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Abstract

The progressive reduction of dopaminergic neurons in the human brain, especially at the substantia nigra is one of the prin-
cipal causes of Parkinson’s Disease (PD). Voice alteration is one of the earliest symptoms found in PD patients. Therefore,
the impaired PD subjects’ acoustic voice signal plays a crucial role in detecting the presence of Parkinson's. This manuscript
presents four distinct decision tree ensemble methods of PD detection on a trailblazing ForEx++- rule-based framework. The
Systematically Developed Forest (SysFor) and a Penalizing Attributes Decision Forest (ForestPA) ensemble approaches has
been used for PD detection. The proposed detection schemes efficiently identify positive subjects using primary voice signal
features, viz., baseline, vocal fold, and time—frequency. A novel feature selection scheme termed Feature Ranking to Feature
Selection (FRFS) has also been proposed to combine filter and wrapper strategies. The proposed FRES scheme encompasses
Gel’s normality test to rank and selects outstanding features from baseline, time—frequency, and vocal fold feature groups.
The SysFor and ForestPA decision forests underneath the ForEx++ rule-based framework on both FRFS feature ranking
and subset selection represents Parkinson’s detection approaches, which expedite a better overall impact on segregating PD
from control subjects. It has been observed that the ForestPA decision forest in the ForEx++ framework on FRFS ranked
features proved to be a robust Parkinson’s detection scheme. The proposed models deliver the highest accuracy of 94.12%
and a lowest mean absolute error of 0.25, resulting in an Area Under Curve (AUC) value of 0.97.

Keywords Ensemble Parkinson disease detection - ForestPA - ForEx - Machine learning - Missing value imputation -
Normality based feature selection - Parkinson detection - SysFor
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1 Introduction

The aged people suffered from a common neurodegenera-
tive disorder often recognized as Parkinson’s Disease. The
disease associated with the human nervous system is often
observed due to the anomalies of dopaminergic neurons
located in the substantia nigra (Tuncer et al. 2020). Dopa-
minergic neurons help the brain to send signals to different
parts of the body to carry out its corresponding function
properly and supply correct articulation at the time of speech
delivery. Common symptoms of PD are bradykinesia. The
organ movement becomes very slow, tremor, rigidity, pos-
tural instability, walking/gait problems, decreased smell
perception, sleep disturbances, and most importantly, vari-
ation in speech (Gomez-Vilda et al. 2017; Gupta et al. 2018;
Tuncer and Dogan 2019; Aich et al. 2018; Tuncer et al.
2020). In PD, one side of the body part becomes distressed,
and gradually dispersed to the other side of the body. The
diagnosis of PD mostly depends on medical practitioners'
motor tests when two out of three symptoms, namely aki-
nesia (challenging to start a movement), rigidity, and rest
tremor are observed. PD symptoms arise when the level of
dopamine falls below 70% approximately (Jeancolas et al.
2017). As the disease is not reversible, preventive meas-
ures at an early stage and clinical intervention are necessary
before the disease starts showing adverse symptoms.

According to Healthcare Research and Quality (Romex-
soft 2017), doctors and clinicians are often prone to cogni-
tive bias while diagnosing patients. Therefore, an intelligent
system is needed to help clinicians to diagnose the patients
efficiently. The system may employ Machine Learning (ML)
(Anand et al. 2018) to eliminate these biases and help the
medical practitioners to diagnose the disease with higher
accuracy. ML makes healthcare smarter, especially in the
context of a digital diagnosis of the disease. ML helps detect
certain disease patterns using patients' electronic healthcare
records and notify them of any anomalies. Over time, various
researchers recommended different techniques and methods
with different signals for detection of PD, such as voice sig-
nals (Pramanik et al. 2021a, b; Sakar et al. 2019; Mostafa
et al. 2019; Gottapu and Dagli 2018), EEG (Yuvaraj et al.
2016), gait (Joshi et al. 2017; Zeng et al. 2016), biomarker
(Bhat et al. 2018), MRI (Cigdem et al. 2018) and handwrit-
ing signals (Afonso et al. 2019; Rios-Urrego et al. 2019).
Nevertheless, having various signals used for PD detection,
the acoustic signal of the voice often considered for early
detection of Parkinson’s disease (Harel et al. 2004; Postuma
et al. 2012; Rusz et al. 2016; Jeancolas et al. 2017). There-
fore, vocal-based features attract the researchers to analyze
PD in telemedicine (Ertugrul et al. 2016; Bourouhou et al.
2016; Tuncer and Dogan 2019; Sakar et al. 2019; Jeancolas
et al. 2017).
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Hypokinetic dysarthria (Jeancolas et al. 2017) is a vocal
injury found in the acoustics voice samples of Parkinson’s
patients, affecting multiple speech levels such as phona-
tion, articulation, prosody, and resonance. Hypokinetic
Dysarthria also influences the functions of laryngeal
activity, articulatory and activities of respiratory muscles.
Parkinson’s patient often faces problem in speech forma-
tion; they experience disfluency and encounter problems
in speech transformation as it becomes more monotonous.
According to (Viswanathan et al. 2018; Jeancolas et al.
2017), the articulation of consonant and vowel delivery
is gradually impaired, pitch intensity and phonation are
unstable, and the tone becomes bumpy among Parkinson’s
subjects.

