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Abstract—Synthetic data generation has been widely adopted
in software testing, data privacy, imbalanced learning, artificial
intelligence explanation, etc. In all such contexts, it is important
to generate plausible data samples. A common assumption of
approaches widely used for data generation is the independence
of the features. However, typically, the variables of a dataset de-
pend on one another, and these dependencies are not considered
in data generation leading to the creation of implausible records.
The main problem is that dependencies among variables are
typically unknown. In this paper, we design a synthetic dataset
generator for tabular data that is able to discover nonlinear
causalities among the variables and use them at generation
time. State-of-the-art methods for nonlinear causal discovery are
typically inefficient. We boost them by restricting the causal
discovery among the features appearing in the frequent patterns
efficiently retrieved by a pattern mining algorithm. To validate
our proposal, we design a framework for generating synthetic
datasets with known causalities. Wide experimentation on many
synthetic datasets and real datasets with known causalities shows
the effectiveness of the proposed method.

Index Terms—Data Generation, Causal Discovery, Pattern
Mining, Synthetic Datasets, Explainability

I. INTRODUCTION

In many real-world applications, it is fundamental to rely
on synthetic data, especially when real data can be difficult to
obtain due to privacy issues, temporal or budget constraints,
or the unavailability of large quantities. Synthetic data are
used for validating data discovery applications and for testing
software in a controlled environment that satisfies specific
conditions [1], [2]. In machine learning, synthetic data are in-
creasingly being used for addressing imbalanced learning [3],
for training a model with the intention of transfer learning to
real data [4], or, in the last days, for providing explanations of
obscure decision systems [5]. Indeed, various studies show the
benefits of using synthetic data located in the neighborhood
of available real instances for learning predictive models [6],
[7], or for explaining the reasons for the prediction [8].

In these scenarios, the methods used for synthetic data
generation are either simple but efficient random approaches
assuming uniform distribution for all the variables [5], or
complex and time expensive methods such as Generative
Adversarial Networks (GAN) [9]. However, typically, only
a few of them rely on explicit knowledge about possible
linear and/or nonlinear dependencies among the variables.
In particular, common generative approaches work on the

assumption that the variables of the dataset to generate are
independent. Such an assumption does not guarantee a reliable
synthetic generation of the dataset under analysis. On the other
hand, GAN-like approaches can theoretically learn possible
dependencies, but these are not explicitly represented, and
there is no guarantee that they are followed in the data
generation process.

Therefore, a crucial problem in synthetic data generation
is that dependencies among variables are not used because
they are typically unknown. Our idea is to design a technique
for synthetic data generation that accounts for dependencies
among variables by exploiting a causal discovery algorithm.
Causal discovery algorithms take as input a set of variables
belonging to a dataset and determine which are the causal
relationships among them [10], [11]. In particular, we focus on
nonlinear causal discovery [12]. If the dataset under analysis is
continuous-valued, methods based on linear causal models are
commonly applied [13]. This typically happens because linear
models are well understood and not necessarily because the
true causal relationships are believed to be linear [12]. How-
ever, in reality, many causal relationships are nonlinear, raising
doubts on the reliability and usability of linear methods. In
addition, in [12] it is shown that considering nonlinear causal
relationships plays a primary role in the identification of causal
directions. For these reasons, we start from the Nonlinear
Causal Discovery method described in [12] (NCD) to design
our synthetic data generator exploiting causal relationships.
Besides non-linearity, the NCD is able to consider and dis-
cover not only binary relationships but also multivariate ones.
Unfortunately, the NCD approach is inefficient and can only
be employed to reveal the causal relationships of datasets with
a very small number of variables. Thus, it is not practically
usable for applications on real datasets. Our proposal is to
boost NCD by restricting the search of causalities among the
features appearing in the patterns returned by a pattern mining
algorithm executed on the same dataset.

Our contribution is twofold. First, we design an efficient
method for nonlinear causal discovery based on pattern min-
ing named NCDA (Nonlinear Causal Discovery with Apriori).
Second, we implement GENCDA, a GEnerative method based
on NCDA. Moreover, to validate our proposal, we realized
a framework for generating synthetic datasets with known
causalities. We report wide experimentation on synthetic
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datasets and real datasets with known causalities highlighting
the effectiveness of our proposals both in terms of time and
accuracy for causal discovery and data generation.

The rest of the paper is organized as follows. Section II
discusses related works. Section III recalls the notions needed
to understand the proposed methods which are illustrated
in Section IV. Section V presents the experimental results.
Finally, Section VI concludes the paper by discussing known
limitations and proposing future research directions.

II. RELATED WORKS

In this section, we review existing proposals in the literature
related to causal discovery and synthetic data generation.

The discovery of causal relationships between a set of ob-
served variables is a fundamental problem in science because it
enables predictions of the consequences of actions [13]. Thus,
the development of automatic and data-driven causal discovery
methods constitutes an important research topic [13]–[15]. A
standard approach for causal discovery is to estimate a Markov
equivalence class of directed acyclic graphs from the data [13],
[14]. The independence tests often adopt linear models with
Gaussian noise [14]. However, [16] shows that non-Gaussian
noise in linear models can actually help in distinguishing the
causal directions. In [12], [17], [18] is shown that nonlinear
models can play a role similar to that of non-Gaussianity.
Indeed, when causal relationships are nonlinear it allows the
identification of causal directions by breaking the symmetry
between the variables. Also, [19] shows that non-invertible
functional relationships between the variables can provide
clues to identify causal relationships. For nonlinear models
with additive noise almost any nonlinear relationship (invert-
ible or not) typically suggests identifiable models. In [17]
is presented a nonlinear causal discovery approach for high
dimensional data based on the idea of mapping the obser-
vations to high dimensional space with a kernel such that
the nonlinear relations become simple linear ones. A problem
of the aforementioned nonlinear causal discovery approaches
is that they can miss detecting indirect causal relationships,
which are frequently encountered in practice and result from
omitted intermediate causal variables. In [18] is proposed
a cascade nonlinear additive noise model to represent such
causal influences in a way that each direct causal relation
follows the nonlinear additive noise model only observing
initial cause and final effect. Despite various advantages of the
recent proposals, to the best of our knowledge, the nonlinear
causal discovery described in [12] is the only one that allows
managing not only binary relationships. For this reason, we
adopt it as starting point of our procedure. However, we
highlight that our proposal is a framework that can exploit
the preferred causal discovery method.

