
Towards Explainable Formal Methods:
from LTL to Natural Language

with Neural Machine Translation

Himaja Cherukuri1, Alessio Ferrari2[0000−0002−0636−5663]Q, and
Paola Spoletini1[0000−0001−7922−4936]

1 Kennesaw State University, Atlanta (GA), USA
chhimajasri@gmail.com, pspoleti@kennesaw.edu
2 CNR-ISTI, Pisa, Italy, alessio.ferrari@isti.cnr.it

Abstract. [Context and motivation] Requirements formalisation facilitates rea-
soning about inconsistencies, detection of ambiguities, and identification critical
issues in system models. Temporal logic formulae are the natural choice when it
comes to formalise requirements associated to desired system behaviours. [Ques-
tion/problem] Understanding and mastering temporal logic requires a formal
background. Means are therefore needed to make temporal logic formulae in-
terpretable by engineers, domain experts and other stakeholders involved in the
development process. [Principal ideas/results] In this paper, we propose to use
a neural machine translation tool, named OPENNMT, to translate Linear Tem-
poral Logic (LTL) formulae into corresponding natural language descriptions.
Our results show that the translation system achieves an average BLEU (BiLin-
gual Evaluation Understudy) score of 93.53%, which corresponds to high-quality
translations. [Contribution] Our neural model can be applied to assess if re-
quirements have been correctly formalised. This can be useful to requirements
analysts, who may have limited confidence with LTL, and to other stakeholders
involved in the requirements verification process. Overall, our research preview
contributes to bridging the gap between formal methods and requirements engi-
neering, and opens to further research in explainable formal methods.

Keywords: Requirements engineering · Formal Methods · Machine Translation
· Neural Networks · Temporal Logic · LTL · Natural Language Processing · NLP.

1 Introduction

Temporal logic enables the expression of time-related system requirements and has
widely been used in requirements and software engineering research [21, 5]. Linear
temporal logic (LTL) is a well-known type of temporal logic that treats time as a linear
sequence of states. In LTL, each state has only one possible future, and an LTL for-
mula describes the behavior of a single computation of a program. With LTL, system
engineers can formalize temporal properties that express the absence, universality, ex-
istence, precedence, and the response of predicates about observable system variables.
LTL has been used in requirements engineering (RE) for several tasks, including the

2 H. Cherukuri et al.

formalization of goals in goal-oriented requirements engineering (GORE) [15], the ex-
pression of desired properties for run-time verification [3], and model checking [6]. The
correct specification and interpretation of LTL formulae requires a strong mathematical
background and can hardly be done by domain experts [5, 7]. Therefore, researchers
have dedicated efforts to translate natural language (NL) requirements into temporal
logic formulae [18, 10, 5, 11] to support domain experts in the formalization of require-
ments. However, these approaches still require domain experts to have an understanding
of the produced formulae, so to make sure that the translation is correctly preserving the
meaning of the original requirement. To support them in this task, we propose to provide
a way to translate LTL formulae into their NL explanation. To address this goal, we plan
to exploit the potential of neural machine translation platforms, and in particular the
open-source framework OpenNMT (https://opennmt.net). Indeed, though the
goal of translating LTL into corresponding explanations can in principle be addressed
by means of a rule-based or heuristic approach, a neural machine translation strategy
is more flexible, as it can facilitate language simplification and transformations—i.e.,
summaries and paraphrases [13, 20, 2], without requiring the maintenance of a com-
plex rule-based system. In addition, it can better support the readability of the expres-
sions [2], while ensuring the correctness of the translation. As LTL formulae can often
be better understood when associated with visual representations [1], we also plan to
augment the translation with a graphical representation that could help clarifying pos-
sible ambiguities introduced by the NL translation. At the current stage, we have per-
formed a feasibility study, in which we trained an LTSTM encoder-decoder architecture,
implemented in the OpenNMT framework, with a set of manually defined examples. In
the next steps, we will consolidate the approach, we will develop the visual part of our
idea, and we will validate the resulting prototype with potential users.