This article presents PD detection mechanisms using
ForEx++ rule-based framework on the top of SysFor and
ForestPA decision forests. The baseline, vocal fold along
time—frequency feature groups are considered for PD detec-
tion. The voice feature groups were ranked and relevant
features are acquired using a novel feature selection scheme
based on Gel’s directed test of normality. The proposed fea-
ture selection scheme is based on a Goodness of Fit (GF) test
proposed by Gel et al. (2007), which facilitates designing
the scheme both as the filter and wrapper-based approach.
It is designed to rank (a filter method) the features based
on their standard normal distribution and select a subset
(a wrapper method) of normally distributed vocal features
based on a critical value boundary. The proposed feature
selection scheme can handle missing value instances before
the feature selection procedure; thus, it proved to be a robust
feature selection algorithm compared to peer feature ranking
and selection schemes.

The chronological summary of the contributions of this
article is as follows.

e A new feature selection scheme termed Feature Rank-
ing to Feature Selection (FRFS) via Directed Tests of
Normality (FRFS-DTN) has been introduced using the
concept of Gel’s Goodness of Fit (GF) test to acquire
normally distributed features.

e A missing values imputation approach using neighbor
information has been proposed as the pre-processing
component of the proposed FRFS-DTN method; thus,
making the feature selection method robust even in pres-
ence of outliers and missing values in the underlying
data.

e The ranked features and selected feature subsets are used
separately with SysFor and ForestPA to design four dis-
tinct PD detection mechanisms.

o Further, the ForEx++ rule-based framework has been
introduced to expedite the detection result by selecting
decision forest rules that are comparatively more accu-
rate.
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e The optimum acoustic features are proposed through the
detection model to the research community to design the
state-of-the-art PD detection methods.

The organisation of the article is as follows Sect. 2 nar-
rates the activities of related works. Section 3 illustrates
a schematic representation of the proposed PD detection
model along with the datasets used, data preprocessing and
feature selection technique. The results and discussion have
been outlined in Sect. 4, followed by a conclusion and future
research direction is mentioned in Sect. 5.

2 Related works

Machine learning-based Parkinson’s detection mechanisms
using acoustic signals has been explored extensively in the
recent past. Most modern machine learning-based PD detec-
tion techniques employ feature selection techniques at the
pre-processing stage to select suitable features. Smekal et al.
(2015) suggested a Parkinson’s finding approach utilizing
Empirical Mode Decomposition (EMD) and Sequential
Forward Feature Selection (SFFS) along with the Random
Forest (RF) decision tree. EMD and SFFS have been used as
feature selectors, which ultimately ascertained the optimum
vowel features. The RF on SFFS proved to be an ideal PD
detection scheme. Similarly, Mekyska et al. (2015) presented
a voice-based PD detection approach using Random For-
est, which was effective in disease progress prediction. The
Random Forest PD detector reveals a sensitivity of 92.86%
and specificity of 85.71%. Other than Random Forest, fuzzy
entropy-based vocal features on Linear Discriminant Anal-
ysis (LDA) (Su and Chuang 2015) is also used to detect
the presence of Parkinson's effectively among the subjects.
Similarly, Bourouhou et al. (Bourouhou et al. 2016) com-
pared different classification methods to detect Parkinson's
disease with k-NN, Naive Bayes, and SVM algorithm cross-
validation. Though the SVM-based detection reveals mag-
nificent performance, it is silent about a feature selection
scheme. Employing a vibrant feature selection scheme could
make the system more efficient. Similarly, four feature selec-
tion algorithms and six classifiers are evaluated to design
a Parkinson's prediction engine (Cantiirk and Karabiber
2016). The study shows that a total of 12 features generated
by Relief feature selection, when trained on Back Propa-
gation Neural Network (BPNN) consisting of twenty neu-
rons, results in accuracy of 68.94%. The author also proved
that feature selection from discriminative voice features is
required to improve detection scores. In Orozco-Arroyave
et al. (2016), the authors performed a rapid repetition of
syllables of German, Spanish and Czech languages to seg-
regate the presence of Parkinson’s from control subjects.