The need to generate synthetic data derives from the first
data imputation work to solve the problem of non-responses
in statistical surveys [20]. In [21] is described one of the first
multiple imputation techniques used to synthetically generate
the values of a set of missing attributes for the records of
the dataset. In [22] are implemented and extend multiple

imputation approaches for the specific case of synthetic data
generation. In machine learning, synthetic data are often used
for handling the classification task in case of imbalanced
data and for addressing the problem of outcome explanation
of black-box classifiers. Concerning imbalanced learning, the
SMOTE algorithm [3] generates an arbitrary number of syn-
thetic instances to shift the learning bias toward the minority
class. The ADASYN approach [23] is based on the idea of
adaptively generating minority data samples according to their
distributions. In practice, the method generates more synthetic
samples for minority classes that are harder to learn compared
to those minority samples that are easier to learn. In [24] is
introduced an alternative method to synthesize data through a
non-parametric technique that uses classification and regres-
sion trees. In [25] is proposed DataSynthesizer, a technique
that captures the underlying correlation structure between
different attributes by building a Bayesian network. Another
recent generator is the Synthetic Data Vault (SDV) [26] which
uses the multivariate Gaussian copula (GCM) to calculate
the covariances between the input columns. After that, the
distributions and covariances are sampled to return synthetic
data. In addition, recently, many generative models have been
developed based on Generative Adversarial Networks (GANs)
and their extensions [9] and autoencoders [27]. Their success is
due to their high effectiveness and flexibility in generating and
representing data. These approaches are particularly employed
for the generation of synthetic images and, in general, for un-
structured data such as text or time series. However, recently,
they are being effectively applied also for the generation
of tabular data. In [28] and [29] are proposed synthetic
tabular data generators using GANs, Conditional GANs and
Variational Autoencoders (VAE). Unfortunately, since they
are based on deep learning procedures, they require a non-
negligible amount of data and a considerable amount of time.
Finally, in eXplainable Artificial Intelligence (XAI) [8], data
generation approaches are used to learn interpretable models
able to mimic black-box decision systems. LIME [5] explains
the local behavior of a black-box classifier by learning a
linear model on synthetic data generated around the instance to
explain using a normal distribution. LORE [30] is another local
explanation method that exploits a synthetic neighborhood
generation based on a genetic algorithm to create a more
compact dataset around the explained instance.

Among wide literature concerning synthetic data generation
and causality, integrated approaches are a recently challenging
research area. In [31], authors implement CauseMe, a platform
to benchmark causal discovery methods acting on time series.
In 2021, Lawrence et al. [32] propose an easily parameteriz-
able process that provides the capability to generate synthetic
time series from vastly different scenarios. Lastly, Wood-
Doughty et al. [33] present a synthetic text generator to eval-
uate causal inference (not causal discovery) methods. Thus, to
the best of my knowledge, no state-of-the-art synthetic data
generators explicitly allow for encoding causal relationships.



III. SETTING THE STAGE

In this paper, we address the problem of synthetic data
generation with unknown causal dependencies. Consider a
dataset X = {x1, x2, . . . , xn} formed by a set of n instances
such that each instance xi ∈ Rm consists of m values. We
adopt xi to indicate the i-th row of X , i.e., the i-th instance,
while we use x(j) to indicate the j-th column of X . We
use the notation a(j) to indicate the attribute name of the
j-th feature, and v

(j)
i to refer to the value belonging to the

domain of a(j) of the i-th instance. E.g., a(j) = age and
v
(j)
i = 32. Thus, x(j) = [v

(j)
1 , . . . , v

(j)
n ]. Given a dataset

X we assume that exist some unknown causal dependencies
among the m variables of X . We model the dependencies
with a Directed Acyclic Graph (DAG) G: every node models
a feature (variable), and there is a directed edge from i to j
if i contributes in causing j [12]. Given X having unknown
causal dependencies G, our objective is (i) to discover the
causal dependencies of X , named G̃, and then, (ii) to generate
a synthetic version of X , named X̃ , respecting the discovered
causal dependencies G̃. The goals are (i) to accurately discover
the dependencies such that the differences between the real
unknown DAG G and discovered DAG G̃ are minimized,
and (ii) to generate X̃ such that some interest properties
that are valid for X hold also for X̃ .

We keep our paper self-contained by summarizing here the
key concepts necessary to comprehend our proposal.

A. Nonlinear Causal Discovery

Given a dataset X , the objective of causal discovery is to
infer as much as possible about the mechanism generating the
data. In particular, the goal is to discover the graph G modeling
the dependencies among variables.

In [12] is described the Nonlinear Causal Discovery (NCD)
approach that we adopt as starting point for our proposal.
Hoyer et al. adopt the following assumptions. Given a DAG
G describing the causal relationships of a dataset X , each
feature x(j) is associated with a node j in G, and the values
of x(j) are obtained as a function of its parents in G, plus
some independent additive noise ν(j), i.e.,

x(j) = fj(pa(j)) + ν(j) (1)

where fj is an arbitrary function (possibly different for each
j), pa(j) is a vector containing the elements x(j) such that
there is an edge from i to j in G, i.e., pa(j) returns the
parents of j. The noise variables ν(j) may have arbitrary
probability densities pνj (νj) and are independent from pa(j),
i.e., νj ⊥⊥ pa(j). NCD includes the special case when all the
fj are linear and all the pνj are Gaussian, yielding the standard
linear–Gaussian model family [14]. Also, when the functions
are linear but the densities are non-Gaussian it reduces to
linear–non-Gaussian models [16].

