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Abstract

The main objective of Multi-access Edge Computing (MEC) is to bring computational capabilities
at the edge of the network to better support low-latency applications. Such capabilities are
typically offered by Edge Data Centers (EDC). The MEC paradigm is not tied to a single radio
technology, rather it embraces both cellular and other radio access technologies such as WiFi.
Distributed intelligence at the edge for AI purposes requires careful spatial planning of computing
and storage resources. The problem of EDC deployment in urban environments is challenging
and, to the best of our knowledge, it has been explored only for cellular connectivity so far. In
this paper, we study the possibility of deploying EDC without analysing the expected data traffic
load of the cellular network, a kind of information rarely shared by network operators. To this
purpose, we propose in this work CLUB, CLUstering-Based strategy tailored on the analysis of
urban mobility. We analyze two experimental mobility data sets, and we analyze some mobility
features in order to characterize their properties. Finally, we compare the performance of CLUB
against state-of-the-art techniques in terms of the outage probability, namely the probability an
EDC is not able to serve a request. Our results show that the CLUB strategy is always comparable
with respect to our benchmarks, but without using any information related to network traffic.
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1. Introduction

The fifth generation (5G) mobile networks have significantly changed the way mobile wireless
is built. 5G networks rely on Software-Defined Networking (SDN) and Network Function
Virtualization (NFV) to support a full class of diverse services, including machine-to-machine and
ultra low latency traffic. Thanks to SDN and NFV paradigm, radio access and core functions are
virtualized and executed in EDCs in accordance to the MEC principle. MEC is standardized by the
European Telecommunications Standards Institute (ETSI) [1] and aims at providing computing
services closer to the end user [2]. Thus, it finds applicability in scenarios where locality and
low-latency are essential [3]. MEC is not tied to a single radio technology, but embraces cellular
and other radio access technologies such as WiFi. Furthermore, MEC is agnostic to the evolution
of the mobile network itself. i.e., it can be deployed in 4G, or 5G networks.
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EDCs are deployed close to the wireless element to provide radio coverage, e.g., base stations
(BSs) inside an infrastructure owned by a mobile network operator (MNO) [4] or WiFi access
points (APs). Indeed, let us stress that, while the literature on EDC focuses mostly on cellular-
enabled edge nodes, also WiFi-enabled edge nodes have a strong potential and will be beneficial
to a number of applications by bringing together high-bandwidth hotspots with processing
and storage capabilities. MCS and city sensing are good examples of research areas where
these WiFi edge nodes could act as data collection points for mobile nodes roaming across, by
potentially executing also some filtering/processing operations over collected data [5]. Likewise,
there are several examples of WiFi-enabled public spaces that would benefit from caching of
video/applications contents to be delivered to local mobile nodes therein. More in general,
focusing on both cellular and WiFi based deployments, the edge provides.

The edge provides computing functionalities that enable resource-constrained mobile devices
to prolong battery lifetime [6] while enhancing and augmenting the performance of mobile
applications [7]. This is key to supporting distributed intelligence at the edge. To date, edge
computing research has mainly focused on resource management and allocation [8], trading power
consumption and communication delays [9, 10]. Thus, it finds applicability in scenarios where
locality and low-latency are essential [11].

Seminal works have mainly focused on the definition of architectural design principles [12, 13].
Emulation platforms for research in this area have only started to appear recently [14, 15, 16, 17],
and little attention has been paid to the problem of resource deployment.

EDC deployment is a particularly interesting and challenging problem in the context of
smart cities. Many factors influence citizens’ mobility, including trip purposes (e.g. home-work
commuting) and geographically imposed restrictions (e.g., temporary closed roads). Within a
city, urban dynamics regulate the inter-dependency of land use and citizens’1 movements [18],
i.e. the locations they visit that determine mobility patterns. In the context of transportation
research, such patterns are exploited to regulate traffic congestion, route planning, public safety
and to allocate shared resources (e.g., bikes, scooters, taxis) [19]. These complex phenomena
determine the characteristics of mobile data traffic [20, 21]. Recent studies identified a strong
correlation between the urbanization tissue (i.e. land use) and average mobile data traffic volume
per-user [22] as well as correlation between commuting patterns, city block structures and mobile
cellular access data [23]. Although different mobile services exhibit different temporal behaviors,
the resulting spatial patterns are uniform [24]. In particular, the amount of traffic flowing across
BSs is key to define the computational demands of EDCs.

