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Abstract The Video Browser Showdown addresses dif-
ficult video search challenges through an annual inter-
active evaluation campaign attracting research teams
focusing on interactive video retrieval. The campaign
alms to provide insights into the performance of par-
ticipating interactive video retrieval systems, tested by
selected search tasks on large video collections. For the
first time in its ten year history, the Video Browser
Showdown 2021 was organized in a fully remote setting
and hosted a record number of sixteen scoring systems.
In this paper, we describe the competition setting, tasks
and results, and give an overview of state-of-the-art
methods used by the competing systems. By looking
at query result logs provided by ten systems, we an-
alyze differences in retrieval model performances and
browsing times before a correct submission. Through
advances in data gathering methodology and tools, we
provide a comprehensive analysis of ad-hoc video search
tasks, discuss results, task design and methodological
challenges. We highlight that almost all top perform-
ing systems utilize some sort of joint embedding for
text-image retrieval and enable specification of tempo-
ral context in queries for known-item search. Whereas
a combination of these techniques drive the currently
top performing systems, we identify several future chal-
lenges for interactive video search engines and the Video
Browser Showdown competition itself.
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1 Introduction

In the 215 century digital cameras decorate almost ev-
ery corner in city centers and most pedestrians carry
a smartphone capable of high quality video. While hu-
mankind has reached the point where digital video data
are so easily produced, stored, and shared, a huge re-
maining challenge is effective and efficient access to
these vast volumes of stored audio-visual information.
So far, many commercial search engines have been es-
tablished, allowing users to satisfy certain search needs
over video collections with sufficient retrieval precision.
Primarily, these search engines focus on returning match-
es to free-form text queries. However, high retrieval re-
call and interactive retrieval remain difficult challenges
for current video search models.

The scientific community has reacted to the high re-
call challenge with evaluation campaigns attracting re-
search teams focusing on video retrieval. TRECVID [41],
Video Browser Showdown (VBS) [40], and Lifelog Search
Challenge [14] define retrieval tasks where both high re-
call and precision are essential to achieve a good score.
Every year, the results of these campaigns confirm that
achieving high recall in arbitrary tasks over general
videos remains a hard problem. So far, there is no clear
solution to the problem, despite the limited scale of the
competition datasets, compared to web-scale media col-
lections. Nevertheless, one observation confirmed every
year is that system-user interactions have a positive ef-
fect on effectiveness.

Two important task types for interactive retrieval
evaluation are known-item search (KIS), where there
is only a single correct item to be found, and ad-hoc
video search (AVS), where the goal is to retrieve as
many items as possible matching a description. This
paper focuses on the Video Browser Showdown 2021, a
virtual event (see Fig.|l)) where a record number of par-
ticipating teams tried to solve a large number of AVS

Fig. 1: VBS2021 was organized as a fully virtual session.

and KIS tasks with their interactive video search sys-
tems. We emphasize that while user-centric evaluations
of this kind and extent are rare and discrete events,
they do provide invaluable insights to the performance
of participating approaches. The key contributions of
this paper can be summarized as:

— Description of VBS 2021, including an overview of
participating systems and their rich set of tested
approaches;

— Results of the first remote VBS 2021, where a record
number of 16 scoring teams participated;

— Findings from the competition, comprehensive AVS
task analysis, and result set log analysis;

— Critical analysis of current challenges with interac-
tive AVS evaluations and suggestions for upcoming
VBS evaluations.

The remainder of this paper is structured as fol-
lows: Section [2] gives an overview of VBS 2021 and its
tasks, Section [3] introduces the participating systems
and summarizes their approaches, Section [4] shows the
results of the interactive evaluation with a particular
focus on AVS analysis, and Section [5] gives an outlook
towards the future and concludes the paper.

2 Video Browser Showdown

The Video Browser Showdown [40,[57], collocated with
the International Conference on Multimedia Modeling
(MMM), started its annual comparative live evalua-
tions in 2012 and reached its tenth anniversary in 2021.
Unlike other benchmark evaluations, VBS represents a
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Fig. 2: Keyframes from a Visual KIS task, total duration of the video shown was 25 seconds. The Task was solved
by 13 out of 16 teams.

Table 1: Textual KIS task t-2 with its descriptions,
which get more detailed over time. After 120 seconds,
the full description is revealed, the task duration is 420
seconds.

Time Text
0Os A hand opening and closing a window of a
mountain hut.
60s A hand opening and closing a window of
a mountain hut. There are snow covered
mountains outside.
120s A hand opening and closing a window of

a mountain hut. There are snow covered
mountains outside. The weather is sunny,
the shadow of the hut is visible in the snow.

unique evaluation platform where teams compete on a
task at the same time, in the same environment, and
with user-centric video search tools.

Like in previous years, VBS 2021 used the V3C1 [63]
dataset, which contains approximately 1000 hours of
video. The task types were unchanged, consisting of
visual, where the target sequence was shown to par-
ticipants, and textual, where the target sequence was
described, known-item search (KIS) tasks and ad-hoc
video search (AVS) tasks. Table [I| shows an example of
how the description for a Textual KIS task gets progres-
sively more detailed, and Figure [2]shows keyframes of a
Visual KIS task. For the sake of completeness, we will
briefly recap the scoring function which was the same
as in 2020 [40], albeit with minor adjustments. In KIS
tasks, the goal is to reward finding the correct itenﬂ
quickly, while punishing wrong submissions. Given a
linearly decreasing function frg based on search time,
the time of correct submission ¢ and the number of
wrong submissions ws, the score for a given KIS task
is as follows:

frrs(t,ws) = maz(0,50 + 50 - frg(t) —10-ws) (1)

1 KIS tasks have a correct video sequence, a submission of
any frame within the correct sequence counts as correct

fr1s thus awards at least 50 points for a correct sub-
mission if no wrong submission was made, and penalizes
each wrong submission with a malus of 10 points.