The NCD method works as follows. Given a dataset X ,
it selects any possible (nonempty) subsets of features U =
{a(j1), . . . , a(jk)} and V = {a(j′1), . . . , a(j′k′ )} (with U ∩ V =
∅) and repeats the following procedure. First, it tests whether U

and V are statistically independent. If they are not, it continues
as in the following. It verifies if Equation 1 is consistent
with the data by making a nonlinear regression of V on U ,
i.e., V = f(U) + ν, to obtain an estimation f̂ of f . Then
it calculates the residuals ν̂ = V − f̂(U), and tests if ν̂ is
independent from U . If this condition is verified, i.e., ν̂ ⊥⊥ U ,
then the model of Equation 1 is accepted, otherwise it is
rejected. The same procedure is applied to test if the reversed
model fits the data, i.e., U = f(V ) + ν, to check if ν̂ ⊥⊥ V .

The aforementioned procedure can have five possible out-
comes. First, U and V are statistically independent and the
procedure is not applied. Second, if ν̂ is independent from U
and dependent from V , i.e., ν̂ ⊥⊥ U ∧ν 6⊥⊥ V , then we deduce
that U causes V (U → V ). Third, if ν̂ ⊥⊥ V ∧ ν̂ 6⊥⊥ U , we
deduce that V causes U (V → U ). Fourth, if ν̂ 6⊥⊥ U∧ν̂ 6⊥⊥ V ,
neither direction is consistent with the dataset and we cannot
deduce anything. Fifth, if ν̂ ⊥⊥ U ∧ ν̂ ⊥⊥ V , both models are
accepted and we cannot deduce any model from the dataset.

The selection of a particular independence test or nonlinear
regressor is not constrained to specific implementations. In
particular, in [12] the authors adopt the Hilbert-Schmidt In-
dependence Criterion (HSIC) as independence test [34], and
Gaussian Processes for nonlinear regressions [35].

The NCD method can be used for checking binary causal
relationships, i.e., when |U | = |V | = 1, but can also be used
for an arbitrary number of observed variables. However, as
stated in [12], is feasible only for datasets with a low number
of features (m ≤ 7). For this reason, we propose a “filtering”
approach based on frequent pattern mining that reduces the
total number of relationships to be tested by NCD.

B. Pattern Mining and Apriori

Pattern mining methods allow to discover interesting pat-
terns describing relationships between features in the data in
an efficient manner [36]. The relationships that are hidden in
the data can be expressed as a collection of frequent itemsets.

Let T = {t1, . . . , tn} be a set of n transactions (or baskets)
and E = {i1, . . . , im} a set of m items, a basket ti is a
subset of items such that ∅ ⊂ ti ⊆ E. A set of items that
are frequent in T is called itemset or pattern. An itemset S
is frequent if its support is higher than a min sup parameter.
The support over T of an itemset S is defined as suppT (S) =
|{ti ∈ T |S ⊆ ti}|/|T |. The problem of finding the frequent
itemsets from a dataset of transactions T requires to find in a
set of transactions all the itemsets having support greater or
equal than min sup. The search space of itemsets that need
to be explored to find the frequent itemsets is exponentially
large (2m−1). Indeed, the set of all possible itemsets forms a
lattice structure and using a brute force algorithm makes the
problem intractable for large datasets.

Apriori is the most famous algorithm for finding frequent
itemsets [37]. Apriori proposes an effective way to eliminate
candidate itemsets without counting their support. It is based
on the principle that if an itemset is frequent, then all of
its subsets must also be frequent. This principle is used for
pruning candidates during the itemset generation.



Our idea is to exploit Apriori to check for the presence
of causal relationships only for features for which exists a
frequent pattern containing that feature. In particular, we will
focus on maximal itemsets. A frequent itemset is maximal if
there is no other frequent itemset containing it.

IV. DATA GENERATION WITH CAUSAL KNOWLEDGE

In this section, first we describe our idea for boosting
the nonlinear causal discovery algorithm proposed in [12]
with pattern mining and making it practically usable on real
multivariate datasets. Then we describe the data generative
process that takes as input the causal relationships discovered
and returns a synthetic dataset that respects them.

A. Pattern Mining-based Nonlinear Causal Discovery

In Section III-A we have described the method of causal
discovery based on nonlinear models with additional noise
(NCD). We have shown that: (i) the procedure allows for
unambiguous identification of the causal relationships, and
that (ii) unlike other causal discovery methods, NCD is also
applicable to multivariate data. Despite these advantages, the
main problem with NCD is the need to explore all the possible
direct acyclic graphs (DAGs) to identify the final causal
structure G̃. It follows that the computational complexity of
the algorithm is super-exponential [38]. Hence, we propose a
solution to this bottleneck by exploiting the Apriori algorithm.

Our idea can be summarized as follows. First, we apply
Apriori to the dataset under study for extracting the frequent
patterns. Then, we test the causal relationships considering
only the combination of variables appearing together in any
of the itemset extracted with Apriori. In other words, we use
Apriori as a filter to reduce the number of possible combi-
nations and to reduce the search space for NCD. It follows
that the NCD approach is no longer applied on all the possible
combinations of variables in the dataset, but only on those for
which there are frequent patterns that highlight a correlation.

Our intuition comes from the fact that, thanks to the
extraction of frequent itemsets, Apriori provides useful in-
formation on the correlations among the variables. The fact
that variables are correlated does not necessarily indicate a
causal relationship. Indeed, while causation and correlation
can exist at the same time, correlation does not necessarily
imply causation. Correlation means there is a relationship or
pattern among certain variables, while causation means that
one (set of) variable(s) causes another one to occur. However,
there is a need for some “link” between the variables involved
for causality to exist. In other terms, we exploit the presence
of variables in a pattern and their observed correlation as a
“clue” about the possible presence of a causal relationship.
This assumption is the core of our intuition, and it suggested
introducing an intermediate filtering step in the discovery of
the causal structure by exploiting pattern mining.