In this paper, we bring the research around the problem of EDCs deployment in smart cities
one step forward. In our previous work, we focused on EDC deployment by assuming that the
computing demand was entirely generated through requests carried by the mobile network [25].
We now generalize the problem by assuming to exploit WiFi connectivity too. To date, city-wide
WiFi connectivity can be practically expected and in some cases, such as Luxembourg, is reality2.
Mobile network operators have interest in deploying WiFi hotspots to support traffic offloading
from cellular network [26, 27]. We retain as a fundamental assumption that EDCs can be deployed
only at current BSs/APs sites, to re-use already deployed infrastructure (e.g., power supply,
cabinets on roofs). By assuming that any technology can provide interconnection between UEs
and EDCs, our methodology of EDC deployment is ready to serve virtual edge operators, i.e.,
actors in the market that are not owners of the infrastructure like mobile network operators.

In a nutshell, in this paper we propose CLUB, CLUstering-Based strategy for EDC deployment
1In the rest of the paper we will use the words user, mobile user, and citizen interchangeably.
2See: https://www.citywifi.lu/en/hotspot/
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that is technology agnostic and deploys EDCs on the sole basis of user mobility aspects. More
specifically, the CLUB considers the users’ trajectories to identify highly-visited locations by
adopting a spatial clustering approach. In turn, CLUB identifies the clusters’ centroids and it
performs a Voronoi-based tessellation to partition the region of interest in different sub-regions.
Finally, CLUB selects for each sub-region a target location for the deployment of a set of
EDCs. The proposed strategy only exploits information obtained from users’ trajectories without
considering any information related to the data traffic produced by users. This aspect is important
as it greatly simplifies the CLUB-based deployment with respect to other approaches based on
information extracted from network traffic. We benchmark the new strategy with state-of-the-art
techniques [28], i.e., Distributed Deployment Algorithm (DDA) and Mobility-aware deployment
algorithm (MDA). DDA deploys EDCs in such a way that they correspond to the centroid of
a cluster composed of a set of BSs that all share a similar distance. In order to compare the
implemented deployment strategies, we consider two mobility data sets, namely P-Mob based on
trajectories extracted from the ParticipAct project [29, 30] and GPT-Mob based on information
provided by the Google Popular Time Cloud service. We first analyze the two data sets in terms
of mobility features and then we compare the resulting outage probability of CLUB against MDA
and DDA.

Our results confirm that the CLUB deployment outperforms deployments like DDA. Further-
more, it provides slightly higher outages than MDA, while retaining the benefit of relying on a
simpler mobility model and its wider applicability to all those scenarios where it is not possible
to assume we can monitor network traffic. The paper is organized as follows: Section 2 surveys
existing deployment strategies, Section 3 details the design of CLUB and MDA/DDA benchmark
solutions and Section 4 describes the experimental session we carry out. Section 5 concludes the
paper.

2. Background and Related Work

MEC allows resource-constrained mobile devices to offload computational workloads to
nearby EDCs. Let us anticipate that in this paper we are not interested in the details of fog/edge
architectures and protocols, for which we refer the interested reader to existing surveys [13, 31].
Differently from some recent works such as [32], [33] that delve into the technicalities of network-
specific functions that can benefit from processing in EDCs in our work, we rather focus on the
perspective of end-user applications. These works operate in cloud radio access network scenarios,
where the baseband processing is outsourced from BS and moved in the cloud. Furthermore,
we do not delve into technology, e.g. the specifications 3GPP enforced for the 5G core network
and recent developments like network slicing [34]. Our objective is to deal with city-scale
user mobility and exploit urban dynamics to deploy EDC devoted to the processing of end-user
applications. In the following, we report the very few efforts found in the literature that share a
similar approach with ours.