In AVS tasks, the goal is to reward both precision
and recall. Given correct submissions C' and incorrect
submissions I of a team, all correct submissions of all
teams for a task P and a quantization function ¢ which
merges temporally close correct shots into rangesEl the
scoring function for AVS tasks is as follows:

_100-1C] [g(C)]
i+ I @)

favs(C, 1, P) (2)

While the overall setting was very similar to previ-
ous events, VBS 2021 introduced two major novelties.
First, and most importantly, the competition took place
fully remotely due to the COVID-19 pandemic. This
setting was facilitated by adopting the new ‘Distributed
Retrieval Evaluation Server’ (DRES)P| [58], which has
been explicitly designed for such a distributed and scal-
able setup. Teams, consisting of two active participants
each, could access the main overview (displaying tasks
and scores) via their browser, and submit results via a
REST service to the server. In addition, participants,
judges, and organizers were connected in a video con-
ferencing session for communication. The participants
were also asked to provide a camera view that shows
the screen of their VBS tool so that everyone could see
how the respective tools are operated (and to ensure
that everyone adheres to the rulesﬁ The public VBS
session was live-streamed on Twitch. Fig. [I] shows a
screen-capture from the virtual event. While this setup
relaxed the “same environment” setting, the teams nev-
ertheless solved the tasks at the same time using the
same dataset.

2 “since VBS 2018, ranges are fixed static non-overlapping

segments of 180s duration” [65], in 2021 the ranges were dy-
namic and based on shot segmentation.

3 DRES v0.8.1 was used, see: https://github.com/
dres-dev/DRES/releases/tag/0.8.1

4 VBS has few rules, the most relevant being that screen-
shots are prohibited for Visual KIS tasks. Additionally, all
server logs are made publicly available
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The second major novelty was a briefing session with
the judges for AVS tasks before the competition, in
which the task descriptions were discussed, and clar-
ifications added. The aim was to eliminate ambiguities
and ensure that the assessment of the judges is more
consistent than in previous years. The task selection
procedure was the same as described in [40]. This aim
has not been fully reached, as some potential ambigu-
ities become only apparent when seeing candidate re-
sults. Thus a trial-run involving stand-in participants
might be useful for the judges to come to a common
understanding of a task.

3 Participating Systems

Table 2] and Table [ list the retrieval and interaction
methods of the different systems at VBS 2021, respec-
tively. In this section, we summarize the methods used
and in doing so, also provide an extensive overview of
state-of-the-art methods in multimedia retrieval. The
categories used are similar to the ones from the 2020
review [40], with a new subsection added for interac-
tion modalities, given that there were two virtual reality
systems this year.

3.1 Text Search

The trend from previous iterations of VBS to textual
queries [40)57] continues this year. The effectiveness
of embedding-based methods such as the W2VV+4+
model used by last year’s highest scoring system, SOM-
Hunter [29], as also shown in an evaluation of SOM-
Hunter and vitrivr [56], makes such models a valuable
addition to retrieval systems. The W2VV++ model and
its variants [343743] was used by VIRET, SOMHunter,
VBS2020 Winner, and in the form of features for im-
age search CollageHunter. vitrivr and vitrivr-VR used
a similar approach [(2]. VIRET used the CLIP model
[49], VIREO the interpretable embeddings of the dual-
task model [78], EOLAS a conventional textual embed-
ding approach using autoencoders, VERGE an attention-
based dual encoding model [12], and VISIONE the Trans-
former Encoder Reasoning Network (TERN) model [42].
Concept-based search was also used by several teams
this year. vitrivr, vitrivr-VR, and VideoGraph applied
a combination of several neural networks [6I] for con-
cept detection. VideoGraph additionally contextualized
and extended them by linking the extended concepts
to Wikidataﬂ VERGE used a multitude of concept de-
tection models, including EfficientNets trained on Ima-
geNet1000 [1I] and TRECVID SIN [41], EventNet [81],

5 https://www.wikidata.org

a style model [74] pre-trained models on MS COCO [35]
and OpenlmageV4 [30], a 3D-CNN model [15] pre-trained
on the Kinetics-400 dataset [26], and VGG16 [68] trained
on Places365 [83]. The last combination was also used
by IVIST. Other concept detectors used include [3] by
VISIONE, YOLO 9k [50] by NoShot, and Enlighten-
Gan [24] combined with HTC [8] together with 3D Res-
Net-200 [I5] by IVIST. VIREO utilized the decoded
concept list of visual embedding [78]. HTW uses tagged
image archives [21] to generate concepts, and Exquisi-
tor uses pylucene to search the ResNeXt-101 visual con-
cepts and their text descriptions [80] to provide positive
examples to its relevance feedback process.

For ASR search, vitrivr, vitrivr-VR, VIREO, EO-
LAS, Exquisitor and VideoGraph all rely on the gener-
ated speech resource from the V3C1 dataset [63]. For
OCR search, vitrivr, vitrivr-VR, and VideoGraph used
the data from [61], VIREO tesseractOCR [69], and IVIST
used ASTER [67].