We name our proposal NCDA (nonlinear causal discovery
with Apriori) and we present it in Algorithm 1. NCDA takes as
input a dataset X formed by continuous variables and returns
the DAG G̃ that describes the causal structure of X . First, it

Algorithm 1: NCDA(X , n bins , min sup, max len , α)
Input : X - dataset, n bins - nbr of bins, min sup - min supp.,

max len - max length, α - p-value thr.
Output: G̃ - DAG modeling causal relationships

1 G̃← ∅; // init. empty DAG
2 T ← discretize(X,n bins); // cont. to cate.
3 S ← APRIORI(T,min sup,max len); // run Apriori
4 for S ∈ S do
5 V ← getVariables(S); // extract variables

6 C ← NCD(X(V ), α); // run NCD

7 G̃← updateGraph(G̃, C); // update graph

8 return G̃;

initializes an empty DAG G̃ (line 1). Then, since NCD works
on continuous variables, while APRIORI works on transactional
data, we have to turn the dataset X into its transactional
version T . NCDA implements this step with the discretize
function that works as follows. For each feature j, NCDA
divides the set of values x(j) into n bins equal sized bins. For
instance, if a(j) is describing the age that in X ranges from 20
to 80 and n bins = 5, then the j-th feature will be described
with 5 categorical values each one representing 12 values, i.e.,
age [20, 32], age [32, 44], age [44, 56], age [56, 68], age [68,
80]. Thus, a record xi = {(age, 30), (insulin, 94), (BMI ,
25.3)} is translated into the transaction ti = {age [20, 32],
insulin [90, 110],BMI [20.5, 26.8]}. After that, NCDA
applies APRIORI on T using the parameters min sup and
max len regulating the minimum support and maximum
pattern length, respectively (line 3). The set of maximal
itemsets1 is stored into S. An example of itemset S ∈ S
can be S = {age [20, 32],BMI [20.5, 26.8]}, meaning that
there is a high number of co-occurrences of records in T
with age in 20-32 and BMI in 20.5-26.8. This is the “pattern
mining clue” that NCDA exploits to check if there is a causal
relationship between age and BMI.

For each maximal itemset S ∈ S (lines 4–7), NCDA repeats
the following steps. First, it extracts from the itemset S the
variables V present (line 5). In our example, from the pattern
S = {age [20, 32],BMI [20.5, 26.8]} we obtain the features
V = {age,BMI }. Then, it runs the NCD method on the dataset
X considering only the variables in V , i.e. X(V ) (line 6). This
step is where the Apriori filter acts: NCD tests all the possible
DAGs among those that can be derived from the features
in V . We underline that, instead of testing all the possible
DAGs from the m features of X as proposed in [12], NCD
only tests the possible DAGs from the |V | features of V with
2 ≤ |V | ≤ max len � m. Obviously, more than one pattern
can suggest checking causations for the same set of variables
V . In this case, NCD is executed only the first time that a
specific set of variables V is analyzed. The α parameter is the
p-value threshold used for the HSIC independence test. Finally,
if there are causal relationships C identified by NCD, i.e.,
C 6= ∅, NCDA updates the DAG G̃ by adding the corresponding

1We use maximal itemsets because NCD tests all the possible combinations
of the input variables, therefore it would not have been useful to test also the
variables of itemsets which are subsets of the maximal ones.



Algorithm 2: GENCDA(X ,G̃,F)
Input : X - real dataset, G̃ - DAG modeling causal relationships,

D - set of distributions
Output: X̃ - synthetic dataset

1 X̃ ← ∅; // init. empty dataset

2 G̃′ ← sort(G̃); // topological sort

3 for j ∈ G̃′ do // for each node/variable j
4 if pa(j) = ∅ then // node j has no parents

5 d← fit(X(j), D); // fit distribution

6 X̃(j) ← sample(d); // sample from distrib.
7 else
8 r ← train(Xpa(j), X(j)); // train regressor

9 X̃(j) ← apply(r, X̃pa(j)); // apply regressor

10 return X̃;

edges to model these relationships (line 7). We highlight that
NCD returns all the causal relationships consistent with the
data X(V ), including possible sub-relationships. To the aim
of returning only the most representative ones, we consider
only the causal relationships C returned by NCD with the
highest average level of p-values among the various detected
dependencies2. The above heuristic is also used to guarantee
that the DAG returned is a valid one.

B. Causality-based Synthetic Data Generator

In this section we present GENCDA, a synthetic data
GEnerator based on NCDA. GENCDA exploits the causal rela-
tionships discovered by NCDA to generate a synthetic dataset
respecting such causal structure. The pseudo-code of GENCDA
is reported in Algorithm 2.

GENCDA takes as input the real dataset X that has to
be extended with synthetic data, the DAG G̃ extracted from
X by NCDA and a set of distributions to test D. First,
GENCDA initializes an empty synthetic dataset X̃ and applies
a topological sorting3 on G̃ (lines 1 and 2). The topological
sorting allows GENCDA to consider first the independent
variables and then the dependent ones. In this way, when it
is time to generate the dependent variables, the independent
ones involved in the causal relationships have been already
generated and can be actively used. Then, according to the
topological ordering in G̃′ it repeats the steps in lines 3–
9. Given the vertex j, and therefore the corresponding j-th
variable in X , if the set of parents pa(j) for j is empty (line
4), then the variable is independent, otherwise it is a dependent
one. If j is an independent variable, GENCDA tries to identify
the best distribution d ∈ D that fits with the data in X(j) using
the Kolmogorov-Smirnov test (line 5). After that, it samples
from the distribution d and synthetically generates the values
X̃(j) for the j-th variable (line 6). On the other hand, if j is
a dependent variable, then GENCDA learns a regressor model
r on the features Xpa(j) for predicting X(j) (line 8). Then,
it applies the regressor r on the data X̃pa(j) generated in the

2With p-value we mean the probability of obtaining a result of the statistical
test at least as extreme as the one actually observed assuming that the null
hypothesis is true, i.e., the variables considered are independent.

3A topological sorting for a DAG is a linear ordering of vertices such that
for every directed edge from i to j, vertex i comes before j in the ordering.

previous iterations and synthetically creates the values X̃(j)

for the j-th variable respecting the causal relationships with
their parents (line 9).

The function fit in line 5 of GENCDA returns the distribution
d among those in D that minimizes the Sum of Squared Error
(SSE) between the probability density of the distribution and
the estimate of that of the data. For the functions train and
apply in lines 8 and 9 of GENCDA we exploit an ensemble of
four different regressors: Gaussian Process Regressor (GPR),
Support Vector Machine (SVM), k-Nearest Neighbors (kNN),
and Decision Tree Regressor (DTR). The predicted value used
as a dependent variable for the synthetic dataset is the mean
of the predictions of the four regressors.

