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Abstract
The progressive reduction of dopaminergic neurons in the human brain, especially at the substantia nigra is one of the prin-
cipal causes of Parkinson’s Disease (PD). Voice alteration is one of the earliest symptoms found in PD patients. Therefore, 
the impaired PD subjects’ acoustic voice signal plays a crucial role in detecting the presence of Parkinson's. This manuscript 
presents four distinct decision tree ensemble methods of PD detection on a trailblazing ForEx++ rule-based framework. The 
Systematically Developed Forest (SysFor) and a Penalizing Attributes Decision Forest (ForestPA) ensemble approaches has 
been used for PD detection. The proposed detection schemes efficiently identify positive subjects using primary voice signal 
features, viz., baseline, vocal fold, and time–frequency. A novel feature selection scheme termed Feature Ranking to Feature 
Selection (FRFS) has also been proposed to combine filter and wrapper strategies. The proposed FRFS scheme encompasses 
Gel’s normality test to rank and selects outstanding features from baseline, time–frequency, and vocal fold feature groups. 
The SysFor and ForestPA decision forests underneath the ForEx++ rule-based framework on both FRFS feature ranking 
and subset selection represents Parkinson’s detection approaches, which expedite a better overall impact on segregating PD 
from control subjects. It has been observed that the ForestPA decision forest in the ForEx++ framework on FRFS ranked 
features proved to be a robust Parkinson’s detection scheme. The proposed models deliver the highest accuracy of 94.12% 
and a lowest mean absolute error of 0.25, resulting in an Area Under Curve (AUC) value of 0.97.

Keywords Ensemble Parkinson disease detection · ForestPA · ForEx · Machine learning · Missing value imputation · 
Normality based feature selection · Parkinson detection · SysFor

 * Moumita Pramanik 
 moumita.p@smit.smu.edu.in

 * Akash Kumar Bhoi 
 akashkrbhoi@gmail.com

 * Paolo Barsocchi 
 paolo.barsocchi@isti.cnr.it

 Ratika Pradhan 
 ratika.sist@gmail.com

 Parvati Nandy 
 parvati.n@smims.smu.edu.in

1 Department of Computer Applications, Sikkim Manipal 
Institute of Technology, Sikkim Manipal University, Majitar, 
Sikkim 737136, India

2 Department of Computer Engineering, Sikkim Institute 
of Science and Technology, South Sikkim, Jorethang, India

3 Department of Medicine, Sikkim Manipal Institute 
of Medical Sciences, Sikkim Manipal University, Gangtok, 
Sikkim 737102, India

4 Department of Computer Science and Engineering, Sikkim 
Manipal Institute of Technology, Sikkim Manipal University, 
Majitar, Sikkim 737136, India

5 Institute of Information Science and Technologies, National 
Research Council, 56124 Pisa, Italy

6 KIET Group of Institutions, Delhi-NCR, Ghaziabad 201206, 
India

7 AB-Tech eResearch (ABTeR), Sambalpur, Burla 768018, 
India

http://orcid.org/0000-0002-6862-7593
http://crossmark.crossref.org/dialog/?doi=10.1007/s12652-022-03719-x&domain=pdf


 M. Pramanik et al.

1 3

1 Introduction

The aged people suffered from a common neurodegenera-
tive disorder often recognized as Parkinson’s Disease. The 
disease associated with the human nervous system is often 
observed due to the anomalies of dopaminergic neurons 
located in the substantia nigra (Tuncer et al. 2020). Dopa-
minergic neurons help the brain to send signals to different 
parts of the body to carry out its corresponding function 
properly and supply correct articulation at the time of speech 
delivery. Common symptoms of PD are bradykinesia. The 
organ movement becomes very slow, tremor, rigidity, pos-
tural instability, walking/gait problems, decreased smell 
perception, sleep disturbances, and most importantly, vari-
ation in speech (Gómez-Vilda et al. 2017; Gupta et al. 2018; 
Tuncer and Dogan 2019; Aich et al. 2018; Tuncer et al. 
2020). In PD, one side of the body part becomes distressed, 
and gradually dispersed to the other side of the body. The 
diagnosis of PD mostly depends on medical practitioners' 
motor tests when two out of three symptoms, namely aki-
nesia (challenging to start a movement), rigidity, and rest 
tremor are observed. PD symptoms arise when the level of 
dopamine falls below 70% approximately (Jeancolas et al. 
2017). As the disease is not reversible, preventive meas-
ures at an early stage and clinical intervention are necessary 
before the disease starts showing adverse symptoms.

According to Healthcare Research and Quality (Romex-
soft 2017), doctors and clinicians are often prone to cogni-
tive bias while diagnosing patients. Therefore, an intelligent 
system is needed to help clinicians to diagnose the patients 
efficiently. The system may employ Machine Learning (ML) 
(Anand et al. 2018) to eliminate these biases and help the 
medical practitioners to diagnose the disease with higher 
accuracy. ML makes healthcare smarter, especially in the 
context of a digital diagnosis of the disease. ML helps detect 
certain disease patterns using patients' electronic healthcare 
records and notify them of any anomalies. Over time, various 
researchers recommended different techniques and methods 
with different signals for detection of PD, such as voice sig-
nals (Pramanik et al. 2021a, b; Sakar et al. 2019; Mostafa 
et al. 2019; Gottapu and Dagli 2018), EEG (Yuvaraj et al. 
2016), gait (Joshi et al. 2017; Zeng et al. 2016), biomarker 
(Bhat et al. 2018), MRI (Cigdem et al. 2018) and handwrit-
ing signals (Afonso et al. 2019; Rios-Urrego et al. 2019). 
Nevertheless, having various signals used for PD detection, 
the acoustic signal of the voice often considered for early 
detection of Parkinson’s disease (Harel et al. 2004; Postuma 
et al. 2012; Rusz et al. 2016; Jeancolas et al. 2017). There-
fore, vocal-based features attract the researchers to analyze 
PD in telemedicine (Ertuǧrul et al. 2016; Bourouhou et al. 
2016; Tuncer and Dogan 2019; Sakar et al. 2019; Jeancolas 
et al. 2017).

Hypokinetic dysarthria (Jeancolas et al. 2017) is a vocal 
injury found in the acoustics voice samples of Parkinson’s 
patients, affecting multiple speech levels such as phona-
tion, articulation, prosody, and resonance. Hypokinetic 
Dysarthria also influences the functions of laryngeal 
activity, articulatory and activities of respiratory muscles. 
Parkinson’s patient often faces problem in speech forma-
tion; they experience disfluency and encounter problems 
in speech transformation as it becomes more monotonous. 
According to (Viswanathan et al. 2018; Jeancolas et al. 
2017), the articulation of consonant and vowel delivery 
is gradually impaired, pitch intensity and phonation are 
unstable, and the tone becomes bumpy among Parkinson’s 
subjects.

This article presents PD detection mechanisms using 
ForEx++ rule-based framework on the top of SysFor and 
ForestPA decision forests. The baseline, vocal fold along 
time–frequency feature groups are considered for PD detec-
tion. The voice feature groups were ranked and relevant 
features are acquired using a novel feature selection scheme 
based on Gel’s directed test of normality. The proposed fea-
ture selection scheme is based on a Goodness of Fit (GF) test 
proposed by Gel et al. (2007), which facilitates designing 
the scheme both as the filter and wrapper-based approach. 
It is designed to rank (a filter method) the features based 
on their standard normal distribution and select a subset 
(a wrapper method) of normally distributed vocal features 
based on a critical value boundary. The proposed feature 
selection scheme can handle missing value instances before 
the feature selection procedure; thus, it proved to be a robust 
feature selection algorithm compared to peer feature ranking 
and selection schemes.

The chronological summary of the contributions of this 
article is as follows.

• A new feature selection scheme termed Feature Rank-
ing to Feature Selection (FRFS) via Directed Tests of 
Normality (FRFS-DTN) has been introduced using the 
concept of Gel’s Goodness of Fit (GF) test to acquire 
normally distributed features.

• A missing values imputation approach using neighbor 
information has been proposed as the pre-processing 
component of the proposed FRFS-DTN method; thus, 
making the feature selection method robust even in pres-
ence of outliers and missing values in the underlying 
data.

• The ranked features and selected feature subsets are used 
separately with SysFor and ForestPA to design four dis-
tinct PD detection mechanisms.