3.2 Image and Sketch Search

For image similarity, VIRET, SOMHunter, VBS2020
Winner, and CollageHunter all used embedded W2VV++
model features [34[37/43]. VIREO uses visual embed-
dings of the dual-task model [78], VERGE the last pool-
ing layer of a fine-tuned GoogleNet [48], HTW a CNN
with DARAC-Pooling [64] and VISIONE Resnet101-
GeM [53] and TERN [42]. For color or semantic sketches,
vitrivr supports a plethora of features [54.69], VERGE
clusters to twelve predefined colors using the Color Lay-
out MPEG-7 descriptor, and HT'W uses a handcrafted
low-level feature [2I]. VIREO [45] and VISIONE [I]
also support sketch search, with VISIONE extracting
dominant colors with pretrained color hash tables [5]
76] and objects using pretrained neural networks [50,
511182]. CollageHunter allows image collages, which en-
able localization of example image queries on a canvas.
In diveXplore, similar video summaries can be retrieved
by image feature similarity [32]. EOLAS employs an
image search mechanism using the positions of the user
and the shots chosen in an embedded latent space.

3.3 Fusion Approaches

Multiple teams offer the option to formulate a query
with a temporal modality. In vitrivr, users can spec-
ify multiple temporally ordered queries which are in-
dependently evaluated, and then aggregated with the
scoring function rewarding videos which have matching
segments for the individual queries in the correct or-
der [I7]. VIRET uses a context-aware ranking model [47]
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Table 2: Selected search approaches used by participating systems. For each system, a reference to the paper
describing the method is given; V3C1 means meta-data provided with the V3C1 dataset [63]. The ASR data for
V3C1 was provided by [61]. Categories are similar to the 2020 VBS Analysis [40].
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which requires that all independently formulated queries
should be sufficiently answered by a segment. Many
teams allow users to specify two ordered queries, which
are then executed independently. SOMHunter, VBS2020
Winner and CollageHunter all use the same algorithm
as in 2020 [39], where the score for an item is deter-
mined by fusing its own score with the score of the
best match for the second query within a specified time
delta. HTW and VERGE used a similar algorithm for
temporal queries. Similarly, for VISIONE, results from
the same video which are within a specified time thresh-
old are paired in the result visualization, and ranked
using the normalized sum of the scores of the outcomes
in the pair. In VIREO, no temporal distance is speci-
fied, the ranking algorithm looks for sequences with the
highest combined rank, ignoring temporal distance [46].

Besides the temporal context, there are also systems
which offer different query modalities to the user. vitrivr
and vitrivr-VR both score result items for each modal-
ity separately, and then offer a configurable choice of
max- or average-pooling the score over the different
modalities, with average-pooling being used in the com-
petition. In VISIONE, all modalities are mapped to
text, which allows the usage of Apache Lucene as a
search backend. Each modality is a sub-query and the
Lucene QueryRescorer combines their search results [IJ.
In contrast, vitrivr uses a specialized database allowing
vector, text and Boolean retrieval [I3]. VIREO uses a
linear function to fuse ranking lists of concept-based
search and embedding-based search [78], and VERGE

provides the option to re-rank the results of a search
modality, based on the results of any other modality.
Exquisitor supports fusing the results of semantic clas-
sifiers, e.g. through intersection of classifiers, where videos
are returned if they rank highly in both classifiers. This
can be augmented by a temporal constraint, where a
keyframe from one model must precede a keyframe from
another by a specified minimum or maximum number
of segments.

3.4 Relevance Feedback

While some teams offered support for simple more-like-
this queries, such as vitrivr using deep features based on
MobileNet Vlﬁ [22], there were also more sophisticated
approaches to relevance feedback.

The goal of the Exquisitor system is to study the
role of interactive learning in large-scale multimedia
analytics applications. To that end, Exquisitor relies
on user relevance feedback as its main user interaction
strategy. The general goal of interactive learning is to
develop a semantic classifier that captures the informa-
tion need of the user well [28]. At the search-oriented
VBS competition, however, the goal of this interaction
is to build a classifier that can identify the most likely
solution candidates, allowing the user to then explore

6 https://tfhub.dev/google/imagenet/mobilenet_vi_
050_192/quantops/feature_vector/3
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Table 3: Selected interaction approaches used in the
participating systems, with the ) symbol indicating
implementation in a given system. Categories are the
same as in the 2020 Analysis [40].
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the candidates in more detail to determine their rele-
vance to the task.

SOMHunter, VBS2020 Winner and CollageHunter
all use the same approach [9] as in 2020, which is a
“Bayesian-like update rule to maintain current relevance
scores of frames based on selected positive and implicit
negative examples” [40].

3.5 Result Set Visualization and Browsing

Turning to the user interaction strategies presented in Ta-
ble [3] the most common approach is still to present
query results in an ordered list of small thumbnails rep-
resenting keyframes (similar to previous iterations of
VBS). The temporal context of results can then often
be inspected based on user input, e.g., as a video pre-
view or by browsing neighboring keyframes. This is also
the approach used by the highest-scoring team, vitrivr.
Some systems also offer a video player, or an option
to view a summary of the entire video. Several teams
have experimented with different browsing or visualiza-
tion approaches.

Rather than displaying individual frames, VIRET
focuses on displaying top-ranked video segments (i.e.,
fixed-length sequences of consecutive frames extracted
from a video), where the best per-segment answers for
each sub-query are visually highlighted. All three sys-
tems relying on the SOMHunter engine provide three
result set visualization modes: ranked list of frames,
ranked list of scenes (i.e., matched frame with its tem-
poral context per row), and a self-organized map (SOM)
evaluated dynamically over all scored database frames.

The SOM-based display allows exploratory investiga-
tion of the result set, providing more diverse but se-
mantically collocated items in the result set grid view.

HTW enables browsing of the whole video collection
on keyframe- or shot-level by arranging the images on a
hierarchical self-sorting map (SSM) [2I]. Furthermore,
the top-2,000 results are presented in either a list, a
hierarchical SSM or video summary consisting of five
shots.

