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Abstract 

 Researchers are motivated to build effective Intrusion Detection Systems because of 

the implications of malicious actions in computing, communication, and cyber-physical 

systems (IDSs). In order to develop signature-based intrusion detection techniques that 

are suitable for use in cyber-physical environments, state-of-the-art supervised learning 

algorithms are devised. The main contribution of this research is the introduction of a 

signature-based intrusion detection model that is based on a hybrid Decision Table and 

Naive Bayes technique. In addition, the contribution of the suggested method is evaluated 

by comparing it to the existing literature in the field. In the preprocessing stage, Multi-

Objective Evolutionary Feature Selection (MOEFS) feature selection has been used to 

select only five attack features from the recent CICIDS017 dataset. Keeping in view the 

class imbalance nature of CICIDS2017 dataset, adequate attack samples has been selected 

with more weightage to the attack classes having a smaller number of instances in the 

dataset. A hybrid of Decision Table and Naive Bayes models were combined to train 
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and detect intrusions. Detection of botnets, port scans, Denial of Service 

(DoS)/Distributed Denial of Service (DDoS) attacks, such as Golden-Eye, Hulk, Slow 

httptest, slowloris, Heartbleed, Brute Force attacks, such as Patator (FTP), Patator 

(SSH), and Web attacks such as Infiltration, Web Brute Force, SQL Injection, and XSS, 

are all successfully detected by the proposed hybrid detection model.  The proposed 

approach shows and accuracy 96.8% using five features of CICIDS2017, which is higher 

than the accuracy of methods discussed in the literatures. 

Keywords: Intrusion Detection, DTNB, Signature-based, Botnet Detection, Denial of 

Service (DoS) attacks, Distributed Denial of Service (DDoS) attacks, Web Attacks, Class 

Imbalance 

 

1. Introduction 

Cyber-Physical Systems (CPS) are composed of resources such as sensors, actuators, 

control processing units, and many other communication devices. More and more critical 

infrastructures are being equipped with CPS in the modern era of computing, which 

enables real-time data processing Networked agents of CPS play a critical role in adopting 

and practicing online data processing. The sensitive data resides across many 

computational stations of CPS. The scattering of sensitive data across the systems attracts 

hackers and other automated malicious tools. These intrusions aim to sneak into the users’ 

systems and take control of the computational activities. Most of these threats are 

propagated through the Internet and other network typologies. However, many security 

mechanisms exist [1]–[4] to counter these threats, but the unpredictable actions of these 

threats become a nightmare for network engineers and security experts. In many cases, 

these external threats stand far ahead of the existing security mechanisms, such as firewalls 

[5]. Firewalls and other specialized protocols [6] are not always sufficient to detect these 

undercover threats. The firewall follows a static access control policy and is not quickly 

adaptable to outside attacks [7]. Moreover, a firewall is responsible for evaluating and 

preventing intrusions of one entity at a time [8], [9]. These prevention schemes are not 

designed to monitor the collective behavior of legitimate packets sent multiple times. 

Therefore, as an alternate solution, Intrusion Detection Systems (IDS) come into the 

picture. An IDS reviews, controls, analyzes, and represents reports about any suspicious 

events in the system and network activities 

In a typical cyber physical system, to secure the network resources, firewalls and 

IDSs as deployed as layers [10], where the firewall becomes the first layer of the 

infrastructure, and the IDS is the second layer of defense. Due to this, firewalls are being 
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adopted as anomaly detection systems [11], and the IDSs are precisely designed as 

signature-based detection engines. Signature-based Intrusion Detection (SID) mechanisms 

are mostly used to detect known attacks. The detector detects malicious instances using 

well-known attack patterns. Furthermore, unsupervised learning schemes [12], [13], as well 

as supervised learning schemes [14]–[16], have the potential to serve as IDS engines.  

IDSs present a slew of inherent issues throughout the detection process. One such 

issue is the sheer number of features. IDS classifiers have to develop models for a large 

number of characteristics from raw data, which considerably increases the time required 

to build the detection model. When training data consists of a huge range of instances 

[17], the situation deteriorates further. Additionally, it takes significant amount of time for 

the detection model to identify patterns in the data it receives. All of the features in the 

dataset are not required for an accurate classification of examples. Even when only a few 

features are included in a classification model, it is possible to classify the samples with 

the same accuracy rate. Another issue with IDS is the preparation of training data. In 

most training datasets, there is a high degree of class imbalance [18]. High class imbalance 

datasets are regarded to be skewed towards the majority classes [19]–[21]. As a result, the 

detection model generates a large number of spurious alarms. When building an IDS, the 

issue of high-class imbalance raises the question of which classification model to use for 

threat detection. Detection engines for IDS use classification approaches as the foundation 

of the detection process. The ability of an IDS to classify threats in even int the most 

difficult of scenarios is critical to its elegance. With high-class imbalanced datasets, an 

IDS classification model should be capable of detecting potential threats with the utmost 

degree of accuracy. 