• Further, the ForEx++ rule-based framework has been 
introduced to expedite the detection result by selecting 
decision forest rules that are comparatively more accu-
rate.
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• The optimum acoustic features are proposed through the 
detection model to the research community to design the 
state-of-the-art PD detection methods.

The organisation of the article is as follows Sect. 2 nar-
rates the activities of related works. Section 3 illustrates 
a schematic representation of the proposed PD detection 
model along with the datasets used, data preprocessing and 
feature selection technique. The results and discussion have 
been outlined in Sect. 4, followed by a conclusion and future 
research direction is mentioned in Sect. 5.

2  Related works

Machine learning-based Parkinson’s detection mechanisms 
using acoustic signals has been explored extensively in the 
recent past. Most modern machine learning-based PD detec-
tion techniques employ feature selection techniques at the 
pre-processing stage to select suitable features. Smekal et al. 
(2015) suggested a Parkinson’s finding approach utilizing 
Empirical Mode Decomposition (EMD) and Sequential 
Forward Feature Selection (SFFS) along with the Random 
Forest (RF) decision tree. EMD and SFFS have been used as 
feature selectors, which ultimately ascertained the optimum 
vowel features. The RF on SFFS proved to be an ideal PD 
detection scheme. Similarly, Mekyska et al. (2015) presented 
a voice-based PD detection approach using Random For-
est, which was effective in disease progress prediction. The 
Random Forest PD detector reveals a sensitivity of 92.86% 
and specificity of 85.71%. Other than Random Forest, fuzzy 
entropy-based vocal features on Linear Discriminant Anal-
ysis (LDA) (Su and Chuang 2015) is also used to detect 
the presence of Parkinson's effectively among the subjects. 
Similarly, Bourouhou et al. (Bourouhou et al. 2016) com-
pared different classification methods to detect Parkinson's 
disease with k-NN, Naïve Bayes, and SVM algorithm cross-
validation. Though the SVM-based detection reveals mag-
nificent performance, it is silent about a feature selection 
scheme. Employing a vibrant feature selection scheme could 
make the system more efficient. Similarly, four feature selec-
tion algorithms and six classifiers are evaluated to design 
a Parkinson's prediction engine (Cantürk and Karabiber 
2016). The study shows that a total of 12 features generated 
by Relief feature selection, when trained on Back Propa-
gation Neural Network (BPNN) consisting of twenty neu-
rons, results in accuracy of 68.94%. The author also proved 
that feature selection from discriminative voice features is 
required to improve detection scores. In Orozco-Arroyave 
et al. (2016), the authors performed a rapid repetition of 
syllables of German, Spanish and Czech languages to seg-
regate the presence of Parkinson’s from control subjects. 

Voice-based features, viz., phonation, articulation, and pros-
ody play a lead role in identifying Parkinson’s.

In (Chandrayan et al. 2017), PD detection is carried out 
based on dominant feature selection techniques where fac-
tor analysis feature selection played a crucial role in select-
ing dysphonia features from the speech signal. The author 
suggests an SVM-based detection on the feature subset 
that revealed an accuracy of 90%. Similarly, in (Jeancolas 
et al. 2017), twelve features from voice signal were gener-
ated using Mel-Frequency Cepstral Coefficients (MFCC), 
which has been fed into multi-dimensional Gaussian Mix-
ture Models (GMM) for detecting positive PD patients. The 
author uses sustained vowels, fast syllables, reading, and 
free speech signals of PD patients and normal subjects. 
Their system shows an accuracy of about 91% for reading 
tasks. MFCC features are also extensively used along with 
Intrinsic Mode Functions (IMF) because of their ability to 
characterize Parkinson’s dysphonia (Rueda and Krishnan 
2017). The authors successfully achieved the quality of the 
audio signal with a visible distinction using MFCC features. 
The sustained vowel with sampling frequency at 8 kHz and 
quantization at a reduced resolution of 8-bit were used in 
the validation task. Dinesh et al. (Dinesh and He 2017) pro-
posed filter-based feature selection techniques with many 
classifications, including Locally-Deep SVM (LDSVM), 
Decision Forests (DF), Logistic Regression (LR), Boosted 
Decision Tree (BDT), SVM, and Neural Networks (NN). 
On the other hand, a Random Least Squares Feedforward 
Network (RLSFN) binary classifier used on pathological and 
normative features predicts Parkinson subjects efficiently 
(Gómez-Vilda et al. 2017).

Similarly, an ensemble mechanism of classification have 
been used for Parkinson’s detection (Fayyazifar and Sama-
diani 2017). In the pretext of the classification, the Genetic 
Algorithm plays a crucial role in selecting only six-voice 
features that have improved the classification accuracy to 
a great extent. A dual-stage Bayesian filter-based feature 
selection and classification approach for Parkinson's dis-
ease detection has been proposed using voice recording 
replications (Naranjo et al. 2017). One feature per feature 
group has been selected at the first stage, which is fed into a 
regularization-based classification approach based on Least 
Absolute Shrinkage and Selection Operator (LASSO) in the 
later stage. The dual-stage detector successfully classifies the 
Parkinson's and normal subjects with an accuracy of 86%, a 
sensitivity of 82.5%, and a specificity of 90%.

Gupta et al. (2018) used the optimized cuttlefish algo-
rithm as a search strategy to ascertain the optimal subset 
of the feature on different types of sound recording and 
handwriting sample’s dataset and decision tree. A non-lin-
ear decision tree and random forest classifier were used on 
two feature sets original feature sets and PCA feature sets 
to detect Parkinson’s disease. In Viswanathan et al. (2018), 
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features extracted from sustained voiced consonant /m/ 
compared with the sustained phonation /a/ were considered 
where in SVM classifier model and the spearman correla-
tion coefficient analysis was carried out to find the Unified 
Parkinson’s Disease Rating Scale (UPDRS) motor score. A 
new expert system-based PD detection system proposed in 
Montaña et al. (2018) differentiates healthy subjects from 
people who have Parkinson’s disease using Diadochokine-
sis tests. The system used temporal and spectral features 
extracted from the Voice Onset Time (VOT) segments of /
ka/ syllables. The VOT algorithms was used to smoothen 
the amplitude envelope of the signal so that the classifica-
tion algorithm can get meaningful distinctions about the 
subjects. The authors demonstrated that the novel VOT 
algorithm accurately estimates VOT boundaries for healthy 
and PD-affected subjects. An automated feature learning 
scheme was proposed to eliminate manual feature selection 
and intervention of experts (Wu et al. 2018). The system 
is based on a Mel-spectrogram of the audio signals of the 
subjects. The system employs derivative of Mel-spectrogram 
with respect to time for pre-processed audio signals. The 
extracted features are trained and tested through spheri-
cal k-means, which was the core of the detection process. 
Though the system shows adequate accuracy of detection, 
but the authors admitted that learning through MFCC has 
low clinical interpretability.

Sakar et al. (2019) analyses speech signal processing 
using multiple classification schemes. The Tunable Q-Fac-
tor Wavelet Transform (TQWT) and MFCC techniques 
extract required features from acoustic signals of vowels. 
Subsequently, the mRMR feature selection scheme gener-
ates the significant features passed to multiple classifiers. 
The predictions of the classifiers were combined with the 
ensemble learning approaches to come across a conclusive 
result. Parkinson’s disease detection using L2-regularized 
logistic regression, random forest, and gradient boosted 
decision trees on voice samples (Tracy et al. 2019) has been 
proposed using 62 voice features. Their study shows that 
the input data is mostly skewed towards control patients, 
which was why the author's considered Recall, Precision, 
and Area Under Curve (AUC) as the parameters for evalu-
ation. Multiple voice recordings by simultaneous sample 
and feature selection have also been conducted for the early 
diagnosis of Parkinson’s disease (Ali et al. 2019a, b). The 
author employed a Leave-One-Subject-Out (LOSO) (Sakar 
et al. 2013) validation scheme on Neural Network, which 
proved to be a practical validation scheme for voice datasets 
having more than one sample per subject. Before the LOSO 
validation, their proposed method ranks features using a chi-
square statistical model, searches for an optimal subset of the 
ranked features, and samples were selected iteratively. The 
phonation and speech were used by (Almeida et al. 2019) for 
detecting Parkinson's. For phonation, sustained vowels, and 

speech, the pronunciation of sentences was used. The voice 
samples were captured using Acoustic Cardioid (AC) and 
Smartphone (SP). The captured samples are pre-processed, 
and adequate features were selected for the detection pro-
cess. The authors used k-Nearest Neighbor (k-NN), Multi-
Layer Perceptron (MLP), Optimum-Path Forest (OPF), and 
Support Vector Machine (SVM) as the detectors optimized 
using a hold-out technique. Voice features have also been 
extensively explored in an uncontrolled background condi-
tion (Braga et al. 2019). The Random Forest optimized with 
grid-search and learning curves was the basis for such PD 
detection.

