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Abstract—We propose multivariate skewed t-distribution for
hyperspectral anomaly detection. The proposed distribution
model is able to increase the detection performance of
autoencoder-based anomaly detectors. In the proposed method,
the reconstruction error of a deep autoencoder is modeled with a
skewed t-distribution. The deep autoencoder network is trained
based on adversarial learning strategy by feeding its input with
the hyperspectral data cubes. The parameters of the t-distribution
model are estimated using variational Bayesian approach. We de-
fine a multivariate skewed t-distribution based detection rule for
pixel-wise anomaly detection. We compare our proposed method
with those based on the multivariate normal distribution and the
robust multivariate normal variance-mean mixture distributions
on real hyperspectral data sets. The experimental results show
that the proposed approach outperforms other detectors in the
benchmark.

Index Terms—multivariate skewed t-distribution, anomaly de-
tection, hyperspectral image, autoencoder, variational Bayes.

I. INTRODUCTION

ANOMALY detection (AD) is an unsupervised inference
method that takes place in various domains. In this

study, we focus on hyperspectral anomaly detection problem.
Anomalous pixels deviate from the normal behaviour of hyper-
spectral data. Therefore, the main idea in hyperspectral AD is
to find the pixels which exhibit different behaviour compared
to the rest of the image. The RX AD [1], that is based on
multivariate normal (MVN) distribution, is a fundamental AD
algorithm for hyperspectral images.

Local AD methods need more computation times than the
global methods because the local background statistics are
calculated for each test pixel. Generally, the mixture models
are preferred for global background estimation. The global
mixture-model-based ADs are able to find the anomalies
without knowing their sizes. Gaussian mixture models and
Student’s t mixture models are used in [2] and [3], respectively.
Low-rank and sparse representation (LRASR) is also used for
anomaly detection in hyperspectral images in [4].

Recently, deep learning methods take place in hyperspectral
anomaly detection. Among the deep learning methods, autoen-
coders (AEs) and generative adversarial networks (GANs) [5]
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exhibit very good performances in anomaly/novelty detection.
The main idea in these methods is to train the network to
learn the background and, then, to use the reconstruction error
to detect the anomalies. A deep autoencoder AD (DAEAD)
method is proposed in [6]. The Wasserstein GAN (WGAN)
model is applied to hyperspectral AD in [7]. In [8], an
adversarial autoencoder (AAE) model is proposed for feature
representation of HSI and anomaly detection. In [9] and [10],
a GAN model is used to estimate the background for anomaly
detection where the score is calculated by the combination
of the spectral and spatial information. In [11], autoencoding
adversarial network (AEAN) was proposed for unsupervised
pixel-wise anomaly detection using spectral and spatial in-
formation together. In this study, we use the AEAN model
proposed in [11] to find the reconstruction error and, then,
propose to use a multivariate skewed t-distribution (MVSkt)
to model the data based on reconstruction error. We also
propose a new anomaly score function based on the proposed
distribution.

In the most of the aforementioned deep-learning-based AD
studies, the reconstruction error is assumed to be in the form of
`1 or `2 norm. The use of `1 norm is more realistic because
the reconstruction error is sparse in its nature. The Laplace
distribution is the probabilistic counterpart of the `1 norm.
Multivariate Laplace distribution or any other multivariate
sparse distribution can be used to model the reconstruction
error. The normal variance-mean mixture formulation provides
a general distribution model that includes a large family
of distributions as special cases [12], [13], e.g. multivari-
ate Laplace (MVL), MacKay’s Bessel (MVMB), Student’s t
(MVSt), Cauchy (MVC), Jeffrey’s (MVJ). MVSt distribution
has been already used for robust hyperspectral background
modeling [14] and anomaly detection [3] for a long time.
In this study, we use these robust distributions to model
the reconstruction error of an autoencoder and for anomaly
detection. However, our main contribution is the use of MVSkt
that is also formulated as a special case of the normal variance-
mean mixture. According to our experiment, the MVSkt model
has a better detection performance compared to other sparse
multivariate distribution models. To the best of our knowledge
although some robust detectors are proposed for hyperspectral
AD [3], [15], the MVSkt distribution has not been used.

Since the parameter estimation in the MVSkt distribution
cannot be performed by simple estimation methods, we need to
use a sophisticated numerical method. A numerical method is
proposed in [16] for maximum likelihood estimation. While an
expectation-maximization (EM) algorithm is used for parame-
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ter estimation in [17], a Markov chain Monte Carlo (MCMC)
method is proposed in [18]. If we use the normal variance-
mean mixture formulation, the parameter estimation of the
distribution can be performed by variational Bayesian (VB)
approach. In this study, we propose a VB inference method to
estimate the parameters of the MVSkt distribution.