Taking into account the issues stated above, a signature-based IDS has been 

developed for detecting network threats. The article's primary contribution is a hybrid 

detection technique based on Decision Tables and Naive Bayes (DTNB) that operates 

efficiently on only five important features of the CICIDS2017 dataset as determined by 

the Multi-Objective Evolutionary Feature Selection (MOEFS) scheme. The model is 

capable of detecting a broad range of network attacks, including Botnet, Port Scan, Denial 

of Service (DoS) attacks such as GoldenEye, Hulk, Slow httptest, slowloris, and 

Heartbleed, Brute Force attacks such as Patator (FTP), Patator (SSH), and Web attacks 

such as Infiltration and SQL Injection. The ability of both decision table and naïve bayes 

makes the proposed hybrid approach suitable for both binary and multiclass attacks 

environment. The rest of the article is arranged as follows. Section 2 conducted a detailed 

analysis of recently proposed signature-based intrusion detection models using the 

CICIDS2017 dataset. Section 3 describes the hybrid intrusion detection model that is 
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presented. Section 4 discusses the outcome and subsequent examination of the proposed 

detection method, followed by a conclusion in Section 5. 

2. Related Work 

Several researchers have attempted to lay out numerous ideas for capturing intrusion 

events in a host-based [18], [19], or network-based scenario [17], [24]–[26]. Most of these 

models have their own advantages, disadvantages, and research gaps. For instance, an 

artificial neural network-based network IDS [27] was proposed to detect network threats 

of the CICIDS2017 dataset. The model detects attacks with the best accuracy ever, at 

99.9%. However, the system suffers from numerous shortcomings. First, the model uses a 

binary detection approach using a multilayer perceptron on a multiclass dataset. Secondly, 

the proposed model is silent on the feature selection scheme. The dataset contains more 

than 80 features; therefore, designing an IDS considering all the features is practically 

impossible. A deep learning strategy for IDS[28] has been proposed using the Long Short 

Term Memory (LSTM) network associated with Convolutional Neural Networks. The 

proposed LSTM and CNN hybrids have a precision of 98.44% and an accuracy of 97.16%. 

The LSTM+CNN hybrid model [28], like the prior artificial neural network model [27] is 

also silent on the feature selection technique. Moreover, the dataset considered in the 

LSTM+CNN hybrid model is enormous. A realistic system is not feasible unless a 

reasonable number of samples is considered. Shallow Neural Network (SNN) and Deep 

Neural Network (DNN) based IDSs are designed using neural networks [29]. Considering 

all the features of the CICIDS2017 dataset, the SNN and DNN model reveals the accuracy 

of 98.05% and 98.40%. Subsequently, with ten features, the SNN and DNN model shows 

91.08% and 94.72% accuracy, respectively. It is observed from the analysis that both the 

SNN and DNN approach fails to detect Web Attacks, Infiltration, and Brute force attacks. 

These attacks appeared to be passed as false negatives. Zhang et al. [30] proposed a real-

time IDS called Distributed Random Forest based System (DRFBS) for high-speed 

networks. The model employs a bootstrap sampling scheme for the large CICIDS2017 

dataset. DRFBS model on bootstrap training sample proved to be fast, which took only 

0.01s while detecting intrusions. The promptness of the model, on the other hand, 

compromises the detection capability of the model to a certain extent. The model exhibits 

a precision of 96.4% with a recall of 96.9%. A hierarchical approach of decision trees and 

rule-based classifiers has been proposed for designing IDS [31]. The proposed model proved 

to be efficient as compared to other supervised learning schemes. The hierarchical model 

is based on data preprocessing, training, and testing of attack and benign instances of the 

CICIDS2017 dataset. The detection model shows an accuracy of 96.665% accuracy, with 
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a detection rate of 94.475% and a nominal false alarm of 1.145%. The author took 40000 

instances each for training and testing instances of the CICIDS2017 dataset. When 

developing the training and testing model, great care was taken to ensure that all attack 

instances were included in both the training and testing sets. An ensemble of decision 

trees [32] on the top of correlation-based feature selection detects network threats with 

magnificent detection and accuracy rate. The detection model entrusted on 13 features of 

the CICIDS2017 datasets to achieve 96.8% accuracy. The model also recognizes 95.3% 

accuracy for all the features of the same dataset. Ensemble learning has also been 

implemented using Support Vector Machine (SVM) for abnormal behavior detection [33]. 

The created model uses a distributed approach to find anomalous behavior from large-

scale network traffic data by combining deep feature extraction and multi-layer ensemble 

SVMs. The ensemble of SVMs shows precision and recall of 90.4% and 95.65%, 

respectively. 

Bamakan et al.[34] established an accurate and robust approach for detecting 

intrusions using Classification and Regression Ramp Loss K-Support (Ramp-KSVCR). 

KSVCR's Ramp loss function addresses skewed attack distributions. The model may be 

readily scaled up with minimal training time. This procedure was determined to be the 

fastest and most accurate. The correct feature selection system can boost detection rate 

and accuracy even more. Kabir et al. [35] presented an IDS based on Least Square Support 

Vector Machine (LS-SVM). The entire dataset is given random subclasses at the start of 

the process. The IDS uses a selection of samples to accurately represent the entire dataset. 