In 2020, Tuncer et al. (2020) proposed a combination 
of 3 levels of Average Minimum Maximum (MAMs) tree 
used for pre-processing the voice data and Singular Value 
Decomposition (SVD) was used for feature extraction where 
50 most distinctive features were selected using Relief fea-
ture selection techniques. Solana et al. (2020) proposed an 
approach of PD detection, which proved to behave improved 
accuracy by reducing selected vocal features. Out of the 754 
features of the public dataset, the number of features selected 
for classification was in a range of 8 to 20 through Wrappers 
feature subset selection. Four classifiers k-NN, MLP, SVM, 
and Random Forest was the basis of the detection engine. 
Karan et al. (2020) proposed an SVM-based PD detection 
system where Intrinsic Mode Function Cepstral Coefficient 
(IMFCC) feature extraction is used to extract the most rel-
evant feature for Parkinson's and Control patients classifica-
tion. The authors validated their proposed approach through 
the two most widely used voice datasets. The IMFCC fea-
ture selection approach shows an improvement of 10–20% 
in accuracy compared to the standard acoustic and Mel-
Frequency Cepstral Coefficient (MFCC) feature selection.

Braga et  al. (2019) proposed a Parkinson’s detec-
tion model using an optimized version of Support Vector 
Machine (SVM). SVM variation known as Radial Basis 
Function (RBF) has been optimized using an automated ver-
sion of the grid-search technique. Their proposed grid search 
technique employs k-fold (k = 300) cross-validation to real-
ize C = 1.15291 and γ = 0.00048. With the optimized RBF, 
Braga et al. approach detects the presence of Parkinson’s 
with 92.38% accuracy. Similarly, Behroozi and Sami (2016) 
proposed a Parkinson’s detection framework using multi-
ple classifier ensembles. The majority voting techniques 
decided whether the subject suffers from Parkinson’s or 
not. Ali et al. (2019a, b) suggested a neural network model 
encompassing genetic algorithms and linear discriminant 
analysis for Parkinson’s detection. The approach was tested 
on a dataset that doesn’t have control participants remains a 
drawback for the k-NN model. Agarwal et al. (2016) derived 
a model for Parkinson’s detection using Extreme Learning 
Machine (ELM) on various acoustic features such as jit-
ter, shimmer, pitch, period and harmonicity. Li et al. (2017) 
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discriminate Parkinson’s subjects from controls using an 
ensemble framework combining the essence of random 
forest (RF), Support Vector Machines (SVM) and Extreme 
Learning Machine (ELM). Samples that have true separabil-
ity are identified using Classification And Regression Tree 
(CART). The ensemble approach detects the presence of 
Parkinson’s with up to 90% accuracy. Benba et al. (2016) 
proposed a PD detection model using k-NN with its differ-
ent kernels (i.e., RBF, Linear, polynomial, and MLP). The 
k-NN model was tested on various voice samples where the 
approach reveals the highest detection accuracy of 82.5%. 
Berus et al. (et al. 2018) combined multiple artificial neural 
networks to form a PD detection model. Kendall’s correla-
tion coefficient acts as a feature selector of vocal signals 
of PD and control subjects. The neural network ensemble 
discriminates PD from control subjects with an impressive 
accuracy rate of 81.33%. A Multi-Edit-Nearest-Neighbor 
(MENN) algorithm for sample selection and Random forest 
(RF) with neural network ensembles proved to be an excel-
lent Parkinson’s detection engine (Zhang et al. 2016) under 
multiple acoustic features. Polat and Nour (2020) proposed 
a Parkinson’s detection system using a novel one-against-all 
(OAA) sampling technique. The authors partition the data 
into five equal parts for Parkinson’s and control subjects in 
this process. Logistic Regression, SVM and k-NN classi-
fiers are combined for the training on the separate blocks 
of data. The classifiers combinations revealed a maximum 
detection accuracy of 89.46% while classifying PD subjects. 
A Mel scaled filter bank-based approach has been proposed 
for the early detection of Parkinson’s disease (Upadhya et al. 
2019). The MFCC features are used for detection purposes. 
The Radial Basis Function (RBF) plays a dramatic role in 
discriminating Parkinson’s from healthy people. The RBF 
detector detects the presence of Parkinson’s with more than 
80% of accuracy. Adaptive Grey Wolf Optimization Algo-
rithm (AGWOA) and Sparse Auto-Encoder (SAE) proved 
to be a sophisticated technique for vocal feature based Par-
kinson’s detection (Xiong and Lu 2020). The SAE model 
on Correlation-based Feature Selection (CFS), Recursive 
Feature Elimination (RFE), minimum Redundancy Maxi-
mum Relevance (mRMR) has been tested through six super-
vised classification techniques. The Random Forest (RF) 
and Linear Discriminant Analysis (LDA) evolved as the 
best detector on the SAE. Naranjo et al. (2019) proposed 
a two stage classification approach to segregate Parkin-
son’s from control subjects. The two stages classification 
approach has been designed to work specifically with rep-
licated acoustic features. Common Principal Component 
(CPC) has been employed for dimensionality reduction. 
The CPC first extracted relevant features per acoustic fea-
ture group and secondly, the CPC extracted discriminated 
features from the combined features group. In this way, the 
two detection models are prepared, which proved effective 

in diagnosing Parkinson’s. Yaman et al. (2020) described a 
statistical pooling method for increasing the vocal features 
of the subjects. The Relief Feature section approach selects 
the most weighted features. Two different variations of SVM 
and k-NN have been used to derive the proposed Parkinson’s 
detection scheme. According to the confusion matrix, both 
the k-NN and SVM variations show detection accuracy up 
to 91.25%. Recently, a two-stage whale optimization method 
for the classification of Parkinson’s disease has been pro-
posed (Ozturk and Unal 2020). Since most of the acoustic 
datasets contain replicated features, the subjects of Parkin-
son’s and control classes are separated in the feature space. 
The instances of different classes are classified differently. 
The class separation approach detects the presence of Par-
kinson’s effectively. A computer aided diagnosis method has 
been proposed using various kernels of SVM on acoustic 
signal features (Perez et al. 2016). The Radial Basis Func-
tion (RBF) revealed highest detection accuracy of 85.25% 
among the SVM kernels. Fuzzy neural network provides 
a potential alternating way of detecting Parkinson’s in the 
acoustic signal (Guimarães, de Campos Souza, and Lughofer 
2020). The model contains three layers, viz., Data Density 
Fuzzification, Fuzzy Rules and Artificial Neural Network. 
The combination of layers detects the presence of Parkin-
son’s with 80.88% accuracy.

3  Materials and methods

The proposed PD detection scheme shown in Fig. 1 follows 
three distinct steps: pre-processing, Feature Ranking to Fea-
ture Selection via Directed Test of Normality (FRFS-DTN), 
and Parkinson’s detection. At the pre-processing stage, the 
underlying data is aggregated, suitable feature groups are 
identified. In the FRFS-DTN stage, the features of each 
feature group are ranked, and finally, relevant features are 
selected. The feature selection provides the acoustic fea-
tures after ranking according to the normality score. From 
the ranked features, the convenient features are selected 
based on pValue and upper ∝-percentile. Similarly, dur-
ing the detection stage, the SysFor and ForestPA decision 
forest classifiers are used separately under ForEx++ rule-
based framework. A reasonable number of decision trees on 
dynamically selected vocal features plays a vital role in Par-
kinson’s detection. The proposed PD detector model works 
in iterative fashion. The number of decision trees in the for-
est with training and testing split instances is determined 
iteratively (Pramanik et al. 2021a, b). The dynamic selection 
of training and testing split provides a threshold point where 
the maximum detection accuracy has been achieved. The 
detailed steps of the Parkinson’s detection model have been 
discussed in the following section describing the dataset 
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first, followed by feature ranking and selection procedure 
and then Parkinson’s detection.