The proposed method has three consecutive tasks which
are background learning with an autoencoder, estimation of
the parameters of MVSkt distribution with VB inference and
anomaly detection using the detection rule obtained from
MVSkt distribution. The organization of the paper is as
follows. Section II introduces the AEN-based background
learning. Section II presents the MVSkt distribution model for
reconstruction error and its VB-based parameter estimation
method. The simulation results are reported in Section V.
Section VI summarizes the conclusion and future work.

II. DEEP AUTOENCODING ADVERSARIAL NETWORK FOR
BACKGROUND LEARNING

We use the autoencoding adversarial network (AEAN)
method proposed in [11] to model the background with an
autoencoder. In the AEAN, the autoencoder sub-network is
defined as a generator and adversarial learning is performed
between the autoencoder and the discriminator sub-networks.
In this paper, we use the 3D-AEAN model for background
learning. We train the model with small image cubes extracted
from the HSI and thus the autoencoder learns to reconstruct
small image cubes. The autoencoder sub-network consists
of encoder and decoder networks which have convolutional
and deconvolutional layers. The detailed explanation of the
network architectures can be found in [11].

We denote HSI with M1×M2 pixels and L spectral bands
as F ∈ RM1×M2×L and ith pixel in HSI as fi ∈ RL, where
i = 1, . . . , N is the lexicographically ordered pixel index. In
order to obtain the training set for the AEAN model, the back-
ground purification, [19], is applied to the image and a binary
map is obtained for background and anomaly pixels. Then,
the training set S = {s1, . . . , sN} is formed by extracting
s ∈ Rm×m×L image cubes from the background regions in
the binary map obtained after background purification. After
training, we use the autoencoder to generate synthesized HSI
F̂ ∈ RM1×M2×L in which ith pixel is shown as f̂i.

III. AUTOENCODER RECONSTRUCTION ERROR

After the reconstruction of the hyperspectral image with
autoencoder, we calculate the difference between the recon-
structed and the original spectral vectors for each pixel as
di = fi − f̂i. Then, we apply a local standard deviation filter
to each difference spectral image constructed by di. If the
filter’s kernel is located at an anomaly pixel, the local standard
deviation that is the output of the filter becomes higher than
that of the background. Otherwise, the local standard deviation
becomes similar to that of background. Thus, after filtering, we
obtain the anomalies-highlighted reconstruction error ri ∈ RL+.
Since the standard deviation is always positive, we model ri’s
with a multivariate skewed t-distribution instead of symmetric
t-distribution. In this model ri is given by

ri = m + zb +
√
zT−1/2wi. (1)

where wi ∼ N (0, I) is white Gaussian random vector,
z ∼ GIG(α, β, γ) is a generalized inverse Gaussian ran-
dom variable and b is the skewness vector. In this study,
we choose as b = [b, b, . . . , b]T where b ≥ 2. We de-
fine a normal-Wishart joint prior for mean vector m and
the precision (inverse covariance) matrix T as {m,T} ∼
N
(
m0, (λT)−1

)
W−1(((ν0−L−1)Ψ0)−1, ν0)) where m0, λ,

ν0 and Ψ0 are the hyperparameters. By integrating (1) over the
latent variable z, we have the following hyperbolic distribution
for ri [12]:

f(ri|m,T;α, β, γ) =
γ
α
2 |T| 12 exp {(ri −m)TTb}
β
α
2 Kα(

√
βγ)(2π)

L
2

×(
β +Ri

γ + bTTb

)α
2−

L
4

Kα− 1
2

(√
(β +Ri)(γ + bTTb)

) (2)

where Ri = (ri −m)TT(ri −m) and Kα(·) is the modified
Bessel function of second kind.

The distribution f(z) determines the form of the marginal
distribution f(ri|m,T;α, β, γ) as given in Table I. By chang-
ing the parameters of f(z), we can obtain different distribu-
tions for ri. For α < 0, as γ goes to infinity, (2) reduces to
the MVSkt distribution given in Table I. The other multivariate
distributions arisen from (2) are also shown in Table I.

After the parameter estimation, the anomaly detection score
can be found by using the probability distribution function
(pdf) given in Table I. Rather than directly using the pdfs, we
use the negative logarithm of them. For instance, by taking
the negative logarithm of pdf in the last row of Table I,
the multivariate skewed t-distribution-based anomaly detection
score is found by

AD(ri) = −2α+ L

2
log

(
1 +

Ri
β

)
− (ri −m)TTb. (3)

IV. VARIATIONAL BAYESIAN INFERENCE FOR
MULTIVARIATE SKEWED T-DISTRIBUTION MODEL

The posterior inference of the latent (unobserved) variables,
Φ = {m,T, z}, and the parameters Θ from observations r1:N

can be made by some approximation methods such as MCMC
or VB [20]. In MCMC methods, the variables are sampled in
iterative way that after a sufficient number of iterations, the
true posterior is approximated by the generated samples. Since
MCMC methods need long times for convergence, we resort to
VB methods. Let us consider the following maximum marginal
likelihood estimation problem:

Θ̂ = max
Θ

log f(r1:N |Θ) (4)

where Θ is the set of parameters of the MVSkt distribution
model given in Table I and the latent variables, Φ, are
integrated out. Using an approximate posterior distribution
q(Φ), the marginal log-likelihood in (4) can be expressed as
follows [20]:

log f(r1:N |Θ) = F (q,Θ) +DKL(f(Φ|r1:N ,Θ)||q) (5)

where F (q,Θ) =
∫

log
(
f(r1:N ,Φ|Θ)

q(Φ)

)
q(Φ)dΦ is the free

energy and DKL(f ||q) = −
∫

log
(
f(Φ|r1:N ,Θ)

q(Φ)

)
q(Φ)dΦ is
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TABLE I: Normal variance-mean mixture distributions.

Distribution Parameters pdf

Student’s t b = 0, α < 0, γ −→∞ f(ri) =
|T|

1
2 Γ(−α+L/2)

βαΓ(−α)(π)
L
2

(β +Ri)
α−L

2

Cauchy b = 0, α = −1/2, β = 1,
γ −→∞

f(ri) =
|T|

1
2 Γ((L+1)/2)

βαΓ(1/2)(π)
L
2

(1 +Ri)
− (L+1)

2

Laplace b = 0, α = (L + 1)/2,
β −→∞

f(ri) ∝ γ
L
2 exp{−

√
γRi}

Jeffry’s b = 0, α −→ 0, β −→ 0,
γ −→ 0

f(ri) ∝ R−Li

skewed t b > 1, α < 0, γ −→∞ f(ri) =
|T|

1
2 Γ(−α+L/2) exp {(ri−m)TTb}

βαΓ(−α)(π)
L
2

(β +Ri)
α−L

2

the Kullback-Leibler (KL) divergence between f(Φ|r1:N ,Θ)
and q(Φ). In the VB inference, the approximate density q(Φ)
is found by maximizing F (q,Θ) or minimizing DKL(f ||q).
Unlike the EM algorithm, in VB, we use the factorized
approximation of the exact posterior such that f(Φ|r1:N ,Θ) ≈
q(Φ) = q(m)q(T)q(z). This approximation makes the expec-
tation integrals be computable. In VB method, we first find
q(m), q(T) and q(z), and then update the parameter set Θ
in an iterative way. In Section IV-A, we give the details of
determination of q(m), q(T) and q(z). The update equations
for parameters are presented in Section IV-C.

A. Determination of q(m), q(T) and q(z)

The optimum distribution q(m) must satisfy the following
equation:

log q(m) =E

[
− 1

2z

N∑
i=1

(ri −m− zb)TT(ri −m− zb)

−λ
2

(m−m0)TT(m−m0)

]
+ const.

(6)

The resulting density should be an MVN as q(m) =
N (µm,Cm) with

µm =
E[z−1]N r̄−Nb + λm0

E[z−1]N + λ
(7)

and Cm = ((E[z−1]N + λ)E[T])−1 where r̄ = 1
N

∑N
i=1 ri.

The optimum distribution q(T) must satisfy the following
equation:

log q(T) =− 1

2
tr

(
T

(
E[z−1]

N∑
i=1

(ri − E[m])(ri − E[m])T

− 2

N∑
i=1

(ri − E[m]− E[z]

2
b)bT

+ λ(E[m]−m0)(E[m]−m0)T

+ Cm(E[z−1]N + λ) + (τ − L− 1)Ψ0

))
+

1

2
(τ + L+N + 2) log |T|+ const.

(8)

The resulting density should be a Wishart as q(T) =
W(Ψ−1

N , νN ) with

ΨN =E[z−1]

N∑
i=1

(ri − E[m])(ri − E[m])T

− 2

N∑
i=1

(ri − E[m]− E[z]

2
b)bT

+ λ(E[m]−m0)(E[m]−m0)T

+ Cm(E[z−1]N + λ) + (τ − L− 1)Ψ0

(9)

and νN = (τ +N + 1).
The optimum distribution q(z) must satisfy the following

equation:

log q(z) =− 1

2z
tr

(
E[T]

( N∑
i=1

(ri − E[m])(ri − E[m])T
))

+
N

2z
tr(E[T]Cm)− Nz

2
tr(E[T]bbT )

+ (α− NL

2
− 1) log z − 1

2z
β + const.

(10)

The resulting density should be a generalized inverse Gaus-
sian as q(z) = GIG(α − NL

2 , c, d) with c = Ntr(E[T]bbT )
and

d = tr

(
E[T]

( N∑
i=1

(ri−E[m])(ri−E[m])T +NCm

))
+β.