2 Towards Explainable LTL Requirements

The overall goal of our research is to facilitate the correct understanding of requirements
expressed in LTL by subjects who have a limited expertise in formal logic. To this end,
we plan to implement a system that translates LTL formulae into corresponding NL
explanations, augmented by visual diagrams with annotations. We will also empirically
evaluate the approach, first by ensuring that the automatic translation is actually correct,
and then by evaluating to what extent the translation facilitates the understanding of LTL
requirements. More specifically, our research questions (RQs) are the following:

– RQ1: To what extent can neural machine translation be used to translate LTL for-
mulae into NL explanations?

– RQ2: How can NL explanations of LTL formulae be augmented with visual repre-
sentations?

– RQ3: Does the automatic explanation of LTL formulae help users in understanding
them?

To answer RQ1, we first perform a feasibility study, reported in this paper (cf.
Sect. 2.1), and then we consolidate the approach by (a) ensuring that the approach
does not introduce errors in the translation, and (b) ensuring that the readability of the

LTL to Natural Language 3

formulae is acceptable, according to standard metrics and through human assessment.
To answer RQ2, we plan to devise solutions by combining visual representation of for-
mulae and annotation of traces. Finally, RQ3 will be addressed through an empirical
evaluation with students. RQ3 will consider NL explanations alone and also augmented
with visual representations.

2.1 RQ1: From LTL to NL with Neural Machine Translation

Dataset Definition To assess the feasibility of using neural machine translation for
providing explanation of LTL formulae, the 3rd author defined 54 unique formulae in-
cluding Boolean operators (!, |,&,=>) and temporal operators (X—next, G—always,
F—eventually, U—until), with associated NL translations. The 2nd author indepen-
dently checked the correctness of the translation. For simplicity, the dataset considers
only formulae with no nested temporal operators and the expressions are edited accord-
ing to the typical LTL patterns as defined by Dwyer et al. [8], so as to provide represen-
tative LTL requirements that could occur in real-world projects. This initial dataset is
composed of domain-agnostic requirements, in which variables were expressed as al-
phabetic letters, e.g. G(a => b), translated as In every moment of the system execution,
if a holds, b should hold (a does not need to hold for the formula to be true). In pro-
viding the translations, the 3rd author made an effort to be consistent across formulae,
using always the same terminology, and the same structure. However, no translation
rule was established beforehand. The repetitiveness of terminology and structure aims
to facilitate learning of the neural model, while the absence of specific rules decided
beforehand enables flexibility. As the set of examples would be too limited for success-
fully training a neural network, the dataset was clerically augmented, by repeating the
same formulae—and associated translations—with combinations of 26 different alpha-
betic letters. The resulting dataset is composed of 12,192 LTL formulae and associated
translations. At this exploratory stage, our goal is not to translate unseen syntactic pat-
tern, but to check whether the unwritten rules adopted for translation can be successfully
learned. Therefore, we feed the network with similar examples that differ solely for the
variable names. The idea is to enable the network to distinguish between operators and
variables, “learn” the LTL syntax for these simple cases, and translate accordingly.

Training and Evaluation To experiment with our dataset, we selected the OpenNMT
framework for machine translation [14]. This is a widely used platform, supporting dif-
ferent translation tasks, including summarization, image to text, speech-to-text, seque-
nce-to-sequence (our case), and offering two implementations, OpenNMT-py, based on
PyTorch, and OpenNMT-tf, based on TensorFlow. In our case, we selected OpenNMT-
py, as it is claimed by the developers to be more user-friendly, and thus we consider it
more appropriate for the exploratory nature of our study. The architecture adopted for
the task is a 2-layer Long short-term memory (LSTM) neural network with 500 hidden
units on both the encoder and decoder. This is a recurrent neural network (RNN) often
used for sequence-to-sequence learning. We use the default settings of OpenNMT at
this stage, given the exploratory nature of the study.

To avoid oversimplifying the problem, we built the training set by first eliminating
the formulae with only one variable from the dataset and then randomly selecting 19%

4 H. Cherukuri et al.

(of the size of the original dataset) formulae for a total of 2,308. The remaining for-
mulae were randomly split into training (8,048 items, 66% of the total) and validation
(1,836, 15%). The validation set is used to evaluate the convergence of the training. The
model that achieves the lowest perplexity value on this dataset is considered the best
and selected for evaluation in the test set. The whole training activity lasted 7.8 hours
on a common laptop.