3.1  Dataset used

The dataset for analyzing Parkinson’s disease lies in many 
formats. There are many datasets proposed so far for Parkin-
son's disease detection. These datasets have their advantages 
and disadvantages. Generally, the data of voice signals of PD 
patients are stored in terms of acoustic formats. However, 
the acoustic signals fall under three major groups- Base-
line Features (BF), Time Frequency Features (TFF) and 
Vocal Fold Features (VFF). The BF are the combination 
of Detrended Fluctuation Analysis (DFA), Pitch Period 
Entropy (PPE), Harmonic to Noise Ratio (HNR), and vari-
ous Jitter, Shimmer attributes of the acoustic signal. PPE 
is often calculated with different uncontrollable perplexing 

effects of acoustic data in its voice frequencies. At first, pitch 
sequence is obtained and converted into the logarithmic 
scale. Roughness is analyzed by removing the linear tem-
poral correlations with a standard linear whitening filter to 
produce the relative semitone various sequence. Next, a dis-
crete probability distribution is constructed, and finally, the 
entropy of this probability distribution is calculated (Little 
et al. 2008; Edwards 2008). Detrended fluctuation analysis 
(DFA) is used to detect general voice disorders. It measures 
the degree of amplitude variation of the speech signal in 
a range of time scales and finds out the noise's similarity. 
The noise is often produced because of irregular airflow 
in the vocal fold (Little et al. 2008). The jitter parameter 
represents the frequency variation of voice cycles, whereas 
shimmer shows the amplitude variation of the sound wave 
(Farrús et al. 2007; Farrús and Hernando 2009). The fre-
quency is generated by the number of sound waves formed 

Fig. 1  The Parkinson’s disease 
detection model
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by the vocal cord's repetition during a particular time frame 
due to glottis' opening and closing. Fundamental frequency 
jitter and shimmer are often considered for vocal qualities 
analysis (Teixeira et al. 2013). Similarly, the TFF group is 
represented with various formant frequencies, intensity, and 
bandwidth. In this context, the intensity represents the vocal 
folds’ volume due to the sub-glottis pressure's vividness 
(Mongia and Sharma 2014; Sakar et al. 2019). The formant 
frequencies are assessed using the frequency reaction of 
the vocal tract filter, whereas bandwidth ranges between b1 
and b4 (Sakar et al. 2019). VFF consists of Glottis Quotient 
(GQ), glottal to Noise Excitation (GNE), Vocal Fold Exci-
tation Ratio (VFER), and Empirical Mode Decomposition 
where the Glottis quotient gives the periodicity of glottis 
movement and GNE gives the quantities of turbulent noise. 
VFER provides the noise information generated by the vocal 
fold quivering by calculating non-linear energy and entropy. 
In contrast, EMD breaks a speech signal into a simple signal 
that applies basis functions adaptive in nature and calculates 
the energy/entropy values (Sakar et al. 2019).

In this article, three acoustic signal datasets have been 
considered for the evaluation of the proposed model. The 
first acoustic dataset has been prepared by Sakar et  al. 
(2019). The dataset contains acoustic features of 252 per-
sons in the age group of 33 to 87, where 64 healthy persons 
(33 male and 41 Female) and 188 PD persons (107 Male 
and 81 Female). The voice of subjects is recorded with a 
microphone with 44.1 kHz. A total of 754 features were 
extracted out of the sound files of subjects. The 754 features 
are spanned over six feature groups: BF, TFF, VFF, MFCC, 
Wavelet, and TQWT Features. Similarly, the second data-
set prepared by Naranjo et al. (2016) is a balanced dataset 
consisting of acoustic signal features of 40 Parkinson’s and 
40 control subjects. Finally, the third acoustic dataset was 
proposed by Sakar et al. (2013). The dataset is spanned over 
separate training and testing sets of Parkinson’s and con-
trol subjects. The training set comprises 40 subjects, out of 
which 20 are controls and 20 belong Parkinson’s category. 
Similarly, the testing dataset holds acoustic information of 
28 subjects suffering from Parkinson’s. The acoustic infor-
mation include pronunciation of sustained vowel /a/, /u/, /o/, 
short sentences and words. Since, other two datasets consid-
ered in this article holds acoustic information limited to the 
pronunciation of /a/ only; therefore, other acoustic informa-
tion such as /u/, /o/, short sentences and words have been 
removed. Again, the training set contains only 40 instances, 
which may overfit or underfit the classifiers during the event 
of detection. Therefore, both the training and testing sets 
are merged to form a single dataset, where the training and 
testing splits have been determined dynamically. Both the 
Sakar et al. (Sakar et al. 2013, 2019) acoustic datasets are 
highly class imbalanced. On the other hand, Naranjo et al. 
(2016) dataset the most balanced due to equal number of 

Parkinson’s and control subjects. So far as the number of 
features concern, Sakar et al. (2019) dataset contains 54, 
Sakar et al. (2013) contains 26 and the balanced Naranjo 
et al. (2016) dataset contains 18 features, respectively. The 
BF, TFF and VFF of these three datasets have been men-
tioned in Table 1.

Out of all the datasets mentioned in Table 1, the Sakar 
et al. (2019) dataset contains additional vocal information 
such as MFCC, Wavelet and TQWT, and BF, TFF and VFF. 
It has been observed that the most common parameters 
of BF, TFF and VFF used in the acoustic analysis are jit-
ter, shimmer, and Harmonic to Noise Ratio (Teixeira et al. 
2013). In a recent study conducted by us (Pramanik et al. 
2021a, b), it is found that the BF, TFF and VFF show better 
detection results on decision trees than MFCC, Wavelet, and 
TQWT Features. Moreover, BF, TFF and VFF segments also 
provide the vital information about frequency, amplitude, 
noise, and vocal fold vibration. As the proposed work is 
based on decision forest, baseline, time frequency, and vocal 
fold feature groups are considered for Parkinson’s detection 
over MFCC, Wavelet, and TQWT Features.

3.2  Data pre‑processing

Sakar et al. (2013) dataset contains pronunciation of sus-
tained vowel /a/, /u/, /o/, short sentences and words. The 
acoustic information of sustained vowel /a/ has been taken 
from the dataset for training and detection purposes. How-
ever, the Sakar et al. (2019) and Naranjo et al. (2016) data-
sets contain three recordings of sustained vowel /a/ for 
each subject. Applying machine learning techniques on the 
repeated instances will not provide meaningful informa-
tion. Therefore, the average of the three recordings is cal-
culated to get a unique record per participant. At the second 
step of data pre-processing the acoustic features of all the 
three datasets are ranked, and the suitable convenient fea-
tures are selected according to their contribution towards 
Parkinson's detection. The ranking and selection are based 
on the normally distributed features of the datasets. Each 
feature of the datasets is assigned a normal distribution 
score, which decides whether the feature to be selected. 
The scores are calculated through a recent directed test of 
normality approach proposed by Gel et al. (2007). The Gel 
et al. approach has been modelled towards the feature selec-
tion; thus, Feature Ranking to Feature Selection (FRFS) via 
Directed Tests of Normality (FRFS-DTN). The FRFS-DTN 
proved to be a suitable feature selector for selecting normally 
distributed features. The method also acts as both filter and 
wrapper-based approach, i.e., it ranks and selects the promi-
nent features. The proposed FRFS-DTN technique is novel 
because of its ability to handle missing values before the 
feature selection starts. The proposed FRFS-DTN feature 
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ranking follows three major steps, i.e., handling missing val-
ues, feature ranking and feature subset selection.

3.2.1  Handling missing values

The proposed FRFS-DTN technique is suitable for data 
ranging from lower sample size (< 180) to higher sample 
size (≥ 180) ; thus, it proved to be scalable. However, a fea-
ture selection technique is robust if it can select the requisite 
features (generally features contributing maximum towards 
classification) even in the presence of outliers in the under-
lying data. Outliers include missing values, missing class 
information for a subject, and unstructured data. These are 
the main reason behind the classifier's performance degra-
dation. However, there are many missing value imputation 
schemes in data science, but most of those methods predict 
the missing values with one or more supervised classifiers. 
Therefore, an effort has been made to design a missing value 
imputation algorithm that will act as a filter component for 
the FRFS-DTN feature selection scheme before the actual 

ranking process starts. The missing value imputation tech-
nique has been detailed in Table 2.