The paper [35] is seminal work that explored the problem of EDC deployment in smart
cities by assessing the feasibility of leveraging three different infrastructures, i.e., cellular base
stations, routers, and street lamps, and analyzing the potential city coverage if only a subset of
these elements were upgraded to provide EDC capabilities. Other works that touched upon EDC
deployment are [36, 37] and [38]. Unlike our contribution, both works disregard user mobility,
which is now recognized to be a fundamental factor in smart cities because it influences the
workload and computational demand of edge resources. Specifically, [36] proposes an optimal
cloudlet placement and user allocation in Wireless Metropolitan Area Networks. By contrast,
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the objective of [37] is to identify the optimal placement of points of presence in the operator
networks. In our approach, we target an EDC deployment that is only close to the access network,
while [37] focuses on deploying EDCs in a layered architecture, i.e. both at access, aggregation,
and core network. Unlike the above works, in [38] the authors aim at addressing the problem
of assigning access points (APs) to EDC by considering as key metric the routing cost and cost
of moving VMs. Specifically, the traffic demands that APs witness changes over time and with
limited computing and storage capacity at EDC side, the optimal assignment might not always be
the one with minimum latency between APs and EDCs. Unlike our contribution that is agnostic to
the virtualization infrastructure, [38] focuses on virtual machines thereby neglecting the specifics
of containerization that is the key technology for cloud-native next generation networks [39].
Finally, unlike the body of work in computation offloading, in the paper [40] the authors propose
Comp-HO, an algorithm specifically designed for augmented reality in MEC environments that
optimizes the joint problem signal strength and computational load so to minimize access delays
and congestion at EDCs.

The closest effort to this work is our previous conference paper [25], where we proposed and
compared two heuristics for EDC deployment, namely distributed deployment algorithm (DDA)
and mobility-aware deployment algorithm (MDA). The objective of [25] however is to expose how
by taking into account user mobility yields better deployment strategies than mobility unaware
solutions. The shortcoming of such work is that it solely focuses on a single radio technology, i.e.,
the mobile cellular network. Both DDA and MDA assign a cost to the link that interconnects a
BS and the EDC and a k-medoids algorithm is used to find the optimal BS where the new EDC
is deployed. While in DDA the cost is based on geographical proximity (i.e., the objective is to
ensure short links with low latency), in MDA the cost is weighted by mobility, i.e., the optimal
BS for the deployment is selected by considering how many computing requests the neighboring
BS have along time. With an iterative approach, MDA refines the location of new EDCs so that in
any moment in time the total computing demand for each EDC is close to the average each EDC
should have to minimize outages, i.e., the probability that a request can not be satisfied.

3. Edge Deployment Strategies

We now describe our reference scenario and the strategies we implemented to deploy edges in
urban environments. In particular, we detail in Section 3.1 a possible MEC-based architecture,
and we clarify the kinds of services that the edge nodes can locally provide. In particular, we
state the problem we address, namely an efficient strategy to deploying edge nodes. Afterwards
Sections 3.2 and 3.3 describe two alternative strategies for the edge deployment, namely the
Clustering-Based strategy and DDA.

3.1. The Reference Scenario of the MEC Deployment

Our reference architecture is characterized by an urban environment densely populated.
People visiting such environment are equipped with several types of smart devices connected to a
broadband link (e.g. LTE, 5G/6G) or connected to a WiFi network.

Network operators provide to the end-users several kinds of services, ranging from traditional
delay-tolerant applications, such as email or instant messaging, to low-latency services, such as
gaming, video offloading and augmented reality. The kind of service required and the amount
of devices simultaneously requiring such service, highly affect the overall network performance.
As a general idea, low-latency services are higher demanding with respect to browsing a web
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Figure 1: A graphical representation of clusters of BSs. Each cluster is proxied by an EDC, namely EDCx, EDCy and
EDCz. EDCs act as a local service provider for devices roaming in the nearby of the cluster (Map data copyrighted
OpenStreetMap contributors and available from https://www.openstreetmap.org).

page or checking emails. As a consequence, a balance between the service’s SLA and the outage
probability has to be found. We model the behaviour of the end-users with the concept of smart
device activity as the traffic generated by mobile devices. This depends on several factors, such as
the mobile application used by end-users, its computational demand, and the usage duration. In
this work, we describe the smart device activity. In this case, we set a fixed percentage on the
total citizen walking time, to randomly generate the usage of a certain app or the period of not
performing any activities with the smart device. Future steps will be to associate a specific user
activity with more realistic corresponding app, such as video streaming when waiting a bus or
augmented reality while walking.

