier Architecture

For the classification, we used a classical ResNet, pretrained on Imagenet, i.e.,
a black box classifier. In particular, we replaced the last classification layer by
the new one adapted to the number of classes in the diagnosis. We trained
this layer and fine tuned the rest of the network on ISIC dataset. The 50-layer
ResNet architecture is the following: The network is composed of 18 modules
sequentially combined together, including one conv1 module (7×7, 64 filters,
stride 2), three conv2 modules (1×1, 64 filters, stride 1; 3×3, 64 filters, stride
1; 1×1, 256 filters, stride 1), four conv3 (1×1, 128 filters, stride 2; 3×3, 128
filters, stride 1; 1×1, 512 filters, stride 1), six conv4 (1×1, 256 filters, stride
2; 3×3, 256 filters, stride 1; 1×1, 1024 filters, stride 1), three conv5 (1×1,
512 filters, stride 2; 3×3, 512 filters, stride 1; 1×1, 2048 filters, stride 1) and
one last fully connected module fc (average pooling, 9-output fully connected
layer, sigmoid activation). The first module conv1 is composed of one single
convolution layer. For conv2 to conv5, each module is a residual block including
three convolutional layers in the residual branch. The output of such block is
the sum of the input and the output of the convolutional layers. The module
fc is the newly trained prediction layer. The spatial size is reduced only at the
first layer of the modules conv3, conv4 and conv5. We adopt a binary cross
entropy loss for each class, so that the problem is considered as 8 individual
one-vs-rest binary classification problems.

4.1.4 Evaluation Criteria

The official evaluation criterion for the challenge is the Normalized (or balanced)
multi-class accuracy. It is defined as the average of recall obtained in each class.
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The best value is 1 and the worst is 0. This metric makes all the classes equally
important. In terms of balanced multi-class accuracy (mean value of categorical
recalls), the trained model achieved 0.838 on the validation set. We report also
the performance on the official test set. The score is 0.488, which is potentially
impacted by the presence of out-of-distribution samples (UNK) since the model
was not tuned for rejection.

4.2 Customization of ABELE

We describe here the customization of abele we carried on in order to make it
usable for the complex image classification task addressed by the ISIC classifier
previously described.

4.2.1 Issues with Generative Models

Generative Adversarial models are generally not easy to train as they are usually
affected by a number of common failures. These problems vary from a diversi-
fied spectrum of failures in convergence to the famous Mode Collapse [19], the
tendency by the generator network to produce a small variety of output types.
Such problems mainly arise from the competing scheme generator and discrimi-
nator are trained on: they are trained simultaneously in a zero-sum game, thus
the goal is to find an equilibrium between the two competing objectives. Since
every time the parameters of one of the models are updated the nature of the op-
timization problem is changed, this has the effect of creating a dynamic system
that easily fails to converge.

Furthermore, even the concept of convergence is not as clear as in other
context. As the generator improves during the training, the discriminator per-
formance gets worse because it cannot easily tell the difference between real and
fake outputs. At the limit where the generator succeeds perfectly, the discrimi-
nator flips a coin to make its prediction. Hence, the discriminator feedback gets
less meaningful over time. If the model continues training past the point when
the discriminator is giving random feedback, then the generator starts to train
on low quality feedback, and its own performance may collapse. For a Gen-
erative Adversarial model, convergence is often an unstable transitory region
rather than a stable state.
In addition to the previous problems, we often face the further complication
to deal with real world datasets that are far from ideal: fragmentation, imbal-
ance, lack of uniform digitization, shortage of data are primary challenges of
big data analytics for healthcare. All of them impede efficiency and accuracy
of machine learning model trained with these data, especially in the case of
inherently fragile generative models.