We evaluate the results on the test set by means of different metrics to check the
quality of the translation. Evaluation is carried out by means of the Tilde MT online
tool (https://www.letsmt.eu/Bleu.aspx). The readability of the resulting formulae is as-
sessed with the BLEU score (BiLingual Evaluation Understudy) [19]. The BLEU score
takes into account both the difference in lengths of the sentences it compares (automatic
translation and expected one), and their compositions. It is computed as the product of
the brevity penalty and the N Gram overlap. Roughly speaking, the former assigns a pe-
nalization to translations that are too short compared to the closest reference length with
an exponential decay, while the latter counts how many single worlds, pairs, triplets, and
quadruples of words match their counterpart in the expected translations.

The visual representation provided by Tilde MT is used to identify translations with
BLEU score lower than 100%—suggesting incorrect translations—and manually assess
them. Indeed, here we want to ensure that the translation is actually 100% correct, and
while a high BLEU score between expected and translated sentence could indicate high
similarity, the actual difference (e.g., in terms of variable names, or in case a negation
is missing) could be crucial for the correctness of the translation.

The BLEU score is 93.53%, indicating high-quality translations, thus suggesting
that the translation of LTL formulae with neural machine translation is feasible. It is
worth noting that issues are known with the usage of automatic scores in machine trans-
lation applied to software engineering problems [12], and further studies with human
subjects need to be performed to actually assess the quality of the translation.

Looking at single cases with lower BLEU score, we see that while the syntax is
somehow correct, there are some difficulties with the U operator. For example, the for-
mula (c & q) U o is translated as There has to be a moment (the current one or in the
future) in which u holds, and, if it is not the current one, from the current moment to
that moment both c and q have to hold, BLEU = 94%. The translator introduces the
spurious u variable, possibly confused by the letter U of the operator. Similar situations
however occur also with other letters. Low BLEU scores are obtained also for complex
expressions such as (c U q) & (o U q), in which only the initial part of the formula
is translated, while the second part is entirely missing: There has to be a moment (the
current one or in the future) in which q holds, and, if it is not the current one, from the
current moment to that moment c has to hold, BLEU = 35.9%. The first issue could
be addressed by using specific keywords or characters for the operators, or experiment-
ing with longer translation units (i.e., words). The second problem could be solved by
segmenting the formula beforehand with rule-based approaches before feeding it to the
translator.

Consolidation The preliminary evaluation carried out suggests that the project idea is
feasible with currently available technologies. Further work is required, however, to
provide empirically sound evidence to answer RQ1. In particular, besides replicating

LTL to Natural Language 5

the current experiments with different neural network architectures, the next steps of
our research will address the issue of correctness, by studying the possible problems
leading to inaccuracy, and providing solutions towards the goal of 100% correctness [4].
Furthermore, we will extend the evaluation to nested operators, so that full coverage of
LTL formulae is possible.

Concerning readability of the translations, we plan to work in three directions. The
first one consists in assessing the readability of the translations in the context of the
experiments with human subjects carried out in relation to RQ3 (cf. Sect. 2.2). The
second direction aims to enhance the approach with automatic text simplification tech-
niques [2], which can be particularly useful in case of lengthy and hard-to-process trans-
lations. Finally, to be able to consider more complex variables, we will analyze the pos-
sibility of having a pre-processing system to simplify the formulae before translating
them, and a post-processing to integrate the original variables into the translation.

2.2 RQ2, RQ3: Visual Representations and Empirical Evaluation

The research activities related to RQ2 and RQ3 will be carried out in parallel with the
consolidation of the results of RQ1.

In relation to RQ2, we will first investigate possible solutions to augment LTL ex-
planations with visual information. This investigation will consider both the graphical
representation of the formulae, in line with e.g., Ahmed et al. [1], the representation of
the associated traces as done by the LTL Visualiser tool (https://quickstrom.
github.io/ltl-visualizer/), and the annotation of traces with NL text gen-
erated from the formulae. To select the appropriate means for graphical representation
of formulae, we will follow a design science approach [22]. Stemming from the litera-
ture, we will design an innovative prototypical solution, and we will perform iterations
to refine and validate it. Differently from the deep learning-based translation of LTL
formulae, the graphical representation is expected to leverage a rule-based algorithm.
Therefore, its correctness is to be ensured by construction—provided that systematic
tests against the requirements are carried out.

