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Abstract—Anomalies are ubiquitous in all scientific fields and
can express an unexpected event due to incomplete knowledge
about the data distribution or an unknown process that suddenly
comes into play and distorts the observations. Usually, due to such
events’ rarity, to train deep learning models on the Anomaly De-
tection (AD) task, scientists only rely on “normal” data, i.e., non-
anomalous samples. Thus, letting the neural network infer the
distribution beneath the input data. In such a context, we propose
a novel framework, named Multi-layer One-Class ClassificAtion
(MOCCA), to train and test deep learning models on the AD
task. Specifically, we applied our approach to autoencoders. A
key novelty in our work stems from the explicit optimization of
the intermediate representations for the task at hand. Indeed,
differently from commonly used approaches that consider a
neural network as a single computational block, i.e., using the
output of the last layer only, MOCCA explicitly leverages the
multi-layer structure of deep architectures. Each layer’s feature
space is optimized for AD during training, while in the test
phase, the deep representations extracted from the trained layers
are combined to detect anomalies. With MOCCA, we split the
training process into two steps. First, the autoencoder is trained
on the reconstruction task only. Then, we only retain the encoder
tasked with minimizing the L2 distance between the output
representation and a reference point, the anomaly-free training
data centroid, at each considered layer. Subsequently, we combine
the deep features extracted at the various trained layers of the
encoder model to detect anomalies at inference time. To assess
the performance of the models trained with MOCCA, we conduct
extensive experiments on publicly available datasets, namely
CIFAR10, MVTec AD, and ShanghaiTech. We show that our
proposed method reaches comparable or superior performance
to state-of-the-art approaches available in the literature. Finally,
we provide a model analysis to give insights regarding the benefits
of our training procedure.

Index Terms—Anomaly Detection, One-Class Classification,
Deep Learning

I. INTRODUCTION

ANOMALIES represent a controversial phenomenon in
the scientific world. Although they can lead to fascinating

discoveries, sometimes they are a symptom of something
unexpected that just happened. Even though they can manifest
in different ways, all kinds of anomalies origin from a common
basic principle: an unexpected prediction from a given theory
from what is believed to be a proper answer.
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Fig. 1. Schematic representation of the MOCCA approach. Each feature
space is represented as an x− y plane. The cyan dots represent the centroids
of the anomaly-free images while the green (red) dots represent the normal
(anomalous) samples, respectively. τi is the distance between the deep
representation of a given input image from the centroid at layer i.

Concerning the Deep Learning (DL) field, an anomaly might
be thought of as an out-of-distribution sample presented as
input to a Deep Neural Network (DNN). More specifically,
from a statistical point of view [1, 2], we can discern among
outliers and novelties that are described by the same proba-
bility distribution of the normal data and anomalies that are
instead characterized by completely different statistics. Being
able to detect such events is an attractive feature, especially
concerning applications such as surveillance systems [3–6],
medical diagnosis [7–10], fraud detection [11–14], and defect
detection [15, 16]. Indeed the task of Anomaly Detection
(AD) [17, 18] is among the most active research fields in the
machine learning community.

Since the cost to collect large amounts of anomalous
samples is prohibitive, the AD is usually considered as an
unsupervised problem with the training databases containing
non-anomalous class instances only. Thus, to detect anomalies,
deep models are typically trained on in-manifold samples only
to learn an effective boundary that captures the concept of
normality from the distribution of one kind of data only. In re-
cent years, One-Class (OC) approaches to AD have drawn the
scientific community’s interest. Especially, autoencoders [19–
21] and GANs [22–24] based approaches reached the highest
performance available in the literature.

In the Machine Learning (ML) field, commonly adopted
approaches leverage the models’ final output only, thus in-
terpreting a neural network as a single computational block
that performs an input-to-output mapping. Concerning such a
point of view, throughout this manuscript, we refer to such
an approach as “holistic” interpretation. Specifically, what we
mean by “holistic” is that both the training and test phases rely
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on the output of the last layer only, i.e., there is no information
extracted from the intermediate levels of the architecture.

In such a context, our contribution stems from a different
interpretation of the mapping represented by a DNN. We show
that by leveraging the deep representations extracted at various
depths in both the training and inference phases of a learning
model, a neural network reaches higher performance on the
AD task than when only the last layer’s output is considered.
We propose a novel framework, named Multi-layer One-Class
ClassificAtion (MOCCA), to train and test deep learning mod-
els on the AD task. The innovation in our work is the explicit
optimization of the intermediate representations and their use
in the test phase for the task at hand. MOCCA leverages the
multi-layer structure of deep architectures, differently from
commonly used approaches that consider a neural network
as a single computational block, i.e., using the output of the
last layer only. During training, each layer’s feature space
is optimized for AD, whereas in the test phase, the deep
representations extracted from the trained layers are combined
to detect anomalies. To prove the effectiveness of our strategy,
we apply it to autoencoders. Specifically, with MOCCA, we
split the training process into two steps. First, the autoencoder
is trained on the reconstruction task only. Then, we only
retain the encoder tasked with minimizing the L2 distance
between the output representation and a reference point, the
anomaly-free training data centroid, at each considered layer.
Subsequently, we combine the deep features extracted at the
various trained layers of the encoder model to detect anomalies
at inference time. We show a schematic view of our approach
in Figure 1. Our contributions can be summarized as follows:

• we formulate a “multi-layer” based approach to AD,
named MOCCA, that explicitly optimizes the representa-
tions extracted at different layers of a deep learning model
during training, and then combines them in the test phase
to detect anomalies;

• we perform extensive experiments on publicly available
single-image AD datasets, namely, CIFAR10 and MVTec
AD [25], and empirically show that models trained with
the MOCCA approach reach higher performance com-
pared to the state-of-the-art;

• we perform experiments on the ShanghaiTech [26]
dataset, and show that, even though our method is not
tailored for video-based AD, it delivers models with
performance comparable to state-of-the-art approaches
specially designed for such a task. Thus, showing the
high generalization capability of our technique;

• we perform a model analysis to give insights into how our
approach works and empirically analyze the benefits of
exploiting the representations generated at different layers
of a learning model.