Training an AAE in a standard fashion to reproduce samples from ISIC
dataset without taking special care of all issues mentioned above resulted in
extremely poor performance, mostly due to a persistent collapse mode. In order
to overcome such generative failure and dataset limitations, we implemented a
collection of cutting edge techniques that altogether is capable of addressing
all the issues we mentioned and successfully training an AAE with adequate
performance.
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4.2.2 Overcoming Mode Collapse

One usually wants a generative model to produce a large variety of outputs, for
example, a different image for every input of our skin lesion generator. How-
ever, since the generator is always trying to produce the one output that seems
most plausible to the discriminator, it may happen that the generator learns
to produce just a single output over and over again, or a small set of outputs.
In such case, the discriminator best strategy is to learn to always reject that
output. But if the current discriminator gets stuck in a poor local minimum it is
not going to find the best strategy, hence it would be too easy for the generator
to find the most credible output for the current discriminator.

As a consequence, at each iteration of generator an over-optimization for the
current discriminator takes place, and the discriminator never learns to escape
out of the trap. Thus, each generation of generator rotates through a small set
of output types, possibly a single one. In adversarial generative models, this
form of failure is called mode collapse.

In recent years many techniques have been proposed to overcome this ubiq-
uitous form of failure. Ad hoc tricks like Mini Batch Discrimination [20] or
Wasserstein Loss [21] have been proved empirically to alleviates mode collapse,
while Unrolled GANs [22] or Conditional AAE [23] intervene directly on the
internal structure of the training scheme to discouraging over-optimization by
the current generator.

The reasons behind mode collapse and other forms of failure remain still
unclear and not fully proven. In the health domain, such singularities around
the train process appear to be even more frequent. Possible reasons can be
the lack of a substantial number of training data, the necessity to deal with
high resolution images, fragmented and highly unbalanced datasets (malignant
cancers are usually a small proportion of the entire batch). Furthermore, the
need of a substantial number of latent features makes the parameter space ex-
tremely irregular, non-convex and in need of powerful regularization. In order
to overcome failure modes and train an AAE successfully, we used the following
collection of techniques.

4.2.3 Progressive Growing Adversarial Autoencoder

Progressive Growing GANs [24] have been introduced as an extension to the
GANs training process. It helps to achieve a more stable training of genera-
tive models for high resolution images. The main idea is to start with a very
low resolution image and step by step adding block of layers that simultane-
ously increase the output size of the generator model and the input size of the
discriminator model until the desired size is achieved.

In a general GAN scheme, the discriminator is linked to the generator model
output. However, in an AAE the discriminator takes as input the encoded latent
space instead of the full reconstructed image. In order to achieve all benefits of a
progressive growing model, we need a novel structure to take care of this different
dynamics. We then propose a Progressive Growing Adversarial Autoencoder
(PGAAE): starting with a single block of convolutional layers for each of the
two generating networks (encoder and decoder) we are able to reconstruct low
resolution images (7x7 pixels), then step by step we increase the number of
blocks until the network is powerful enough to manage images of the desired
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Figure 5: A Progressive Growing AAE network.

size (224x224 pixels). The latent space dimension is kept fixed, consequently the
discriminator takes as input tensors always the same size. Although one could
fix also the discriminator network, we found helpful to progressively increasing
also the width of this network so that the discriminator can deal each step with
a more structured information. On the contrary, we observe that increasing the
depth of the discriminator increases the instability of the training, causing a wide
variety of failures ranging from poor performance to catastrophic forgetting [19].

The main idea behind such construction relies on the instability caused to
the training process by heavy structured high dimensional data. Generating
high-resolution images is challenging for generative models, as the generator
must learn how to output both high dimensional structure and fine details at
the same time. The high resolution makes any discrepancy in the fine detail of
generated images easy to mark for the discriminator, and the training process
degenerates. Large images also require significantly more memory, consequently,
the batch size used to update model weights each iteration is reduced to ensure
that the large images fit into memory. This introduces further instability into
the process.

The incremental addition of the layers allows the models to first learn large
scale structure and progressively shift the attention to finer detail. At each step,
all previous layers remain trainable throughout the training process. From a dif-
ferent point of view, one can think of each block of layers as the initialization of
the same common network structure of the subsequent step of the progressive
scheme. Such progressive initialization is by all means a powerful form of regu-
larization carried out through both the encoder and decoder networks. A heavy
quantity of regularization is indeed needed to smooth the parameter space and,
in turn, reducing failure modes like mode collapse.

