
Noname manuscript No.
(will be inserted by the editor)

Comparing the Performance of Hebbian against
Backpropagation Learning using Convolutional
Neural Networks

Gabriele Lagani* · Fabrizio Falchi ·
Claudio Gennaro · Giuseppe Amato

Received: date / Accepted: date

Abstract In this paper, we investigate Hebbian learning strategies applied to
Convolutional Neural Network (CNN) training. We consider two unsupervised
learning approaches, Hebbian Winner-Takes-All (HWTA) and Hebbian Princi-
pal Component Analysis (HPCA). The Hebbian learning rules are used to train
the layers of a CNN in order to extract features that are then used for clas-
sification, without requiring backpropagation (backprop). Experimental com-
parisons are made with state-of-the-art unsupervised (but backprop-based)
Variational Auto-Encoder (VAE) training. For completeness,we consider two
supervised Hebbian learning variants (Supervised Hebbian Classifiers – SHC,
and Contrastive Hebbian Learning – CHL), for training the final classification
layer, which are compared to Stochastic Gradient Descent (SGD) training. We
also investigate hybrid learning methodologies, where some network layers are
trained following the Hebbian approach, and others are trained by backprop.
We tested our approaches on MNIST, CIFAR10 and CIFAR100 datasets. Our

This work was partially supported by the H2020 project AI4EU under GA 825619 and by
the H2020 project AI4Media under GA 951911.
Published version on Springer Neural Computing and Applications - doi:
10.1007/s00521-021-06701-4

G. Lagani
University of Pisa, Italy, 56124
E-mail: gabriele.lagani@phd.unipi.it
* Corresponding author

F. Falchi
ISTI-CNR Pisa, Italy, 56124
E-mail: fabrizio.falchi@cnr.it

C. Gennaro
ISTI-CNR Pisa, Italy, 56124
E-mail: claudio.gennaro@cnr.it

G. Amato
ISTI-CNR Pisa, Italy, 56124
E-mail: giuseppe.amato@cnr.it

2 G. Lagani et al.

results suggest that Hebbian learning is generally suitable for training early
feature extraction layers, or to retrain higher network layers in fewer training
epochs than backprop. Moreover, our experiments show that Hebbian learn-
ing outperforms VAE training, with HPCA performing generally better than
HWTA.

Keywords Hebbian Learning · Deep Learning · Neural Networks · Biologi-
cally Inspired

1 Introduction

The error backpropagation algorithm (backprop) has been used with great
success for training neural networks (e.g. [9,35]) on a variety of learning tasks.
However, neuroscientists doubt that it is biologically plausible and that it
models the real learning processes of the brain [27].

A possible biologically plausible learning mechanism could be based on the
so-called Hebbian principle: “Neurons that fire together wire together”. Start-
ing from this simple principle, it is possible to formulate different variants of
the Hebbian learning rule which are interesting also from the computer science
point of view. For example, Hebbian learning with Winner-Takes-All (HWTA)
competition [7] allows a group of neurons to learn to perform clustering on a
set of data. Another interesting variant is Sanger’s rule [33], which allows to
perform Principal Component Analysis (PCA) on the data in an online fash-
ion. In essence, Hebbian algorithms can be employed to extract features of
interest from data and provide a biologically plausible, efficient and online
solution for unsupervised learning tasks.

In the context of Convolutional Neural Networks (CNNs), the various net-
work layers act as feature extractors, with lower layers extracting low-level fea-
tures and next layers extracting progressively higher-level features. Therefore,
Hebbian learning algorithms could represent a promising option for training
such networks.

Previous works [37,36,2] already showed that Hebbian learning variants
are suitable for training relatively shallow networks (with two or three layers),
which are appealing for applications on constrained devices. For instance, in
[1], preliminary results showed that HWTA competition was effective to re-
train higher layers of a pre-trained network, achieving results comparable with
backprop, but requiring fewer training epochs, thus suggesting potential ap-
plications in the context of transfer learning.

In this work, we take a step further and apply Hebbian learning on deeper
network architectures. We perform a more detailed investigation of the HWTA
learning rule, and we analyze the Hebbian Principal Component Analysis
(HPCA) learning rule [33,13] to train deep CNNs.

We compared Hebbian algorithms, which are unsupervised, with another
popular unsupervised (but backprop-based) approach, namely the Variational
Auto-Encoder (VAE) [14]. We also deemed interesting to report the results ob-
tained with supervised backprop training on an equivalent network, in order to

Comparing the performance of Hebbian against back-propagation learning 3

give a more complete picture of the impact of different learning methodologies
on the training process.

Specifically, a six layer try-out network was considered. The network was
trained using the various learning approaches on the MNIST [20], CIFAR10,
and CIFAR100 [17] datasets. We evaluated the quality of the features extracted
from each layer by feeding these features to linear classifiers and evaluating the
resulting accuracy. We decided to adopt a simplified network model because
the focus of this work is not to evaluate the performance of a new complex
network model, but rather to compare different learning approaches on an
appropriate architecture. The six layer try-out network allows us to perform
extensive experimentation, and to get insights on the effect of different learning
paradigms on each network layer, evaluating the quality of the resulting feature
extractors on a layer by layer basis.

Furthermore, in order to assess the impact of switching from backprop
to Hebbian training layer by layer, we also considered hybrid models in which
some network layers are trained with backprop and others with Hebbian learn-
ing. Such hybrid models were also studied in [1], but only preliminary results
where presented involving just the HWTA learning rule and just one dataset.
In this work, we provide a more comprehensive evaluation of the HWTA rule,
as well as the HPCA rule, using more datasets in our experiments.

Although Hebbian learning is an unsupervised approach, supervised vari-
ants were also proposed in literature. Some of these [30,34,19] are based on the
concept of a teacher neuron coupled with a purely Hebbian learning rule. In
the following, we will refer to classifiers trained with such approach as Super-
vised Hebbian Classifiers (SHCs). Other approaches [22,25] are based on the
alternation between Hebbian and anti-Hebbian update phases, while also us-
ing a supervision signal. This kind of alternating strategy is called Contrastive
Hebbian Learning (CHL). Another contribution of this paper is to provide an
experimental evaluation of classifiers based on SHC and CHL on the various
datasets.

Results in this paper confirm that Hebbian learning can be integrated with
backprop, providing comparable accuracy when used to train lower or higher
network layers, while requiring fewer training epochs. Moreover, they show
that features learned by Hebbian training outperform VAE features in the
classification task, with the HPCA variant performing generally better than
HWTA.

The main contributions of this paper can be summarized as follows:

– Hebbian Winner-Takes-All (HWTA) and nonlinear Hebbian Principal Com-
ponent Analysis (HPCA) learning rule variants, properly integrated with
convolutional layers (Convolutional HWTA/HPCA), are applied to learn
feature extractors in CNNs;

– The results on various datasets are compared with those obtained by un-
supervised VAE, and the potentials and limitations of the methods are
highlighted; we also deemed interesting to report the results of supervised
backprop training in our discussion;

4 G. Lagani et al.

(a) Update step (b) Final position after convergence

Fig. 1: Hebbian updates with weight decay.

– We also provide an experimental evaluation of hybrid neural network train-
ing (i.e. a scenario in which some network layers are trained with backprop
and others with Hebbian approach) and supervised Hebbian learning vari-
ants on various datasets.

The remainder of this paper is structured as follows: Section 2 provides a
background on the related literature; Section 3 describes our scenario of in-
vestigation, including how Hebbian learning is integrated with convolutional
layers, hybrid network models, SHC and CHL classifiers; Section 4 delves into
the details of our experimental setup; In Section 5, the results of our simula-
tions are illustrated; Finally, Section 6 presents our conclusions and outlines
possible future developments.