V. EXPERIMENTS

In this section, we show the impact of Apriori on the per-
formance of NCD4. First, we illustrate the evaluation measures
adopted. Then, we detail the framework developed for generat-
ing synthetic datasets with known causalities, and we describe
the real datasets. After that, we show the baselines used to
compare with our proposal. Finally, we report the experimental
settings, the empirical evaluation, and the sensitivity analysis.

A. Evaluation Measures

Since the contribution of this paper is twofold, i.e., the defi-
nition of an efficient and accurate method for nonlinear causal
discovery and the design of a synthetic dataset generator, we
need to evaluate and measure the validity of both aspects.

We establish to evaluate the correctness in the causal
discovery task following the machine learning fashion [39].
Let G be the real DAG describing the causal structure, and G̃
the DAG inferred with a causal discovery approach. We say
that Gij = 1 if in G exists an edge from the node representing
the feature i to the node representing feature j, i.e., i causes
j (i← j). Then, if Gij = G̃ij = 1 we have a True Positive, if
Gij = G̃ij = 0 we have a True Negative, if Gij = 0∧G̃ij = 1
a False Positive, and if Gij = 1 ∧ G̃ij = 0 a False Negative.
Given these definitions it is easy to define standard evaluation
measures such as accuracy, precision, recall, and f1 [36].

On the other hand, we evaluate the correctness of a synthetic
dataset generative model using the following measures based
on (i) distances or (ii) outlierness [40]. Let X be the real
dataset, and X̃ the synthetic one, we use the Sum of Squared
Error (SSE) and Root Mean Squared Error (RMSE) as mea-
sures based on distances. More in detail, for each feature j
we perform the Kernel Density Estimation5 (KDE) on both
X(j) and on X̃(j) to estimate the Probability Density Function
(PDF). We generate a set of 1000 random values according to
the PDF, and we compare them using the SSE and the RMSE.

4Python code and datasets available at: https://github.com/marti5ini/
GENCDA. Experiments were run on MacBook Pro, Apple M1 3.2 GHz CPU,
8 GB LPDDR4 RAM.

5We used the scikit-learn KDE https://scikit-learn.org/stable/
modules/generated/sklearn.neighbors.KernelDensity.html. In our experiments,
we use the grid search for the bandwidth parameter in the interval [−0.5, 1.5]
with cross-validation with a Gaussian kernel. This allows us to choose the
bandwidth whose score maximizes the log-likelihood of the KDE.

https://github.com/marti5ini/GENCDA
https://github.com/marti5ini/GENCDA
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KernelDensity.html
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KernelDensity.html


Fig. 1. DAGs of synthetic datasets (first and second rows), and DAGs of real-world datasets (third row).

Finally, we aggregate the evaluations performed for the various
features of the datasets by averaging them. For estimating the
number of outliers present in X̃ concerning X , we employ the
Local Outlier Factor (LOF) [41]. LOF is an outlier detection
method that measures the local density deviation of a given
instance and compares it to the local densities of its neighbors.
Instances that have a density substantially lower than their
neighbors are considered to be outliers. In our experiments6

we check if any instance x̃i ∈ X̃ can be considered an outlier
concerning the real instances in X . If the LOF is lower than
one, it means that a higher density surrounds a point than its
neighbors, and it is considered an inlier, i.e., an acceptable
synthetic record in our setting. On the other hand, the point is
considered an outlier.

B. Synthetic and Real Datasets

In order to carefully perform the aforementioned evaluation,
we require ground-truth datasets of various dimensionalities
with known causal relationships. This aspect is fundamental
in the context of causal discovery. Indeed, to evaluate these
methodologies, we need to rely on the structure of the DAG
to test the identified causal relationships. However, since the
literature lacks this type of information, we developed a
generator of random synthetic continuous datasets for which
the causal structure is known a priori.

The generator first creates a random DAG G to be used as
ground truth. The DAG G is generated by selecting a number
of random nodes in [5, 20] and a number of random edges
in [2,nbr nodes/2]. Edges are assigned randomly to couples
of nodes. Then, it takes as input G and returns a multivariate

6We perform outlier detection with the LOF method as implemented by
sklearn library: https://scikit-learn.org/stable/modules/generated/sklearn.
neighbors.LocalOutlierFactor.html. We set the number of neighbors equal to
30 because it is typically set as a number higher than the minimum number
of instances that a cluster must contain but lower than the maximum number
of neighbor instances that can be potential outliers.

continuous dataset X respecting the causal relationships where
each column in X represents a node in G. The synthetic
dataset X is generated according to the following steps. First,
the features matching isolated and source nodes are generated,
i.e., those modeling independent variables7. Moreover, the
generator adds a uniform noise in [−1, 1] to each independent
variable. Following the topological ordering of the DAG, we
ensure the independent variables are generated before the
dependent ones. Second, the features matching dependent
variables are generated by combining the parent variables with
randomly selected binary functions and by applying to each
parent variable a randomly selected nonlinear function among
sine, cosine, square root, logarithm, and tangent. Finally, like
for independent variables, the generator adds a uniform noise
in [−1, 1] also to dependent variables.

In our experiments, we generated 10 different DAGs illus-
trated in Figure 1 (1st , 2nd rows). For each DAG, we repeated
the synthetic data generative procedure ten times, ending up
with a total of 100 different synthetic datasets, each one with
1000 instances respecting the causal relationships.

We also experimented with real datasets typically used in
papers of causal discovery for which the ground-truth DAG
is known. We selected abalone, oldf and dwd from [12],
and undata from [10]. In addition, since all these datasets
are bivariate, we also considered the multivariate dataset
diabets for which we specified the ground-truth DAG. The
DAGs for these datasets are in Figure 1 (3rd row).