LS-SVM then discovers intrusions in the subset of data utilized to detect intrusions. The 

suggested model was tested on both binary and multiclass KDD99 datasets. In spite of 

their high accuracy rate, the KDD99 dataset used here contains earlier assaults. A recent 

attack dataset may thus be utilized to analyze system performance. Similarly, A LSSVM 

was also explored by Ambusaidi et al. [36] to design an effective IDS.  Feature 

selection was carried out to speed up classification. Using world-class benchmark datasets, 

LSSVM-IDS yields accuracy levels of 99.94%.  

Similarly, due to the low time complexity decision trees are frequently used to detect 

intrusions [37], [38]. A Snort-based intrusion detection system using on decision trees [38] 

has been proposed where the Snort priority levels were determined by analyzing real-world 

attacks on high-speed networks. Only three features in the ISCXIDS2012 dataset are 

capable of detecting threats with a 99.99% success rate. Akyol et al. [39] have developed 

an intrusion detection system with multiple layers of detection. The C4.5-based decision 

tree classifier and the MCP classifier were used as part of the hybrid strategy. The authors 

also presented a new feature selection method based on the discernibility function. To test 
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this, they used the KDD'99Cup and ISCX datasets to evaluate the performance of their 

approach. There are only 0.03% false alarms with their hybrid method, which yields a 

detection rate and accuracy of 99.50%. NeuroC4.5, a C4.5 decision tree built on top of a 

neural network, outperforms the regular C4.5 decision tree in detecting threats [40]. In 

order to detect network breaches in real time, classification rules derived from audit data 

using NeuroC4.5 have been used. According to the KDD99 dataset, the NeuroC4.5 is 

94.55% accurate in detecting Denial of Service (DoS) attacks. A Non-Symmetric Deep 

Auto-Encoder (NDAE) based unsupervised feature learning was augmented by Random 

Forest classifiers [41] smartly detect intrusion using the features of KDD Cup '99 and 

NSLKDD datasets. Less training time is required for the proposed NDAE architecture. 

However, the authors acknowledge that the method is not ideal and could be improved.  

In a nutshell it is observed that there exists many potential supervised, unsupervised 

and hybrid IDSs to counter intrusions in a cyber physical system environment. However, 

the industry is interested in several more hybrid models for developing cutting-edge IDS.  

3. Materials and Methods 

In this section first the problems associated with typical IDSs and the overall method 

we used to counter such challenges has been outlined. Subsequently, various steps of the 

proposed intrusion detection model such as data preprocessing and sampling procedures 

are explained in detail.  

3.1. Problem definition and the proposed method 

The detection process for IDSs is riddled with man difficulties. An example of this is that 

there are so many features of attacks. IDS classifiers must create effective models from 

raw data from large number of features. On the other hand, attacks having a large number 

of features may hamper the IDSs’ detection performances. Similarly, an IDS trained on a 

large number of examples may suffer to detect any incoming attack pattern. Preparation 

of training data is yet another issue with IDS. The high-class imbalance issue can be found 

in the majority of training datasets. According to this classification and detection model, 

datasets with a large class imbalance are likely to be skewed toward the majority classes. 

Therefore, an effective IDS must be able to identify and classify threats even in the most 

challenging of situations. 

As a proposed solution to the problem discussed above an IDS framework has been 

proposed and presented in Figure 1. 
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Figure 1: A schematic diagram of the proposed DTNB intrusion detection model. 

The idea behind the proposed model is that a reasonable number of samples of the 

CICIDS2017 dataset have been selected for feature selection. The feature selection module 

identifies the best possible features and contributes the maximum amount towards the 

detection process. The DTNB training engine has been trained in three ways; (a) using all 

the selected samples, (b) using 66% of the samples, where 34% of the samples are kept 
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reserved for testing the detection engine later, and (c) through 10-fold cross-validation. 

Overall, the detection model detects instances as one of the 14 attacks or labeled benign, 

as shown in figure 1. The suggested model's three primary steps, sample selection, feature 

selection, and intrusion detection, are explained in the following section. 

3.2. Sample Selection 

The data preprocessing module starts with sample selection. The CICIDS2017 [42] 

intrusion dataset released by the Canadian Institute of Cyber Security was used in this 

study. The CICIDS2017 dataset contains benign and 14 recent attack information.  The 

dataset claims to meet all 11 requirements of an IDS as described by Gharib et al. [43]. 

Using these IDS dataset design criteria, CICIDS2017 looks to be the most relevant dataset. 

The original CICIDS2017 dataset contained five days of normal and attack traffic data in 

eight separate files. There are 3119345 instances in the dataset and 15 class labels (one 

normal, 14 attack labels) when the day-by-day files are combined. In addition, 288602 

instances of the combined files were discovered to have missing class labels and 203 

occurrences with missing content. A unique set of 2830540 instances was realized by 

deleting the missing instances. The benign and attack instances' contribution to the 

dataset is presented in Table 1. 

Table 1: Benign and attack instances contribution in CICIDS2017 dataset. 