Voice-based features, viz., phonation, articulation, and pros-
ody play a lead role in identifying Parkinson’s.

In (Chandrayan et al. 2017), PD detection is carried out
based on dominant feature selection techniques where fac-
tor analysis feature selection played a crucial role in select-
ing dysphonia features from the speech signal. The author
suggests an SVM-based detection on the feature subset
that revealed an accuracy of 90%. Similarly, in (Jeancolas
et al. 2017), twelve features from voice signal were gener-
ated using Mel-Frequency Cepstral Coefficients (MFCC),
which has been fed into multi-dimensional Gaussian Mix-
ture Models (GMM) for detecting positive PD patients. The
author uses sustained vowels, fast syllables, reading, and
free speech signals of PD patients and normal subjects.
Their system shows an accuracy of about 91% for reading
tasks. MFCC features are also extensively used along with
Intrinsic Mode Functions (IMF) because of their ability to
characterize Parkinson’s dysphonia (Rueda and Krishnan
2017). The authors successfully achieved the quality of the
audio signal with a visible distinction using MFCC features.
The sustained vowel with sampling frequency at 8 kHz and
quantization at a reduced resolution of 8-bit were used in
the validation task. Dinesh et al. (Dinesh and He 2017) pro-
posed filter-based feature selection techniques with many
classifications, including Locally-Deep SVM (LDSVM),
Decision Forests (DF), Logistic Regression (LR), Boosted
Decision Tree (BDT), SVM, and Neural Networks (NN).
On the other hand, a Random Least Squares Feedforward
Network (RLSFN) binary classifier used on pathological and
normative features predicts Parkinson subjects efficiently
(G6émez-Vilda et al. 2017).

Similarly, an ensemble mechanism of classification have
been used for Parkinson’s detection (Fayyazifar and Sama-
diani 2017). In the pretext of the classification, the Genetic
Algorithm plays a crucial role in selecting only six-voice
features that have improved the classification accuracy to
a great extent. A dual-stage Bayesian filter-based feature
selection and classification approach for Parkinson's dis-
ease detection has been proposed using voice recording
replications (Naranjo et al. 2017). One feature per feature
group has been selected at the first stage, which is fed into a
regularization-based classification approach based on Least
Absolute Shrinkage and Selection Operator (LASSO) in the
later stage. The dual-stage detector successfully classifies the
Parkinson's and normal subjects with an accuracy of 86%, a
sensitivity of 82.5%, and a specificity of 90%.

Gupta et al. (2018) used the optimized cuttlefish algo-
rithm as a search strategy to ascertain the optimal subset
of the feature on different types of sound recording and
handwriting sample’s dataset and decision tree. A non-lin-
ear decision tree and random forest classifier were used on
two feature sets original feature sets and PCA feature sets
to detect Parkinson’s disease. In Viswanathan et al. (2018),
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features extracted from sustained voiced consonant /m/
compared with the sustained phonation /a/ were considered
where in SVM classifier model and the spearman correla-
tion coefficient analysis was carried out to find the Unified
Parkinson’s Disease Rating Scale (UPDRS) motor score. A
new expert system-based PD detection system proposed in
Montaiia et al. (2018) differentiates healthy subjects from
people who have Parkinson’s disease using Diadochokine-
sis tests. The system used temporal and spectral features
extracted from the Voice Onset Time (VOT) segments of /
ka/ syllables. The VOT algorithms was used to smoothen
the amplitude envelope of the signal so that the classifica-
tion algorithm can get meaningful distinctions about the
subjects. The authors demonstrated that the novel VOT
algorithm accurately estimates VOT boundaries for healthy
and PD-affected subjects. An automated feature learning
scheme was proposed to eliminate manual feature selection
and intervention of experts (Wu et al. 2018). The system
is based on a Mel-spectrogram of the audio signals of the
subjects. The system employs derivative of Mel-spectrogram
with respect to time for pre-processed audio signals. The
extracted features are trained and tested through spheri-
cal k-means, which was the core of the detection process.
Though the system shows adequate accuracy of detection,
but the authors admitted that learning through MFCC has
low clinical interpretability.