The remainder of the paper is organized as follows. In
section II, we briefly review the related works, while in
section III, we describe our approach to the anomaly detection
task. In section IV and section V, we present the datasets we
used and report the obtained results on them, respectively. In
section VI we perform an analysis of the models, and, finally,
in section VII, we conclude the paper.

II. RELATED WORKS

The latest approaches to the AD task are mainly based on re-
construction and discrimination techniques. Autoencoders [19,
27–29] and GANs [30–32] belong to the former class while
the latter approach gathers techniques such as the one-class
classification [33–35].

Concerning GAN-based approaches, in [32], the authors ex-
ploit a reconstruction technique that leverages an autoencoder
and a CNN that are adversarially trained. In AnoGAN [10] the
generator learns to reconstruct the input sample through latent
space optimization, and the discriminator generates deep repre-
sentations for both the original and the reconstructed samples,
while in [36], the authors propose to learn an encoder network
that maps the input samples directly to the generator’s latent
space. A slightly different approach is proposed in [23], where
an explicit latent space minimization is obtained by learning an
encoder model. The OC-GAN approach is introduced in [37],
where authors use a denoising autoencoder network and a
classifier in order to learn the latent representations of the
normal samples in an adversarial manner.

In [38] variational autoencoders are used to detect anomalies
by exploiting the reconstruction probability as the objective.
In [39] the authors combine a reconstruction approach based
on autoencoders with an autoregressive model that learns
a factorization of the latent space distribution. In [40], the
authors use the structural similarity index metric (SSIM) to
train autoencoders while [41] propose the Inverse-Transform
AutoEncoder (ITAE) based on the use of autoencoders that
reconstruct images after the application of a set of specific
transformations.

The One-Class (OC) approach has a long history starting
from the study of shallow models. Indeed, first attempts in
such a direction date back to the 2000s with the proposal of
the One-Class SVM [42, 43]. In [44], a hybrid approach is
proposed based on deep autoencoders and OC-SVM, while
in [45] the authors trained their models with an OC-SVM
equivalent loss function. One of the first proposals concerning
an end-to-end training approach to OC-AD is proposed in [46],
where the code generated by an encoder is mapped to a point
within a hypersphere so that the normal samples remained
inside of it while anomalous ones lay outside. Lastly, in [47],
the authors use an encoder for getting the latent representations
of the normal samples, and a pseudo-negative class is created
using zero-centered Gaussian noise in the same latent space.

Most recently, Venkataramanan et al. [48] exploit a vari-
ational autoencoder combined with a specialized attention
mechanism with the final goal of performing anomaly local-
ization. In [49], the authors tackle the problem of the stability
training of GANs when there are not lots of data available.
A semi-supervised approach is proposed in [50], and in [51],
the authors exploit a student–teacher framework to perform
anomaly detection and pixel-precise anomaly segmentation
at the same time. In [52], they leverage a multiple instance
learning approach while in [20] a technique named MemAE
is introduced where authors have added a memory module to
deep autoencoders.

Compared to all the works mentioned above, MOCCA
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Fig. 2. Schematic representation of the MOCCA training. Left: two-stage training for single image input. Right: end-to-end training for video-based AD. To
exploit the time correlation among frames, LSTMs are used instead of “selector” modules. The superscript s (h) refers to the soft (hard) boundary settings.

differs from them on two key aspects. On the one side, it
exploits the deep representation extracted at various layers of
the learning model, both at training and inference time, which
contrasts to classical methodology in which only the final
output is considered to fulfill the task. On the other hand, it
does not make any assumption on the deep features’ statistical
distributions. Combining these two properties allows the model
to adjust each single feature space at its best to accomplish
the AD task.

III. PROPOSED APPROACH

As a general conception, DNNs are a sequence of trans-
formations that approximate a function fθ : X → Y
where X ⊆ Rd and Y ⊆ Rm are the input and output
space, respectively, and θ are the parameters to be learned
at training time. We refer to such an approach as “holistic”
(see section I for more details) in the sense that the entire net
is considered as a single computational block that given an
input, returns an output. As opposed to such a point of view,
with MOCCA we adopt a “multi-layer” interpretation of the
learning models where we consider a DNN as a sequence
of single transformations each mapping its input to a more
representative space:

fθ(x) = φm(θm;om−1) ◦ φm−1(θm−1;om−2) ◦ .... ◦ φ1(θ1;x)
(1)

where each φi term represents the operation performed by a
specific layer, and the matrices θi represent their weights and
biases. The output of each operation is reported as oi, while
x is the network input.