To answer RQ3, we will conduct a controlled experiment to measure if the gener-
ated explanations improve the understandability of LTL formulae. We will consider NL
explanations alone, and also in conjunction with the graphical representations devel-
oped according to RQ2. The experiment will be run with senior undergraduate students
and graduate students attending an RE course covering temporal logic. Participants of
control group and experimental one will be given a set of LTL formulae. For each for-
mula, they will be also given a set of traces, and their task will be to select all the traces
that satisfy the given formula—this exercise is regarded as a way to assess their correct
understanding of the formula. In addition to the formulae, the experimental group will
also be given as input the automatically generated textual explanation, also aided by
the graphical representation, for each of the formulae. Checking the performance of the
two groups will allow us to measure the quality of the support provided by our solution
in this activity. The experiment will be designed to evaluate the different contributions
given by the NL explanations, and by the graphical representations. After the activity,
participants will be asked to fill out a questionnaire to gather their perceptions about the

6 H. Cherukuri et al.

task and, for the experimental group, the support obtained by the explanation. To sup-
port evaluation of readability, we plan to also repeat the experiment with eye-tracking
devices. As an additional assessment, we will design an experiment specifically targeted
to understand if the explanations can be useful to check the correctness of the formal-
ization of the requirements. In this case, students in the control group will receive a
set of requirements, each one associated with a supposedly matching LTL formula, and
will need to check whether the formula is correct. The experimental group will have
to do the same, but will also receive the automatically generated NL translation of the
LTL formulae, augmented with visual information.

3 Conclusion and Future Works

This paper presents a research preview on providing means to make requirements ex-
pressed through LTL understandable to subjects with limited expertise in formal logic.
The proposed approach exploits state-of-the-art natural language processing (NLP)
techniques for machine translation to produce NL explanations of LTL formulae. Our
usage of machine translation is innovative with respect to previous literature in NLP
applied to RE [23], which focused more on translating NL into logic formulae or mod-
els, rather than providing textual explanations. As part of our approach, we also plan to
combine NL explanations with visual representations to improve understandability.

The proposed approach has the potential to be a useful tool to support students and
practitioners in learning LTL, but can also have applications in practice. For example, it
can facilitate mutual understanding in those industry-academia collaborations in which
practitioners provide the informal system specification, and formal methods experts
provide formal designs, as common, e.g. in the railway domain [9]. Furthermore, the
approach can be used to support verification via model checking of incomplete systems,
which is needed when a software is developed incrementally or through decomposition.
Existing solutions to this problem (e.g., Menghi et al. [17]) rely on the generation of
LTL constraints to be satisfied by novel components to be developed. In these contexts,
NL explanations can be particularly useful to requirements analysts and developers in
the design of the novel components.

Future works will address the RQs of this research preview, with the development
of appropriate visual representations, and with extensive empirical evaluations. At this
stage, to have a preliminary assessment of the feasibility of our idea, we focused only
on simple structures and we built the dataset using single letter variables, and provid-
ing very “mechanical” translations. In the next steps of our work, we will enrich our
dataset to include more flexibility, and improve the naturalness of the translations. To
extend the the applicability of our idea, we will also explore how to translate LTL state-
ments into structured NL requirements, for example in EARS [16] or FRETISH [11].
Using consistent sentence structures improves readability and understandability. This
approach would help towards your goal of making LTL formulae easier to understand.

References
1. Ahmed, Z., Benque, D., Berezin, S., Dahl, A.C.E., Fisher, J., Hall, B.A., Ishtiaq, S., Nanavati,

J., Piterman, N., Riechert, M., et al.: Bringing LTL model checking to biologists. In: VMCAI.