2 Background and related work

Consider a single neuron with weight vector w and input x. Call y = wT x
the neuron output. The Hebbian learning rule, in its most basic form, can be
expressed mathematically as [8]:

wnew = wold +∆w (1)

where wnew is the updated weight vector, wold is the old weight vector, and
∆w is the weight update. The latter term is computed, according to Hebbian
learning, as follows:

∆w = η y x (2)

where η is the learning rate. Basically, this rule states that the weight on a
given synapse is reinforced when the input on that synapse and the output of
the neuron are simultaneously high. Therefore, connections between neurons
whose activations are correlated are reinforced.

Comparing the performance of Hebbian against back-propagation learning 5

(a) Update step (b) Final position after convergence

Fig. 2: Hebbian updates with Winner-Takes All competition.

2.1 Hebbian WTA

To prevent weights from growing unbounded, a weight decay term is generally
added. In the context of competitive learning [7,32,15], this is obtained as
follows:

∆w = η y x− η yw = η y (x−w) (3)

This rule has an intuitive interpretation: when an input vector is presented to
the neuron, its vector of weights is updated in order to move it closer to the
input, so that the neuron will respond more strongly when a similar input is
presented. When several similar inputs are presented to the neuron, the weight
vector converges to the center of the cluster formed by these inputs (Fig. 1).

When multiple neurons are involved in a complex network, the Winner-
Takes-All (WTA) [7,32] strategy can be adopted to force different neurons to
learn different patterns, corresponding to different clusters of inputs. When
an input is presented to a WTA layer, the neuron whose weight vector is
closest to the current input is elected as winner. Only the winner is allowed to
perform a weight update, thus moving its weight vector closer to the current
input (Fig. 2). If a similar input will be presented again in the future, the
same neuron will be more likely to win again. This strategy allows a group of
neurons to perform clustering on a set of data points (Fig. 2).

In recent works [37,36], WTA and the variant k-WTA (in which the k
neurons with highest activations are elected as winners) were applied in the
context of computer vision to train a three layer CNN to extract features from
images, in order to perform classification. Similar paradigms were also studied
in the context of Spiking Neural Networks (SNNs) [5,4]. These works showed
that the approach is suitable to train relatively shallow networks (e.g. with two
or three layers), achieving accuracy around 65-70% on CIFAR-10 and from
95% up to 98-99% on MNIST, which is comparable to backpropagation-based
approaches on networks of the same depth.

6 G. Lagani et al.

In [1,19], the authors provided preliminary experiments on a single dataset
(CIFAR10), by applying Hebbian-WTA learning to CNNs with up to six lay-
ers, comparing the results with those obtained by training the same network
with backprop. The WTA approach, as it is, is unsupervised, but a super-
vised Hebbian learning variant was also proposed in order to train the final
classification layer. The results confirmed that the approach was effective for
training shallow networks. It was also found that the approach was effective
for re-training the higher layers (including the final classifier) of a pre-trained
network. In addition, the algorithm required much fewer epochs than backprop
to converge.

The novel contributions of this work w.r.t. the previous one are that more
extensive experimentation is performed using multiple datasets (MNIST, CI-
FAR10, CIFAR100), and a novel learning rule is also explored, in addition to
Hebbian WTA. This is the Hebbian PCA learning rule, which is explained
in the next sub-section. Moreover, we added experiments with VAE, for com-
parison with state-of-the-art backprop-based unsupervised learning. Finally,
we performed experiments involving the supervised CHL and SHC methods,
making comparisons between the two approaches and SGD training.

2.2 Hebbian PCA

According to the definition given above, WTA enforces a kind of quantized in-
formation encoding in layers of neural network. Only one neuron activates to
encode the presence of a given pattern in the input. On the other hand, neural
networks trained with backpropagation exhibit a distributed representation,
where multiple neurons activate combinatorially to encode different proper-
ties of the input, resulting in an improved coding power. The importance of
distributed representations was also highlighted in [6,24].

A more distributed coding scheme could be obtained by having neurons
extract principal components from data, which can be achieved with Hebbian-
type learning rules [33,3]. In order to perform Hebbian PCA, a set of weight
vectors has to be determined, for the various neurons, that minimize the rep-
resentation error, defined as:

L(wi) = E[(x−
i∑

j=1

yj wj)
2] (4)

where the subscript i refers to the ith neuron in a given layer and E[·] is the
mean value operator. It can be pointed out that, in the case of linear neurons
and zero centered data, this reduces to the classical PCA objective of maxi-
mizing the output variance, with the weight vectors subject to orthonormality
constraints [33,3,13]. From now on, we assume that the input data are cen-
tered around zero. If this is not true, we just need to subtract the average E[x]
from the inputs beforehand.

Comparing the performance of Hebbian against back-propagation learning 7

It can be shown that the following learning rule minimizes the objective in
Eq. 4 [33]:

∆wi = ηyi(x−
i∑

j=1

yjwj) (5)

In case of nonlinear neurons, a solution to the problem can still be found [13].
Calling f() the neuron activation function, the representation error

L(wi) = E[(x−
i∑

j=1

f(yj) wj)
2] (6)

can be minimized with the following nonlinear version of the Hebbian PCA
rule:

∆wi = ηf(yi)(x−
i∑

j=1

f(yj)wj) (7)

Several variants of the Hebbian PCA approach were explored in literature
for the linear case [33,3,29,28], and applied in the context of computer vision
[2], but only for relatively shallow networks. In our experiments, we applied
the nonlinear version of the Hebbian PCA rule also on deeper networks, as
explained in the following sections.

2.3 Supervised Hebbian learning

While the Hebbian approaches discussed so far are unsupervised, Hebbian
learning can also be adapted to the supervised setting. We consider two ap-
proaches for doing so, the Supervised Hebbian Classifier (SHC) [19] and the
Contrastive Hebbian Learning (CHL) [22] classifier.

The idea behind the SHC approache is based on the concept of a teacher
neuron [30,34,37], which ideally provides the target signal to a trainable neu-
ron. The teacher’s signal replaces the actual output of the neuron so that,
when the Hebbian principle is applied, it reinforces the correlation between
the input and the teacher-provided output. In this way, when a similar input
is presented again, the neuron tends to produce a similar response. The SHC
is realized by applying this principle in combination with the learning rule in
Eq. 3. More specifically, calling t the teacher signal, the learning rule becomes:

∆w = η t (x−w) (8)

The teacher signal t should be 1 if the input’s class correspond to that as-
sociated with the neuron, and 0 otherwise. The effect of this rule is that the
neuron’s weight vector will converge towards the centroid of the cluster formed
by only those inputs associated with the target class that the neuron is sup-
posed to detect.

In CHL, the network alternates between two processing stages, a free phase
and a clamped phase. During the free phase, ordinary processing occurs. Let

8 G. Lagani et al.

us call denote the input and output of a neuron after the free phase as x− and
y−, respectively. An anti-Hebbian update is computed after the free phase,
according to the formula:

∆w− = −η y− x− (9)

During the clamped phase, the neuron outputs are clamped to a desired value.
Call x+ and y+ the input and output of a neuron after the clamped phase. At
this point, a regular Hebbian update is performed:

∆w+ = η y+ x+ (10)

This approach was shown to be able to approximate backprop training under
mild conditions [38], but in a biologically plausible and Hebbian fashion. CHL
can be applied for training a linear classification layer by replacing the clas-
sifier’s output y+ with the teacher signal t during the clamped phase (while
the inputs x+ = x− = x are the same for the two phases), thus leading to the
total update:

∆w = ∆w+ + ∆w−

= η (y+ x+ − y− x−)

= η x(t − y−)

(11)

Note that this update is equivalent to a gradient descent update of a linear
classifier on a Mean Squared Error (MSE) loss [8,22,25].