The diveXplore system introduces a new way of
browsing video summaries. Search results for this mode
contain lists of videos appearing in panels that contain
all shots as thumbnails. These panels can be browsed
horizontally by search concept ranking and vertically
by video summary similarity to the entire database.

The two VR systems used different approaches, which
we discuss in the next subsection.

3.6 Interaction Modalities and Paradigms

The user interface of a retrieval system has a large
impact on its performance by enabling and restrict-
ing interaction modalities. In this iteration of the VBS,
for the first time, not all systems used a conventional
desktop-based user interface, as EOLAS and vitrivr-VR
became the first two systems to participate in VBS with
virtual reality-based user interfaces.

Virtual reality as multimedia retrieval user inter-
face offers both opportunities as well as challenges when
compared to conventional desktop user interfaces. With
the trend towards deep learning-assisted textual queries,
VR interfaces require alternative text-entry methods
in the absence of a physical keyboard. Both EOLAS
and vitrivr-VR employ speech-to-text as the primary
text entry method. vitrivr-VR additionally uses a di-
rect interaction-based virtual keyboard as backup text
entry method.

The approaches of EOLAS and vitrivr-VR differ the
most to the other teams in regards to results visualiza-
tion and interaction. EOLAS visualizes results as clus-
ters in 3D space, laid out according to their feature
similarities, which can be traversed to explore the result
set. vitrivr-VR employs a more conventional approach
to result set visualization, by displaying the result set
in a sorted grid, wrapped cylindrically around the user.
In addition to a standard video player in VR, vitrivr-
VR additionally makes use of virtual space by provid-
ing a video segment summary display resembling a file
cabinet drawer, which allows quickly riffling through a
temporally ordered box containing the segments of a
video.
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Table 4: Overview of the scores for the individual task
types per team (top-2 written in bold typeface).

Table 5: Overview of the number of solved KIS tasks
for the known-item search tasks per team (top-2 scores
written in bold typeface). There were 21 V-KIS and 6

Visual Textual Overall T-KIS tasks.
Team AVS KIS KIS Score
vitrivr 100 71 83 254 Solved V-KIS Solved T-KIS
VIRET 50 100 94 244 Team tasks tasks
VIREO 80 84 71 235 vitrivr 16 4
SOMHunter 44 83 100 228 VIRET 20 4
HTW 36 82 99 218 VIREO 18 3
CollageHunter 43 85 75 203 SOMHunter 18 4
VERGE 34 70 80 183 HTW 18 4
VBS2020 Winner 39 70 73 182 CollageHunter 19 3
vitrivr-VR 39 65 74 179 VERGE 16 3
Exquisitor 23 58 58 138 VBS2020 Winner 15 3
VISIONE 20 65 21 106 vitrivr-VR 14 3
diveXplore 20 39 34 93 Exquisitor 15 3
VideoGraph 21 26 40 87 VISIONE 15 1
noshot 8 43 0 50 diveXplore 9 2
IVIST 13 29 0 42 VideoGraph 6 2
EOLAS 2 0 0 2 noshot 9 0
IVIST 8 0
EOLAS 0 0

4 Results of VBS 2021

In this section, we present the results of the compe-
tition, and provide an analysis of submissions and re-
trieval models. Additionally, we are able to analyze AVS
data for the first time since 2018, and provide insights
into both system performance and task properties. The
availability of AVS data is one of the reasons we focus
on AVS tasks, KIS tasks are also analyzed in depth in
previous papers [40L57]. We exclude one participating
system altogether [52], as the team experienced techni-
cal difficulties on both days of the evaluation. Analysis
regarding result logs is only available for a subset of
teams, since not all teams logged their results in the
common format.

4.1 Overall Results

Table [ shows an overview of all teams and the scores
achieved per category, highlighting the top two scores
per category. Scores are normalized per category such
that the best team receives 100 points in said category.
Categories are scored independently, the overall score
is calculated by summing up the individual categories.

When looking at Table[d] the highest scoring team is
different for every task category, and no team is among
the two top-scoring systems of more than one category.
This is an indication of well-designed tasks and mean-
ingful differences between the top systems and their
operators.

Comparing the scores of the two VR systems, EO-
LAS and vitrivr-VR shows that while VR can be com-
petitive, the approach used by EOLAS for the user in-

terface was not very suitable for the competition for-
mat. EOLAS’s interface focused on exploring in a 3D
environment involving VR locomotion, which caused
difficulties in finding a sufficient number of shots in a
limited time.

Most teams were able to solve a substantial number
of Visual and Textual KIS tasks, as shown in Table
The easiest task was solved by 15 out of 16 of teams,
and the most challenging one was not solved by any
team. Across all tasks, the mean number of teams which
solved a task was approximately 9.4.

4.2 Result Log Analysis

In addition to the submissions, most teams logged the
result sets of their queries, either storing the logs locally
or sending them directly to the competition server. In
this section, we take a closer look at the logs, giving in-
sight into the retrieval models and the differences in sys-
tems and operators. One thing to note is that different
teams have different units of retrieval, e.g. SOMHunter
logs frames, while vitrivr and VIRET log shots and in-
tervals. To check if an item in the result set would have
been correct, we compare the logged unit of retrieval
to the ground truth. Although different units of re-
trieval may affect chances of a correct segment hit (i.e.,
a chance for interval overlap), we did not discriminate
between the units of retrieval in the following analysis
involving ranks of correct items.
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4.2.1 Browsing Efficiency

One interesting question is how long it took operators
to find an item once it was present in a result set. This
is both dependent on the system, i.e., how good the
browsing capabilities of a system are, and on the op-
erator, since some operators prefer to browse a result
set exhaustively, while others prefer to reformulate and
execute new queries.