Sakar et al. (2019) analyses speech signal processing
using multiple classification schemes. The Tunable Q-Fac-
tor Wavelet Transform (TQWT) and MFCC techniques
extract required features from acoustic signals of vowels.
Subsequently, the mRMR feature selection scheme gener-
ates the significant features passed to multiple classifiers.
The predictions of the classifiers were combined with the
ensemble learning approaches to come across a conclusive
result. Parkinson’s disease detection using L2-regularized
logistic regression, random forest, and gradient boosted
decision trees on voice samples (Tracy et al. 2019) has been
proposed using 62 voice features. Their study shows that
the input data is mostly skewed towards control patients,
which was why the author's considered Recall, Precision,
and Area Under Curve (AUC) as the parameters for evalu-
ation. Multiple voice recordings by simultaneous sample
and feature selection have also been conducted for the early
diagnosis of Parkinson’s disease (Ali et al. 2019a, b). The
author employed a Leave-One-Subject-Out (LOSO) (Sakar
et al. 2013) validation scheme on Neural Network, which
proved to be a practical validation scheme for voice datasets
having more than one sample per subject. Before the LOSO
validation, their proposed method ranks features using a chi-
square statistical model, searches for an optimal subset of the
ranked features, and samples were selected iteratively. The
phonation and speech were used by (Almeida et al. 2019) for
detecting Parkinson's. For phonation, sustained vowels, and
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speech, the pronunciation of sentences was used. The voice
samples were captured using Acoustic Cardioid (AC) and
Smartphone (SP). The captured samples are pre-processed,
and adequate features were selected for the detection pro-
cess. The authors used k-Nearest Neighbor (k-NN), Multi-
Layer Perceptron (MLP), Optimum-Path Forest (OPF), and
Support Vector Machine (SVM) as the detectors optimized
using a hold-out technique. Voice features have also been
extensively explored in an uncontrolled background condi-
tion (Braga et al. 2019). The Random Forest optimized with
grid-search and learning curves was the basis for such PD
detection.

In 2020, Tuncer et al. (2020) proposed a combination
of 3 levels of Average Minimum Maximum (MAMs) tree
used for pre-processing the voice data and Singular Value
Decomposition (SVD) was used for feature extraction where
50 most distinctive features were selected using Relief fea-
ture selection techniques. Solana et al. (2020) proposed an
approach of PD detection, which proved to behave improved
accuracy by reducing selected vocal features. Out of the 754
features of the public dataset, the number of features selected
for classification was in a range of 8 to 20 through Wrappers
feature subset selection. Four classifiers k-NN, MLP, SVM,
and Random Forest was the basis of the detection engine.
Karan et al. (2020) proposed an SVM-based PD detection
system where Intrinsic Mode Function Cepstral Coefficient
(IMFCC) feature extraction is used to extract the most rel-
evant feature for Parkinson's and Control patients classifica-
tion. The authors validated their proposed approach through
the two most widely used voice datasets. The IMFCC fea-
ture selection approach shows an improvement of 10-20%
in accuracy compared to the standard acoustic and Mel-
Frequency Cepstral Coefficient (MFCC) feature selection.