7Such distributions for independent variables are generated following one
of these techniques. First approach: the distribution is a random uniform one
with values in in [b, b] with b selected uniformly at random in [5, 100]. Second
approach: the distribution is selected randomly among uniform, normal,
exponential, log-normal, chisquare and beta. The parameters adopted are
available on the repository.

https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.LocalOutlierFactor.html
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.LocalOutlierFactor.html


TABLE I
RUNTIME AND F1-MEASURE FOR CAUSAL DISCOVERY ON DAGS WITH
INCREASING NUMBER OF FEATURES. ∗ NOT ALL RESULTS CONSIDERED.

nbr features Time (sec) F1-measure
NCD NCDA APRIORI NCD NCDA

2 0.454 0.462 0.004 1.000 1.000
3 5.034 0.464 0.005 1.000 1.000
4 115.1 0.990 0.006 0.890 0.906
5 > 3600 1.033 0.007 − 0.891
6 > 3600 1.229 0.008 − 0.814

avg > 3600 0.835 0.006 0.963∗ 0.926

TABLE II
RUNTIME AND F1-MEASURE FOR CAUSAL DISCOVERY ON REAL DAGS.

nbr features Time (sec) F1-measure
NCD NCDA APRIORI NCD NCDA

abalone 0.208 0.207 0.008 1.000 1.000
oldf 0.089 0.089 0.006 1.000 1.000
dwd 0.058 0.073 0.008 1.000 1.000

undata 0.048 0.045 0.008 1.000 1.000
diabets 4607 10.00 0.009 0.750 0.750

C. Baselines

We study the effectiveness of our proposal comparing it
against some baselines and state-of-the-art proposals.

In particular, for the task of causal discovery, besides NCD,
we compare NCDA against coefficients typically used to detect
correlations. Indeed, our intuition is that correlation among
variables is a clue for causation. Therefore, simple coefficients
like Pearson (PC), Spearman (SC) and Hoeffding’s D (HC) [36]
could be used in replacement of Apriori. We selected these
three correlation indexes because they differ on (i) the type
of relationship which are able to recognize, (ii) the direction
of the relationship, i.e., monotonic vs. non-monotonic, (iii)
the statistic approach, i.e., parametric vs. non-parametric8.
For the evaluation of the Pearson and Spearman correlations,
we checked the p-value using 0.05 as a threshold, while for
Hoeffding’s D, we set the acceptance threshold to 0.03.

For synthetic data generation, we compared against a ran-
dom data generator (RND) that assumes uniform distribution
and independence among all the variables. Also, we compare
NCDA against state-of-the-art data generators of Synthetic Data
Vault library9. We experimented with TVAE [28] and CT-
GAN [29] with default parameters generating 1000 instances.

D. Experimental Settings

In the experiments we run NCDA and GENCDA with the fol-
lowing parameters: n bins ∈ [3, 10], min sup ∈ [0.05, 0.4],
max len ∈ {3, 4, 5}, α ∈ {0.001, 0.01, 0.02, 0.05, 0.1}. The
default parameter justified by the experiments reported in
Section V-F is n bins = 10, min sup = 0.05, max len = 3,
and α = 0.001. In GENCDA as the list of distributions D
we consider the following among those available in scipy10:
uniform, exponweib, expon, gamma, beta, alpha, chi, chi2,

8We used the implementations of https://docs.scipy.org/doc/scipy/reference/
stats.html and https://github.com/PaulVanDev/HoeffdingD.

9https://sdv.dev/SDV/index.html.
10https://docs.scipy.org/doc/scipy/reference/stats.html

TABLE III
COMPARISON OF NCDA WITH CORRELATION COEFFICIENTS TO DETECT

CAUSALITIES ON SYNTHETIC DAGS. BEST RESULTS IN BOLD.

DAG Accuracy Precision Recall
PC SC HC NCDA PC SC HC NCDA PC SC HC NCDA

0 .89 .88 .93 .91 .67 .60 .86 .88 .62 .68 .60 .50
1 .87 .87 .92 .94 .32 .31 .66 .88 .38 .40 .42 .44
2 .92 .91 .95 .97 .23 .21 .63 1.0 .23 .25 .28 .42
3 .88 .87 .92 .97 .10 .10 .14 .92 .17 .19 .12 .53
4 .93 .90 .95 .95 .68 .54 .83 .89 .70 .88 .78 .70
5 .88 .87 .92 .93 .32 .30 .64 .88 .23 .25 .25 .25
6 .90 .90 .90 .97 .16 .15 .38 .93 .20 .28 .29 .52
7 .90 .89 .94 .98 .03 .04 .07 .94 .04 .08 .04 .50
8 .92 .93 .97 .96 .61 .60 .80 .87 .95 1.0 .95 .80
9 .88 .89 .93 .92 .63 .63 .89 .97 .57 .60 .60 .45

avg .89 .89 .93 .95 .37 .34 .58 .91 .41 .45 .43 .51

Fig. 2. CD plots with Nemenyi at 95% confidence level or synthetic DAGs

laplace, lognorm, norm, powerlaw. A higher number of distri-
butions (each one with its parameters) increases the computa-
tion time but also improves the performance as more accurate
independent variables can be described. For the ensemble
regressor in GENCDA we rely on the GPR, SVM, kNN, and
DTR of scikit-learn trained with default parameters.

E. Results

The first aspect that we analyze is the impact of APRIORI
on the performance of NCD for the task of causal discovery. In
Table I we observe the performance of NCD and NCDA in terms
of runtime and F1-measure for DAGs with a growing number
of features. With ∗ we indicate that for NCD the average value
considers only the cases in which the procedure terminated
within an hour. Given a number of features, we randomly gen-
erated 50 DAGs and datasets with the approach of Sec. V-B.
We notice how NCDA has a remarkable improvement in terms
of runtime that becomes evident when number of features is
higher than 4. Thus, the computational time required by NCDA
is exponentially lower than the one required by NCD. The
third column shows the negligible impact of APRIORI on the
runtime of NCDA. Besides, from the F1-measure, we notice
that APRIORI does not impact the performance of NCDA to
NCD when observing the correctness of the causal relationships
discovered in terms of F1-measure. Similar results are on
Table II for the real datasets.

In Table III we report the accuracy, precision and recall
for the task of causal discovery for the ten synthetic DAGS
of Figure 1 (1st and 2nd rows) comparing NCDA against the
correlation indexes Pearson (PC), Spearman (SC) and Hoeffd-
ing’s D (HC). We remark that for each DAG, we generate
ten different datasets. In Table III we report the average
performance among the ten datasets. We immediately notice
that NCDA has the overall better accuracy. However, accuracy

https://docs.scipy.org/doc/scipy/reference/stats.html
https://docs.scipy.org/doc/scipy/reference/stats.html
https://github.com/PaulVanDev/HoeffdingD
https://sdv.dev/SDV/index.html
https://docs.scipy.org/doc/scipy/reference/stats.html


TABLE IV
COMPARISON OF NCDA WITH CORRELATION COEFFICIENTS TO DETECT

CAUSALITIES ON REAL DAGS.