3 Hebbian learning on deep CNNs

In the following, we describe our approach to use Hebbian learning with deep
CNNs. We introduce the strategy used for integrating Hebbian learning meth-
ods with convolutional layers, and the technique used extend the Hebbian
learning approach to a supervised setting. In addition we introduce the try-
out neural network architecture used to evaluate our approach, and the hybrid
(Hebbian-backprop) learning modality.

3.1 Convolutional HWTA/HPCA

In order to be able to use the Hebbian rules with CNNs, we had to define a
proper way to integrate these rules with convolutional layers. In particular,
neurons at different horizontal and vertical offset of the convolutional layer
are constrained to have shared weights.

Previous works [36,2] handled convolutions with Hebbian learning by ex-
tracting random patches from the images, or by processing patches sequen-
tially, one at a time, and feeding each patch to a single column of convolutional
filters. This approach is poorly parallelizable, and does not exploit all the in-
formation contained in the image.

Comparing the performance of Hebbian against back-propagation learning 9

Fig. 3: Update averaging over horizontal and vertical dimensions.

In order to meet the convolutional constraints, we considered a different
approach, in which the learning rule was adapted as follows: each set of neurons
looking at the same portion of the image computed their updates by applying
the desired rule, the input x being the patch extracted from the image at
the specific horizontal and vertical position. We then averaged the updates
over the horizontal and vertical dimensions (Fig. 3). The resulting update was
applied to the kernel shared by all the neurons at different horizontal and
vertical locations. When mini-batches of inputs were used during training, the
update averaging was performed also over the mini-batch dimension.

3.2 SHC and CHL classifiers

In order to evaluate Hebbian learning also in teh supervised setting, we im-
plemented SHC and CHL classifiers. These classifiers are trained on top of
the features extracted from pre-trained networks, freezing the already trained
network layers.

SHCs are trained using the learning rule in Eq. 8. The teacher signal was
set to the target output that the neuron was required to produce for a given
input. Similarly, CHL classifiers are trained according to Eq. 11, where the
free phase output is the ordinary output provided by the classifier, and the
clamped phase output was set to the target value.

3.3 Network architecture and evaluation

The focus of this work is not to evaluate the performance of complex network
architecture. Rather we aim at evaluating and comparing the effects of Hebbian
learning approaches, supervised backprop, and VAE under various settings.

Accordingly, we defined a try-out model, where it is possible to perform a
large number of experiments and get insights about the effect of the learning
approach on various network layers, by evaluating the quality of the features

10 G. Lagani et al.

Fig. 4: The try-out neural network used for the experiments (image from [1]).

extracted from the network on a layer by layer basis. This architecture makes
also the experiments more practical to be reproduced by other researchers.
The following subsections illustrate the try-out network architecture and the
evaluation procedure.

3.3.1 Try-out neural network architecture

The deep neural network used in this work consists of six layers: five layers plus
a final linear classifier. The various layers are interleaved with other processing
stages (such as ReLU nonlinearities, max pooling, etc.), as shown in Fig. 4.
The architecture is inspired to the AlexNet [18], where one of the fully con-
nected layers was removed and, in general, the number of neurons was slightly
modified, to allow a finer grained analysis of the various learning approaches.
In our experiments we compared both HWTA and HPCA learning approaches,
with supervised backprop and VAE. Below, we also discuss more details of the
VAE and supervised backprop training.

3.3.2 Variational Auto-Encoder for unsupervised learning

We compared the unsupervised Hebbian approaches with another popular un-
supervised method, namely the Variational Auto-Encoder (VAE) [14]. We con-
sidered the VAE architecture shown in Fig. 5: the try-out network model in
Fig. 4, up to layer 5, acted as encoder, with a fully connected layer mapping
the output feature map to a 256 gaussian latent variable representation, while
a specular network branch acted as decoder.

3.3.3 Backprop training for supervised learning

The first part of our experiments is mainly focused on comparing unsuper-
vised learning approaches, i.e. Hebbian learning and VAE. Nonetheless, we
also deemed interesting to include the results provided by supervised back-
prop learning in our discussion. For this purpose, we also report the results
obtained by training a network with the same architecture as the try-out model

Comparing the performance of Hebbian against back-propagation learning 11

Fig. 5: The encoder-decoder architecture for the Variational Auto-Encoder
(VAE) experiments.

shown in Fig. 4, by using supervised end-to-end Stochastic Gradient Descent
(SGD) training on a cross-entropy loss metric.

3.3.4 Evaluating internal network layers

As we will also discuss in Section 5, we aim at evaluating how the Hebbian
approach affects the capability of learning feature extractors in the various
layers of the try-out neural network, on a layer by layer basis. In order to
evaluate the quality of the features extracted from the various layers of the
trained models, we cut the try-out network, in correspondence of the various
layers, and we placed a linear classifier on top of each already trained layer (for
example, Fig. 6 shows a classifier on top of the first network layer). Then, we
evaluated the accuracy achieved by classifying the corresponding features. This
was done for the Hebbian-trained networks and for the VAE network, in order
to compare the results, and also for the supervised backprop-trained network,
as we also deemed interesting to include these results in our discussion.

3.3.5 Hybrid network models

We also implemented hybrid network learning, i.e. scenarios in which some net-
work layers were trained with backprop and others were trained with Hebbian
approach (Fig. 7), in order to asses the impact on accuracy when replacing

12 G. Lagani et al.

Fig. 6: Classifier placed on top of the first layer of the network.

Fig. 7: An example of hybrid network model.

backprop layers with Hebbian equivalent. The models were constructed by re-
placing the upper layers of a pre-trained network with new ones, and training
from scratch using different learning algorithms. Meanwhile, the lower layers
remained frozen, in order to avoid adaptation to the new upper layers. Various
configurations of layers were considered.

Comparing the performance of Hebbian against back-propagation learning 13

4 Details of training

We implemented our experiments using PyTorch. 1

All the hyperparameters discussed below, resulted from a parameter search,
based on Coordinate Descent (CD) [16], to maximize the validation accuracy
in the respective scenarios. CD works as follows: starting from an initially se-
lected point in hyperparameter space, one coordinate (i.e. hyperparameter) at
a time is perturbed, and the resulting hyperparameter configuration is evalu-
ated. Hyperparameters are updated in the direction of the perturbation that
leads to an improvement in the result. The steps are the following: 1) get hy-
perparameter set according to CD based on previous validation results; 2) train
the model with the given hyperparameters and record the resulting validation
accuracy; 3) repeat from point 1 until no further improvement is obtained.

Concerning the datasets that we used, the MNIST dataset contains 60,000
training samples and 10,000 test samples, divided in 10 classes representing
handwritten digits from 0 to 9. In our experiments, we further divided the
training samples into 50,000 samples that were actually used for training, and
10,000 for validation. The CIFAR10 and CIFAR100 datasets contain 50,000
training samples and 10,000 test samples, divided in 10 and 100 classes, respec-
tively, representing natural images. In our experiments, we further divided the
training samples into 40,000 samples that were actually used for training, and
10,000 for validation. In order to obtain the best possible generalization, early
stopping was used in each training session, i.e. we chose as final trained model
the state of the network at the epoch when the highest validation accuracy
was recorded.