The missing value imputation procedure takes the help 
of a traditional k-means clustering algorithm to impute the 
missing values. Here, NULL values for a cell have been 
considered as missing values. The imputation procedure has 
been conducted in the following four distinct steps. At first, 
the instances of data matrix MD have been removed having 
no class information. It should be noted that the imputation 
method detailed in Table 2 employs k-means clustering in a 
supervised fashion. Therefore, no class information has no 
use, which needs to be eliminated from the data matrix per-
manently. After removing instances with no class informa-
tion, the second stage involves removing instances where all 
cells have the missing values. Practically, a medical dataset 
cannot contain NULL values for all the cells of an instance. 
However, this precaution has been taken deliberately to 
make this algorithm extendible to other application domains. 
Therefore, if all the cell values of an instance have NULL, 
the instance itself is of no use, hence excluded from the 

Table 1  The BF, TFF and VFF 
feature groups and number of 
features of Sakar et al. (2019), 
Naranjo et al. (2016); Sakar 
et al. (2013), datasets

Features segments considered for Parkinson’s detection Datasets

Sakar 
et al. 
(2019)

Naranjo 
et al. (2016)

Sakar 
et al. 
(2013)

Number of features of the cor-
responding segment

Baseline features
 Entropy of recurrence period density 1 1
 Detrended fluctuation (signal fractal scaling exponent) 1 1
 Entropy of pitch period (nonlinear measures of fundamental fre-

quency variation)
1 1

 Harmonicity parameters (noise to tonal components in the voice) 2 5 3
 Variants of jitter (measures of variation in fundamental frequency) 5 4 5
 Fundamental frequency 5 –
 Variants of Shimmer (measures of variation in amplitude) 6 5 6

Time frequency features
 Voice intensity 3 –
 Bandwidth 4 –
 Formant frequencies 4 –
 Pitch parameters – – 5
 Pulse parameters – – 4

Vocal fold features
 Glottis quotient 3 –
 Glottal to noise excitation 6 1
 Empirical mode decomposition 6 –
 Vocal fold excitation ratio 7 –
 Fraction of locally unvoiced frames – – 1
 Number of voice breaks – – 1
 Degree of voice breaks – – 1
 Total number of features 54 18 26
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dataset. At the third stage of the process, attributes having 
all the cell values as NULL should be removed. A missing 
cell value cannot be imputed with another missing cell value 
of another instance. Once these three preliminary steps have 
been completed, each instance of the data matrix is pro-
cessed for imputation. During the imputation step, instances 
are segregated and processed separately for each class label. 
There are two distinct class labels positive instances affected 
with Parkinson's and negative the control instances. For 
illustration, values containing diagnosis results of controls 
and subjects suffering from Parkinson's have different range 
values. Therefore, the segregation of data based on the class 
label is essential to achieve better-imputed values. So, in this 
stage, data of each class label has been processed separately. 
Each instance of a specific class label, where cell values are 
meant for imputation, has been treated as a testing instance, 
and the rest of the instances are treated as training instances. 
The training and testing instances have been prepared so 
that each NOT NULL cell of training instances has been 
considered matching NOT NULL cell values of the testing 
instance. Finally, the k-means cluster has been called with 
the desired training and testing instances. The general draw-
back of the k-means clustering is that the number of clusters 
formed needs to be defined before the actual clustering pro-
cess starts. The drawback of defining the number of clusters 
beforehand actually turns out to be the strong point for the 
imputation. The number of clusters k has been fixed with 

the number of training instances; thus, getting exactly one 
training instance in each cluster. During the testing process, 
the data NULL values of the testing instance rows of the data 
matrix can be imputed with the corresponding NOT NULL 
values of the cluster's training instance where the prediction 
of the testing instance falls. The entire process is repeated 
for each instance desired to be imputed of each class. After 
the successful imputation, the imputed matrix is passed to 
FRFS-DTN, presented in the next section.

3.2.2  Feature ranking to feature selection (FRFS) 
via directed tests of normality (FRFS‑DTN)

The proposed FRFS-DTN procedure has been inspired 
by the concept of a directed test of normality. Almost all 
machine learning procedures rely on the illusion that the 
observed data are typically distributed. The training data 
suffers from (a) the curse of dimensions (b) the presence of 
skewness. The high dimensional data hampers the classifiers' 
performance, whereas the skewed data is the reason behind 
the generation of false alarms. Therefore, the normally dis-
tributed data with the correct dimensions is required to boost 
the performance of the classifiers.

Through various tests (Bonett and Seier 2002; D’Agostino 
1986; Thadewald and Büning 2007) which helps to ensure 
that the underlying data is usually distributed, those 
approaches work perfectly well for small sample size data. 

Table 2  Missing value imputation procedure for FRFS-DTN
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In 2007, Gel et al. (2007) presented a robust normality test 
for heavy-tailed samples. The approach generates a score 
for a set of data points, which helps to determine whether 
the data points are normally distributed or not. In this paper, 
the normality test inspired by Gel et al. approach has been 
adopted for optimum feature selection. The directed test of 
normality proposed by Gel et al. relies on the comparison 
of Sn – the classical standard deviation of data points and 
Jn – the average absolute deviation from the median of the 
data points. The ratio of Sn to Jn provides a legitimate score 
of normality. In the context of feature selection, the normal-
ity score has been calculated for each feature. The normality 
scores can be used for two purposes –

(a) Feature Ranking: Ranking features based on the nor-
mality score; thus, it acts as a filter-based feature selec-
tion.

(b) Feature Subset Selection: Selecting a subset of features 
from the ranked features like the wrapper-based feature 
selection.

Ranking individual features involves calculating each 
feature's score and arranging in descending order of their 
estimated score. The estimation of feature scores starts with 
calculating the average absolute deviation from the median 
of data points and is presented as –

where,  X̃ = median of the data points, Xk = individual fea-
ture point, k ≤ n , n = number of data points and C1 = 

√
π∕2 

a constant. Once the average absolute deviation from the 
median is calculated, the classical standard deviation of the 
data points X must be determined for varying sizes of data 
points. However, for |X| >= 180 , the standard deviation can 
be calculated as –

Now the weight of the concerned feature can be esti-
mated as the ratio of classical standard deviation and average 
absolute deviation from the feature's median. Therefore, the 
weight of the feature can be expressed as –

The feature weight is the normal distribution score. More 
the weight, more the feature is normally distributed. There-
fore, the features of the Parkinson dataset must be sorted 
horizontally according to the calculated feature weight. In 
this way, the feature having the highest weight secures the 

(1)AADM =
C1

n

n∑

k=1

||Xk − X̃||

(2)SD =

�∑n

k=1
X2

k

n
− X

2

(3)MW =
SD

AADM

first position with the highest rank. Similarly, the feature 
having the lowest weight is placed at the last position. The 
feature ranking procedure ranks the features in descend-
ing order of normality score. As a result, the first feature is 
highly normally distributed, and the last feature is a skewed 
representation of feature data. The challenge here is to iden-
tify the cut-off points of feature selection to select only the 
normally distributed features and drop the skewed features. 
The cut-off point for feature selection can be determined by 
calculating the pValue and upper ∝-percentile ( ∝= 0.05 ) for 
all the feature vectors. The pValue can be calculated as –

where,  MW [i] represents the normality score of features i 
and C2 =

√
(�−3)

2
 is the asymptotic variance of MW [i] . Any 

features having pValue more than or equal to the upper 0.05 
percentile mean that the feature is skewed and dropped. All 
the features having pValue less than the upper 0.05 percen-
tile is selected as ideal features.

3.3  Decision forest approaches

A decision tree is typically used for knowledge discovery 
by extracting logic rules from underlying data. Conversely, 
a decision forest extracts and manages rules with multi-
ple decision trees ensemble. Two robust decision forests, 
viz; Systematically Developed Forest (SysFor) (Islam and 
Giggins 2011) and Penalizing Attribute Decision Forest 
(ForestPA) (Adnan and Islam 2017a), has been used as 
the primary detection component of the proposed PDS. 
However, decision forests believe to generate a vast num-
ber of logic rules during the training process. Therefore, 
SysFor and ForestPA are incorporated separately through 
a renowned knowledge discovery framework known as 
ForEx++ (Adnan and Islam 2017b). The ForEx++ frame-
work is explicitly designed to handle decision forests to 
extract those comparatively more accurate, generalized, and 
concise rules than others.