Braga et al. (2019) proposed a Parkinson’s detec-
tion model using an optimized version of Support Vector
Machine (SVM). SVM variation known as Radial Basis
Function (RBF) has been optimized using an automated ver-
sion of the grid-search technique. Their proposed grid search
technique employs k-fold (k=300) cross-validation to real-
ize C=1.15291 and y=0.00048. With the optimized RBF,
Braga et al. approach detects the presence of Parkinson’s
with 92.38% accuracy. Similarly, Behroozi and Sami (2016)
proposed a Parkinson’s detection framework using multi-
ple classifier ensembles. The majority voting techniques
decided whether the subject suffers from Parkinson’s or
not. Ali et al. (2019a, b) suggested a neural network model
encompassing genetic algorithms and linear discriminant
analysis for Parkinson’s detection. The approach was tested
on a dataset that doesn’t have control participants remains a
drawback for the k-NN model. Agarwal et al. (2016) derived
a model for Parkinson’s detection using Extreme Learning
Machine (ELM) on various acoustic features such as jit-
ter, shimmer, pitch, period and harmonicity. Li et al. (2017)



The ForEx++ based decision tree ensemble approach for robust detection of Parkinson’s disease

discriminate Parkinson’s subjects from controls using an
ensemble framework combining the essence of random
forest (RF), Support Vector Machines (SVM) and Extreme
Learning Machine (ELM). Samples that have true separabil-
ity are identified using Classification And Regression Tree
(CART). The ensemble approach detects the presence of
Parkinson’s with up to 90% accuracy. Benba et al. (2016)
proposed a PD detection model using k-NN with its differ-
ent kernels (i.e., RBF, Linear, polynomial, and MLP). The
k-NN model was tested on various voice samples where the
approach reveals the highest detection accuracy of 82.5%.
Berus et al. (et al. 2018) combined multiple artificial neural
networks to form a PD detection model. Kendall’s correla-
tion coefficient acts as a feature selector of vocal signals
of PD and control subjects. The neural network ensemble
discriminates PD from control subjects with an impressive
accuracy rate of 81.33%. A Multi-Edit-Nearest-Neighbor
(MENN) algorithm for sample selection and Random forest
(RF) with neural network ensembles proved to be an excel-
lent Parkinson’s detection engine (Zhang et al. 2016) under
multiple acoustic features. Polat and Nour (2020) proposed
a Parkinson’s detection system using a novel one-against-all
(OAA) sampling technique. The authors partition the data
into five equal parts for Parkinson’s and control subjects in
this process. Logistic Regression, SVM and k-NN classi-
fiers are combined for the training on the separate blocks
of data. The classifiers combinations revealed a maximum
detection accuracy of 89.46% while classifying PD subjects.
A Mel scaled filter bank-based approach has been proposed
for the early detection of Parkinson’s disease (Upadhya et al.
2019). The MFCC features are used for detection purposes.
The Radial Basis Function (RBF) plays a dramatic role in
discriminating Parkinson’s from healthy people. The RBF
detector detects the presence of Parkinson’s with more than
80% of accuracy. Adaptive Grey Wolf Optimization Algo-
rithm (AGWOA) and Sparse Auto-Encoder (SAE) proved
to be a sophisticated technique for vocal feature based Par-
kinson’s detection (Xiong and Lu 2020). The SAE model
on Correlation-based Feature Selection (CFS), Recursive
Feature Elimination (RFE), minimum Redundancy Maxi-
mum Relevance (mRMR) has been tested through six super-
vised classification techniques. The Random Forest (RF)
and Linear Discriminant Analysis (LDA) evolved as the
best detector on the SAE. Naranjo et al. (2019) proposed
a two stage classification approach to segregate Parkin-
son’s from control subjects. The two stages classification
approach has been designed to work specifically with rep-
licated acoustic features. Common Principal Component
(CPC) has been employed for dimensionality reduction.
The CPC first extracted relevant features per acoustic fea-
ture group and secondly, the CPC extracted discriminated
features from the combined features group. In this way, the
two detection models are prepared, which proved effective

in diagnosing Parkinson’s. Yaman et al. (2020) described a
statistical pooling method for increasing the vocal features
of the subjects. The Relief Feature section approach selects
the most weighted features. Two different variations of SVM
and k-NN have been used to derive the proposed Parkinson’s
detection scheme. According to the confusion matrix, both
the k-NN and SVM variations show detection accuracy up
to 91.25%. Recently, a two-stage whale optimization method
for the classification of Parkinson’s disease has been pro-
posed (Ozturk and Unal 2020). Since most of the acoustic
datasets contain replicated features, the subjects of Parkin-
son’s and control classes are separated in the feature space.
The instances of different classes are classified differently.
The class separation approach detects the presence of Par-
kinson’s effectively. A computer aided diagnosis method has
been proposed using various kernels of SVM on acoustic
signal features (Perez et al. 2016). The Radial Basis Func-
tion (RBF) revealed highest detection accuracy of 85.25%
among the SVM kernels. Fuzzy neural network provides
a potential alternating way of detecting Parkinson’s in the
acoustic signal (Guimaraes, de Campos Souza, and Lughofer
2020). The model contains three layers, viz., Data Density
Fuzzification, Fuzzy Rules and Artificial Neural Network.
The combination of layers detects the presence of Parkin-
son’s with 80.88% accuracy.