Benign & Attack Labels Number of Instances Imbalance Ratio 

Benign 2359087 5.004 

Bot 1966 0.001 

Brute Force (Web Attack) 1507 0.001 

Distributed Denial of Service (DDoS) 41835 0.015 

GoldenEye (DoS) 10293 0.004 

Heartbleed 11 0.000 

Hulk (DoS) 231072 0.089 

Infiltration 36 0.000 

Patator (FTP) 7938 0.003 

Patator (SSH) 5897 0.002 

Port Scan 158930 0.059 

Slowhttptest (DoS) 5499 0.002 

Slowloris (DoS) 5796 0.002 

Sql Injection (Web Attack) 21 0.000 

XSS (Web Attack) 652 0.000 

 



 

9 

 

The last column of Table 1 represents the class imbalance ratio of the corresponding 

attack and benign class. Considering each class as positive and the rest of the classes as 

negative, the Class Imbalance Ratio (CIR) of a class 𝐶𝑘 of the dataset having 𝑛 number 

of instances can be estimated as: 

𝐶𝐼𝑅 =
|𝐶𝑘|

𝑛−|𝐶𝑘|
  ………………….  (1) 

The CICIDS2017 dataset has a high-class imbalance in nature, as shown in Table 1. 

The benign instances contribute 2359087 instances with a CIR of 5.004, whereas the 

minority classes like Heartbleed, Infiltration, SQL Injection and XSS hold approximately 

0 CIR. Therefore, a reasonable number of samples are selected from vast instances of 

CICIIDS2017 using reciprocal down sampling technique presented in equation 2. The 

required number of samples is selected in such a way that the attack instances of the 

sample maintain the same ratio of contribution as that of the original dataset. This is 

possible through equation 2. 

𝑊𝑐[𝑃] = 100 − [
𝑠𝑓𝐶[𝑝]

|𝑠𝑡𝑒𝑝𝑆𝑐|
∗ 100] ………………….  (2) 

Where 𝑊𝑐[𝑃] represents the weight allocated to each attach class (𝑝) for sample 

contribution, 𝑠𝑡𝑒𝑝𝑆𝑐 = stepwise total instances for all classes, 𝑠𝑓𝐶[𝑝]  represents the 

number of instances for each class. Using equation 2 a reasonable number of 167169 has 

been selected. The selected samples maintain the same contribution ratio as that of the 

original dataset, but it also helps to avoid the difficulty of processing the entire sample 

set.  

3.3. Feature Selection 

After obtaining reasonable samples, a new feature selection scheme known as Multi-

Objective Evolutionary Feature Selection (MOEFS) [44] was used to pick a subset of 

features. It should be mentioned that the CICIDS2017 dataset has a total of 83 features, 

all of which are statistically insignificant for classification tasks. Therefore, the MOEFS 

algorithm was utilized, which selected five statistically relevant features from the 

CICIDS2017 dataset's 83 features. The “Fwd IAT Mean”, “Bwd IAT Total”, “Subflow Bwd 

Bytes”, “Init win bytes forward” and “min seg size forward” are the chosen features of the 

sample set. Table 2 shows the relevance of the selected features. 
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Table 2: Features selected through MOEFS with its corresponding meaning. 

Features Selected Feature Description 

Fwd IAT Mean The average time taken for two packets to be transmitted forward in the same direction. 

Bwd IAT Total The sum of all Inter Arrival Times in the reverse direction.  

Subflow Bwd  Bytes An average number of bytes in a sub-flow in the reverse direction. 

Init win bytes forward Total number of bytes transferred in the forward direction in the initial window 

min seg size forward Minimum segment size recorded in the forward direction 

3.4. Detection Approach 

The selected features of MOEFS feature selection are then sent to a hybrid 

classification scheme called DTNB [45]. The DTNB approach is the heart of this detection 

engine. The class probability of DTNB is predicted as – 

 Q(y|X) = α × QDT(y|X⊤) × QNB(𝑦|𝑋⊥)/𝑄(𝑦)  …………….  (3) 

where, 

QDT(y|X⊤)  =  Class probability estimates of Decision Table 

QNB(y|X⊥)  =  Class probability estimates of Naïve Bayes  

α  =  Normalization constant 

Q(y)  =  Prior probability of the class 

  X⊤  =  Set of attributes in the Decision Table 

  X⊥  =  Set of attributes in Naïve Bayes  

4. Results and discussions 

The proposed methodology was implemented on the Param Shavak supercomputing 

facility established by India's Centre for Development of Advanced Computing (CDAC) 

using Java on the CentOS platform. The supercomputer has 64 GB of RAM and two 

multicore CPUs, each with 12 cores and 2.3 teraflops of capability. The samples of the 

CICIDS2017 dataset have been trained and tested in three ways. First, the entire samples 

are split into 66% training and 34% testing instances. In the second stage, the entire 

training set is considered for both training and testing purposes. Finally, 10-fold cross-

validation was used to evaluate the suggested model's performance. Performance is 

measured using classification accuracy, false alarm rate, precision, and area under the 

curve. Finally, the suggested model is compared to currently available state-of-the-art 

IDSs. 
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4.1. Analysis through all the instances of the sample 

In this analysis, the entire sample of 167169 has been treated as both training and 

test instances. The detection model is trained through all the sample instances, followed 

by the testing of the same instances to identify the attack labels. The detailed observations 

of this test are presented in Table 3. 