LTL to Natural Language 7

pp. 1–13. Springer (2017)
2. Al-Thanyyan, S.S., Azmi, A.M.: Automated text simplification: A survey. ACM Computing

Surveys (CSUR) 54(2), 1–36 (2021)
3. Bauer, A., Leucker, M., Schallhart, C.: Runtime verification for LTL and TLTL. ACM Trans-

actions on Software Engineering and Methodology (TOSEM) 20(4), 1–64 (2011)
4. Berry, D.M.: Empirical evaluation of tools for hairy requirements engineering tasks. Empir.

Softw. Eng. 26(5), 111 (2021)
5. Brunello, A., Montanari, A., Reynolds, M.: Synthesis of LTL formulas from natural language

texts: State of the art and research directions. In: 26th International Symposium on Temporal
Representation and Reasoning (TIME 2019) (2019)

6. Clarke, E., Grumberg, O., Kroening, D., Peled, D., Veith, H.: Model Checking. Cyber Phys-
ical Systems Series, MIT Press (2018)

7. Czepa, C., Zdun, U.: On the understandability of temporal properties formalized in linear
temporal logic, property specification patterns and event processing language. IEEE Trans-
actions on Software Engineering 46(1), 100–112 (2018)

8. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for finite-state
verification. In: ICSE’99. p. 411–420 (1999)

9. Ferrari, A., ter Beek, M.H.: Formal methods in railways: a systematic mapping study (2021),
https://arxiv.org/abs/2107.05413

10. Ghosh, S., Elenius, D., Li, W., Lincoln, P., Shankar, N., Steiner, W.: Arsenal: automatic re-
quirements specification extraction from natural language. In: NASA Formal Methods Sym-
posium. pp. 41–46. Springer (2016)

11. Giannakopoulou, D., Pressburger, T., Mavridou, A., Schumann, J.: Automated formalization
of structured natural language requirements. IST 137, 106590 (2021)

12. Gros, D., Sezhiyan, H., Devanbu, P., Yu, Z.: Code to comment “translation”: Data, metrics,
baselining & evaluation. In: ASE 2020. pp. 746–757. IEEE (2020)

13. Gupta, A., Agarwal, A., Singh, P., Rai, P.: A deep generative framework for paraphrase gen-
eration. In: Proceedings of the AAAI Conference on Artificial Intelligence. vol. 32 (2018)

14. Klein, G., Kim, Y., Deng, Y., Senellart, J., Rush, A.: OpenNMT: Open-source toolkit for
neural machine translation. In: ACL 2017. pp. 67–72 (2017)

15. Letier, E., Kramer, J., Magee, J., Uchitel, S.: Deriving event-based transition systems from
goal-oriented requirements models. Automated Software Engineering 15(2), 175–206 (2008)

16. Mavin, A., Wilkinson, P., Harwood, A., Novak, M.: Easy approach to requirements syntax
(ears). In: 2009 17th IEEE International Requirements Engineering Conference. pp. 317–
322. IEEE (2009)

17. Menghi, C., Spoletini, P., Chechik, M., Ghezzi, C.: Supporting Verification-Driven Incre-
mental Distributed Design of Components. In: FASE 2018. pp. 169–188. Springer (2018)

18. Nikora, A.P., Balcom, G.: Automated identification of LTL patterns in natural language re-
quirements. In: ISSRE’09. pp. 185–194. IEEE (2009)

19. Papineni, K., Roukos, S., Ward, T., Zhu, W.J.: Bleu: a method for automatic evaluation of
machine translation. In: ACL’02. pp. 311–318 (2002)

20. Siddharthan, A.: A survey of research on text simplification. ITL-International Journal of
Applied Linguistics 165(2), 259–298 (2014)

21. Van Lamsweerde, A., Letier, E.: Handling obstacles in goal-oriented requirements engineer-
ing. IEEE Transactions on software engineering 26(10), 978–1005 (2000)

22. Wieringa, R.J.: Design science methodology for information systems and software engineer-
ing. Springer (2014)

23. Zhao, L., Alhoshan, W., Ferrari, A., Letsholo, K.J., Ajagbe, M.A., Chioasca, E.V., Batista-
Navarro, R.T.: Natural language processing for requirements engineering: A systematic map-
ping study. ACM Computing Surveys (CSUR) 54(3), 1–41 (2021)