(11)

B. Expectations

The expectations used to calculate (6)-(11) are given by
E[m] = µm, E[T] = νNΨ−1

N ,

E[z−1] =
Kα−NL2 −1(

√
cd)

Kα−NL2
(
√
cd)

(
d

c

)− 1
2

, (12)

E[z] =
Kα−NL2 +1(

√
cd)

Kα−NL2
(
√
cd)

(
d

c

) 1
2

. (13)
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C. Update of parameters

As defined in (4), the parameters can be found by max-
imizing the marginal log-likelihood in (5) that is equivalent
to maximizing the lower bound F (q,Θ). We estimate all the
parameters except τ and α .

The lower bound for m0, λ, Ψ0 and β are given by

F (q,m0) = −E

[
λ

2
(m−m0)TT(m−m0)

]
(14)

F (q,Ψ0) =
τ

2
log |Ψ0| − tr ((τ − L− 1)Ψ0E[T]) (15)

F (q, β) = −α log β − βE[z−1]

2
(16)

F (q, λ) =
L

2
log λ− λ

2
E
[
(m−m0)TT(m−m0)

]
(17)

The estimators which maximize (14)-(16) are given respec-
tively by m0 = E[m], Ψ0 = τ

τ−L−1 (E[T])−1, β = − 2α
E[z−1] ,

λ =
L

tr (E[T](E[m]−m0)(E[m]−m0)T + Cm)
(18)

We determine τ over new parameter p as τ =
(N−L−1)p+L+1

1−p where p = τ−L−1
N+τ−L−1 and satisfies that

0 ≤ p ≤ 1. If p is close to 0, the contribution of samples
to calculate E[T] is increased. Otherwise, the contribution of
Ψ0 is increased. We set α to L/2.

(a) Image (b) Reference (c) RX (d) LRASR (e) DAEAD

(f) MVN (g) MVL (h) MVSt (i) MVJ (j) MVSkt

Fig. 1: Detection maps for ABU Airport2 at false alarm rate
0.01.

V. EXPERIMENTAL RESULTS

In this section, we evaluate the detection performances of
the proposed MVSkt model with those of other multivariate
distributions including MVN, MVC, MVL, MVSt and MVJ.
Since these are symmetric distributions, except MVSkt, gen-
erally used in sparsity modeling, we fit these distributions
directly to the reconstruction error using variational inference
method. We also use RX, LRASR [4] and DAEAD [6]
methods for comparison. The detection performances are mea-
sured with the area under the receiver operating characteristic
(ROC) curve (AUC). We also use FAR@100 metric that gives
the false alarm rate (FAR) corresponding to the maximum
threshold value required to detect all anomaly pixels.

In the experiments, we use the ABU data set provided
by [21]. In the ABU data set, the HSIs were captured by

the airborne visible/infrared imaging spectrometer (AVIRIS)
sensor, except the ABU Beach4 image, which was captured
by the reflective optic system imaging spectrometer (ROSIS-
03) sensor. The sizes of images are between 100 × 100 and
150 × 150 and the numbers of spectral bands are between
102 and 205. The different kinds of man-made objects are
assumed as anomalies. While in the urban area, the isolated
small buildings are called as anomalies, in the airport scene,
air-crafts are assumed to be anomalies. In the beach areas,
the boats are considered as anomalies. We use 3D-AEAN and
its parameter setting proposed in [11] to obtain reconstruction
error.

The AUC and FAR@100 results are given in Table II and
III respectively. According to the AUC metric, the MVSkt
model gives the best results on average. If we look at the
FAR@100 results given in Table III, the MVSkt model detects
all anomaly pixels with the lowest false alarm rate compared
to the other methods. If we consider the AUC and FAR@100
metrics together, the MVSkt model shows the best detection
performance. Fig. 1 shows the detection maps for the ABU
Airport2 image at false alarm rate 0.01. As seen from Fig. 1,
the detection maps obtained by the MVSkt model is closer to
the reference map.

In the last row of Table II, we give the average computation
times of the methods. Since the training times of the deep
networks are naturally higher than those of classical methods,
we give the computation time of detection. As seen from the
table, MVSkt model performs better than the other models at
the cost of increased computation time.

VI. CONCLUSION

In this paper, we propose to use multivariate skewed t-
distribution to model the reconstruction error of an autoen-
coder and to detect anomaly pixels in hyperspectral images.
The proposed distribution is from the normal variance-mean
mixture distribution family and allows us a single global prob-
abilistic model and pixel-wise anomaly detection. By using
multivariate skewed t-distribution model anomaly detection
performance of the autoencoder is increased. In this study,
we use a GAN-based autoencoder model but the proposed
anomaly detection method is not restricted with the GAN-
based autoencoders. It can be applied to the reconstruction
error of any other autoencoder to improve its performance.
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