Figure [3] shows the elapsed time between the first
and last appearance of the correct shot in the result
set and submission time of the correct item. Note that
it is possible that between one user receiving the cor-
rect result from their query and submitting it, the other
user formulated a query which contained the correct re-
sult, and hence the time delta between last appearance
and submission may not reflect the browsing time accu-
rately. It is also possible that a correct item was found
through the video and not the shot.

To visualize the dependency between the rank of
a found item and the time until correct submission, we
show in Figure[deach correct submission as a datapoint
with the rank it was found at first, and the time it took
until correct submission. Overall, the figure shows that,
as expected, the time between the first appearance and
a correct submission increases. However, the figure also
demonstrates that variance increases as well, indicat-
ing that operator differences are indeed occurring: while
some operators might have browsed for a long time, oth-
ers reformulated their query or found the correct item
through the correct video.

We have conducted several other analyses, such as
only considering items below a certain cutoff (which
could be considered browsable), or counsidering the ap-
pearance of the best rank. These analyses have not pro-
duced new insights, and hence are omitted from the
paper. The absence of standardized interaction logging
which could indicate scrolling and currently visible re-
sults, makes this analysis challenging.

4.2.2 Performance of Retrieval Models

For illustration of the performance of retrieval models,
Figure[5| shows the best achieved rank of a correct item
before submission per system across tasks.

Figure p| shows that the retrieval model and search

strategy strengths of the top teams are somewhat matched,

with VIRET and SOMHunter finding the desired items
in the first ten results more consistently. vitrivr, VIREO
and CollageHunter have a lower sample size, which is
explained by the fact that they were often able to find
the correct item through a video-level hit and subse-
quent browsing (see Figure @ Also of note is that in a

previous evaluation of vitrivr and SOMHunter, results
clearly showed that SOMHunter had a better retrieval
approach [56]. In the meanwhile, vitrivr added a joint
embedding and improved its temporal scoring, allowing
it to be competitive again in the retrieval model and
having to rely less on browsing. vitrivr-VR also used
the joint embedding but lacked the ability to specify
temporal context, which explains the lower ranks com-
pared to vitrivr, even though both systems had access
to the same features, indicating that having an easy
way for users to specify temporal context in a query is
essential for successful interactive video retrieval in this
setting.

4.2.3 Analysis of Submissions

A more comprehensive overview of the result logs is
shown in Figure[6] which shows best logged rank of the
correct shot and video, the time it took for the item to
appear at the given rank and the time of the correct
submission. It also shows browsing misses, meaning the
correct item (cell colored in red) or video (cell colored in
orange) was present in the result set, but not submitted.
Note that the logs for some teams, such as VideoGraph,
can be incomplete due to technical difficulties.

The data shows that a substantial number of teams
had video-level browsing misses, meaning the correct
video was found, but not the correct segment. Shot-level
misses were rarer, but still happened, e.g. for vitrivr and
SOMHunter in three tasks, with the rank of the correct
shot ranging from 1 (t-7, CollageHunter) to 9704 (t-7,
vitrivr-VR). While missing the correct item at rank 1
is a browsing-level miss which can be attributed to the
operator (and also the result visualization component),
when missing an item at higher ranks it is not know-
able, with the current logging specification, whether the
operator browsed that far or whether they simply for-
mulated another query after looking at a subset of high-
ranked results.

Additionally, many correct submissions originated
from a video-level hit, with operators subsequently ex-
ploring the video through neighboring frames, a video
overview or with a video player. These cases are indi-
cated by red numbers in Figure [f] and show that the
ability to inspect a video is key to good performance in
KIS tasks.

4.3 AVS Analysis

In the 2019 and 2020 iterations of VBS, there was no
analysis of AVS tasks due to technical issues [40L[66].
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a shot in the result logs and time delta to correct sub-
mission. As expected, time delta increases with rank,
with variance increasing as well.

This year, the new evaluation server [58] improved test-
ing by teams before the competition, which helped im-
prove data quality. In this section, we are therefore
able to present insight into questions surrounding AVS
tasks.

Both retrieval and judgement of AVS is done in-
teractively at VBS. This has so far in every year re-
sulted in different understandings, both between differ-
ent judges and between judges and teams. Additionally,
some tools, such as VISIONE, had issues with result
submission, partially due to network overload and par-
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Fig. 5: Best rank of correct item appearing in result
log. Teams are ordered by descending score on the x-
axis. Different teams have used different thresholds to
log results, for UX and performance reasons.