The PGAAE network paradigma is reported in Figure 5. First, we start by
training a shallow AAE with just one convolutional block for both the encoder
and decoder network. Such first AAE is trained to reconstruct skin lesion images
resized to 7x7 pixels. Once the network is fully trained and optimized, it sends
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its weights to a second AAE with a deeper structure of two convolutional blocks
for both the encoder and decoder network. This second AAE is trained with the
same dataset resized to 14x14 pixels. At each step, weights are shared just over
the common underlying structure and then kept trainable for future training
steps, i.e. each AAE is initialized with the previous AAE weights and trained
with images doubled in size.

After the sixth step, we have a fully trained AAE able to reproduce skin
lesion images of size 224x224 pixels. In order to enhance the discriminator abil-
ity to discriminate between more and more complex images, at each step the
discriminator grows in width: it consists of two dense layers with a progressive
growing number of neurons (from 500 to 3000 with a step increase of 500 neu-
rons after each phase) and a Leaky ReLu activation with parameter 0.2. All
discriminators end with a single neuron dense layer with a sigmoid activation.

Each convolutional block includes two identical sets of three layers: a conv2d

layer with stride 3, filters ranging from 16 to 128, followed by a batch normal-
ization with parameter 0.95 and a ReLu activation. Depending on whether we
consider the encoder or the decoder network, a max pooling or an up sampling

layer is attached at the end of each block.

4.2.4 Denoising Autoencoder

Another major issue affecting the training of generative models is the tendency
of learning the identity function: if the autoencoder has more nodes in the
hidden layer than inputs, then it can just learn the data and the output simply
equals the input. Hence, it does not perform any useful representation learning
or dimensionality reduction.

Denoising autoencoders [25] are a stochastic version of basic autoencoders.
A Denoising autoencoder attempts to address the identity function issue by
randomly corrupting input images that the autoencoder must then reconstruct.
By making the training process and the reconstruction phase more challenging,
it is proved that denoising autoencoders mitigate the identity function issue and
learn more robust representations.

Another way to gain more generalization, reduce the vanishing gradient prob-
lem and improve convergence is to add noise also to the discriminator inputs [26].
Denoising autoencoder, adversarial generative training ad noise injection have
been used separately to improve autoencoder performance. We augment the
adversarial model with both a denoising feature applied to the generator and a
noise injection in to the discriminator. The denoising feature was particularly
helpful in achieving good reconstruction performance for latent space with 256
latent features. We opted for a Gaussian noise with standard deviation σ = 0.1
(we tried different value ranging from 0.05 to 0.9: it seems there is no signifi-
cant difference in reconstruction accuracy in the range σ ∈ [0.1, 0.3]; accuracy
starts to deteriorate quickly after σ = 0.3). Despite we are not interested in
low dimensional latent space (reconstructed images would be too blurry and not
enough variegate), we found no significant advantage in injecting noise in such
cases.
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4.2.5 Mini Batch Discrimination

Mini Batch Discrimination [20] was originally introduced as a technique to mit-
igate collapse of the generator network. It is a discriminative technique for
generative adversarial networks between whole minibatches of samples rather
than between individual samples.

The idea is for the discriminator to consider an entire batch of data, instead
of looking to a single input data. The mode collapse is then much easier to
spot, since the discriminator understands that whenever all the samples in a
batch are very close to each other, the data has to be rejected. This forces the
generator to produce many good outputs in each data batch. An L1 penalization
norm is concatenated with the original input and fed to the discriminator last
but one layer. Such penalization quantifies the closeness between data in the
same minibatch, causing the discriminator to reject batches that are internally
too similar. This discriminative technique along with the progressive growing
network structure, helped to avoid the mode collapse for batches of small and
middle size (16-64) at the cost of a small increase of discriminator parameters.
Indeed, training AAE with small batches size increases the chances of falling in
to a mode collapse. However, small batch sizes are forced by hardware limitation
due to high resolution images and high dimensional latent space.