4.1 Training the try-out network

We used the try-out network architecture shown in Fig. 4. The model was fed
with RGB images of size 32x32 pixels as inputs. The network was trained using
Stochastic Gradient Descent (SGD) with error backpropagation and cross-
entropy loss, with the HPCA rule in Eq. 7 (in which the nonlinearity was set
to the ReLU function), and with the HWTA rule. During Hebbian training,
the final classifier was trained using the SHC approach, according to Eq. 8.

Training was performed in 20 epochs (although, for the Hebbian approach,
convergence was typically achieved in much fewer epochs) using mini-batches
of size 64.

For SGD training, the initial learning rate was set to 10−3 and kept con-
stant for the first ten epochs, while it was halved every two epochs for the
remaining ten epochs. We also used momentum coefficient 0.9, and Nesterov
correction [10].

Contrarily to standard momentum (which first corrects the accumulated
momentum with the current gradient estimate and then updates the weight

1 The code to reproduce the experiments is available at:
github.com/GabrieleLagani/HebbianPCA/tree/hebbpca.

14 G. Lagani et al.

in the resulting direction), Nesterov method first updates the weights in the
momentum direction, and then applies a correction to the accumulated mo-
mentum given by the gradient estimate at the new location. This look-ahead
strategy helps correcting optimization trajectories and improves convergence.

Dropout rate was set to 0.5. L2 penalty was also used to improve regular-
ization. We recall that this is a regularization term in the form λ |w|2 that is
added to the loss function, in order to penalize large weights. Here, λ is the
weight decay coefficient, which was set to 5 · 10−2 for MNIST and CIFAR10,
and to 10−2 for CIFAR100.

In the HPCA and HWTA training, the learning rate was set to 10−3. No
L2 regularization or dropout was used in this case, since the learning method
did not present overfitting issues. In case of HWTA training, images were
preprocessed by a whitening transformation as described in [17], although this
step didn’t have any significant effect for the other training methods.

4.2 VAE training

VAE training of the network in Fig. 5 was performed in the same fashion
as for the try-out network training but, obviously, in an unsupervised image
encoding-decoding task. Specifically, the model was trained using the β-VAE
[11] Variational Lower-Bound unsupervised criterion, with coefficient β = 0.5.
No L2 penalty nor dropout was used in this case. Note that the decoder part
was removed at test time and the features extracted from encoder layers were
used for classification.

4.3 Training of classifiers on top of internal layers

The SGD linear classifiers placed on top of the various network layers, as shown
in Fig. 6, were trained with supervision, in the same way as we described above
for training the whole try-out network. Learning rate was set to 10−3 and the
L2 penalty term was reduced to 5 · 10−4.

CHL classifiers were also trained as above, using the desired target as
teacher signal, with learning rate set to 10−3 and L2 penalty 5 · 10−4.

The SHC linear classifiers placed on top of the various network layers were
trained with learning rate set to 10−3, but no learning rate scheduling nor L2
regularization was needed in this case.

4.4 Hybrid network training

Hybrid network models were trained using various combinations of Hebbian
and backprop layers, as in Fig. 7. Training was performed in a bottom-up
approach, i.e. we first started by training the base try-out network with back-
prop, then we split the network at a desired point, removing all the layers on
top, and replacing them with new Hebbian layers. The new Hebbian layers

Comparing the performance of Hebbian against back-propagation learning 15

were trained using HWTA or HPCA, as described above, while the bottom
layers remained frozen. This process produces a network whose bottom layers
are trained with backprop, and top layers are trained with Hebbian. Again,
a new splitting point can be chosen among the Hebbian layers, in order to
remove all the Hebbian layers on top of the desired point, replacing them with
backprop layers. Retraining the new layers with SGD, while the bottom layers
are kept frozen, produces a network alternating backprop-Hebbian-backprop
layers, as in Fig. 7. SGD training for the first or the last part of the hybrid
networks (i.e. bottom layers or top layers) was performed as described above,
but using L2 penalty 5 · 10−4 for the top layers, when the last splitting point
was right before the ultimate or penultimate layer (hence, for retraining the
last or the last two layers), and 5 · 10−2 in all the other cases.

5 Results

In the following subsections, we present the experimental results on MNIST,
CIFAR10, and CIFAR100 datasets. For each of these datasets, we present
Tables 1, 3, 5, showing the accuracy obtained by a linear classifier trained on
top of the features extracted from each network layer, in order to asses the
quality of the respective features in the classification task. We compare the
results of unsupervised HPCA, HWTA and VAE training. Even though we
mainly focus on comparing unsupervised methods, we also deemed interesting
to report the results of supervised backprop (BP) training in our discussion. We
also report, in Tables 2, 4, 6, the results obtained when retraining higher layers
of a network pre-trained with backprop, together with the required number of
epochs to convergence, in order to assess the potential of Hebbian approaches
to tasks that involve retraining of higher network layers. In these cases, the
final classification layer was trained by SHC, because, as we observed from
other experiments (see Appendix A), this method performed better than CHL
on higher network layers, in terms of trade-off between accuracy and training
epochs.

Supplementary results, included in Appendix A, show the results of hybrid
training, and the comparison between SHC, CHL, and SGD classifiers.

We performed five independent iterations of each experiment, using differ-
ent seeds, averaging the results and computing 95% confidence intervals.

5.1 MNIST

In this sub-section we analyze the behavior of Hebbian learning approaches in
a simple scenario of digit recognition on the MNIST dataset.

5.1.1 Classifiers on top of internal layers

In Tab. 1, we report the MNIST test accuracy obtained by classifiers placed on
top of the various layers of the try-out network. We report the results obtained

16 G. Lagani et al.

on the network trained with, respectively, supervised backprop (BP), VAE,
HPCA, and HWTA.

Unsupervised approaches typically suffer from a decrease in performance
when going deeper with the number of layers. The reason is that they are not
able to exploit a supervision signal that enables the formation of task-specific
features that are essential to boost the performance on higher layers. This can
be observed both for HWTA and VAE training. With the HPCA approach, the
problem seems to alleviate, and the accuracy remains pretty much constant
when we move to deeper layers. In particular, the HPCA approach exhibits an
increase of almost 2% points w.r.t. HWTA on the features extracted from the
fourth convolutional layer. The Hebbian features appear to behave comparably
or better than VAE features, especially on higher layers, with an improvement
up to 8% points on the fifth layer. Moreover, we can observe that both Hebbian
approaches reach higher performance w.r.t. backprop for the features extracted
from the first two layers, suggesting possible applications of Hebbian learning
for training relatively shallow networks.

5.1.2 Re-training higher network layers

Tab. 2 aims to show that it is possible to replace the last two network layers
(including the final classifier) with new ones, and re-train them with Hebbian
approach (in this case, the supervised Hebbian algorithm is used to train the fi-
nal classifier), achieving accuracy comparable to backprop, but requiring fewer
training epochs (1 vs 15, respectively). This suggests potential applications in
the context of transfer learning [39].

5.2 CIFAR10

In the previous sub-section, we considered a relatively simple image recognition
task involving digits. In this section, we aim at analysing Hebbian learning
approaches in a slightly more complex task involving natural image recognition
on the CIFAR10 dataset.

5.2.1 Classifiers on top of internal layers

In Tab. 3, we report the CIFAR10 test accuracy obtained by classifiers placed
on top of the various layers of the network. We report the results obtained
on the try-out network trained with, respectively, supervised backprop (BP),
VAE, HPCA, and HWTA.