Our intuition is that the outputs oi of the various layers, i.e.,
the representations generated at different depths of a DNN,
can be exploited to enhance the performance of a learning
model on the AD task compared to when the entire decision
process leverages the last layer output only. Indeed, it has been
already shown in literature [53–55] that deep features extracted
at various layers of a model can help a DNN to fulfill its task.
However, it is not enough to combine the representations at

test time only. Instead, all the layers must be trained to a
common aim.

As mentioned in section I, our base network is an au-
toencoder where both the encoder and the decoder are Deep
Convolutional Neural Network (DCNN). With MOCCA we
formulate the training process as a two-stage procedure in
which we first train the full autoencoder on the reconstruction
task only, and then we specialize only the encoder to detect
anomalies by exploiting an OC-like objective [46] applied
to different layers of the network. However, we empirically
observe that a single-step end-to-end training, in which we
optimize the reconstruction and the OC objectives simulta-
neously, is more effective than the two-step one for video-
based AD. A schematic representation of the MOCCA training
procedures is presented in Figure 2. As one can see from
the figure, we process the model inner layers’ output using
“selector” and “LSTM” modules concerning single-image and
video-based data type, respectively. Concerning the “selector”
blocks, they are made of an average pooling operation or
a two-layer neural network concerning the CIFAR10 and
MVTec AD [25], respectively. Specifically, concerning the
CIFAR10 dataset, we use only the pooling operation to fully
assess the real advantages brought by MOCCA.

As mentioned above, we exploit the OC objective and we
evaluate it by using the deep features extracted at different
depths of the encoder model. Specifically, we considered two
variants for such an objective function termed soft- and hard-
boundary. The first one is expressed as follows:

Lsj = R2
j +

1

|B| · ν

|B|∑
i

max{0, ‖ φj(xi; θ)− cj ‖2 −R2
j}

(2)

The goal of such a loss is to minimize the volume of the
hypersphere at each layer j, centered at cj and with radius Rj ,
that is interpreted as the boundary region for normal data [43].
Then, the goal of Equation 2 is to minimize the radius, Rj , of
such spheres (one for each trained layer). In other words, we
expect the “normal” data to lie within a sphere, at each layer,
while the anomalous samples are expected to remain outside of
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it. The second addend in the equation penalizes “normal” data
points that lie outside the sphere after being passed through
the network. The radius Rj is a scalar quantity evaluated as
the 1 − ν quantile of the features’ distance distribution, in a
mini-batch, from the centroid cj. We re-evaluate the radius
at each layer at regular intervals while training. A decreasing
value of the radius at each layer is an indicator of converging
training. The other terms in the equation have the following
interpretation: |B| is the mini-batch size, ν is a hyperparameter
that allows controlling the fraction of allowed outliers, φj
represents the function that the layer j carries out, and xi
is the model input.

Concerning the hard-boundary loss, it is expressed as fol-
lows:

Lhj =
1

|B| · ν

|B|∑
i

‖ φj(xi; θ)− cj ‖2 (3)

Differently from Equation 2, Equation 3 simply tries to
reduce as much as possible the distance of each sample from
the layer’s centroid by employing a quadratic loss.

After the first training step in which we tasked the full
autoencoder with the reconstruction objective, we retain only
the encoder and perform an initial forward step on the whole
training dataset (that contains non-anomalous samples only)
to extract deep features at different depths. Subsequently,
we evaluate the centroids, at each layer, as the average of
those features. We performed experiments in which we tested
the hypothesis of using medoids instead of centroids, but
we did not observe any improvement. Once we evaluate the
centroids, they are kept fix while training the encoder. We also
experimented with several strategies to re-evaluate them after a
specific number of training iterations, but we did not observe
tangible improvements. Regarding the video-based AD, we
initialize the centroids at the beginning of the training, i.e.,
with the model not trained.

Considering a set of layers J = {j | j = 0, 1, ...J},
we formalize the MOCCA objective, during the second-step
of the training, as:

Ls/h =
1

|J |

|J|∑
j

Ls/hj +
λ

2

|P |∑
p

‖ θp ‖2 (4)

where |J | is the number of layers we consider, and the sum
runs over the layer indexes j. The last term of the objective
is the L2 regularization for the model parameters.

IV. DATASETS AND TRAINING

This section reports the used datasets and provides details
about the training procedure that we adopt.

A. CIFAR10

The CIFAR10 dataset contains 50K training images and
10K test ones shared among ten different classes. We prepro-
cess the images by applying a global contrast normalization
procedure using the L1 norm, and then we normalize them

to be in the range [0,+1]. Given each class, which we refer
to as the “normal class”, we have 5000 images to train the
model, and we evaluate each model’s performance on the
whole test set. With such a training approach, the model only
sees instances from the “normal class” and never sees any
anomaly while learning.

B. MVTec

The MVTec AD [25] dataset comprises ∼3.6K and ∼1.7K
high-resolution images to train and test DNNs, respectively,
shared among 15 classes which are divided into two categories:
textures (5 classes) and objects (10 classes). The dataset is split
into two sets: one for training purposes containing “normal”
images only and one specifically designed to test the models’
performance. Specifically, the latter one contains anomalous
images, with defects of different types and non-anomalous
ones. We apply two different preprocessing operations to
objects- and texture-type classes. Concerning the formers, we
first resize the image to 128x128 pixels and then apply a
random rotation in the range [−π/4,+π/4] when the anomaly
of the object is not related to its orientation. Instead, we first
resize images to 512x512 pixels in the latter type of classes,
and then we crop 64x64 non-overlapping patches used as input
to the network. Moreover, we augment the data by exploiting a
random rotation in the range [0,+π/4]. Finally, we normalize
all the objects- and texture-type images to be in the range
[−1,+1]. In Figure 3 we show an example of textures- and
objects-type images from the dataset.