The detection process through SysFor starts with iden-
tifying potential attributes, followed by a rule induction 
process. The induction process incorporates multiple C4.5 
decision trees, where the voting mechanisms among C4.5 
decision forests decides the presence of Parkinson’s Disease. 
It should be noted that the proposed FRFS-DTN feature 
selection technique provides a list of suitable potential attrib-
utes. However, a more concise list of potential attributes 
can be realized through the attribute identification process 
of SysFor. In SysFor, the feature subset and ranked features 
generated by FRFS-DTN are scanned sequentially for fea-
ture refinement. The splitting point for SysFor prospective 
feature identification is represented as:

(4)pV =

√
n
�
MW [i] − 1

�

C2
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where, Pj represent the splitting point (if available), Pk is 
represent the splitting point at position k. The ( � ) represents 
a threshold that shows the differences between significant 
and non-significant attributes. The attributes of gain ratio 
identify the essential attributes. The gain ratio of each attrib-
ute is estimated and maintained separately. The gain ratio of 
each attribute is used to arrange their position in decreasing 
order, where the favorable attributes are determined to have 
a gain ratio lesser than a goodness threshold value. The set 
of potential attributes identified are segregated horizontally 
into two groups according to their splitting points, which 
eventually helps to generate multiple C4.5 decision trees. 
The volume of trees present in the SysFor forest is calcu-
lated as:

where, S = set of data segments, D = number of subjects, 
and A = useful attributes of S segments, respectively. The 
prediction result ascertained by T  number of trees is placed 
for voting to realize the final decision about any subject, 
whether the subject is suffering Parkinson’s or not.

Another potential decision forest was known as Deci-
sion Forest by Penalizing Attributes (ForestPA), has also 
been proposed for precise decision making with a facility 
for penalizing unworthy attributes at the tree building phase 
(Adnan and Islam 2017a). The Classification And Regres-
sion Trees (CART) are the basis of the ForestPA decision 
forests, where the trees are built upon the bootstrap samples 
S of the training instances D . The merit values of an attribute 
MAi

 is estimated as –

where CAi
 specify the capacity of classification and WAi

 
shows attribute weight ( A ). Subsequently, the weight of the 
potential attributes is increased iteratively from its default 
value 1. Finally, the depth of the decision tree determines the 
ultimate attributes’ weight. The range of weights, WRd for d 
tree-depth decreases the weight of non-potential attributes 
as:

The idea behind Eqs. (7) and (8) is to allocate weights to 
the lower-level nodes and penalizes higher-level nodes. The 
process eliminates the attributes acquiring the lowest weight 
of 0, thus increasing attributes weights dynamically at the root 

(5)
abs

(
Pj − Pk

)

||Ai
||

− 𝛽 > 0,∀Pk ∈ P

(6)T =

∑�S�
j=1

����Aj
��� ×

���Dj
���
�

∑�S�
j=1

Dj

(7)MAi
=
(
CAi

×WAi

)

(8)WRd =

{
[0.0000, e−1∕d] ifd = 1

[e−1∕(d−1) + 0.0001, e−1∕d] ifd > 1

,

node. The increment value of weight WA++
i

 of such attributes 
is evaluated as –

where WAi shows the weight of the attribute Ai estimated 
from a tree-level � with height h . The decision tree can pre-
dict the unlabelled instances using the dynamic weight allo-
cation process and various class labels of different instances 
is determined through voting.

3.4  The ForEx++ framework

It is known that a decision forest has a better predictive abil-
ity than the standard decision tree. A typical decision forest, 
including but not limited to SysFor and ForestPA has certain 
deficiencies despite better prediction capability. The deficiency 
is the number of logic rules that the forest generates during 
the training process. Though the acoustic feature groups con-
sidered here are limited to 54 features, even with such limited 
features, a decision tree may generate vast numbers of logic 
rules that are difficult to manage and consume significant 
memory space and computational time. Adnan et al. (Adnan 
and Islam 2017b) proposed an independent dataset framework 
to eliminate irrelevant rules and identify those rules that are 
more concise, generalized, and accurate as a potential solu-
tion to this issue. It should be noted that the number of logic 
rules in the forest is already controlled by regulating the densi-
ties of decision trees in the forest (Fig. 1). However, further 
improvement can be possible by extracting the valuable rules 
from the remaining decision trees. The ForEx++ is designed 
explicitly for SysFor and ForestPA decision forests to extract 
proper consolidated rules which contribute most towards the 
detection process. For a set of rulesR =

{
R1,R2, .......,Rz

}
 , the 

consolidated rules of the underlying decision forest have been 
generated as:

where, Ck is the class value for which the rule is being 
generated.

Mathematically, the RAccuracy

Avg,Ck
 , RCoverage

Avg,Ck
 , RLength

Avg,Ck
 are estimated 

as follows.

(9)WA++
i

=
1.0 −WAi

(h + 1) − �

(10)RForEx++ =
⋃
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(
R
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)
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Therefore, as a potential rule estimator, the ForEx++ 
framework first removes the identical rules from the set of 
rules R. Secondly, the RAccuracy

Avg,Ck
 , RCoverage

Avg,Ck
 , RLength

Avg,Ck
 are esti-

mated for each class through Eqs. (11, 12, and 13). Finally, 
ForEx++ consolidates all rules for all classes using Eq. (10). 
It should be noted that the FRFS feature ranking scheme 
ranks the features based on the normality score to achieve 
maximum detection accuracy. However, the order of attrib-
utes does not impact the number of rules generated by the 
decision forest. Therefore, the ForEx++ framework is essen-
tial to deduce the potential consolidated rules.

4  Results and discussion

The result and discussion have been carried out incremen-
tally with several dimensions. At first, our proposed FRFS 
ranking scheme's performance outcome has been discussed 
briefly, along with other peer schemes. Secondly, the feature 
selection outcome of the FRFS scheme has been explored in 
detail. Finally, the proposed Parkinson’s detection results on 
the ForEx++ framework using both ranking and selection 
of FRFS are elaborated briefly using various validation pro-
cedures. The validation procedure used here are Leave One 
Subject Out (LOSO) cross-validation, tenfold cross-valida-
tion and validation through training and testing split. Clas-
sification or detection approaches employ many parameters 
for understanding the capability of the classifiers. However, 
the applicability of performance measurement parameters is 
different for different application scenarios. For instance, the 
detection accuracy is suitable for measuring the ability of the 
detector to detect an incoming instance in almost all areas of 
data sciences. However, in the medical sciences, sensitivity 
and specificity are the measures helpful in evaluating the 
classifier’s performance for detecting negative and positive 
subjects. The trade-off between sensitivity and specificity 
can be well understood by Area Under Curve (AUC) (Kumar 
and Indrayan 2011). In this section, the proposed models 
are explored using a variety of performance measures, i.e., 
Accuracy (ACC), Mean Absolute Error (MAE), Root Mean 
Squared Error (RMSE), False Negative Rate (FNR), False 
Positive Rate (FPR), Specificity (SPE), Sensitivity (SEN), 

(12)R
Coverage

Avg,Ck
= Ri ∶ R

Coverage

i,Ck
≥

∑���RCk

���
j=1

R
Coverage

j,Ck

���RCk

���

(13)R
Length

Avg,Ck
= Ri ∶ R

Length

i,Ck
≤

∑���RCk

���
j=1

R
Length

j,Ck

���RCk

���

Area Under Curve (AUC) and Precision-Recall Curve 
(PRC).

4.1  Feature ranking to feature selection (FRFS)

The proposed FRFS-DTN feature ranking scheme inspired 
by the directed normality test has been designed for varying 
densities of data points. The standard deviation has been 
estimated to obtain each feature's normality score. Finally, 
the features are arranged in descending order of their nor-
mality score. The feature having the highest normality score 
will come; first, the feature having the second-highest score 
will come second, and so on. Arranging features based on 
normality scores is believed to improve the detection accu-
racy of the supervised classifiers. The proposed ranking of 
features has been validated through the vocal features of 
Sakar et al. (2019) (Sakar et al. 2019) dataset. The ranked 
acoustic features have also been passed to three popular 
supervised classifiers Naïve Bayes, OneR, and C4.5 deci-
sion tree, and three decision forest schemes SysFor, Ran-
dom Forest, and ForestPA. The tenfold cross-validation 
has been conducted for observing classifiers’ performance. 
Moreover, the classification has been undertaken with 
a change in feature size, which provides scope to under-
stand the performance improvement of the classifiers with 
ranked features. It is observed that the classifiers' perfor-
mance reaches the peak with a few features and gradually 
decreases with increased features count. The result of pro-
posed FRFS-DTN scheme has also been compared with five 
other robust feature ranking schemes, viz., Correlation-based 
Feature Selection (CFS) (Roffo and Melzi 2017), FISHER 
(Gu et al. 2012), Feature Selection with Adaptive Structure 
Learning (FSASL) (Du and Shen 2015), Feature Selection 
via Concave Minimization (FSV) (Bradley and Mangasarian 
1998) and Infinite Latent Feature Selection (ILFS) (Roffo 
et al. 2017). Figures 2, 3, 4 represents our proposed FRFS-
DTN feature ranking scheme's performance with other peer 
schemes. Figure 2a, b, c , represents the detection accuracy 
of Naïve Bayes, C45 Decision tree, and OneR classifier, and 
Fig. 2d, e f presents SysFor, ForestPA and Random Forest's 
performance on BF segment respectively. Similarly, for VFF 
groups, Fig. 3a, b, crepresents detection accuracy of Naïve 
Bayes, C45 Decision tree and OneR classifier and Fig. 3d, 
e, f presents the performance of SysFor, ForestPA, and Ran-
dom Forest. Finally, for TFF, Fig. 4a, b, c, represents detec-
tion accuracy of Naïve Bayes, C45 Decision tree, and OneR 
classifier, and Fig. 4d, e, f represents SysFor, ForestPA's 
performance Random Forest classifiers.