We observe that, to better support the heterogeneity of the services we mentioned, the
traditional cloud computing model is nowadays phased out. In particular, we explore the impact
of migrating services from the Cloud to the edge of the network, so that to reduce the latency
and to move the computation close to the place where services are accessed. Such migration is
feasible if we extend a traditional network infrastructure with MEC architecture.

Traditionally, network operators provide connectivity to customers with a number of BSs.
BS are deployed according to specific strategies. We assume that some of the BSs can also be
provisioned with an EDC, a computational unit able to provide extra-services to nearby devices.

More specifically, we consider that an EDC acts as service provider for a set of BSs. Therefore,
all the service requests coming from devices connected to BS 1 · · · BS k are served by EDCx as
proxy for k BSs. We report in Figure 1 an example of our reference architecture, in which we
show EDCy proxying all the requests from devices connected to BS 1 to BS 3.

Assigning the EDCs to the BSs deployed in the environment is not an easy task being the
underlying optimization problem NP-HARD (it can be mapped to the Quadratic Assignment
Problem [10]). In fact, an inefficient deployment might incur in EDCs overbooked or, conversely,
underused. This is the case of EDC deployed in highly populated areas where a high number of
service’s requests have to be served simultaneously.
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We describe in Section 3.2 and 3.3 two alternative strategies for deploying EDCs in urban
areas knowing in advance the location of the BSs. The two strategies differ with respect to the
amount of context-information exploited during the deployment phase of the EDCs.

3.2. The Clustering-Based Strategy
The CLUstering-Based (CLUB) strategy we propose in this work implements a mobility-based

deployment algorithm. CLUB does not exploit any information concerning the traffic generated
by mobile devices, neither the location of the BSs, rather CLUB only analyzes the user mobility
with a unsupervised clustering technique. The idea is to avoid exploiting knowledge about the
incoming/outgoing BS’s traffic, as this type of information is rarely available by network operators.
Differently, CLUB exploits user mobility traces, commonly available as GPS trajectories. This
kind of data set reports a timestamped sequence of GPS locations (e.g. according to a reference
system, such as WGS84, EPSG4326) in the form: [timestamp, latitude, longitude, userID]. Such
traces can be aggregated and processed so that to spot high-density locations. The identified
locations can be used to deploy a set of EDC close to those places where people generally meet.

The CLUB strategy is implemented with 3 steps, as reported in Figure 2, in particular;

Figure 2: The processing pipeline used to deploy EDC with the CLUB strategy.

• data filtering;

• spatial clustering and identification of cluster’s centroids;

• tessellation and EDC selection.

The first step consists of filtering the input data set cropping GPS points in the area of interest and
restricting them to the reference time period. The output of the filtering is a set of GPS points
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within the bounding box B. The second step clusters the GPS points so that to identify high-
density locations. For this purpose, we adopt the K-Means [41] clustering algorithm. K-Means
identifies well separated clusters by minimizing the inertia criterion. In particular, K-Means
requires to know the number of clusters to detect and then it clusters points so that to minimize
the within-cluster sum-of-squares given by:

n∑
i=0

(||xi − µ j||
2), (1)

where µ j is the mean of the samples in the cluster and xi is the i-th sample. The algorithm performs
three steps:

• selecting k arbitrary points from the initial data set;

• assigning to each of the k points its nearest centroid;

• recomputing the centroids by analysing the input GPS points The centroid re-computation
is interrupted when the difference between the previous locations of the centroids and the
new computed locations is lower than a threshold.

In order to detect highly representative clusters, we configured K-Means so that to repeat the
cluster detection with 10 iterations, this allows to shuffle the initial assignment of the k initial
centroid and to obtain stable results. Moreover, we forced K-Means to initially select well
separated clusters, as discussed in [42].