DAG Accuracy Precision Recall
PC SC HC NCDA PC SC HC NCDA PC SC HC NCDA

abalone 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
oldf 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
dwd 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

undata 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
diabets 0.4 0.4 0.8 0.9 0.3 0.3 0.6 0.6 1.0 1.0 0.6 1.0

TABLE V
COMPARISON OF GENCDA WITH GENERATIVE APPROACHES ON

SYNTHETIC DATASETS: ERROR MEASURES. BEST RESULTS IN BOLD.

DAG SSE RMSE
RND TVAE CTGAN GENCDA RND TVAE CTGAN GENCDA

0 .629 .137 .321 .257 .018 .024 .036 .012
1 .386 .156 .136 .138 .012 .022 .021 .006
2 .320 .176 .151 .082 .011 .025 .023 .006
3 .496 .178 .191 .205 .016 .028 .029 .009
4 .525 .091 .147 .172 .016 .020 .025 .008
5 .248 .095 .102 .074 .010 .019 .017 .005
6 .431 .114 .139 .167 .013 .021 .021 .007
7 .376 .197 .122 .137 .013 .026 .021 .007
8 .411 .229 .206 .283 .014 .029 .029 .009
9 .435 .108 .184 .084 .015 .023 .026 .006

avg .426 .148 .169 .160 .014 .024 .025 .007

cannot be very informative due to the high number of true
negative related to the sparseness of the DAGs. Concerning
precision is the best performer on all the DAGs. This aspect
is crucial as the causalities identified result to be correct
nearly always. Finally, recall NCDA is more conservative as
it sometimes fails to recognize some causal relationships
to correlation indexes. However, the average recall remains
higher than the competitors.

We analyze Table III with the non-parametric Friedman
test that compares the average ranks of the causal discovery
methods over multiple datasets w.r.t. the various evaluation
measure. The null hypothesis that all methods are equivalent
is rejected with p−value<0.0001 for all the measures ob-
served. The comparison of the ranks of all methods against
each other is visually represented in Figure 2 with Critical
Difference (CD) diagrams [42] Two methods are tied if the
null hypothesis that their performance is the same cannot be
rejected using the Nemenyi test at α=0.05. NCDA has the best
rank for precision with statistically significant performance.
On the other hand, ranks are not statistically significant w.r.t.
recall, but NCDA remains the best performer for these metrics.

In Table IV we report accuracy, precision and recall for the
causal discovery task on the five real DAGs of Figure 1 (3rd

row) comparing NCDA against the correlation indexes Pearson
(PC), Spearman (SC) and Hoeffding’s D (HC). Analyzing the
results we notice that for the bivariate datasets abalone,
oldf, dwd and undata, all the approaches manage to iden-
tify the causal direction. However, these good results do not
indicate that it is possible to identify causalities by exploiting
correlations since this only happens when there is only a
single causal dependence. Indeed, for the diabets dataset

TABLE VI
COMPARISON OF GENCDA WITH GENERATIVE APPROACHES ON

SYNTHETIC DATASETS: OUTLIER MEASURES. BEST RESULTS IN BOLD.

DAG LOF # Outliers
RND TVAE CTGAN GENCDA RND TVAE CTGAN GENCDA

0 0.660 0.459 0.673 0.423 387 3 295 44
1 324.4 0.457 10.59 0.463 915 131 691 292
2 38.03 0.448 0.322 0.443 982 107 424 151
3 > 100 0.471 > 100 0.480 888 125 569 232
4 3.078 0.462 1.323 0.440 658 12 561 156
5 > 100 > 100 > 100 0.370 982 454 704 405
6 22.67 0.450 0.377 0.480 845 14 428 181
7 > 100 > 100 > 100 0.480 903 407 533 123
8 0.476 0.464 0.437 0.470 244 2 270 86
9 2.667 0.463 2.008 0.442 558 56 547 116

med 7.177∗ 0.460∗ 0.660∗ 0.461 736 27 502 179

Pearson and Spearman have bad performance. Hoeffding has
good precision and a good recall, but none of them is perfect.
Finally, NCDA obtains the same perfect results on bivariate
datasets and overcomes Hoeffding on diabets as Hoeffding
has an F1 of 0.6 while NCDA of 0.75. The non-parametric
Friedman test confirms the statistical significance of the results
with a p−value<0.0005 for all the measures observed.

In Tables V, VI and Tables VII, VIII we report the evalua-
tion for the data generation task for synthetic and real datasets,
respectively. We highlight that for all these Tables, the non-
parametric Friedman test confirms the statistical significance
of the results with a p−value<0.0001 for all the measures
observed. Besides the measures reported in these Tables and
discussed in the following, it is worth mentioning that the
runtimes of the generation methods are comparable on the
relatively small datasets analyzed, Indeed, the average runtime
in seconds for generating synthetic data is 10.3 for RND, 19.6
for TVAE, 22.7 for CTGAN, and 16.7 for GENCDA. We notice
that, as expected, RND is the fastest approach while TVAE
and CTGAN are the slowest. GENCDA is the second-fastest
performer, which is a valuable property considering the good
qualitative results discussed in the following.

In Tables V and VII we observe the performance in terms
of error measures (SSE and RMSE, the lower the better) for
synthetic and the real datasets obtained by comparing the data
distributions as detailed in Section V-A. Table V shows the
mean values obtained for the different runs among the ten
datasets generated for each DAG. We notice that GENCDA is
the best performer in terms of RMSE for synthetic datasets and
the second-best performer in terms of SSE. Indeed, TVAE has
very good results followed by CTGAN and finally by RND.
Therefore, it seems that the neural networks modeling the
VAE learned by TVAE are somewhat able to capture also the
causalities learned by GENCDA through the NCDA procedure.
However, concerning TVAE, GENCDA shows a smaller running
time and therefore higher usability on a larger dataset. This
is due to the fact that GENCDA learns relationships among
variables exploiting patterns and does not need to consider
many instances as required by VAEs in TVAE. The CD plots
on the left in Figure 3 validate these observations: GENCDA is
statistically the best performer for the synthetic datasets while



TABLE VII
COMPARISON OF GENCDA WITH GENERATIVE APPROACHES ON REAL

DATASETS: ERROR-BASED MEASURES.