tially due to suboptimal implementations. We believe
these issues did not significantly affect the results dis-
cussed in this section, which are presented in an aggre-
gate form, as the number of submissions that were not
submitted successfully by the affected teams is only a
small fraction of the total number of submissions made
by all teams.
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Team 1 v-2  |v-3 v-4 |v-5 |v-6 |v-7 |v-8 |v-9 |v-10 [v-11 v-12  |v-13  |v-14 |v-15 |v-16 |v-17 |v-18 |v-19 |v-20 |v-21 t-1 t-2 |t-3 |t4 |5 |t-7
vitrivr rs 2447 - - - - 762 |- - - 135 - 2978 |- 280 -
17 1 62 50 34 8 6 191 30 48 2 23 135 20 7 97 72 12
t 27 45 19 37 134 |59 261 92 28 299 40 24 87 70 184 203 11
tes 67 75 102 102 |- 144|117 |- 175 40 - 47 = 130 187 = 334 |- =
VIRET rs 94 154
1 16 4 4 37 1 3 1 1 16
t 37 21 24 24 134 92 21 21 399
tes 134 |28 54 - 141 128 35 153 = =
VIREO rs - 161 181 880 439 87 105 175 - 534 - -
v 26 26 9 39 39 10 101 63 1 1 13 5 51 2 1 3 67 35 13
t 78 51 27 48 105 32 275 290 20 60 251 38 36 22 24 146 72 291 (31
tes 104 (58 - 40 55 141 99 - - 49 70 268 41 96 30 40 261 95 = 91 =
‘SOMHunter rs 102 - 107 139 - - 490 -
v &l 39 72 11 2 107 1 1 2 1 13 1 2 2 4 70
t 66 26 49 84 166 147 15 20 68 109 18 88 38 22 28 128
tcs 102 (140 77 89 229 = 68 47 = 126 34 138 = 53 65 153 |- F
CollageHunter rs - - - - - - - - 808 - 323 - - 158 - - - 282
n 1 5 14 3 9 4 1 55 17 1 6 9 2 35 6 1 1 1 1 9 19
t 39 47 114 |88 27 74 82 224 39 131 34 41 75 110 28 45 292 70 147 27 166
tes 119 73 213 95 90 164 115 252 44 146 - 53 84 122 58 82 - 113 177 38 - - -
VBS2020 Winner rs - 152 - - - 87 - - - 447 - - - 190 |[185
v 52 73 12 6 74 16 2 7 1 1 2 1 1 2 12 11 27 62 6
t 253 (281 63 13 13 38 127 14 26 221 93 70 145 ” 15 37 62 263 |72
tes = = = 24 = 75 = 38 48 = 103 98 273 99 46 60 = 240 = =
vitrivr-vr rs - 1006 (126 5795 |- - 4172 |- - - 8526 |- 835 - 1975 |- 599 |1897 |207 |194 2215 (9704
v 4 27 21 3 5 168 239 (2547 |50 1 20 14 12 9 6 395 1301 17 102 |16 194 (83 995
t 80 35 56 31 33 38 32 105 162 32 252 84 229 34 26 54 31 55 67 69 183 (97 197
tes 84 65 - 45 41 - 7 - - 55 268 278 - - v 154 - 180 |- 83 218 |- -
VISIONE rs 1697 (1452 167 |- - 3520 - 4370 |- 408 - 304 - 8819 (264 [157 (2478 |4484 |- 3643
v 11 28 1 29 81 61 1 53 5 3 29 3 2 111 5 48 157 |10 31 63 4
t 14 156 45 35 233 13 20 221 47 99 69 35 19 97 83 414|137 |93 162|359 (354
tes 142 |- - 69 45 - - 33 230 107 128 166 - 114 65 = 192 = = 298 |- = =
diveXplore rs - - - 436 - 350 - 134 - 467 - - -
17 - - - 436 - 350 - 134 - 467 - - -
t - - - 33 - 49 - 66 - 403 - - -
tcs - = - - - 154 - = 321
VideoGraph rs - - 10087 |- - - 1059 |- - - - - - - - - - - 1299 |- - - 5447 |-
v 12 8 - 33 1059 |44 175  |4405 - - - - - - 91 6437 |27 3898 (2373 |137
t - 17 86 - 37 42 68 47 169 - - - - - 239 (154 (284 |79 97 99
tes - 141 131 - - - - - - - 80 "7 - - - 108 170 - - 319 |- 306 |- F F

Fig. 6: Green cells show the best achieved logged rank r; between 1 and 300 in time ¢ of a correct scene frame in a
task. The best rank r, of a correct video frame from the same result log is included, while ¢.; presents the time of
the tool’s correct submission. Red values are for the best detected ranks of searched video frames if searched scene
frames were not present in the logged result sets for a task. Red or orange cells show a browsing failure where the
frame or video was retrieved but the team did not submit a correct result.

Table [6] shows all AVS tasks and their description
in the order which they were solved in the competition.
All plots going forward include the task identifiers.

4.83.1 Judgement and Submissions During Tasks

One area of interest is how the assessed correctness of
submissions changes during the time allocated to a task.
The hypothesis being that at the start of a task, there is
some ambiguity between the task description and judge
and operator understanding of the description, which is
resolved as teams see thumbnails of submissions judged
as correct or incorrect.

In Figure[7] we show the ratio of submissions judged
as correct over time. What stands out is that there were
two tasks with a large degree of difference in task under-
standing, a-3 (person skiing with their own skis in the
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Fig. 7: Share of AVS submissions judged as correct over
time during an AVS task.
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Table 6: List of all AVS tasks with their description, — a5
ordered by appearance order in the competition (a-5 s — a'z
a — a-
was solved first, a-6 last) E — a1
3 — a2
g — a3
Task ID Task Description Z 104 a-10
5 — a4
a-b Find shots of a person holding or waving a E :_11
flag. S — a6
a-9 Find shots of at least one person drinking %
beer. E
a-8 Find shots inside an airplane, showing at 100 ‘ . ‘ ‘
least one passenger. 88 8¢g 888 88g8r ¢S
S O O H d 4 A N N M M M g F F 0
a-1 Find outdoor shots of two women walking 2 e e? S T2
and talking to each other.
a-2 Find shots of people having their hair done. Fig. 9: Cumulative unique correct video submissions
a-3 Find shots of a person skiing, with his/her over time during an AVS task.
own skis in the picture.
a-10 Find shots of two adult men hugging each
other. needed until a query is found which is suitable for the
a-4 Find shots of kids playing football (soccer). task at hand, and afterwards the rate of submissions
a-11 Find shots of people skiing, shot with the stays relatively steady over time. This poses the ques-
camera looking into the sun (back-lit shot, tion at which point in time there would be a drop-off
possibly with lens flare). in the number of submissions, if the AVS tasks had a
a-6 Find underwater shots of one or more fish. longer duration.
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Fig. 8: AVS Submissions over time with a mean sliding
window of size 25.

picture) and a-11 (person skiing, camera looking into
the sun). For a-3, the difference (the task intention was
for point-of-view shots) was clarified with a comment
from a judge, however the ratio remains low since not all
teams followed the discussion. For a-11 the different un-
derstandings persisted. Overall, no clear trend emerges.
Some tasks exhibit consistently high agreement (e.g. a-
6, looking for fish underwater and a-5, person with a
flag), while most tasks have a high variance during the
task.