The result of the second step is a set of well-defined clusters, as shown with the colored map
in Figure 2. We then compute the cluster’s centroids, namely the cluster mid-locations. Centroids
are used as input for the third step which corresponds to the tessellation. In particular, for each
centroid ci of cluster i, we identify the closest base station to ci. The locations of the selected base
stations B̂S are used for the deployment of k EDC. We finally associate to each of the k EDC a
sub-set of base stations for which an EDC is responsible, similarly to what is implemented in
the DDA strategy, see Section 3.3. This association is obtained with a Voronoi tessellation. The
tessellation is obtained by using the k EDC as vertices, and it returns a set of k closed polygons.
All the BS lying within polygon i are associated to the i-th EDC, as shown in Figure 2. The figure
shows in red color the locations of the BS and in black color the locations of the selected EDC.

3.3. The State-of-the-art Strategies

DDA uses the k-medoids clustering algorithm to assign BSs to EDCs. While in the k-Means
algorithm the centers of clusters are not necessarily input data points, the k-medoids method
chooses the centroids among the input data. This is precisely what is needed to identify the location
where to physically place the computing servers of the EDC. Specifically, DDA computes a cost
based on the distances between the BSs that are EDC candidate locations and all the other BSs
that will be assigned to it. This approach brings a significant shortcoming, i.e., under-utilization
in some EDCs and overload in others. Under-utilization and overload occur when the EDC serves
areas with low/high traffic and computing demand respectively. This is detrimental to outages,
i.e., the probability that an EDC cannot serve a request.

MDA was developed precisely to overcome the above mentioned shortcoming of DDA. MDA
captures the complex dynamics of a city (e.g., user mobility and social interactions) and use
them as a weight to identify which areas of the city are potentially under-utilized or overloaded.
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As DDA, MDA deploys EDCs among BSs by exploiting the k-medoids algorithm. However,
unlike DDA, MDA assigns the EDCs among BSs by computing a cost based on the expected BSs’
load along the day and the corresponding computational demand generated that EDCs have to
sustain. MDA uses an iterative approach that computes the instantaneous computing load for each
EDC. By comparing such value against the average load of all the EDCs, MDA favors allocation
of incoming load to less loaded EDCs and strives to balance the load across all the EDCs thus
minimizing outages.

4. Experimental Settings and Results

We detail in this section our experimental settings and obtained results. We consider 2 mobility
data sets for testing the EDC deployment strategies. The data sets stress the strategies and they
allow to validate the deployment strategies at different conditions. We describe in Section 4.1 the
mobility data sets we use, while we report in Section 4.2 the obtained results.

4.1. Mobility Analysis with the Experimental Data Sets
We analyse 2 mobility data sets, called P-Mob (ParticipAct Mobility) and GPT-Mob (Google

Popular Time Mobility). The analysis reported in this section provides a quantitative assessment
of some mobility features, with the goal of characterizing the considered data sets from a mobility
perspective. The reported analysis describes the nature of the data sets, in terms of geographic
displacement, the followed trajectories and the trends of users in visiting the locations along with
the time.

The data sets are generated by processing the information extracted from 2 real-world initia-
tives, namely ParticipAct [29] and Google Popular Time. P-Mob and GPT-Mob both reproduce
the mobility of 100.000 users in an urban area centered in the Bologna city 3 for 24 hours. The
type of mobility is pedestrian and the trajectories followed by users are generated according to a
set of pre-defined origins and destinations. The distinguishing features of the data sets is how the
origins of the users’ trajectories are generated. We first describe how we built the data sets and
then we compare some mobility features, so that to highlight similarities and differences of the
data sets. 4. It is worth to notice that P-Mob and GPT-Mob provide a complementary analysis of
the EDC deployment strategies compared in this work. On the one hand, P-Mob mimics mobility
from locations extracted from real-world GPS trajectories, but collected from a limited number
of users. On the other hand, GPT-Mob is grounded on massive information provided by Google,
hence the origins extracted are highly representative.

Concerning P-Mob, origins are extracted from the ParticipAct data set. ParticipAct is a real-
world experiment whose data are collected with an Android-based mobile app. The experiment
involved about 180 end-users, roaming in Emilia Romagna region for 18 months. The involved
users were mainly students of the University of Bologna who accepted to join the experiment and
to collect data. The number of involved users and of collected traces varies according to the time
period, we refer [30, 44] to for an in-depth analysis of the ParticipAct experiment. For the purpose
of this work, we analyzed 12 months of mobility, from January to December 2014. Origins of
P-Mob are generated by super-imposing a mesh grid of 600 meters side and by counting the
amount of GPS points fitting in each of the grid’s cells. Such aggregation allowed us to identify
those highly populated cells at different time hours and, in turn, to rank the preferential origins
according to the cell popularity.