Also in this case, the HWTA and VAE approaches suffer from a decrease in
performance when going deeper with the number of layers. With the HPCA ap-
proach, this problem seems to alleviate, and the accuracy remains pretty much
constant when we move to deeper layers. In particular, the HPCA approach ex-
hibits an increase of almost 5% points w.r.t. HWTA on the features extracted
from the fifth layer. Still, further research is needed in order to close the gap

Comparing the performance of Hebbian against back-propagation learning 17

Table 1: MNIST accuracy (top-1) and 95% confidence intervals on features
extracted from convolutional network layers. Underline represents best overall
result. Bold represents best result among unsupervised methods. The Hebbian
approaches appear to be comparable or superior to VAE, especially when
higher layer features are considered. Moreover, HPCA improves over HWTA
on higher layer features. It is also possible to observe that Hebbian training
achieves higher results than supervised backprop when lower layer features are
concerned.

Layer BP Acc.(%) VAE Acc. (%) HPCA Acc.(%) HWTA Acc.(%)
1 95.80 ±0.02 98.67 ±0.03 98.23 ±0.09 98.16 ±0.05

2 97.26 ±0.01 98.90 ±0.03 98.47 ±0.09 98.52 ±0.06

3 98.77 ±0.01 98.30 ±0.02 98.47 ±0.09 98.55 ±0.02

4 99.56 ±0.01 94.68 ±0.04 98.48 ±0.08 96.58 ±0.04

5 99.59 ±0.02 90.32 ±0.06 98.53 ±0.08 97.15 ±0.01

Table 2: MNIST accuracy (top-1), 95% confidence intervals, and convergence
epochs obtained by retraining higher layers of a pre-trained network. Super-
vised backprop (BP), the HPCA approach, and the HWTA approach are com-
pared. It can be observed that Hebbian learning achieves comparable results
to BP, but in fewer training epochs.

L1 L2 L3 L4 L5 L6 Method Acc.(%) Num. Epochs

B B B B B G BP 99.59 ±0.02 15

B B B B B H SHC 99.62 ±0.01 1

B B B B H H
HPCA + SHC 99.55 ±0.03 1
HWTA + SHC 99.55 ±0.02 1

Table 3: CIFAR10 accuracy (top-1) and 95% confidence intervals on features
extracted from convolutional network layers. Underline represents best overall
result. Bold represents best result among unsupervised methods. The Hebbian
approaches appear to perform better than VAE, especially when higher layer
features are considered. Moreover HPCA improves over HWTA on higher layer
features. It is also possible to observe that Hebbian training achieves compa-
rable results with backprop when lower layer features are concerned.

Layer BP Acc.(%) VAE Acc. (%) HPCA Acc.(%) HWTA Acc.(%)
1 61.59 ±0.08 60.71 ±0.16 64.69 ±0.29 64.79 ±0.34

2 67.67 ±0.11 56.32 ±0.31 65.92 ±0.14 64.35 ±0.35

3 73.87 ±0.15 41.31 ±0.16 64.43 ±0.21 59.69 ±0.16

4 83.88 ±0.04 29.58 ±0.07 61.24 ±0.21 48.56 ±0.17

5 84.95 ±0.25 26.95 ±0.12 61.12 ±0.33 46.88 ±0.23

18 G. Lagani et al.

Table 4: CIFAR10 accuracy (top-1), 95% confidence intervals, and conver-
gence epochs obtained by retraining higher layers of a pre-trained network.
Supervised backprop (BP), the HPCA approach, and the HWTA approach
are compared. It can be observed that Hebbian learning achieves competitive
results w.r.t. BP, but in fewer training epochs.

L1 L2 L3 L4 L5 L6 Method Acc.(%) Num. Epochs

B B B B B G BP 84.95 ±0.25 12

B B B B B H SHC 84.59 ±0.01 1

B B B B H H
HPCA + SHC 81.48 ±0.16 1
HWTA + SHC 82.48 ±0.14 1

with backprop also when more layers are added, as it would be desirable to
make the Hebbian approach suitable as a biologically plausible alternative to
backprop for training deep networks. The Hebbian features appear to behave
better than VAE features, especially on higher layers, with an improvement up
to 24% points on the fifth layer. Moreover, we can observe that both Hebbian
approaches reach higher or comparable performance w.r.t. backprop for the
features extracted from the first two layers, suggesting possible applications of
Hebbian learning for training relatively shallow networks.

5.2.2 Re-training higher network layers

Tab. 4 aims to show that it is possible to replace the last two network layers
(including the final classifier) with new ones, and re-train them with Hebbian
approach (in this case, the supervised Hebbian algorithm is used to train the
final classifier), achieving accuracy comparable to backprop (with a peak per-
formance drop of just 2-3% points when the last two layers are replaced), but
requiring fewer training epochs (1 vs 12, respectively). This suggests potential
applications in the context of transfer learning [39].

5.3 CIFAR100

In this sub-section, we want to further analyse the scalability of Hebbian learn-
ing to a more complex task of natural image recognition involving more classes,
namely CIFAR100. In this case, we evaluated the top-5 accuracy, given that CI-
FAR100 contains a much larger number of classes than the previous datasets.

5.3.1 Classifiers on top of internal layers

In Tab. 5, we report the CIFAR100 top-5 test accuracy obtained by classifiers
placed on top of the various layers of the try-out network. We report the results
obtained on the network trained with, respectively, supervised backprop (BP),
VAE, HPCA, and HWTA.

Comparing the performance of Hebbian against back-propagation learning 19

Table 5: CIFAR100 accuracy (top-5) and 95% confidence intervals on features
extracted from convolutional network layers. Underline represents best overall
result. Bold represents best result among unsupervised methods. The Hebbian
approaches appear to perform better than VAE, especially when higher layer
features are considered. Moreover HPCA improves over HWTA on higher layer
features. It is also possible to observe that Hebbian training achieves compet-
itive results w.r.t. backprop when lower layer features are concerned.

Layer BP Acc.(%) VAE Acc. (%) HPCA Acc.(%) HWTA Acc.(%)
1 51.67 ±0.10 58.46 ±0.12 60.94 ±0.09 59.56 ±0.13

2 60.84 ±0.19 54.63 ±0.20 62.24 ±0.15 58.49 ±0.20

3 67.01 ±0.13 39.46 ±0.15 64.17 ±0.22 52.97 ±0.22

4 78.85 ±0.10 26.42 ±0.21 61.27 ±0.24 37.38 ±0.12

5 80.74 ±0.05 23.03 ±0.12 59.51 ±0.20 37.87 ±0.21

Table 6: CIFAR100 accuracy (top-5), 95% confidence intervals, and conver-
gence epochs obtained by retraining higher layers of a pre-trained network.
The network fully trained with backprop (BP), the HPCA approach, and the
HWTA approach are compared. It can be observed that HPCA performs better
than HWTA, and achieves competitive results w.r.t. BP, but in fewer training
epochs.

L1 L2 L3 L4 L5 L6 Method Acc.(%) Num. Epochs

B B B B B G BP 80.74 ±0.05 7

B B B B B H SHC 79.45 ±0.02 1

B B B B H H
HPCA + SHC 77.66 ±0.09 1
HWTA + SHC 63.62 ±0.27 1

Again, VAE and HWTA approaches suffer from a decrease in performance
when going deeper with the number of layers. With the HPCA approach, this
problem seems to alleviate, and the accuracy remains pretty much constant
when we move to deeper layers. In particular, the HPCA approach exhibits
an increase of almost 24% points w.r.t. HWTA on the features extracted from
the fourth convolutional layer. The Hebbian features appear to behave com-
parably or better than VAE features, especially on higher layers, with an
improvement of up to 36% points on the fifth layer. Moreover, we can observe
that both Hebbian approaches reach competitive performance w.r.t. backprop
for the features extracted from the first three layers, with HPCA in partic-
ular improving by 9% points over BP on the first layer, suggesting possible
applications of Hebbian learning for training relatively shallow networks.