In Figure [§, we show how the number of submis-
sions varies over time, where it seems that some time is

Figure [9] shows that in addition to the rate of sub-
missions remaining steady, the number of unique cor-
rect videos that are found also continues to increase
towards the end of the task, showing that even at the
end of the time limit, new videos matching the descrip-
tion are still being found. This indicates that given a
longer task duration, the number of unique correct sub-
missions would probably still increase, as long as there
exist relevant segments in the collection.

4.8.2 Differences Between AVS Tasks

Another interesting question is what differences, if any,
there are between AVS tasks. For some tasks, looking at
a thumbnail is sufficient (e.g., underwater shot of fish),
while for tasks describing an action, the video needs
to be inspected (e.g., shots of two women walking and
talking). Additionally, some tasks might have a very
wide range of acceptable results, while others are quite
narrow.

Figure 10} with all submissions, and Figure [I1] with
only correct submissions, show the difference between
the AVS tasks in terms of selected metrics: the number
of overall submissions (shown as bars), time until first
(correct) submission, time to first (correct) submission
by half the teams, and time until first ten (correct)
submissions by half the teams. The y-axis indicating the
time, on the right, has been inverted, so that higher y-
axis values indicate that a task is easier for all metrics.
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On the x-axis, tasks are ordered by their appearance in
the competition.
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Fig. 11: Selected AVS metrics per task, looking at cor-
rect submissions. Higher y-axis values indicate that for
a given task, it is easier to find results which judges
deem correct.

Looking at these three graphs, the data indicates
that there are relevant differences between the AVS
tasks. For example, looking at a-1, it took almost five
minutes for half of the teams to find 10 submissions
which were judged as correct.
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Fig. 12: Share of overall submissions per task over pre-
cision per team and task with the color indicating the
evaluation metric score normalized over the best score
of a task. For each task, all teams are represented as a
dot.

Additionally, we are interested in which kind of strate-
gies are rewarded by the current evaluation metrics.
In Figure[12] we show the performance of each team per
task as a colored dot, with the color indicating the score
in that task. The figure shows that the current scoring
scheme seems to reward recall, in that teams which have
a high share of overall submissions get higher score,
even at lower precision. The ability of a user interface
to quickly submit many solutions thus seemed essential
for success in AVS this year.

4.8.3 Judge and Team Agreement Analysis

In Table[7} we show numbers of submissions where sev-
eral teams agreed or disagreed with a judgement for a
shot. Each column represents the number of teams with
the same opinion about a particular submission. The
first column shows that there are many unique submis-
sions by teams and that there are frequent one-to-one
disagreements. The second column shows that in 80%
of tasks two teams agree with a judge more often than
two teams disagree with a judge.

Looking at extreme cases, in tasks a-2 and a-10 there
was a correct submission provided by eleven teams.
This indicates that there might be a clear match be-
tween an AVS task text description and the visual con-
tent of an easy-to-find shot. This high level of agreement
can be observed among multiple other tasks. In com-
parison, task a-3 represents an example of frequent dis-
agreement between and the judge’s verdict. Some teams
misunderstood the task a-3 and did not realize the first-
person view of skis is required. In order to prevent this
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Table 7: The number of distinct correct / incorrect submissions where 1 - 11 teams agreed / disagreed with judges.

Bold font highlights cases where the fraction is lower or equal to one (i.e.

#agreement 1)
' #disagreement — :

Number of teams in agreement / disagreement with judges

task 1 2 3 4 5 6 7 8 9 10 11
a-l 66 /126 9/7 4/1 2/ - 1/, 2/ - - - -
a2 340 /226 108 /51 60/13 18/2 15/ 10/1 6/ 5/ 5/ 3/ 1/
a-3 342 /476 64/89 17/17 6/6 - - - - - - -
a4 84 /184 24/26 10/4 9/1 3/ 2/ - - - - -
a5 122 /41 30 /3 20/1 13/1 2/1 2/ 2/ 1/ 1/ - -
a6 863 /228 33 /8 188/1 79/ 3,/ 15/ 6/ 2/ - - -
a-8 102 /85 39/16 18/2 13/1 8/ 2/ 3/ 1/ - - -
a9 70 /125 39/14 16/5 10/1 5/2 4/ 3/ 2/ - - -
a-10 79 / 96 40 / 2 20/1 13/1 5/ 4/ 1/ 1/ 1/ - 1/
a-11 226 /328 55/49 32/2 12/2 7/ 1/, 1/ - - - -

issue in future evaluations, there are many options [3§].
Statistics present in Table[7]could also be automatically
reported by the evaluation server to indicate problems.