Table 3: Performance of the proposed model through entire training instances as test instances 

Benign & Attack Labels Precision Recall FPR 

Benign 0.997 0.922 0.003 

Bot 0.908 0.954 0.000 

Brute Force (Web Attack) 0.676 0.963 0.001 

Distributed Denial of Service (DDoS) 0.745 0.975 0.017 

GoldenEye (DoS) 0.996 0.966 0.000 

Heartbleed 0.000 0.000 0.000 

Hulk (DoS) 0.999 0.997 0.000 

Infiltration 1.000 0.286 0.000 

Patator (FTP) 0.992 0.977 0.000 

Patator (SSH) 1.000 0.980 0.000 

Port Scan 0.997 0.999 0.001 

Slowhttptest (DoS) 0.769 0.909 0.002 

Slowloris (DoS) 0.914 0.740 0.000 

Sql Injection (Web Attack) 0.000 0.000 0.000 

XSS (Web Attack) 0.004 0.108 0.021 

 

Observing Table 3, it is found that the system can detect almost all attacks and 

benign instances successfully, except for Heartbleed and Web-SQL Injection. The system 

seems to be failed at these two attacks. This inference can be visualized through the 

classification diagram presented in Figure 2. The 𝑋 axes represent the actual attack 

classes, and the 𝑌 axes represent the detected attacks by the detector. Again, in the 

diagram, the colored cross symbol indicates correctly detected attacks, and the small 

square represents missed attacks, where the detector fails to predict the attacks correctly. 

A similar interpretation is applicable to Figure 4 and Figure 6. 
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Figure 2: Classification of attacks and benign instances considering entire samples 

From Figure 2, it is evident that the proposed model performs satisfactorily in 

majority attack classes but poorly in minority class instances. One of the reasons behind 

this may be the class imbalance issue, which was not properly addressed during the 

preprocessing stage. Although, an attempt has been made to counter class imbalance 

problem before the feature selection happens, but it is not appearing to be sufficient in 

this case. Therefore, at the second stage of this analysis, the Receiver Operating Curve 

(ROC) curve of all the attacks has been plotted to understand whether the system fails 

at the minority class attacks like Heartbleed and Web-SQL Injection. Table 4 shows the 

Area Under Curve (AUC) of the ROC of benign and attack labels.  
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Table 4: Area under curve of benign and other attacks detected under 167169 training and test 

instances 

Labels  
(Attacks and Benign) 

AUC 

Benign 0.989 

Bot 0.999 

Distributed Denial of Service (DDoS) 0.993 

GoldenEye (DoS) 1.000 

Slowhttptest (DoS) 0.998 

Slowloris (DoS) 0.999 

Hulk (DoS) 1.000 

Patator (FTP) 1.000 

Heartbleed 0.990 

Infiltration 0.994 

Port Scan 1.000 

Patator (SSH) 1.000 

Brute Force (Web Attack) 0.999 

Sql Injection (Web Attack) 0.990 

XSS (Web Attack) 0.998 

The ROC Curves of all the attacks and benign instances have been presented in 

Figure 3. According to Figure 3, the proposed model shows better ROC values for minor 

attack classes, which seems to contradict the inference observed in Table 3 and Figure 2. 

According to Table 3. For an instance, the precision, recall and false positive rate 

ascertained for minor attack labels like Heartbleed attack is not encouraging, whereas the 

receiver operating curve shows an impressive ROC of 0.990. This contradiction is probably 

due to the presence of class imbalance issue in the dataset. Therefore, the second step of 

the experiment was conducted and analyzed in section 4.2 to determine the actual cause 

of the conflict. 
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Figure 3: Receiver operating curve of benign and other attacks detected under 167169 
training and test instances 
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4.2. Analysis through training and testing instance split 

It should be noted that considering all the instances as training and test instances is 

not ideal. In a real environment, the incoming instances may not be known to the attack 

detection module. Therefore, in this analysis, the total of 167169 samples is split into 66% 

and 34% of training and testing instances respectively [46]–[49]. Thus, a total of 110332 

training instances and 56837 testing instances are prepared. This analysis is to observe 

any possible deviation compared to the earlier analysis of section 4.1. The performance 

outcome of the proposed model through 56837 testing instances is presented in Table 5. 