It can be seen from Fig.  2 that the proposed FRFS 
approach under BF segment shows superior performance 
than the peer CFS, FISHER, FSASL, FSV, and ILFS feature 
selections. The FRFS scheme reveals maximum detection 
accuracy for Naïve Bayes, C4.5 decision tree, and OneR 
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with just a few features ( m < 7 ) in hand. In the case of Naïve 
Bayes, only the ILFS shows at par performance with the 
proposed approach. Nevertheless, the ranked 21 features 
prove that ranking is the better approach, as the maximum 
detection accuracy is observed with just little number of 

features in hand. The FRFS maintains the same superiority 
in the case of the OneR classifier also. On the other hand, in 
the case of the C4.5 decision tree, the FSV feature ranking 
procedure shows better results. However, with just three fea-
tures, the proposed FRFS scheme shows a similar result as 
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Fig. 3  Classification accuracy of the FRFS-DTN and other peer feature ranking schemes through a Naïve Bayes b C4.5 c OneR d SysFor e 
ForestPA f Random Forest classifiers on vocal fold features of Sakar et al. (2019) dataset
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FSV. In a nutshell, FRFS reveals better results while Naïve 
Bayes is deployed.

When decision forests are explored on the ranked BF seg-
ment, it is observed that all the decision forests reveal supe-
rior accuracy on a moderate number of BF ( 7 < m < 14 ). 
The only variation was observed with the FSV feature 
ranking scheme under SysFor. In the case of SysFor, the 
classifier took only few number of features ( 1 < m < 21 ) 
in contrast to the FRFS scheme to show the highest detec-
tion accuracy. However, as soon as the number of features 
is added for evaluation, the FRFS supersedes all its peers. It 
is worth mentioning that the FSV scheme also tried to touch 
the peak detection rate with the help of other decision forests 
like ForestPA and Random Forest, but it fails to compete 
with the proposed FRFS scheme. With just 8 BF in hand, the 
ForestPA shows the highest accuracy of 78.57%. Conversely, 
a better detection rate of 79.76% has been observed with 
Random Forest on nine features, which founds to be slightly 
more than that of ForestPA.

On VFF ranked features, when Naïve Bayes, C4.5, and 
OneR were examined, it is observed that the proposed 
scheme enforced Naïve Bayes to show an impressive detec-
tion rate with a small number of features. However, with the 
increase in features ( m > 5 ) all the feature ranking schemes 
except FSASL shows better result for Naïve Bayes classifica-
tion. On the contrary, for the C4.5 decision tree and OneR 
classifier, the proposed FRFS scheme ranked the VFF bet-
ter so that the concerned classifier gets the peak detection 
accuracy with few features in hand.

The VFF features on the decision forest show the out-
standing result for the FRFS feature ranking scheme. The 
proposed FRFS scheme works magnificently with the Sys-
For classifier. The SysFor took a minimal number of FRFS 
ranked VFF features ( m < 8 ) to reach the peak detection 
rate. Conversely, both Random Forest and ForestPA took the 
moderate number of features ( 8 < m < 15 ) to get peak accu-
racy. One interesting inference observed here is about the 
proposed FRFS feature ranking scheme. The FRFS works 
reasonably well with decision forest. A similar inference was 
also observed in the case of the BF segment.

Figure  4a, b, and c shows the detection accuracy of 
Naïve Bayes, C4.5 decision tree, and OneR classifiers on 
the ranked TFF. Like BF and VFF, FRFS ranked TFF, which 
shows promising detection accuracy than its peer feature 
ranking schemes. However, on Naïve Bayes, only the CFS 
and FSASL have the competitive result at par with the FRFS 
scheme. Similarly, classification on OneR, the detection 
result is similar except for Fisher, where the Fisher scheme 
underperforms heavily compared to the proposed FRFS 
scheme. On the other hand, for the C4.5 decision tree, the 
FRFS scheme shows better results than all the other feature 
ranking schemes.

While ranking the features for decision forests classifi-
cation, a mixed result has been observed. For the SysFor 
classifier, the proposed FRFS scheme shows better results 
than CFS, FSASL, and ILFS feature ranking. However, the 
proposed scheme has not been convincing as compared to 
FISHER and FSV. Both for ForestPA and Random Forest, 
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a remarkable result has been observed. The performance 
output of ForestPA and Random Forest was observed to be 
linear. Therefore, on these classifiers, feature ranking is not 
advisable. As the number of TFF is less, considering all 
features would be a better choice. The feature ranking analy-
sis shows that our proposed FRFS feature ranking scheme 
shows a promising rank of BF, VFF, and TFF segments. The 
FRFS scheme has been utilized at the pre-processing stage 
of the proposed Parkinson Detection System (PDS), where 
the FRFS ranks the features before the training and detec-
tion of the system took place. In this way, the proposed PDS 
detection capability improved, and the system able to detect 
incoming PD subjects with utmost precision.

4.2  FRFS feature subset selection

The strength of proposed FRFS scheme is its support for 
both feature ranking and feature selection. Various feature 
ranking schemes compared against our proposed FRFS 
scheme cannot select a subset of features. The feature sub-
set selection procedure for such schemes has been taken care 
manually by the users. The manual feature subset selection 
is not always feasible. Our FRFS feature selection scheme 
undertakes the automatic feature selection using the pro-
cedure described in Sect. 3.2.2. In this section, using the 
FRFS feature subset selection scheme, requisite features of 
BF, VFF, and TFF segments were selected from Sakar et al. 
(2019) dataset. Further, those selected features are sent for 
classifications using the classifiers discussed in Sect. 4.1. 
The classification output of those classifiers is presented in 
Table 3.

According to the result obtained in Table 3, the SysFor 
is emerging as the ideal classifier for all the three acoustic 
feature groups. The SysFor shows 77.38%, 74.21%, 76.59% 
detection accuracy for BF, TFF, and VFF. Nevertheless, both 
Naïve Bayes and C4.5 decision trees also show superior 
detection accuracy for TFF. On the other hand, the ForestPA 
shows equivalent detection accuracy of SysFor for the BF 
segment.

4.3  Parkinson’s detection using FRFS on ForEx++

Till this time, a feature ranking and feature selection mod-
ule has been devised. It has been observed that both the 

feature ranking and feature selection module of the FRFS 
scheme efficiently rank the features better and select the 
most suitable features thereof. In this section, the pro-
posed Parkinson’s detection modules have been tested 
and evaluated, combining the ForEx++ environment on 
SysFor and ForestPA classifiers separately. In the detec-
tion modules, FRFS feature ranking and section modules 
are attached as a filter module. As a result, the detector 
works on the outstanding features and detects Parkinson's 
more efficiently. Ultimately, four Parkinson’s detection 
scheme comes into action; viz., FRFS ranked features 
with SysFor on ForEx++, FRFS ranked features with 
ForestPA on ForEx++, FRFS features subset with SysFor 
on ForEx++, and FRFS features subset with ForestPA on 
ForEx++. As both the ForestPA and SysFor classifiers 
work on decision tree ensemble, the number of decision 
trees in these forests during the detector's training (Pra-
manik et al. 2021a, b) were controlled to improve detection 
accuracy. The result is obtained separately through Leave 
One Subject Out (LOSO) cross-validation, tenfold cross-
validation, and an ideal training–testing split. In LOSO, 
the entire dataset having FRFS ranked features and subset 
of features is typically divided into k number of blocks. 
The model is trained on k − 1 blocks and the kth instance 
has been used for testing the model. The process continues 
for k − 1 times. The same principle is repeated for tenfold 
cross-validation, where the entire datasets are divided into 
ten blocks (k = 10). The proposed PDS performance under 
LOSO cross-validation has been summarized in Table 4 
and Table 5 separately for SysFor and ForestPA classifiers 
on the ForEx++ framework. Similarly, the performance of 
the proposed PDS under tenfold cross-validation has been 
outlined in Table 6 and Table 7 for SysFor and ForestPA 
classifiers on the ForEx++ framework, respectively.