Fig. 3. Samples from different classes of the MVTec AD [25] dataset. Top:
texture classes. Bottom: object classes. We highlight in red the anomalies.

C. ShanghaiTech

The ShanghaiTech [26] dataset is one of the largest video
anomaly datasets. It comprises over 270,000 training frames
from 13 scenes with complex light conditions and camera
angles, accounting for 130 abnormal events. We follow the
same preprocessing strategy as in [39], i.e., we use a MOG-
based approach to estimate the background and remove it from
the frames. By employing such a procedure, we eliminate the
necessity of background estimation and let the model focus
on foreground objects only. Given a video, we construct clips
made by 16 frames to be used as input to the learning models.
To exploit the temporal correlation among frames, we employ
LSTM cells (we refer the reader to section III for more details
about our models’ architecture). Finally, we resize each frame
to 256x512 pixels to feed models. In Figure 4 we report an
example of “normal” and anomalous frames from two different
videos.
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Fig. 4. Samples of “normal” (left) and anomalous (right) frames from the
ShanghaiTech [26] dataset. We highlight in red the anomalies.

D. Training details

Concerning the CIFAR10 dataset, we use a LeNet-like
architecture as in [46], made of three convolutional layers and
one fully connected layer after them. We use the Adam [56]
optimizer for both pre-train the full architecture and train the
encoder with learning rates of 1.e−3 and 1.e−4, respectively.
We set the encoder code’s size equals to 128 and the value
of the parameter ν in the range [0, 0.1]. Finally, we use a
batch size of 256. As we mentioned in section III, concerning
the CIFAR10 dataset, we use an average pooling operation
as the “selector” module. Thus, we emphasize that the higher
performance reached by using MOCCA is not due to larger,
deeper, or more models. Instead, the benefits of using MOCCA
stand from its ability to exploit the representations generated at
different depths of a learning model. To our aim, we train ten
different seeded models on each class, considering the other
nine as anomalies. Such a procedure allows us to estimate the
mean response of our approach and its standard deviation.

Regarding the MVTec AD [25] and the ShanghaiTech [26]
datasets, we use a residual-like structure that comprises four
and five residual blocks, respectively, followed by two fully
connected layers. For this dataset, the “selector” blocks consist
of a convolutional layer followed by a pooling operation, a
batch norm layer, and a final fully connected layer. In video-
based AD, we substitute the “selector” networks with LSTM
cells to exploit the time correlation among the frames within
a given input clip. To train models on those two datasets,
we use again the Adam [56] optimizer and a learning rate
in the set {10−2, 10−3} that we drop by a factor of ten at
specific epochs depending on the class under study. Being
each class of each dataset an independent AD problem, we
use different hyperparameters to train the models on each of
them. Moreover, we do not always use the same set of layers
to evaluate the objective in Equation 4. Indeed, we train the
models by using different layer combinations and finally select
the best performing one in each class.

To allow the researchers to reproduce our work, we made
the code publicly available on GitHub1.

V. EXPERIMENTS

In this section, we report our experimental results. However,
before that, we describe the various metrics we use to assess
the models’ performance.

1https://github.com/fvmassoli/mocca-anomaly-detection.git

A. Metrics

To assess the performance of the models trained with
MOCCA and compare them to the other approaches in the
literature, we exploit two metrics: the Area Under the Curve
(AUC) and the maximum Balanced Accuracy (maxBA). The
former metric is the area under the Receiver Operating Char-
acteristics curve. Instead, concerning the latter, the Balanced
Accuracy (BA) represents the arithmetic mean between the
sensitivity, i.e., percentage of anomalous samples correctly
detected, and the specificity, i.e., same as the sensitivity but
for non-anomalous samples:

BA =
TP

2 · (TP + FN)
+

TN

2 · (TN + FP )
(5)

where TP and FN are the true positives and the false
negatives, respectively, and TN and FP are the true negatives
and the false positives, respectively.

In the AD context, it is useful to quote both the AUC and
the maxBA metrics. The former one provides an aggregate
measure of the performance of a model across all possible
classification thresholds. Instead, maxBA is a measure of
performance at a specific threshold that could be used in
production. It selects the threshold for which the balanced ac-
curacy measure, i.e., the average among the correctly classified
images for anomalous (true positives) and anomaly-free test
images (true negatives), is maximum and reports the obtained
BA. We evaluate both metrics only on the MVTec AD [25]
dataset since for the CIFAR10 and ShanghaiTech [26] datasets
we only found the AUC values reported in the literature.
Concerning the anomaly score for a given input image, we
evaluate its value as:

τj(x) =‖ φj(x, θ)− cj ‖2 (6)

γ(x) =
1

|J |

|J |∑
j


τj(x) hard boundary

τj(x)−R2
j soft boundary

where x is the input image, J = {j | j = 0, 1, ...J} is
the set of layers we consider, φj(x, θ) is the feature vector
extracted at layer j, and cj and Rj are the center of the
hypersphere and its radius at the layer j, respectively and γ is
the anomaly score. We refer the reader to section III for further
details on the meaning of the boundaries. Concerning the
textures-type classes from the MVTec AD [25], we evaluate
the anomaly score as the maximum among the scores relative
to each of the 64x64 patches of the given image:

γh/s(x) = max
{
γh/s(patchi)) | i = 1, 2, ..., 64

}
(7)

where the superscripts s and h correspond to when we
apply a “soft” or “hard” boundary while training the model,
respectively. More details on how we extract patches from
a single image can be found in subsection IV-B. Lastly,
considering video-based input we consider a single input clip
as made of 16 frames. We then apply a sliding window
technique to move through all the frames of a given video and

https://github.com/fvmassoli/mocca-anomaly-detection.git
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Class VAE [57]? Pix
CNN [58]?

DCAE† AnoGAN [10]† LSA [39] Deep SVDD(s) [46] MOCCA(s) Deep SVDD(h) [46] MOCCA(h)

0 0.688 0.788 0.601 ± .007 0.671 ± .025 0.735 0.617 ± .042 0.626 ± .021 0.617 ± .041 0.660 ± .015
1 0.403 0.428 0.574 ± .029 0.547 ± .034 0.580 0.648 ± .014 0.746 ± .008 0.659 ± .021 0.705 ± .013
2 0.679 0.617 0.489 ± .024 0.529 ± .030 0.690 0.495 ± .014 0.575 ± .018 0.508 ± .008 0.524 ± .010
3 0.528 0.574 0.584 ± .012 0.545 ± .019 0.542 0.560 ± .011 0.578 ± .011 0.591 ± .014 0.601 ± .006
4 0.748 0.511 0.540 ± .013 0.651 ± .032 0.761 0.599 ± .011 0.615 ± .012 0.609 ± .011 0.609 ± .012
5 0.519 0.571 0.622 ± .018 0.603 ± .018 0.546 0.621 ± .024 0.663 ± .010 0.657 ± .025 0.684 ± .016
6 0.695 0.422 0.512 ± .052 0.585 ± .014 0.751 0.678 ± .024 0.674 ± .012 0.677 ± .026 0.671 ± .005
7 0.500 0.454 0.586 ± .029 0.625 ± .008 0.535 0.652 ± .010 0.721 ± .004 0.673 ± .009 0.685 ± .010
8 0.700 0.715 0.768 ± .014 0.758 ± .041 0.717 0.756 ± .017 0.791 ± .012 0.759 ± .012 0.792 ± .008
9 0.398 0.426 0.673 ± .030 0.665 ± .028 0.548 0.710 ± .011 0.773 ± .010 0.731 ± .012 0.758 ± .007

?Values reported in [39]; †Values reported in [46]
TABLE I

AUC FOR THE CIFAR10 DATASET. THE SUBSCRIPTS (s) AND (h) REFER TO THE soft AND hard BOUNDARIES, RESPECTIVELY. WE EMPHASIZE IN BOLD
THE PERFORMANCE OF THE BEST MODELS. WHENEVER OUR MODELS OVERCOME THE SOTA WITH BOTH THE TYPE OF BOUNDARIES, WE UNDERLINE

THE BEST OF THE TWO. WE ONLY REPORT ERRORS FROM OTHERS WHEN AVAILABLE IN THE REFERENCE PAPER.

construct the input clips. Since each frame can appear multiple
times across different clips, we evaluate its score as the mean
value among all of its scores. Moreover, a single frame can
have different scores in different clips having a different time
correlation, captured by the LSTMs (see Figure 2), with all
the other frames. For such a reason, we normalize the score
of each frame to the maximum and minimum values of the
scores within the clips in which the frame under analysis is
present:

γh/s(xi) =
〈γh/s(xi)〉 −maxclips〈γh/s(xi)〉

maxclips〈γh/s(xi)〉 −minclips〈γh/s(xi)〉
(8)

Finally, we add a reconstruction term to the score.

B. Experimental results - CIFAR10

Concerning the CIFAR10 dataset, we instantiate each class
as a single AD problem, and we train ten different seeded
models on each of them. Such a procedure allows us to quote
a mean AUC value and the corresponding variance. We report
the results in Table I.

As we can see from Table I, our approach reaches the
highest performance on six out of ten classes. Moreover, on
class-1, class-5, class-7, class-8, and class-9, the MOCCA
method performs better than the state-of-the-art (SotA) results
concerning both the “soft” and the “hard” boundaries. As
reported in subsection IV-D, on the CIFAR10 dataset we
use a LeNet-like architecture as in [46]. Moreover, to better
emphasize that our approach’s higher performance is not due
to a mere addition of more models to the baseline, we use
averaging pooling layers as “selectors” blocks. Thus, since we
use the same architecture as in [46], we can conclude that the
higher performance of our models are only due to the use of
MOCCA and not because we use deeper models or because
we add more branches to the base architecture. To summarize
the previous results, we report in Table II the AUC values, for
each model in Table I, averaged among all the ten classes of
the dataset.

From Table II, it is clear that our approach reaches the
highest performance concerning both types of boundary set-
tings. Moreover, we can appreciate that we obtain higher
performance, also considering larger models such as LSA [39].