5.3.2 Re-training higher network layers

Tab. 6 aims to show that it is possible to replace the last two network layers
(including the final classifier) with new ones, and re-train them with Hebbian
approach (in this case, the supervised Hebbian algorithm is used to train

20 G. Lagani et al.

the final classifier), achieving accuracy comparable to backprop (with just
a performance drop smaller than 3% points when the last two layers are re-
trained with HPCA), but requiring fewer training epochs (1 vs 7, respectively).
This suggests potential applications in the context of transfer learning [39].
Moreover, it can be observed that HPCA performs better than HWTA.

5.4 Pros and cons of Hebbian learning

We conclude this Section with a list of pros and cons of Hebbian learning
approaches, emerging from the observed results.

Pros of Hebbian learning:
– Effective for training low-level feature extractors;
– Produces better features than VAE for the classification task;
– Effective for re-training higher network layers in fewer epochs than other
approaches;
– Some hybrid combinations of Hebbian and backprop help improving perfor-
mance in some cases, as can be observed in Appendix A;

Cons of Hebbian learning:
– Not effective for training intermediate layers;
– Even though HPCA provides a reduction in the gap between unsupervised
and supervised methods, the latter are still preferable for end-to-end network
training;
– Finding the best combination of Hebbian and backprop layers is not imme-
diate and requires exploring various network configurations.

6 Conclusions and future work

In summary, our results suggest that the Hebbian approach is suitable for
training early feature extraction layers or to re-train the final layers of a pre-
trained deep neural network, requiring fewer training epochs than other meth-
ods. This suggests potential applications in the context of transfer learning,
where an experimenter wants to re-train or fine-tune higher network layers of
a pre-trained model on a new task.

Hebbian approaches outperform VAE training, reducing the gap between
unsupervised methods and supervised backprop training. Moreover, the HPCA
methods seems to perform generally better than HWTA.

Moreover, supplementary results in Appendix A also show that some hybrid
combinations of backprop and Hebbian layers appear to be helpful in some
cases, offering performance higher than either Hebbian or supervised backprop
alone.

Integration of Hebbian learning and deep learning is still an emerging topic.
However, our results are encouraging, motivating further interest in this di-
rection.

Comparing the performance of Hebbian against back-propagation learning 21

In future works, further improvements might come from exploring more
complex feature extraction strategies, which can also be formulated as Hebbian
learning variants, such as Independent Component Analysis (ICA) [12] and
sparse coding [24,23,31]. It might be promising also to apply Hebbian learning
to enhance current state-of-the-art network architectures, either as a stand-
alone learning algorithm, or in combination with backprop, as an inductive
bias for regularization [26], in a semi-supervised fashion.

Hebbian learning already found application in the context of meta-learning,
with the differentiable plasticity model [21]. In this case, the simple Hebbian
learning rule, ∆w = η y x, was used, but further improvements might come
from applying more advanced Hebbian rules, such as those studied in this
paper.

Finally, an exploration on the behavior of such algorithms w.r.t. adversarial
examples also deserves attention.

Conflict of interest

The authors declare that they have no conflict of interest.

Appendix

A Supplementary Results

In this Appendix, we present the additional results on MNIST, CIFAR10, and CIFAR100
datasets. Tables 7, 9, 11, show the results of hybrid training, in which part of the network
layers are trained by supervised backprop training, and part with the Hebbian approach.
Tables 8, 10, 12, show the results of SHC and CHL classifiers, compared with SGD classifiers,
trained on the features extracted from the various layers of a pre-trained network.

A.1 MNIST

A.1.1 Hybrid network models

In Tab. 7, we report the results obtained on the MNIST test set with hybrid networks. In
each row, we reported the results for a network with a different combination of Hebbian
and backprop layers (the first row below the header represent the network fully trained with
backprop). We used the letter ”H” to denote layers trained using the Hebbian approach,
and the letter ”B” for layers trained using backprop. The letter ”G” is used for the final
classifier (corresponding to the sixth layer) trained with gradient descent. The final classifier
(corresponding to the sixth layer) was trained with SGD in all the cases, in order to make
comparisons on equal footings. The last two columns show the resulting accuracy obtained
with the corresponding combination of layers.

Tab. 7 allows us to understand what is the effect of switching a specific layer (or group of
layers) in a network from backprop to Hebbian training. The first row represents the network
fully trained with backprop. In the next rows we can observe the results of a network in
which a single layer was switched. Both HPCA and HWTA exhibit comparable results w.r.t.
full backprop training. A result slightly higher than full backprop is observed when layer 5 is
replaced, suggesting that some combinations of layers might actually be helpful to increase

22 G. Lagani et al.

Table 7: MNIST accuracy (top-1) and 95% confidence intervals of hybrid net-
work models. The first six columns describe the network configuration: H de-
notes a Hebbian layer, B denotes a backprop layer, G is used for the final
classifier, trained by Gradient Descent but without the need for backpropaga-
tion. The first row refers to the network fully trained with backprop, the other
rows compare HPCA and HWTA approaches.

L1 L2 L3 L4 L5 L6 HPCA Acc.(%) HWTA Acc.(%)

B B B B B G 99.59 ±0.02 99.59 ±0.02

H B B B B G 99.61 ±0.02 99.48 ±0.03

B H B B B G 99.51 ±0.03 99.48 ±0.05

B B H B B G 99.58 ±0.02 99.55 ±0.02

B B B H B G 99.60 ±0.02 99.61 ±0.02

B B B B H G 99.61 ±0.02 99.66 ±0.02

H H B B B G 99.42 ±0.02 99.35 ±0.02

B H H B B G 99.35 ±0.06 99.29 ±0.02

B B H H B G 99.50 ±0.03 99.42 ±0.02

B B B H H G 99.54 ±0.02 99.51 ±0.01

H H H B B G 99.23 ±0.04 99.22 ±0.05

B H H H B G 99.16 ±0.07 98.99 ±0.03

B B H H H G 99.30 ±0.04 99.08 ±0.02

H H H H B G 99.04 ±0.06 98.45 ±0.04

B H H H H G 98.63 ±0.03 98.25 ±0.06

H H H H H G 98.53 ±0.08 97.15 ±0.01

performance. In the successive rows, more layers are switched from backprop to Hebbian
training, and a slight performance drop is observed, but the HPCA approach seems to
perform generally better than HWTA when more Hebbian layers are involved. The most
prominent difference appears when we finally replace all the network layers with Hebbian
equivalent, in which case the HPCA approach shows an increase of more than 2% points
over HWTA.

A.1.2 Comparison of SHC and SGD

Tab. 8 shows a comparison between SHC and SGD classifiers placed on the various layers of
a network pre-trained with backprop. The results suggest that SHC is effective in classifying
high-level features, achieving comparable accuracy as SGD, but requiring fewer training
epochs. On the other hand, SHC is not so effective on lower layer features, although the
convergence time is still fast, suggesting that the supervised Hebbian approach benefits
from the use of more abstract latent representations. CHL appears to perform comparably
to SGD training.

A.2 CIFAR10

A.2.1 Hybrid network models

In Tab. 9, we report the results obtained on the CIFAR10 test set with hybrid networks.
The table, which has the same structure as that of the previous sub-section, allows us to
understand what is the effect of switching a specific layer (or group of layers) in a network
from backprop to Hebbian training. The first row represents the network fully trained with

Comparing the performance of Hebbian against back-propagation learning 23

Table 8: MNIST accuracy (top-1), 95% confidence intervals, and convergence
epochs of SHC, CHL, and SGD classifiers on top of various network layer
features. It can be observed that SHC achieves comparable classification ac-
curacy as an SGD classifier, when placed on top of higher layer features, while
requiring fewer training epochs. CHL performs comparably to SGD.