DAG SSE RMSE
RND TVAE CTGAN GENCDA RND TVAE CTGAN GENCDA

abalone .471 .080 .067 .035 .016 .025 .023 .005
oldf 6.05 .066 .116 5.04 .059 .020 .026 .056
dwd .469 .075 .462 .185 .007 .019 .015 .009

undata .125 .019 .006 .051 .010 .013 .006 .006
diabets 226 .000 .004 213 1.48 .001 .005 1.15

TABLE VIII
COMPARISON OF GENCDA WITH GENERATIVE APPROACHES ON REAL

DATASETS: OUTLIER-BASED MEASURES.

DAG LOF # Outliers
RND TVAE CTGAN GENCDA RND TVAE CTGAN GENCDA

abalone 15.2 0.11 0.06 9.36 145 155 152 108
oldf 0.53 0.42 0.44 0.35 66 14 59 13
dwd 2.27 0.17 0.70 0.40 76 24 109 16

undata 0.31 0.45 0.29 3.81 17 1 28 192
diabets 0.25 0.45 0.35 0.37 42 1 16 26

it is comparable with all the others.
In Tables VI and VIII we report the performance in terms

of LOF score and of the number of outliers (the lower, the
better). We calculated the number of outliers as the number of
synthetically generated instances for which LOF is higher than
one11. Table VI shows the median values for the different runs
among the ten datasets generated for each DAG. For LOF, we
write > 100 when the median score is very big. This indicates
that more than half of the records synthetically generated are
considered outliers by LOF12. Thus, the total median values
in the last line of Table VI have an asterisk (∗) when the
aggregation is done without considering these very high val-
ues. We immediately notice that GENCDA is the only method
without asterisks indicating that the majority of the population
generated has a low LOF: the synthetic records of GENCDA are
fewer outliers than those generated with other methods. Again,
these results are underlined by the CD plots on the top right
in Figure 3: GENCDA is the best performer followed by TVAE
and they are statistically comparable. However, empirically
GENCDA shows better results for synthetic datasets. On the
other hand, for real datasets, the performance is comparable
among the various methods, but GENCDA is still ranked first.
Concerning the number of outliers, results are comparable but,
with the above parameter setting of LOF, TVAE generates a
slightly lower number of outliers than GENCDA for synthetic
datasets, while the results are comparable for real ones.

F. Sensitivity Analysis

We analyze here the parameters mainly affecting the be-
havior of NCDA and GENCDA. In Figure 4 we observe the
boxplots of precision and recall when varying n bins ∈ [3, 10]
for 50 synthetic DAGs randomly generated. We notice that
a higher number of bins improves the precision (and the
accuracy), while a lower one only fosters the recall. Since

11This choice is driven by the library used to calculate this measure.
12These results also depends on the parameter setting of LOF.

Fig. 3. CD plots with Nemenyi at 95% confidence level.

Fig. 4. Effect of n bins on the performance of NCDA.

our final objective is to discover causal relationships for data
generation, we prefer to be conservative and we consider
the causal structure only when we are sure that we have a
causal relationship. Therefore, in the experiments we used
n bins = 10. In Figure 5 we observe the boxplots of precision
when varying max len ∈ {3, 4, 5}. We notice that there is no
difference in performance (the same applies to accuracy and
recall). Hence we use max len = 3 as the default value.

We set min sup = 0.05 for the following reasons. First,
from preliminary experimentation emerged that with 50 syn-
thetic DAGs if min sup ≥ 0.15, then the procedure is not able
to identify maximal itemsets with at least two items. Second,
if min sup = 0.1 it can find maximal itemsets in 44% of
the cases, while with min sup = 0.05 this number reaches
92%. With min sup = 0.1 there is a drop in the accuracy
with respect to min sup = 0.05 since it excludes itemsets that
actually correspond to causal dependencies. Third, considering
values of min sup lower than 0.05 highly increases the
chances of retrieving patterns not relevant for our task, i.e.,
taking into account features that are not part of the underlying
causal model to the data. Thus, since the verification of a
causal relationship is done by NCD we optimize APRIORI for
the task of retrieving the highest possible number of admissible
maximal itemsets. Finally, we considered different p-values
thresholds α ∈ {0.001, 0.01, 0.02, 0.05, 0.1}. Since the impact
of varying α is negligible, we decided to keep our procedure
conservative by setting the lowest value, i.e., α = 0.001.



Fig. 5. Effect of max len on the performance of NCDA.

VI. CONCLUSION

We have observed how NCDA overcomes the limitation of
NCD while maintaining comparable performance. Besides, we
have shown that GENCDA produces more realistic synthetic
data than those generated with trivial baselines and it is
comparable with time-consuming state-of-the-art generators.
Also, GENCDA requires fewer instances than GANs or VAEs
and also works on high dimensionality settings. From an
applications viewpoint, the exploitation of GENCDA that pro-
vides insights of causal mechanisms will allow circumventing
plausibility concerns creating trustful scenarios for developing
ML algorithms in critical domains such as healthcare.

Several future research directions are possible. First, we
would like to stress GENCDA with larger datasets and DAGs
with more variables. Second, we have focused on continuous
datasets, but it would be interesting to extend our proposal to
datasets with categorical attributes. Third, GENCDA is indeed
a framework. Thus, it could be interesting to evaluate how
it behaves when replacing NCD with other approaches, and/or
the ensemble of regressors with another regressor (for instance,
a deep neural network) to check if it is possible to improve
the performance. Also, it could be interesting to test GENCDA
on other data types. Fourth, it would be nice to investigate if
there are theoretical properties related to the filtering through
Apriori when searching for causal relationships. Finally, we
would like to study the impact of GENCDA used as a generative
procedure of explainability approaches such as LIME or LORE.
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