Average AUC

VAE [57]? 0.586 ± .039
Pix CNN [58]? 0.551 ± .038
DCAE† 0.595 ± .024
AnoGAN [10]† 0.618 ± .021
LSA [39] 0.640 ± .029
Deep SVDD(s) [46] 0.634 ± .022
Deep SVDD(h) [46] 0.648 ± .022

MOCCA(s) 0.676 ± .024
MOCCA(h) 0.669 ± .023

?Values reported in [39]; †Values reported in [46]
TABLE II

AUC AVERAGED AMONG ALL CLASSES OF THE CIFAR10 DATASET. THE
SUBSCRIPTS (s) AND (h) REFER TO THE soft AND hard BOUNDARIES,
RESPECTIVELY. WE EMPHASIZE IN BOLD THE PERFORMANCE OF THE

BEST MODELS. WHENEVER OUR MODELS OVERCOME THE SOTA WITH
BOTH THE TYPE OF BOUNDARIES, WE UNDERLINE THE BEST OF THE TWO.

C. Experimental results - MVTec AD

Regarding the MVTec AD [25] dataset, also, in this case,
we consider each class as an independent AD problem. As
reported in subsection IV-B, the dataset classes are divided
into texture- and object-like sets. For each class, we report the
maxBA and the AUC in Table III and Table IV, respectively.
Regarding the texture-type of classes, we see from the tables
that the MOCCA approach allows our models to reach the
highest performance on three out of five classes concerning
both the hard and soft boundaries. Similar reasonings hold
in the case of object-type classes, too. Concerning the results
from [48], it is important to highlight that, even though we
report their results, they should not directly compared with
others. The reason for that is because in [48], the models
are trained on more data rather than on MVTec AD only.
Thus, those results are not directly comparable with the other
methods. Due to the very low number of test images available
in the dataset, typically large variations in the performance of
the model are observed among the different classes. Thus, to
better compare the performance of the various approaches, we
report in Table V the overall mean values for the maxBA and
the AUC evaluated among all classes of the dataset.

From the table, we conclude that the MOCCA approach
allows us to reach the highest performance on both types of
metrics considering both the soft and hard type of boundary.
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Textures Objects

Carpet Grid Leather Tile Wood Bottle Cable Capsule Hazelnut MetalNut Pill Screw Toothbrush Transistor Zipper

AESSIM [40]? 0.67 0.69 0.46 0.52 0.83 0.88 0.61 0.61 0.54 0.54 0.60 0.51 0.74 0.52 0.80
AEL2 [40]? 0.50 0.78 0.44 0.77 0.74 0.80 0.56 0.62 0.88 0.73 0.62 0.69 0.98 0.71 0.80
AnoGAN [10]† 0.49 0.51 0.52 0.51 0.68 0.69 0.53 0.58 0.50 0.50 0.62 0.35 0.57 0.67 0.59
VAE-grad [59]† 0.67 0.83 0.71 0.81 0.89 0.86 0.56 0.86 0.74 0.78 0.80 0.71 0.89 0.70 0.67
AVID [60]† 0.70 0.59 0.58 0.66 0.83 0.88 0.64 0.85 0.86 0.63 0.86 0.66 0.73 0.58 0.84
EGBAD [36]‡ 0.60 0.50 0.65 0.73 0.80 0.68 0.66 0.55 0.50 0.55 0.63 0.50 0.48 0.68 0.59
CBiGAN [61] 0.60 0.99 0.87 0.84 0.88 0.84 0.73 0.58 0.75 0.67 0.76 0.67 0.97 0.74 0.55

MOCCA(s) 0.81 0.85 0.96 0.80 0.97 0.90 0.72 0.77 0.77 0.85 0.81 0.82 0.93 0.77 0.78
MOCCA(h) 0.74 0.76 0.91 0.78 0.94 0.90 0.68 0.75 0.76 0.80 0.69 0.80 0.91 0.81 0.78
?Values reported in [25]; †Values reported in [62]; ‡Values reported in [61]

TABLE III
MAXBA FOR ALL THE CLASSES OF THE MVTEC AD [25] DATASET. THE SUBSCRIPTS (s) AND (h) REFER TO THE soft AND hard BOUNDARIES,

RESPECTIVELY. WE EMPHASIZE IN BOLD THE PERFORMANCE OF THE BEST MODELS. WHENEVER OUR MODELS OVERCOME THE SOTA WITH BOTH THE
TYPE OF BOUNDARIES, WE UNDERLINE THE BEST OF THE TWO.

Textures Objects

Carpet Grid Leather Tile Wood Bottle Cable Capsule Hazelnut MetalNut Pill Screw Toothbrush Transistor Zipper

AEL2 [40]† 0.64 0.83 0.80 0.74 0.97 0.65 0.64 0.62 0.73 0.64 0.77 1.00 0.77 0.65 0.87
GeoTrans [63]† 0.44 0.62 0.84 0.42 0.61 0.74 0.78 0.67 0.36 0.81 0.63 0.50 0.97 0.87 0.82
GANomaly [23]† 0.70 0.71 0.84 0.79 0.83 0.89 0.76 0.73 0.79 0.70 0.74 0.75 0.65 0.79 0.75
ITAE [41] 0.71 0.88 0.86 0.74 0.92 0.94 0.83 0.68 0.86 0.67 0.79 1.00 1.00 0.84 0.88
EGBAD [36]? 0.52 0.54 0.55 0.79 0.91 0.63 0.68 0.52 0.43 0.47 0.57 0.46 0.64 0.73 0.58
CBiGAN [61] 0.55 0.99 0.83 0.91 0.95 0.87 0.81 0.56 0.77 0.63 0.81 0.58 0.94 0.77 0.53
CAVGA-Ru [48]?? 0.73 0.75 0.71 0.70 0.85 0.89 0.63 0.83 0.84 0.67 0.88 0.77 0.91 0.73 0.87
CAVGA-Du [48]?? 0.78 0.78 0.75 0.72 0.88 0.91 0.67 0.87 0.87 0.71 0.91 0.78 0.97 0.75 0.94