3 Materials and methods

The proposed PD detection scheme shown in Fig. 1 follows
three distinct steps: pre-processing, Feature Ranking to Fea-
ture Selection via Directed Test of Normality (FRFS-DTN),
and Parkinson’s detection. At the pre-processing stage, the
underlying data is aggregated, suitable feature groups are
identified. In the FRFS-DTN stage, the features of each
feature group are ranked, and finally, relevant features are
selected. The feature selection provides the acoustic fea-
tures after ranking according to the normality score. From
the ranked features, the convenient features are selected
based on pValue and upper x-percentile. Similarly, dur-
ing the detection stage, the SysFor and ForestPA decision
forest classifiers are used separately under ForEx++ rule-
based framework. A reasonable number of decision trees on
dynamically selected vocal features plays a vital role in Par-
kinson’s detection. The proposed PD detector model works
in iterative fashion. The number of decision trees in the for-
est with training and testing split instances is determined
iteratively (Pramanik et al. 2021a, b). The dynamic selection
of training and testing split provides a threshold point where
the maximum detection accuracy has been achieved. The
detailed steps of the Parkinson’s detection model have been
discussed in the following section describing the dataset
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Fig. 1 The Parkinson’s disease
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first, followed by feature ranking and selection procedure
and then Parkinson’s detection.

3.1 Dataset used

The dataset for analyzing Parkinson’s disease lies in many
formats. There are many datasets proposed so far for Parkin-
son's disease detection. These datasets have their advantages
and disadvantages. Generally, the data of voice signals of PD
patients are stored in terms of acoustic formats. However,
the acoustic signals fall under three major groups- Base-
line Features (BF), Time Frequency Features (TFF) and
Vocal Fold Features (VFF). The BF are the combination
of Detrended Fluctuation Analysis (DFA), Pitch Period
Entropy (PPE), Harmonic to Noise Ratio (HNR), and vari-
ous Jitter, Shimmer attributes of the acoustic signal. PPE
is often calculated with different uncontrollable perplexing
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effects of acoustic data in its voice frequencies. At first, pitch
sequence is obtained and converted into the logarithmic
scale. Roughness is analyzed by removing the linear tem-
poral correlations with a standard linear whitening filter to
produce the relative semitone various sequence. Next, a dis-
crete probability distribution is constructed, and finally, the
entropy of this probability distribution is calculated (Little
et al. 2008; Edwards 2008). Detrended fluctuation analysis
(DFA) is used to detect general voice disorders. It measures
the degree of amplitude variation of the speech signal in
a range of time scales and finds out the noise's similarity.
The noise is often produced because of irregular airflow
in the vocal fold (Little et al. 2008). The jitter parameter
represents the frequency variation of voice cycles, whereas
shimmer shows the amplitude variation of the sound wave
(Farrus et al. 2007; Farrts and Hernando 2009). The fre-
quency is generated by the number of sound waves formed
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by the vocal cord's repetition during a particular time frame
due to glottis' opening and closing. Fundamental frequency
jitter and shimmer are often considered for vocal qualities
analysis (Teixeira et al. 2013). Similarly, the TFF group is
represented with various formant frequencies, intensity, and
bandwidth. In this context, the intensity represents the vocal
folds’ volume due to the sub-glottis pressure's vividness
(Mongia and Sharma 2014; Sakar et al. 2019). The formant
frequencies are assessed using the frequency reaction of
the vocal tract filter, whereas bandwidth ranges between b1
and b4 (Sakar et al. 2019). VFF consists of Glottis Quotient
(GQ), glottal to Noise Excitation (GNE), Vocal Fold Exci-
tation Ratio (VFER), and Empirical Mode Decomposition
where the Glottis quotient gives the periodicity of glottis
movement and GNE gives the quantities of turbulent noise.
VFER provides the noise information generated by the vocal
fold quivering by calculating non-linear energy and entropy.
In contrast, EMD breaks a speech signal into a simple signal
that applies basis functions adaptive in nature and calculates
the energy/entropy values (Sakar et al. 2019).