Table 5: Performance of the proposed model through 66% training and 34% testing instances 

Benign & Attack Labels Precision Recall FPR 

Benign 0.992 0.933 0.007 

Bot 0.898 0.820 0.000 

Brute Force (Web Attack) 0.664 0.908 0.001 

Distributed Denial of Service (DDoS) 0.740 0.976 0.018 

GoldenEye (DoS) 1.000 0.947 0.000 

Heartbleed 0.000 0.000 0.000 

Hulk (DoS) 0.999 0.995 0.000 

Infiltration 0.000 0.000 0.000 

Patator (FTP) 0.993 0.972 0.000 

Patator (SSH) 0.997 0.935 0.000 

Port Scan 0.997 0.998 0.001 

Slowhttptest (DoS) 0.725 0.934 0.002 

Slowloris (DoS) 0.964 0.634 0.000 

Sql Injection (Web Attack) 0.000 0.000 0.000 

XSS (Web Attack) 0.001 0.024 0.015 

 
Table 5 shows that the proposed DTNB+MOEFS model can detect all DoS attacks 

and Bot, Port Scan, Patator (SSH), and Patator (FTP). Brute Force and Slowhttptest 

attacks are also moderately detected by the system. At the same time, the suggested model 

is ineffective in detecting Heartbleed, Infiltration, and SQL Injection attacks, which 

supports the previous observation (Table 3). A classification diagram provided in Figure 

4 demonstrates, on the other hand, that splitting instances into training and test detects 

attacks better than the detector, which relies on all the instances. 
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Figure 4: Classification of attacks and benign instances considering 66% training and 34% testing 

samples 

To analyze further, the ROC of each attack classes has been plotted again. The ROC 

curve of attack classes is demonstrated in Figure 5. The AUC of benign and attack labels 

are also presented in Table 6. 

Table 6: Receiver operating curve of benign and other attacks detected under 110332 training and 

56837 test instances. 

Labels  
(Attacks and Benign) 

AUC 

Benign 0.989 

Bot 0.938 

Distributed Denial of Service (DDoS) 0.993 

GoldenEye (DoS) 0.992 

Slowhttptest (DoS) 0.992 

Slowloris (DoS) 0.990 

Hulk (DoS) 1.000 

Patator (FTP) 0.999 

Heartbleed 0.012 

Infiltration 0.012 

Port Scan 1.000 

Patator (SSH) 0.986 

Brute Force (Web Attack) 0.992 

Sql Injection (Web Attack) 0.012 

XSS (Web Attack) 0.978 

The ROC of each attack agrees with the inferences as those of Table 3 and Table 5. 

All the minor class attacks, i.e., Heartbleed, Infiltration, and Web-SQL Injection, are 
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challenging to detect. The DoS-Hulk and Port Scan attacks are detected correctly with a 

ROC value of 1.00. 

   

   

   

   

   

Figure 5: Receiver operating curve of benign and other attacks detected under 110332 
training and 56837 test instances. 
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4.3. Analysis through 10-fold cross-validation 

The entire sample set of 167169 occurrences was randomly divided into ten blocks 

for 10-fold cross-validation, with one block used to train the model and the remaining nine 

blocks sent for testing. Finally, the test results of all the nine blocks of samples are 

averaged to determine the model's performance. The k-fold cross-validation has been 

considered as a practical approach for understanding the performance of an IDS. Table 5 

summarizes the results of the 10-fold cross-validation for each attack class, and Figure 7 

depicts the ROC curves for each assault class. 

Table 7: Performance of the proposed model through 10-fold cross-validation 

Benign & Attack Labels Precision Recall FPR 

Benign 0.991 0.949 0.008 

Bot 0.324 0.906 0.004 

Brute Force (Web Attack) 0.659 0.917 0.001 

Distributed Denial of Service (DDoS) 0.743 0.971 0.017 

GoldenEye (DoS) 0.998 0.939 0.000 

Heartbleed 0.000 0.000 0.000 

Hulk (DoS) 0.999 0.995 0.000 

Infiltration 0.000 0.000 0.000 

Patator (FTP) 0.990 0.972 0.000 

Patator (SSH) 0.999 0.964 0.000 

Port Scan 0.997 0.998 0.001 

Slowhttptest (DoS) 0.739 0.882 0.002 

Slowloris (DoS) 0.893 0.698 0.001 

Sql Injection (Web Attack) 0.000 0.000 0.002 

XSS (Web Attack) 0.023 0.046 0.002 

The 10-fold cross-validation shows almost similar results as that of the 66%-34% 

training and testing split. The model again detects all the network attacks, including DoS 

and DDoS attacks, except Heartbleed, Infiltration, and Web-SQL Injection. The 

visualization of the classification diagram presented in Figure 6 also reveals the exact 

inference. However, the false alarms are significantly reduced as compared to the detection 

model shown in Section 4.1 and Section 4.2.  
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Figure 6: Classification of attacks and benign instances considering 10-fold cross-validation 

The ROC curves of all attacks are drawn, showing the inferences in the same 

direction. under 10-fold cross-validation, the ROC curves of all the attacks demonstrate 

that the system detects Benign, Bot, DDoS, DoS – Golden Eye, DDoS – Hulk, DoS – 

Slowhttptest, DoS – Slowloris, Patator (FTP), Port Scan, Patator (SSH), Web-Brute 

Force, and Web-XSS threats excellently. 