MOCCA(s) 0.86 0.87 0.98 0.89 1.00 0.95 0.76 0.82 0.80 0.85 0.82 0.84 0.97 0.88 0.84
MOCCA(h) 0.74 0.81 0.95 0.85 0.97 0.93 0.72 0.79 0.78 0.84 0.73 0.80 0.95 0.84 0.82
†Values reported in [41]; ?Values reported in [61]; ??Results obtained by using more data - should NOT be directly compared to all the other methods

TABLE IV
AUC FOR ALL THE CLASSES OF THE MVTEC AD [25] DATASET. THE SUBSCRIPTS (s) AND (h) REFER TO THE soft AND hard BOUNDARIES,

RESPECTIVELY. WE EMPHASIZE IN BOLD THE PERFORMANCE OF THE BEST MODELS. WHENEVER OUR MODELS OVERCOME THE SOTA WITH BOTH THE
TYPE OF BOUNDARIES, WE UNDERLINE THE BEST OF THE TWO.

Overall Mean

maxBA AUC

AESSIM [40]? 0.63 -
AEL2 [40]? 0.71 0.75
AnoGAN [10]† 0.55 -
VAE-grad [59]† 0.77 -
AVID [60]† 0.73 -
EGBAD [36]‡ 0.61 0.60
GeoTrans [63]†† - 0.67
GANomaly [23]†† - 0.76
ITAE [41]†† - 0.84
CBiGAN [61] 0.76 0.77

MOCCA(s) 0.83 0.88
MOCCA(h) 0.80 0.83

?Values reported in [25]; †Values reported in [62]
‡Values reported in [61]; ††Values reported in [41]

TABLE V
AVERAGE MAXBA AND AUC FROM TABLE III AND TABLE IV. THE
SUBSCRIPTS (s) AND (h) REFER TO THE soft AND hard BOUNDARIES,

RESPECTIVELY. WE EMPHASIZE IN BOLD THE PERFORMANCE OF THE BEST
MODELS. WHENEVER OUR MODELS OVERCOME THE SOTA WITH BOTH

THE TYPE OF BOUNDARIES, WE UNDERLINE THE BEST OF THE TWO. THE
“-” SYMBOL MEANS THAT THE AUTHORS DID NOT REPORT THE VALUE.

D. Experimental results - ShanghaiTech

Differently from the CIFAR10 and MVTec AD [25]
datasets, the ShanghaiTech [26] concerns the video-based AD

task. Although we test models trained with MOCCA against
such a protocol, it is essential to stress that our approach is
not specially designed for the video-based scenario. We report
our results in Table VI and others available in the literature.

AUC

AE-Conv2D [6]† 0.609
TSC [64]† 0.679
Stack RNN [64]† 0.680
AE-Conv3D [65]† 0.697
MemAE [20]† 0.712
LSA [39] 0.725
ITAE [41] 0.725
FFP+MC [66] 0.728
Mem-Guided (w/o Mem.) [67] 0.668
Mem-Guided (w/ Mem.) [67] 0.705
MemAE-nonSpar [20] 0.688
MemAE [20] 0.712
Clustering-Driven [68] 0.733

MOCCA(s) 0.730
MOCCA(h) 0.725

†Values reported in [41]
TABLE VI

AUC VALUES FOR THE SHANGHAITECH [26] DATASET. THE SUBSCRIPTS
(s) AND (h) REFER TO THE soft AND hard BOUNDARIES, RESPECTIVELY.

WE REPORT IN BOLD THE PERFORMANCE OF THE BEST MODEL.

From Table VI, we can see that our approach’s performance
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is utterly comparable to the current SotA models, specifically
designed to handle video-based input. Thus, showing that
our method is applicable to both the image- and video-based
anomaly detection tasks. Indeed, the only modification we
apply to MOCCA for video-based contexts is to move to
a single-step training, based on the same objectives, and to
substistute the “selector” modules with LSTMs.

VI. MODEL ANALYSIS

In this section, we look in more detail at the behavior of
our models. First, we focus on an ablation study to show the
impact of using a different number of layers to evaluate a
specific image’s anomaly score. Specifically, we prove that
with MOCCA, we effectively succeed in exploiting the deep
representations extracted at different depths of a DNN. To our
aim, we perform the ablation study considering the “Leather”
class of the MVTec AD [25] dataset. We report the results in
Table VII.

Layer index maxBA

hard boundary soft boundary

6 0.819 ± .020 0.839 ± .010
5, 6 0.855 ± .021 0.840 ± .012
4, 5, 6 0.906 ± .001 0.955 ± .007
3, 4, 5, 6 0.912 ± .002 0.935 ± .005
2, 3, 4, 5, 6 0.903 ± .003 0.947 ± .005
1, 2, 3, 4, 5, 6 0.865 ± .004 0.948 ± .003
0, 1, 2, 3, 4, 5, 6 0.873 ± .002 0.924 ± .001

TABLE VII
ABLATION STUDY CONCERNING THE “LEATHER” CLASS OF THE MVTEC

AD [25] DATASET. WE REPORT THE MAXBA FOR THE hard AND soft
BOUNDARY SETTINGS. WE HIGHLIGHT IN BOLD THE BEST RESULTS.