Layer Method Acc. (%) Num. Epochs

1
SGD 95.80 ±0.02 14
SHC 89.06 ±0.04 10
CHL 95.82 ±0.07 17

2
SGD 97.26 ±0.01 13
SHC 95.08 ±0.03 11
CHL 97.32 ±0.05 14

3
SGD 98.77 ±0.01 13
SHC 98.47 ±0.01 3
CHL 98.63 ±0.01 15

4
SGD 99.56 ±0.01 5
SHC 99.56 ±0.01 6
CHL 99.57 ±0.01 7

5
SGD 99.59 ±0.02 15
SHC 99.62 ±0.01 1
CHL 99.62 ±0.01 1

Table 9: CIFAR10 accuracy (top-1) and 95% confidence intervals of hybrid
network models. The first six columns describe the network configuration: H
denotes a Hebbian layer, B denotes a backprop layer, G is used for the final
classifier, trained by Gradient Descent but without the need for backpropaga-
tion. The first row refers to the network fully trained with backprop, the other
rows compare HPCA and HWTA approaches.

L1 L2 L3 L4 L5 L6 HPCA Acc.(%) HWTA Acc.(%)
B B B B B G 84.95 ±0.25 84.95 ±0.25

H B B B B G 82.84 ±0.17 84.30 ±0.26

B H B B B G 81.91 ±0.10 81.40 ±0.14

B B H B B G 79.01 ±0.29 80.88 ±0.02

B B B H B G 79.20 ±0.24 81.09 ±0.16

B B B B H G 84.69 ±0.09 84.46 ±0.07

H H B B B G 77.29 ±0.45 79.97 ±0.46

B H H B B G 76.54 ±0.27 68.13 ±0.19

B B H H B G 75.53 ±0.24 73.43 ±0.17

B B B H H G 74.49 ±0.19 78.53 ±0.12

H H H B B G 72.30 ±0.28 68.71 ±0.18

B H H H B G 71.00 ±0.17 49.22 ±0.21

B B H H H G 69.53 ±0.23 68.26 ±0.14

H H H H B G 68.17 ±0.15 52.53 ±0.18

B H H H H G 63.40 ±0.27 45.29 ±0.05

H H H H H G 61.12 ±0.33 46.88 ±0.23

24 G. Lagani et al.

Table 10: CIFAR10 accuracy (top-1), 95% confidence intervals, and conver-
gence epochs of SHC, CHL, and SGD classifiers on top of various network
layer features. It can be observed that SHC achieves comparable classification
accuracy as an SGD classifier, when placed on top of higher layer features,
while requiring fewer training epochs. CHL performs comparably to SGD.

Layer Method Acc. (%) Num. Epochs

1
SGD 61.59 ±0.08 16
SHC 48.36 ±0.17 1
CHL 61.42 ±0.25 8

2
SGD 67.67 ±0.11 17
SHC 58.87 ±0.08 1
CHL 67.06 ±0.20 8

3
SGD 73.87 ±0.15 15
SHC 70.94 ±0.05 2
CHL 72.28 ±0.38 8

4
SGD 83.88 ±0.04 12
SHC 82.78 ±0.03 1
CHL 84.10 ±0.12 3

5
SGD 84.95 ±0.25 12
SHC 84.59 ±0.01 1
CHL 85.22 ±0.09 1

backprop. In the next rows we can observe the results of a network in which a single layer was
switched. Both HPCA and HWTA exhibit competitive results w.r.t. full backprop training,
when they are used to train the first or the fifth network layer. A small, but more significant
drop is observed when inner layers are switched from backprop to Hebbian. In the successive
rows, more layers are switched from backprop to Hebbian training, and a higher performance
drop is observed, but the HPCA approach seems to perform better than HWTA when more
Hebbian layers are involved. The most prominent difference appears when we finally replace
all the deep network layers with Hebbian equivalent, in which case the HPCA approach
shows an increase of 15% points over HWTA.

A.2.2 Comparison of SHC and SGD

Tab. 10 shows a comparison between SHC, CHL, and SGD classifiers placed on the various
layers of a network pre-trained with backprop. The results suggest that SHC is effective in
classifying high-level features, achieving comparable accuracy as SGD, but requiring fewer
training epochs. On the other hand, SHC is not so effective on lower layer features, although
the convergence time is still fast, suggesting that the supervised Hebbian approach benefits
from the use of more abstract latent representations. CHL appears to perform comparably
to SGD training.

A.3 CIFAR100

A.3.1 Hybrid network models

In Tab. 11, we report the results obtained on the CIFAR100 test set with hybrid networks.
The table, which has the same structure as those of the previous sub-sections, allows us to
understand what is the effect of switching a specific layer (or group of layers) in a network

Comparing the performance of Hebbian against back-propagation learning 25

Table 11: CIFAR100 accuracy (top-5) and 95% confidence intervals of hybrid
network models. The first six columns describe the network configuration: H
denotes a Hebbian layer, B denotes a backprop layer, G is used for the final
classifier, trained by Gradient Descent but without the need for backpropaga-
tion. The first row refers to the network fully trained with backprop, the other
rows compare HPCA and HWTA approaches.

L1 L2 L3 L4 L5 L6 HPCA Acc.(%) HWTA Acc.(%)
B B B B B G 80.74 ±0.05 80.74 ±0.05

H B B B B G 76.46 ±0.34 76.84 ±0.41

B H B B B G 77.41 ±0.30 75.80 ±0.31

B B H B B G 78.44 ±0.18 77.29 ±0.27

B B B H B G 77.97 ±0.17 74.42 ±0.12

B B B B H G 82.46 ±0.11 77.42 ±0.07

H H B B B G 72.32 ±0.34 72.81 ±0.28

B H H B B G 75.41 ±0.29 77.10 ±0.24

B B H H B G 75.12 ±0.26 65.89 ±0.05

B B B H H G 76.03 ±0.15 70.09 ±0.13

H H H B B G 70.26 ±0.20 66.49 ±0.42

B H H H B G 69.13 ±0.22 51.85 ±0.24

B B H H H G 69.61 ±0.13 57.61 ±0.29

H H H H B G 66.34 ±0.21 42.88 ±0.32

B H H H H G 62.27 ±0.12 41.42 ±0.13

H H H H H G 59.51 ±0.20 37.87 ±0.21

from backprop to Hebbian training. The first row represents our network fully trained with
backprop. In the next rows we can observe the results of a network in which a single layer
was switched. HWTA exhibits competitive results w.r.t. full backprop when it is used to
train the first or the fifth network layer. A small, but more significant drop is observed when
inner layers are switched from backprop to HWTA. On the other hand, the HPCA approach
seems to perform generally better than HWTA. In particular, it slightly outperforms full
backprop (by 2% points), when used to train the fifth network layer, suggesting that this
kind of hybrid combinations might be useful when more complex tasks are involved. In the
successive rows, more layers are switched from backprop to Hebbian training, and a higher
performance drop is observed, but still, the HPCA approach exhibits a better behavior than
HWTA. The most prominent difference appears when we finally replace all the network
layers with Hebbian equivalent, in which case the HPCA approach shows an increase of 22%
points over HWTA.