Table 8: Receiver operating curve of benign and other attacks detected under10-folds cross-validation 

Labels  
(Attacks and Benign) 

AUC 

Benign 0.990 

Bot 0.979 

Distributed Denial of Service (DDoS) 0.993 

GoldenEye (DoS) 0.992 

Slowhttptest (DoS) 0.995 

Slowloris (DoS) 0.995 

Hulk (DoS) 1.000 

Patator (FTP) 0.999 

Heartbleed 0.002 

Infiltration 0.423 

Port Scan 1.000 

Patator (SSH) 0.992 

Brute Force (Web Attack) 0.992 

Sql Injection (Web Attack) 0.004 

XSS (Web Attack) 0.981 
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It can be seen that, the system suffers from class imbalance issue due to the minor 

attack classes, i.e., Heartbleed and Web-SQL Injection instances. The system shows 

moderate ROC for Infiltration attacks. However, this is a normal attacks scenario in a 

cyber physical system.  

   

   

   

   

   
Figure 7: Receiver operating curve of benign and other attacks detected under10-folds cross-

validation. 
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Though the proposed model detects multiple network attacks smoothly, except for a 

few minor class attacks, the model's overall performance needs to be analyzed along with 

recent state-of-the-art intrusion detection models, which necessarily reveals its true 

capability of detection. The following section highlights the comparison of the proposed 

model with other peer models. 

4.4. Comparative analysis along with existing IDSs 

In this analysis, the overall result of our proposed DTNB+MOEFS detection model 

has been analyzed along with MLP Neural Network IDS, LSTM Neural Network-based 

IDS, and CNN proposed by Roopak et al. [50], SNN and DNN IDS proposed by Ustebay 

et al. [51], Decision Tree ensemble model with CFS-BA feature selection (DT+CFS-BA) 

proposed by Zhou et al.[52], Decision Tree and Rule-based Model (DT+RBM ) proposed 

by Ahmim et al. [53], Deep Belief Network (DBN) with Ensemble SVM IDS (DBN+SVM) 

proposed by Marir et al.[54] and Distributed Random Forest with Apache Spark IDS 

(DRF+AS) proposed by Zhang et al. [55].  

The comparative analysis and discussion have been carried out in two stages. First, 

an anatomical comparison ensures the proposed detection model is at par with other peer 

models in terms of the architecture, preprocessing mechanisms deployed, and the attacks 

detected. Secondly, a more detailed comparison has been carried out on the observed 

performance of the detectors. 

4.4.1. Anatomical analysis with other peer models 

As stated earlier, this analysis aims to understand the capability of the proposed IDS with 

regard to other similar IDS models. An analogical table has been prepared to keep in view 

the architecture of the IDS, feature selection approach, number of features selected, the 

sample size for analysis, whether class imbalance issued addressed, and the attacks 

detected.  
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Table 9: Anatomical comparison of the proposed scheme with the other state of the art schemes  

IDS Mechanisms 
Dataset 

Sample Size 

Feature 

Selection 

Approach 

No of 

Features 

Normalization 

of Sample 

Class 

imbalance 

issue  

addressed  

Attacks  

Detected 

DRF+AS 158930 - 13 No Yes DDoS, Botnet, 

PortScan, 

DBN+SVM - Deep Belief 

Network 

- No Yes DDoS, PortScan 

CNN - No - No Yes DDoS, 

DT+RBM Training 

instances: 

40000, 

Testing 

instances: 

40000 

No 79 Yes Yes DoS, PortScan, 

Bot, BruteForce, 

WebAttack, 

Infiltration   

DNN Training: 

1979513, 

Testing: 

848363 

AutoEncoder 10 No No BruteForce, DDoS, 

WebAttacks, 

Infiltration, Botnet 

DT+CFS-BA Training 

instances: 

40000, 

Testing 

instances: 

40000 

CFS-BA 13 Yes Yes DDoS,  PortScan, 

Bot, BruteForce, 

WebAttack 

LSTM - No - No Yes DDoS 

MLP - No - No Yes DDoS 

SNN Training: 

1979513, 

Testing: 

848363 

AutoEncoder 10 No No BruteForce, DDoS, 

WebAttacks, 

Infiltration, Botnet 

DTNB+MOEFS  

(Proposed) 

167169 

(Training: 

110332 

Testing: 

56837) 

MOEFS 5 No Yes Bot, 

Distributed Denial 

of Service (DDoS), 

GoldenEye (DoS), 

Slowhttptest 

(DoS), 

Slowloris (DoS), 

Hulk (DoS), 

Patator (FTP), 

Heartbleed, 

Infiltration, 

Port Scan, 

Patator (SSH), 

Brute Force (Web 

Attack), 

Sql Injection (Web 

Attack), 

XSS (Web Attack) 
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It can be seen from the Table 9 that; the proposed model provides advantages over 

peer models in three folds.  

a) Advantages of relevant features: The proposed DTNB+MOEFS detection model 

takes only five features from the large CICIDS2017 dataset; nevertheless, it can 

detect fourteen attack classes successfully, proving to be a state-of-the-art detector 

over others. It is the MOEFS feature selection scheme that plays a crucial role 

during the preprocessing stage. The MOEFS scheme can retrieve the most 

potential features responsible for attack detection. 

b) Advantages of small training set: The DTNB+MOEFS detection mechanism is a 

potential IDS since it detects all attack labels even if trained only on 110332 

instances, which is far lower than the SNN DNN and DRF+AS detectors. On the 

other hand, the DT+RBM and DT+CFS-BA detection models require a lower 

number of training instances than the proposed DTNB+MOEFS detector, but 

then, these IDSs focus on five attack labels. 

c) Ability to detect attacks in the presence of class imbalance: The attacks and 

benign sample of the proposed IDS has been considered with the same ratio as 

the original dataset. Since the class imbalance issue in the original CICIDS2017 

dataset exists, the class imbalance issue is also apparent in the sample set. The 

detector can detect fourteen classes of attacks even if the class imbalance issue 

exists. 