3longitude min: 11.32815834, longitude max: 11.35833366, latitude min: 44.4850610 and latitude max: 44.5066589
4Mobility analysis is obtained with the scikit-mobility python library [43]
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Unlike P-MOB, the preferential origins of GPT-Mob are selected according to the information
provided by the Google Popular Time service. Specifically, in alignment with the methodology
used in our previous research [45], we fetched through the Google Cloud APIs information about
the visiting patterns of several commercial activities such as: bars, restaurants and pubs. Data are
extracted from the Bologna city center for a period of 2 months. The information collected allows
to classify the popularity of such points of interest and, in turn, to rank them so that to select a set
of preferential origins.

We first visualize the geographic distribution of points in P-Mob and GPT-Mob data sets in
order to check if the two data set cover similar regions. The heatmap in Figure 3 shows that the
coverage region is centered on the Bologna city center, and that visited locations are uniformly
distributed in the considered bounding box. Even if the covered locations of the two data sets are
similar, there exist some differences in terms of mobility features, as described in the next.

Figure 3: Geographic extension of the considered data sets. (Map data copyrighted OpenStreetMap contributors and
available from https://www.openstreetmap.org).

We show in Figure 4 the time series of the number of visits aggregated on an hourly basis. The
number of visits varies for the two data sets. In particular, with P-Mob visits have a stable trend for
the whole day, while with the GPT-Mob we observe two peaks at 2 different time frames: 12.00
and 21.00. This behaviour reproduces a typical pattern of mobility in urban areas for working
days. Figure 4 also shows the distribution of the number of visits for each of the locations detected.
The two distributions are reported on the graph inset on a log scale. We observe that the two
distributions reproduce a power-low trend, however the P-Mob data set reports higher probability
values for the number of visits than that of the GPT-Mob data set. We now inspect the origins and
destinations for the 2 data set. In particular, we detect the mobility flows. Flows are obtained by
aggregating user’s trajectories and by counting the number of trajectories from the same origin
to the same destination. The higher the flow value from a → b, the higher the number of users
following such trajectory. The flow’s origins and destinations are obtained by tessellating the area
with 500m-side tiles and by identifying the tile center as an origin or a destination.
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Figure 4: Visits per hour and distribution of visits per location of the experimental data sets.

(a) Geographic representation of the
P-Mob flows (Map data copyrighted
OpenStreetMap contributors and available
from https://www.openstreetmap.org).

(b) Correlation of the flow values

Figure 5: Flow analysis of the experimental data sets.
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(a) Frequency rank. (b) Recency rank.

Figure 6: Frequency and Recency of P-Mob and GPT-Mob data sets.

The result is a set of 264 routes for the P-Mob data set and 252 routes for GPT-Mob. We
report in Figure 5a a geographic representation of the P-Mob flows. The Bologna area is split
into 1241 tiles of 500 meter side, the red lines describe the flows, whose thickness is proportional
to the flow value. From the figure it is possible to observe that some routes are more visited, as
reported with the flows in the city center. A similar flow map is obtained for the GPT-Mob data
set, as shown with the joint plot in Figure 5b. From the figure, it is possible to observe a clear
correlation of the trajectory’s flows for the 2 data sets, with a Pearson correlation of 0.87.

We further analyse how users of the 2 data set visit locations, to this purpose, we compute the
frequency and the recency rank. The frequency rank fl of location l measures how frequently l is
visited, fl = 1 means that location l is the most visited. Similarly, the recency rank rl of location l
measures how recently l is visited, rl = 1 means that l is the last visited location. We compare
the frequency and the recency ranks for the 2 data sets, as reported in Figure 6. Concerning the
frequency rank in Figure 6a we observe a mismatch of rank in the interval [0 − 20], while a more
clear correlation for higher values of the frequency rank. Differently, the recency rank in Figure
6b is more tightly correlated in the 2 data sets.