In this article, three acoustic signal datasets have been
considered for the evaluation of the proposed model. The
first acoustic dataset has been prepared by Sakar et al.
(2019). The dataset contains acoustic features of 252 per-
sons in the age group of 33 to 87, where 64 healthy persons
(33 male and 41 Female) and 188 PD persons (107 Male
and 81 Female). The voice of subjects is recorded with a
microphone with 44.1 kHz. A total of 754 features were
extracted out of the sound files of subjects. The 754 features
are spanned over six feature groups: BF, TFF, VFF, MFCC,
Wavelet, and TQWT Features. Similarly, the second data-
set prepared by Naranjo et al. (2016) is a balanced dataset
consisting of acoustic signal features of 40 Parkinson’s and
40 control subjects. Finally, the third acoustic dataset was
proposed by Sakar et al. (2013). The dataset is spanned over
separate training and testing sets of Parkinson’s and con-
trol subjects. The training set comprises 40 subjects, out of
which 20 are controls and 20 belong Parkinson’s category.
Similarly, the testing dataset holds acoustic information of
28 subjects suffering from Parkinson’s. The acoustic infor-
mation include pronunciation of sustained vowel /a/, /u/, /o/,
short sentences and words. Since, other two datasets consid-
ered in this article holds acoustic information limited to the
pronunciation of /a/ only; therefore, other acoustic informa-
tion such as /u/, /o/, short sentences and words have been
removed. Again, the training set contains only 40 instances,
which may overfit or underfit the classifiers during the event
of detection. Therefore, both the training and testing sets
are merged to form a single dataset, where the training and
testing splits have been determined dynamically. Both the
Sakar et al. (Sakar et al. 2013, 2019) acoustic datasets are
highly class imbalanced. On the other hand, Naranjo et al.
(2016) dataset the most balanced due to equal number of

Parkinson’s and control subjects. So far as the number of
features concern, Sakar et al. (2019) dataset contains 54,
Sakar et al. (2013) contains 26 and the balanced Naranjo
et al. (2016) dataset contains 18 features, respectively. The
BF, TFF and VFF of these three datasets have been men-
tioned in Table 1.

Out of all the datasets mentioned in Table 1, the Sakar
et al. (2019) dataset contains additional vocal information
such as MFCC, Wavelet and TQWT, and BF, TFF and VFF.
It has been observed that the most common parameters
of BF, TFF and VFF used in the acoustic analysis are jit-
ter, shimmer, and Harmonic to Noise Ratio (Teixeira et al.
2013). In a recent study conducted by us (Pramanik et al.
2021a, b), it is found that the BF, TFF and VFF show better
detection results on decision trees than MFCC, Wavelet, and
TQWT Features. Moreover, BF, TFF and VFF segments also
provide the vital information about frequency, amplitude,
noise, and vocal fold vibration. As the proposed work is
based on decision forest, baseline, time frequency, and vocal
fold feature groups are considered for Parkinson’s detection
over MFCC, Wavelet, and TQWT Features.

3.2 Data pre-processing

Sakar et al. (2013) dataset contains pronunciation of sus-
tained vowel /a/, /u/, /o/, short sentences and words. The
acoustic information of sustained vowel /a/ has been taken
from the dataset for training and detection purposes. How-
ever, the Sakar et al. (2019) and Naranjo et al. (2016) data-
sets contain three recordings of sustained vowel /a/ for
each subject. Applying machine learning techniques on the
repeated instances will not provide meaningful informa-
tion. Therefore, the average of the three recordings is cal-
culated to get a unique record per participant. At the second
step of data pre-processing the acoustic features of all the
three datasets are ranked, and the suitable convenient fea-
tures are selected according to their contribution towards
Parkinson's detection. The ranking and selection are based
on the normally distributed features of the datasets. Each
feature of the datasets is assigned a normal distribution
score, which decides whether the feature to be selected.
The scores are calculated through a recent directed test of
normality approach proposed by Gel et al. (2007). The Gel
et al. approach has been modelled towards the feature selec-
tion; thus, Feature Ranking to Feature Selection (FRFS) via
Directed Tests of Normality (FRFS-DTN). The FRFS-DTN
proved to be a suitable feature selector for selecting normally
distributed features. The method also acts as both filter and
wrapper-based approach, i.e., it ranks and selects the promi-
nent features. The proposed FRFS-DTN technique is novel
because of its ability to handle missing values before the
feature selection starts. The proposed FRFS-DTN feature
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Table 1 The BF, TFF and VFF
feature groups and number of
features of Sakar et al. (2019),
Naranjo et al. (2016); Sakar