4.4.2. Detailed comparative analysis with other peer models 

A more detailed comparative analysis has been conducted in terms of performance 

observation. The classification accuracy, precision, and detection rate have been 

considered for practical analysis. Table 10 summarizes the overall performance of the 

proposed detection and the performance of the other detectors. The missing values (-) 

indicate the result has not been reported in the concerned articles.  

Table 10: Comparison of the proposed scheme with other IDSs in detail. 

IDS Mechanisms Detection Rate Precision Accuracy 

DRF+AS 96.90% 96.40% - 

DBN+SVM 95.65% 90.40% - 

CNN 90.17% 98.14% 95.14% 

DT+RBM 94.48% - 96.67% 

DNN 95.00% 95.00% 94.72% 

DT+CFS-BA 94.04% 96.80% 96.76% 
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LSTM 89.89% 98.44% 96.24% 

MLP 86.25% 88.47% 86.34% 

SNN 91.00% 91.00% 91.08% 

DTNB+MOEFS (Proposed) 96.70% 97.40% 96.80% 

  

It is observed from Table 10 that the proposed model shows a better accuracy rate 

than other IDS models. Similarly, in terms of precision of detection, both the CNN and 

LSTM based detection model seem to be better choices than the proposed model. In 

contrast, the proposed model shows superior precision over the DBN+SVM, MLP, DNN, 

SNN, and DRF+AS intrusion detection models. However, the situation is flipped when 

the detection rate of the IDSs is analyzed. In terms of detection rate, the proposed model 

is far ahead of that of the CNN and LSTM models; thus, it seems to be a better intrusion 

detection model than others, though it slightly lacks in the DRF+AS models. Therefore, 

the proposed IDS detects a more significant number of attacks than the DRF+AS 

detector. 

The consistent performance across accuracy, precision, and detection rate makes the 

proposed model more versatile and efficient than other IDSs. Another reason that makes 

the proposed IDS unique over other detection models is the choice of features. The 

proposed model shows better performance with just five features in hand, whereas other 

approaches under analysis required a significant number of features for intrusion detection. 

Moreover, the combination of both decision table and naïve bayes makes the detection 

process robust for both binary and multiclass attack detection scenario.  

5. Conclusion 

This article has selected the most informative features of the CICIDS2017 dataset to 

design a multiclass IDS for a cyber-physical environment. The MOEFS has been deployed 

and selects only five features, such as Fwd IAT Mean, Bwd IAT Total, Subflow Bwd 

Bytes, Init win bytes forward, and min seg size forward. On top of these features, a hybrid 

classification mechanism combining the efficiency of DTNB has been used for detecting 

threats found in network traffic. The proposed system successfully detected benign 

instances and 11 attack classes, viz., Bot, DDoS, DoS – Golden Eye, DDoS – Hulk, DoS 

– Slowhttptest, DoS – Slowloris, Patator (FTP), Port Scan, Patator (SSH), Web-Brute 

Force and Web-XSS of 167169 random instances from the CICIDS2017 dataset. In 

contrast, it suffers from detecting Heartbleed and Infiltration and Web-SQL Injection 

attack instances. The system exhibited 96.8% accuracy with just five features, which 
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proved it a better detector than other peers’ IDSs. Despite the performance observed, the 

proposed IDS also has some limitations. One of the shortcomings is the absence of a 

feedback approach, which could strengthen the system further towards more dynamism. 

A feedback approach may empower the admin module to isolate the compromised 

instances or hosts from the network; thus, making the network communication process 

stable. During the 10-fold cross-validation test and 66%-34% train and testing instances 

split test, the system fails to detect minority class attack instances such as Heartbleed, 

Infiltration & Web-SQL Injection, which remains a challenge to the proposed IDS. It was 

due to the low instance participation of these minority class instances in the training 

module. As future work, the detector can be redesigned to work with minority classes, or 

the minor class attacks can be separated from the original IDS framework, and a 

specialized IDS can be designed to handle minority class attack instances. One way to 

handle this issue would be to teach class relabeling. The minority classes with similar 

characteristics can be merged to form new attack labels, improving attack detection 

further. For example, the Web – Brute Force, Web - SQL Injection, and Web – XSS 

attack instances can be merged to have a standard label “Web Attacks”. Moreover, other 

recent feature selection schemes can be explored to improve the IDS’s performance further. 
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