As described in subsection IV-D, the encoder’s architecture
consists of four residual blocks followed by two fully con-
nected layers. The indexes in the first column of Table VII
correspond to the layers’ ordering where the 0-th layer is
the closest to the input. The results in Table VII should be
interpreted as follows. Each row in the table represents a
different model that we trained with MOCCA by considering
the output from the layers listed in the first column. For
example, the first row represents the results we obtained by
considering the output (in the training and test phases) from
the last layer only, while in the second row we consider the
layer 5 and 6 together. We aim at showing that by exploiting
the output at different layers while training a learning model,
we can use the output from those same layers at inference
time to enhance the network’s discrimination power. On the
contrary, we experimentally observed that training the model
using the last layer’s output only and then using more layers at
inference time always gave worse results. Such an observation
is one of the key points on which we base our approach.

As it is clear from the table, independently from the type
of boundary we apply, we obtain higher results by utilizing
more layers. This result supports our intuition that the features
extracted at different depths help to detect anomalies in the
input images. By carefully looking at Table VII we notice
that the maxBA improves until we add layers 4 and 5 to the
last one. Moreover, we can notice that, in the case of the

hard boundary setting, we can obtain a slight improvement by
adding layer 3. Finally, we notice that by adding more layers,
we do not see any further improvement. We can interpret such
behavior by considering that since the first layers are closer
to the input data, they specialize on simple patterns. On the
contrary, higher layers generate representations that amplify
aspects of the input that are important for discrimination [69],
thus more useful to fulfill the final task. Hence, adding layers
that are too close to the input data does not improve the
learning model’s overall performance.

We then focus our attention on the distribution of the
distances among the features and the centroids, of a given
class, at different layers. Specifically, we compare our train-
ing approach against the “holistic” approach, i.e., when the
learning model is considered a single computational block. As
specified in section I, “holistic” refers to the approach similar
to [46] where the last layer’s output only is used to train and
test the encoder on the AD task. To our aim, we train two
identical models once with the MOCCA approach and then
by evaluating the OC loss on the last layer only (“holistic”).
We report the resulting Cumulative Density Function (CDF)
in Figure 5.
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Fig. 5. CDF of the test images distance from the “normal” class centroid for
the MOCCA approach (top row) and for the “holistic” one (bottom row). The
blue (red) line represents the CDF of “normal” (anomalous) images.

Concerning the model trained with MOCCA, we see that
the distributions for “normal” images always lies at the left of
the corresponding for anomalous ones (as one would expect).
Moreover, we see that the CDFs of “normal” images rise faster
than the ones of anomalous samples. Thus, allowing one to
set a more discriminative threshold on the anomaly score. On
the contrary, we see that by considering the last layer only
while training on the AD task, the distributions of distances for
anomalous and “normal” images are highly overlapped even
in the last layer. Thus, by training with MOCCA, we have a
double gain: on the one side, we obtain discriminative deep
features from more layers, and on the other hand, we are able
to set more discriminative thresholds.
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VII. CONCLUSIONS

The anomaly detection task is still an open challenge in
many scientific fields. Several approaches have been proposed
to tackle this problem in the context of deep learning, typ-
ically based on an unsupervised training paradigm. Indeed,
being rare events, collecting anomalous samples to construct
a supervised training dataset might be extremely expensive.
Thus, approaches in which neural networks automatically learn
the concept of “normality” from non-anomalous data only
represent a promising solution.

We propose to adopt a multi-layer approach, named
MOCCA, to exploit the output of a deep model at differ-
ent depths to detect anomalous input in the one-class set-
ting. Differently from the usual “holistic” interpretation of
a learning model in which a neural network is considered
a single computational block, MOCCA explicitly leverages
the networks’ multi-layer composition. Specifically, we show
that such an approach enhances a neural network’s discrimi-
nation capability. We conduct extensive experiments on three
different datasets and perform an analysis of the models to
support our intuitions. We test our method against the single-
image AD task showing that it improves the state-of-the-art
both on the CIFAR10 and MVTec AD datasets. Specifically,
concerning the performance averaged among all the classes,
MOCCA improves upon the literature results with both the
soft and hard type of boundary. We acknowledge the best
improvement concerning the overall maxBA on the MVTec
AD dataset that overcomes the state-of-the-art results by 6%.
Moreover, even though our approach is not tailored for the
video-based AD task, we test it also using such a protocol by
employing the ShanghaiTech dataset. From the experimental
results, we see that with MOCCA, the models’ performance
is utterly comparable to what was obtained by approaches
specially designed for such a task. Thus, showing the high
generalization capability of our method.

Finally, we report insights about the behavior of models
trained with MOCCA by performing an ablation study and
reporting the different CDFs of the distance of the deep
representations from the centroids of a given class across
different layers. Such an analysis, pointed out that the benefits
from using MOCCA are two-fold: on the one side, we obtain
discriminative deep features from more layers, and on the other
hand, we are able to set more discriminative thresholds.
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