4.2. Performance of the Edge Selection Strategies

We compared the outage of our new proposed method (CLUB) with respect to the ones of the
other two state-of-the-art algorithms, i.e., DDA and MDA (see Section 3.3), for the computed
deployments. Figure 7 shows the per-hour outage probability in a working day for the different
strategies with the number of servers fixed per EDC (set to 10) and different user mobility in the
city. Figure 7(a) illustrates the outage probability for the P-Mob data set. As expected, the outage
probability of MDA is the lowest and CLUB outperforms DDA during all hours. It should be
noted that the difference between MDA and CLUB is minor, which confirms the goodness of our
new deployment evaluated by CLUB. Indeed, CLUB requires much less information than MDA
to define a deployment, since MDA requires data about the individual traffic loads of the BSs in a
given area. Based on this result we can affirm that CLUB is a good compromise between outage
performance and complexity.

Figure 7(b) shows the per-hour outage probability for the GPT-Mob data set. Interestingly, the
results show a different behavior compared to the P-Mob. First, we can observe how the outage
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(b) Outage probability based on GPT-Mob

Figure 7: Total Outage Probability in a working day.

probabilities show two clear peaks at lunch and dinner time. The reason is that the majority of the
activities in the GPT data are restaurants and this provides a bias in modeling the mobility because
it is strictly related to the one category of activities. As a consequence, the maximum value of
outage probability reached is higher if compared to those obtained with the previous mobility
model (up to 40%). Concerning the comparison between the approaches, MDA significantly
outperforms the other strategies, while there is a change in the relation between CLUB and DDA,
with the GPT mobility DDA having lower outage probabilities compared to CLUB, especially
during peak hours.

5. Conclusions and Future Work

The advent of MEC promises to support new challenging application scenarios that require
additional communications and computational capabilities at the edge of the network. EDCs are
the cornerstone of these new widely diffused and complex edge deployment scenarios. While the
MEC paradigm embraces all possible (wireless) communication technologies to cover the last
mile, the problem of effectively deploying EDCs in smart cities scenarios has been mostly tackled
for telco cellular infrastructure only, by often assuming that the whole infrastructure is under the
control of the same operator. Effective EDC deployment is key to promote distributed intelligence
at the network edge.

The paper presented our CLUstering-Based (CLUB) EDC deployment strategy that aims to
remove those assumptions by making our solution ready-to-use in practical scenarios where MEC
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nodes could potentially host multiple connectivity types and where various mobile/wireless (vir-
tual) operators cooperate for their management. In particular, obtained results, that benchmarked
our solution with other existing ones in the literature, are promising and show that CLUB, by only
using user mobility aggregated data, is able to compute EDC deployments that can grant outage
probabilities close to the ones obtained by more informed algorithms, such as MDA, that require
full knowledge of individual traffic loads. We analyze the mobility obtained from P-Mob and
GPT-Mob data sets, build by using data gathered from two CrowdSensing initiatives [46], namely
ParticipAct and Google Popular Time. We first analyze the mobility features of the 2 data set and
then we compute the outage probability of a number of EDC selected according to CLUB, DDA
and MDA. We observe that CLUB always provides comparable results with respect to DDA and
MDA but at lower costs in terms of the kind of information exploited to provide an effective EDC
deployment. The results show that CLUB is a good compromise between outage performance and
complexity, thanks to this characteristic CLUB can be essential for EDC deployments in areas
with lack of traffic loads data.

Those encouraging results are pushing us to further investigate and refine CLUB along two
main ongoing research directions. On the one hand, we are investigating how to increase the
effectiveness of CLUB considering also some additional user profiling information that might
complement the only mobility traces, but without requiring a full control by the operator; for
instance, that might include the information about the types of used mobile apps in a certain
geographical area. That would allow to make more informed scheduling decisions, but also to
enable new usage scenarios, such as the possibility to use CLUB to identify, in non-densely
populated areas, opportunities for the network operators to evaluate the deployment of new EDCs
at the edge. On the other hand, we are working to define the more complex problem of the
multi-tenant management of EDCs by different and multiple virtual operators, thus considering
not only the outage in terms of bandwidth, but also computing and memory requirements, as well
their different (and possibly contrasting) goals, depending also on the type of delivered services.
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