Following [20], a minibatch discrimination layer needs two hyperparameters
to be fine tuned, namely B and C in the original paper, i.e. the number of dis-
crimination kernels to use and the dimensionality of the space where closeness of
samples is calculated. Hypothetically, the larger B and C are, the better results
are obtained at the price of a lower computation speed. A good compromise
between accuracy and speed was the choice B = 16 and C = 5.

4.2.6 Performance

After a thorough fine tuning of all three networks structures (encoder, decoder
and discriminator) our PGAAE with 256 latent features achieves a reconstruc-
tion error measure through RMSE that ranges from 0.08 to 0.24 depending on
whether we consider the most common or the most rare skin lesion class. Data
augmentation was necessary to overcome scarcity and imbalance of the dataset.
Mode collapse is greatly reduced, and we are able to generate variegate and good
quality skin lesion images. ABELE explainer is now able to generate meaningful
explanations.

5 Explanations

The outcome of the classifier and the explanator are designed to present a com-
pact visual interface to the user, organized into four panes: 1) the original image
that was processed by the CNN and the label of the predicted classification; 2)
an attention area that allows us to emphasize the areas that had a positive
(brown color) or negative (green color) contribution to the classification; 3) a
set of synthetic prototypes generated by the AAE that are classified with the
same class of the input; 4) a counterexemplar, i.e. a synthetic image to present
a prototype that is classified with a different class than the input.

Figure 6 presents the outcome for an image, classified as Melanocytic nevus.
From the attention area the user is able to evaluate which parts of the input
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Figure 6: ABELE graphic explanation for a Melanocytic nevus

image where relevant for the CNN. The presentation of the results is comple-
mented with the four prototypes: the four images are generated by the AAE,
and they help the user to enforce the confidence with the decision yielded by the
black-box, comparing the original image with the four exemplars. The coun-
terexemplar, instead, has the function of probing the result of the black-box,
by generating an image similar to the input but classified with a different class
from the CNN.

ABELE generates statistics on the neighborhood of the input in the latent
space. This information contributes to understand how the model space of the
CNN is fragmented around the given input. This gives to the doctor a pulse of
the classes that the black-box locates around the given instance. For the example
in Figure 6, the statistics and rules on the latent space are the following:

Neighborhood{NV : 41BCC : 18AK : 4BKL : 26DF : 11}
e = {rules = {7 > −1.01, 99 ≤ 0.07, 225 > −0.75, 255 ≤ −0.02,

238 > 0.15, 137 ≤ −0.14} → {class : NV }
counter − rules = {{7 ≤ −1.01} → {class : BCC}}}

Here the Neighborhood entry shows the composition of the synthetic latent in-
stances generated by the AAE. The rules and counter-rules are expressed in
terms of ordinal positions of the dimensions in the latent space. Of course this
representation is intended for internal use: it provides no accessible information
to the human, but it may be exploited by the visual interface to implement an
interactive refinement of the provided explanation

6 Conclusion

In this paper we propose a classification framework composed of a CNN model
for the ISIC 2019 Challenge classification and a local-outcome explainer that
produces exemplars and counter exemplars as an explanation. Our analytical
framework contributes a) to model a CNN to classify each input image as a
class among eight possibilities; b) to create an explainer based on exemplars and
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counter exemplars synthesis that exploit an adversarial autoencoder (AAE) to
produce the images for the explanation; c) to tune the generation of exemplars
to overcome the collapse mode issue to provide acceptable prototypes for the
explanations. The CNN and the AAE follow distinct training processes, to
demonstrate the possibility of using the explainer even with an external black-
box, for example to test its fairness and dependability.

The analytical pipeline presented here is the core part of a wider system,
where the interaction with the user should be further developed. In particular,
we plan to enable an explorative process of the latent space of the input, by
allowing the user to ask for additional exemplars or counter exemplars. Given
the high impact on the cognitive layer of the user, we are designing a qualita-
tive evaluation criteria with domain experts (i.e. doctors), to test the different
dimensions of the explanations: usability, utility, comprehensibility, fidelity, etc.
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