et al. (2013), datasets

Features segments considered for Parkinson’s detection

Datasets

Sakar Naranjo Sakar
et al. etal. (2016) etal.
(2019) (2013)

Number of features of the cor-
responding segment

Baseline features

Entropy of recurrence period density 1 1

Detrended fluctuation (signal fractal scaling exponent) 1 1

Entropy of pitch period (nonlinear measures of fundamental fre-

quency variation)

Harmonicity parameters (noise to tonal components in the voice)

Variants of jitter (measures of variation in fundamental frequency)

Fundamental frequency

Variants of Shimmer (measures of variation in amplitude)

Time frequency features
Voice intensity
Bandwidth
Formant frequencies
Pitch parameters
Pulse parameters

Vocal fold features
Glottis quotient
Glottal to noise excitation

Empirical mode decomposition

Vocal fold excitation ratio

Fraction of locally unvoiced frames

Number of voice breaks
Degree of voice breaks
Total number of features

A~ bW AN L LN —_
| | —_

I
I
A W

~N O N W
|

|
|
—_

54 18 26

ranking follows three major steps, i.e., handling missing val-
ues, feature ranking and feature subset selection.

3.2.1 Handling missing values

The proposed FRFS-DTN technique is suitable for data
ranging from lower sample size (< 180) to higher sample
size (> 180); thus, it proved to be scalable. However, a fea-
ture selection technique is robust if it can select the requisite
features (generally features contributing maximum towards
classification) even in the presence of outliers in the under-
lying data. Outliers include missing values, missing class
information for a subject, and unstructured data. These are
the main reason behind the classifier's performance degra-
dation. However, there are many missing value imputation
schemes in data science, but most of those methods predict
the missing values with one or more supervised classifiers.
Therefore, an effort has been made to design a missing value
imputation algorithm that will act as a filter component for
the FRFS-DTN feature selection scheme before the actual
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ranking process starts. The missing value imputation tech-
nique has been detailed in Table 2.

The missing value imputation procedure takes the help
of a traditional k-means clustering algorithm to impute the
missing values. Here, NULL values for a cell have been
considered as missing values. The imputation procedure has
been conducted in the following four distinct steps. At first,
the instances of data matrix M}, have been removed having
no class information. It should be noted that the imputation
method detailed in Table 2 employs k-means clustering in a
supervised fashion. Therefore, no class information has no
use, which needs to be eliminated from the data matrix per-
manently. After removing instances with no class informa-
tion, the second stage involves removing instances where all
cells have the missing values. Practically, a medical dataset
cannot contain NULL values for all the cells of an instance.
However, this precaution has been taken deliberately to
make this algorithm extendible to other application domains.
Therefore, if all the cell values of an instance have NULL,
the instance itself is of no use, hence excluded from the
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Table 2 Missing value imputation procedure for FRFS-DTN

INPUT

Mp =Data matrix having n number of instances and m number of features with random missing values
and the mt position of Mp contains the class information.

OUTPUT

Mp = The imputed data matrix

PROCESS

for i=1ton,do
Step 1. Create testing instance

Predicted Cluster Number (PCN) for T
pcn = kmeans(T,, T;, k)

end
return M,

where M§[k][j] # NULL

where k # i, M§[k][j1 # NULL

LIl =1...ml:= M5l =1......... m],
Step 2. Fetch rest of the rows as training instances
for k:=1 to n,

Tkl =1...... m]:= M§[k][j =1......m],
end

Step 3. Call k-means with training (T,.) and testing (T,) instances with k = |T,.| to obtain

Step 4. Impute the i*" row data of M$with the data of predicted cluster
M§lE=1......... m] =T, [pen][j=1.......m]

where M§[i][j] = NULL

dataset. At the third stage of the process, attributes having
all the cell values as