A.3.2 Comparison of SHC and SGD

Tab. 12 shows a comparison between SHC, CHL, and SGD classifiers placed on the vari-
ous layers of a network pre-trained with backprop. In this case, SHC achieves comparable
accuracy as SGD (even with a slight improvement of 6% points on layer 3), but requiring
fewer training epochs, suggesting that the approach might be especially useful when more
complex tasks are involved. On the other hand, in this case, lower performance is observed
when CHL is used, suggesting that this approach has more difficulties in scaling to more
complex datasets.

26 G. Lagani et al.

Table 12: CIFAR100 accuracy (top-5), 95% confidence intervals, and conver-
gence epochs of SHC, CHL, and SGD classifiers on top of various network layer
features. It can be observed that SHC achieves comparable classification ac-
curacy as an SGD classifier, while requiring fewer training epochs. CHL seems
to perform worse on this dataset.

Layer Method Acc. (%) Num. Epochs

1
SGD 51.67 ±0.10 14
SHC 51.70 ±0.12 1
CHL 29.12 ±0.54 13

2
SGD 60.84 ±0.19 11
SHC 63.67 ±0.06 1
CHL 31.94 ±0.31 12

3
SGD 67.01 ±0.13 15
SHC 73.99 ±0.30 1
CHL 25.34 ±0.31 13

4
SGD 78.85 ±0.10 15
SHC 79.98 ±0.04 1
CHL 27.34 ±0.77 13

5
SGD 80.74 ±0.05 7
SHC 79.45 ±0.02 1
CHL 41.32 ±0.43 12

References

1. Amato, G., Carrara, F., Falchi, F., Gennaro, C., Lagani, G.: Hebbian learning meets
deep convolutional neural networks. In: International Conference on Image Analysis
and Processing, pp. 324–334. Springer (2019)

2. Bahroun, Y., Soltoggio, A.: Online representation learning with single and multi-layer
hebbian networks for image classification. In: International Conference on Artificial
Neural Networks, pp. 354–363. Springer (2017)

3. Becker, S., Plumbley, M.: Unsupervised neural network learning procedures for feature
extraction and classification. Applied Intelligence 6(3), 185–203 (1996)

4. Diehl, P.U., Cook, M.: Unsupervised learning of digit recognition using spike-timing-
dependent plasticity. Frontiers in computational neuroscience 9, 99 (2015)

5. Ferré, P., Mamalet, F., Thorpe, S.J.: Unsupervised feature learning with winner-takes-
all based stdp. Frontiers in computational neuroscience 12, 24 (2018)

6. Földiak, P.: Adaptive network for optimal linear feature extraction. In: Proceedings of
IEEE/INNS Int. Joint. Conf. Neural Networks, vol. 1, pp. 401–405 (1989)

7. Grossberg, S.: Adaptive pattern classification and universal recoding: I. parallel devel-
opment and coding of neural feature detectors. Biological cybernetics 23(3), 121–134
(1976)

8. Haykin, S.: Neural networks and learning machines, 3 edn. Pearson (2009)
9. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:

Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778 (2016)

10. He, T., Zhang, Z., Zhang, H., Zhang, Z., Xie, J., Li, M.: Bag of tricks for image classifica-
tion with convolutional neural networks. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 558–567 (2019)

11. Higgins, I., Matthey, L., Pal, A., Burgess, C., Glorot, X., Botvinick, M., Mohamed, S.,
Lerchner, A.: beta-vae: Learning basic visual concepts with a constrained variational
framework (2016)

12. Hyvarinen, A., Karhunen, J., Oja, E.: Independent component analysis. Studies in
informatics and control 11(2), 205–207 (2002)

Comparing the performance of Hebbian against back-propagation learning 27

13. Karhunen, J., Joutsensalo, J.: Generalizations of principal component analysis, opti-
mization problems, and neural networks. Neural Networks 8(4), 549–562 (1995)

14. Kingma, D.P., Welling, M.: Auto-encoding variational bayes (2013)
15. Kohonen, T.: Self-organized formation of topologically correct feature maps. Biological

cybernetics 43(1), 59–69 (1982)
16. Kolda, T.G., Lewis, R.M., Torczon, V.: Optimization by direct search: New perspectives

on some classical and modern methods. SIAM review 45(3), 385–482 (2003)
17. Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images (2009)
18. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolu-

tional neural networks. In: Advances in neural information processing systems (2012)
19. Lagani, G.: Hebbian learning algorithms for training convolutional neural networks.

Master’s thesis, School of Engineering, University of Pisa, Italy (2019). URL
https://etd.adm.unipi.it/theses/available/etd-03292019-220853/

20. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., et al.: Gradient-based learning applied
to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998)

21. Miconi, T., Clune, J., Stanley, K.O.: Differentiable plasticity: training plastic neural
networks with backpropagation (2018)

22. Movellan, J.R.: Contrastive hebbian learning in the continuous hopfield model. In:
Connectionist models, pp. 10–17. Elsevier (1991)

23. Olshausen, B.A.: Learning linear, sparse, factorial codes (1996)
24. Olshausen, B.A., Field, D.J.: Emergence of simple-cell receptive field properties by learn-

ing a sparse code for natural images. Nature 381(6583), 607 (1996)
25. O’Reilly, R.C.: Biologically plausible error-driven learning using local activation dif-

ferences: The generalized recirculation algorithm. Neural computation 8(5), 895–938
(1996)

26. O’reilly, R.C.: Generalization in interactive networks: The benefits of inhibitory compe-
tition and hebbian learning. Neural computation 13(6), 1199–1241 (2001)

27. O’Reilly, R.C., Munakata, Y.: Computational explorations in cognitive neuroscience:
Understanding the mind by simulating the brain. MIT press (2000)

28. Pehlevan, C., Chklovskii, D.B.: Optimization theory of hebbian/anti-hebbian networks
for pca and whitening. In: 2015 53rd Annual Allerton Conference on Communication,
Control, and Computing (Allerton), pp. 1458–1465. IEEE (2015)

29. Pehlevan, C., Hu, T., Chklovskii, D.B.: A hebbian/anti-hebbian neural network for
linear subspace learning: A derivation from multidimensional scaling of streaming data.
Neural computation 27(7), 1461–1495 (2015)

30. Ponulak, F.: Resume-new supervised learning method for spiking neural networks. tech-
nical report. In: Institute of Control and Information Engineering, Poznan University
of Technology (2005)

31. Rozell, C.J., Johnson, D.H., Baraniuk, R.G., Olshausen, B.A.: Sparse coding via thresh-
olding and local competition in neural circuits. Neural computation 20(10), 2526–2563
(2008)

32. Rumelhart, D.E., Zipser, D.: Feature discovery by competitive learning. Cognitive sci-
ence 9(1), 75–112 (1985)

33. Sanger, T.D.: Optimal unsupervised learning in a single-layer linear feedforward neural
network. Neural networks 2(6), 459–473 (1989)

34. Shrestha, A., Ahmed, K., Wang, Y., Qiu, Q.: Stable spike-timing dependent plasticity
rule for multilayer unsupervised and supervised learning. In: 2017 international joint
conference on neural networks (IJCNN), pp. 1999–2006. IEEE (2017)

35. Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G.,
Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Mastering
the game of go with deep neural networks and tree search. nature 529(7587), 484
(2016)

36. Wadhwa, A., Madhow, U.: Bottom-up deep learning using the hebbian principle (2016)
37. Wadhwa, A., Madhow, U.: Learning sparse, distributed representations using the heb-

bian principle (2016)
38. Xie, J., Girshick, R., Farhadi, A.: Unsupervised deep embedding for clustering analysis.

In: International conference on machine learning, pp. 478–487 (2016)
39. Yosinski, J., Clune, J., Bengio, Y., Lipson, H.: How transferable are features in deep

neural networks? (2014)