4.8.4 Submission Similarity Analysis

After having analyzed the judge-team agreement, this
section further investigates the inter-judge agreement
through determining similar images that are judged dif-
ferently. Figure [13]| shows a selection of keyframe pairs
exhibiting high similarities to each other, while judges
disagree on their correctness. The similarities are deter-
mined by computing the Euclidean distance of the last
fully connected layer vectors using Inception Net v3 [73].
By analyzing the distances per task, we find that all

tasks contain questionable judgements. Similarly to above

findings, task a-3 is interpreted very diversely, i.e. some-
times only a first-person view of ski tips are accepted
and other times also third-person views of skiers on a
slope. Such disagreements can be observed for other
tasks as well; oftentimes different judgements are given
on scenes that merely are a few shots apart (cf. Fig-
ures . In other cases, the submitted scenes are
not related but, nevertheless, the judges’ agreement on
content correctness diverges (cf. Figures. Over-
all, when considering the lower 20% of all differently
judged image distances per task, we identify an aver-
age of 109 similar items (excluding the outlier task a-3,
which has 3,508 such items). Although not all similar
yet differently scored images necessarily include mis-
judgements, it appears that the pre-task judge briefing
was not an effective way to avoid them. Some differences
in task understanding seem to become only apparent
when seeing actual examples arriving. Thus a trial-run
with judges or using multiple judgements with voting
could be better alternatives.

5 Conclusion and Outlook

Ten years after the first Video Browser Showdown, the
recent iteration had the largest number of participat-
ing systems so far. All the data [I9] and codeﬂ used in
the analysis is available online. Despite organizational
challenges with the fully remote setting, this iteration
was very successful. For future evaluation campaigns,
we see multiple challenges, which we will outline here.

On-Site versus remote VBS event. While the remote
setting has many advantages, such as lower barrier to
participation and cost, the conference setting had mul-
tiple key advantages which cannot be fully replicated in
the remote setting, such as the ability of VBS to dou-
ble as an informal demo session, where participants can
try out other systems and ask questions. Networking
and collaboration effects were diminished in compari-
son to previous years. Also, the novice session—which
is a unique and important part of VBS—could not take
place in the virtual setting.

Barrier to participation. While the barrier to partici-
pation in VBS remains somewhat high, this year had
the highest number of participants so far, indicating
that efforts to lower the barrier helped. Several pre-
extracted features are available for V3C1 [6l[61] and
V3C2 [62], enabling teams to focus on particular as-
pects. For completely new participants, it might be ben-
eficial to further encourage authors to open source their
systems. Currently, vitrivr is fully open—sourceEI and
SOMHunter has an open-source releaseEI as well but
full reproducibility of the competition would require all
used systems to be open-source.

7 https://github.com/vGsteiger/VBS-Analysis
8 mttps://vitrivr.org
9 https://github.com/siret/somhunter
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Fig. 13: Similar but differently judged AVS submissions, judged as incorrect (red border, on the left) vs. judged

as correct (green border, on the right).

Result robustness. As demonstrated in [57], the differ-
ence in performance between users of the same system
is rather large and increasing the number of users per
system makes the results more statistically significant.
In the current VBS format, two users operate the same
system as a team. A larger number of users which solve
tasks independently would increase confidence in the
evaluation results and enable interesting analysis ques-
tions. This would however make it more difficult to con-
sider systems which use explicitly collaborative retrieval
strategies.

The optimal task format is still an open research
question for both AVS and KIS tasks, and there are
many options for future tasks [38]. While this was the
fifth year in a row that included AVS tasks, this time
they have caused extended discussions amongst teams
and organizers. Although the queries for these tasks
have been carefully selected and judges briefed in ad-
vance, we still encountered several difficulties that could
be discussed in a dedicated paper and should only be
briefly mentioned here:

Disagreement: As Table [7] has shown, there is a sub-
stantial number of submissions where multiple teams
perceived a segment as correct, but the judge dis-
agreed. In Section [£.3.4] we also showed that seman-
tically identical shots are sometimes judged differ-
ently by different judges, further underlining the
challenge of AVS task evaluation. In future itera-
tions of VBS we might consider a voting scheme to
rectify this issue.

Evaluation Limits: Our analysis indicates that with a
longer task duration, more unique items could be
found. Due to the large number of submissions per
task, however, extending the time would require more
judges.

Resource Limits: While in previous years the old server
software itself caused delays in submission process-
ing, this year we faced severe network issues. Due
to the fully virtual session and the high number of

judges and participants—who were not only submit-
ting many results, but also following the competi-
tion status via the server’s web interface—the LAN
and WAN limits (10 Gbps) of the server’s location
(Klagenfurt University) were reached. This unfortu-
nately resulted in laggy behavior with packet losses
and re-transmissions, slowing down the entire sub-
mission process.

Synchronous Submissions: In addition to the problems
with the network load, some teams implemented
their system such that submissions had to be con-
firmed by the server, which seriously limited their
submission capacity due to the high network delay.

VBS 2021 successfully demonstrated that a fully
virtual setting is feasible. In particular, for KIS tasks,
the evaluation procedure went smoothly and almost all
competing teams were able to solve some tasks, with
most teams being able to solve more than 50% of KIS
tasks.

There is still a large difference between the perfor-
mance of the top teams, indicating no need to exten-
sively modify task difficulty. With the move towards
a larger dataset next year, we expect strong retrieval
models to become more important, as approaches which
rely on browsing must deal with twice as much data.
At the same time, the evaluation procedure itself will
become more challenging too, especially for AVS tasks
which might have even more results (and need more
judges) due to the larger dataset.

Even though VBS has been running for 10 years
already, interactive video retrieval remains a hot topic
with many challenges, which cannot be easily solved
with only improved deep learning models. A strong fo-
cus on the retrieval efficiency, as well as the user inter-
face, will be key to further push large-scale interactive
video search.
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