It should be noted that the theme of the proposed Par-
kinson’s detection model is the decision forests (ForestPA 
and SysFor), therefore the number of decision trees ( t  ) 
were added to the forest incrementally, and performance 
the detection model is observed with change in number of 
trees. The volume of trees in the forest where the maxi-
mum detection accuracy is observed is considered to be 
the threshold point and the detection model is settled at 
that point with the desired number of trees.

Table 3  Classification accuracy 
of classifiers on selected 
features of FRFS on Sakar et al 
(2019) dataset

Acoustic feature segment FRFS 
features 
selected

Naïve Bayes C4.5 OneR SysFor ForestPA Random forest

Baseline 3 74.60 72.22 74.21 77.38 77.38 74.21
Time frequency 1 74.60 74.60 73.41 74.21 73.02 67.06
Vocal fold 6 74.60 71.43 67.46 76.59 75.40 74.60
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4.3.1  Leave one subject out (LOSO) cross‑validation

Table 4 represents the LOSO cross-validation of the pro-
posed PD model under the SysFor classifier. When the Sys-
For classifier is employed, the model detects the presence of 

Parkinson's with a detection accuracy of 78.57%, 77.78%, 
78.97% for BF, TFF, and VFF when trained on FRFS ranked 
features. Considering the BF, the FRFS ranked features, and 
the FRFS features subset reveals equal detection accuracy. 
The former results in a low mean absolute error, whereas 

Table 4  Performance of the proposed Parkinson’s Detection System on ForEx++ (SysFor) framework using FRFS ranked features and features 
subset using acoustic feature groups obtained through LOSO Cross-Validation on Sakar et al. (2019) dataset

ForEx++ (SysFor) FRFS APPROACH

Ranking Subset

m t ACC MAE RMSE AUC PRC m t ACC MAE RMSE AUC PRC

Baseline 21 1 78.57 0.21 0.46 0.60 0.68 3 2 78.57 0.23 0.44 0.66 0.72
Time frequency 11 2 77.78 0.26 0.47 0.67 0.71 1 2 74.60 0.26 0.51 0.49 0.62
Vocal fold 22 2 78.97 0.24 0.46 0.62 0.69 6 56 75.00 0.26 0.46 0.67 0.72
Combined 54 62 82.14 0.23 0.39 0.77 0.81 7 2 79.37 0.24 0.45 0.63 0.71

Table 5  Performance of the proposed Parkinson’s Detection System on ForEx++ (ForestPA) framework using FRFS ranked features and fea-
tures subset through LOSO Cross-Validation on Sakar et al. (2019) dataset

ForEx++ (ForestPA) FRFS Approach

Ranking Subset

m t ACC MAE RMSE AUC PRC m t ACC MAE RMSE AUC PRC

Baseline 21 12 78.97 0.31 0.40 0.71 0.77 3 11 76.59 0.33 0.41 0.71 0.76
Time frequency 11 33 78.17 0.33 0.40 0.72 0.77 1 9 74.21 0.36 0.44 0.55 0.67
Vocal fold 22 8 80.56 0.32 0.40 0.71 0.77 6 9 76.59 0.35 0.43 0.61 0.70
Combined 54 10 80.16 0.31 0.40 0.73 0.79 7 8 76.59 0.34 0.42 0.64 0.72

Table 6  Performance of the proposed Parkinson’s detection system on ForEx++ (SysFor) framework using FRFS ranked features and features 
subset through 10-Fold Cross-Validation on Sakar et al (2019) dataset

ForEx++ (SysFor) FRFS approach

Ranking Subset

m t ACC MAE RMSE AUC PRC m t ACC MAE RMSE AUC PRC

Baseline 21 19 76.19 0.25 0.44 0.7 0.74 3 19 77.78 0.26 0.44 0.71 0.75
Time frequency 11 4 77.78 0.24 0.43 0.71 0.74 1 4 74.60 0.26 0.50 0.51 0.63
Vocal fold 22 12 80.56 0.23 0.42 0.69 0.75 6 12 77.38 0.25 0.45 0.65 0.71
Combined 54 94 83.73 0.23 0.39 0.78 0.82 7 94 78.17 0.24 0.46 0.63 0.70

Table 7  Performance of the proposed Parkinson’s detection system on ForEx++ (ForestPA) framework using FRFS ranked features and features 
subset through 10-fold cross-validation on Sakar et al. (2019) dataset

ForEx++ (ForestPA) FRFS approach

Ranking Subset

m t ACC MAE RMSE AUC PRC m t ACC MAE RMSE AUC PRC

Baseline 21 30 78.57 0.31 0.40 0.76 0.79 3 30 79.76 0.31 0.39 0.74 0.78
Time frequency 11 13 78.57 0.33 0.41 0.72 0.77 1 13 75.00 0.36 0.44 0.55 0.66
Vocal fold 22 22 80.16 0.32 0.40 0.7 0.75 6 22 76.59 0.35 0.42 0.63 0.71
Combined 54 32 79.76 0.31 0.40 0.71 0.78 7 32 78.17 0.34 0.41 0.72 0.78
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the latter produced a superior AUC. The improved AUC 
and the convincing detection accuracy of 78.57% reveal only 
three BF to detect Parkinson's with better time complexity. 
For TFF and VFF, the FRFS ranking is the better choice, 
yielding 3.18% and 3.97% more detection accuracy than the 
FRFS feature subset. When all the acoustic feature groups 
are combined and ranked as per FRFS, the model is effec-
tive with an 82.14% detection rate. However, to achieve such 
convincing detection accuracy, the SysFor decision forest 
under ForEx++ frameworks took the help of 62 decision 
trees.

On the other hand, when the ForestPA has been plugged 
into the ForEx++ environment for Parkinson’s Detection, 
the FRFS ranked features demonstrate improved results on 
the BF, TFF, and VFF segments (Table 5) compared to ear-
lier SysFor. However, to achieve better detection accuracy, 
the ForestPA undertakes a significant number of decision 
trees. However, combining all the features and ranking 
through FRFS, the detector took only 10 decision trees with 
a detection accuracy of 80.16%. In ForestPA, the FRFS fea-
ture ranking proved to be a better choice than the FRFS 
feature subset selection. In feature subset selection, the BF 
are alone the better choice than the TFF, VFF, and even 
combined features. The FRFS feature subset helps the detec-
tor score the highest detection accuracy of 76.59%, with the 
lowest error rates.

In LOSO cross-validation, both the SysFor and ForestPA 
decision forests show promising detection results on all 
feature groups. Both the detectors work smartly on FRFS 
ranked features and FRFS feature subset. At the next stage of 
analysis, a tenfold cross-validation test was also conducted 
to confirm the performance of the proposed approach.

4.3.2  Ten‑fold cross‑validation

Under tenfold cross-validation, the results obtained for Sys-
For and ForestPA classifiers on the ForEx++ framework 
have been presented in Tables 6 and 7. Observing Table 6 
for SysFor decision forest, the performance received for 
acoustic features is convincing, but it is not par with the 
performance received during the LOSO cross-validation. 
The detection accuracy received in tenfold cross-validation 
through FRFS ranked BF, and VFF features are 2.38% and 
1.59% lower than the LOSO cross-validation. The perfor-
mance of SysFor remains unchanged for TFF. On the other 
hand, the SysFor shows improved detection accuracy with 
just the FRFS feature subset of the VFF.

The result is flipped, combining all the feature groups 
for conducting tenfold cross-validation on SysFor decision 
forest. The tenfold validation revealed improved detection 
accuracy of 83.73% for FRFS ranked features in contrast 
to LOSO cross-validation. On the contrary, the detection 
accuracy falls when FRFS feature subsets are considered 

for tenfold validation. The tenfold cross-validation on FRFS 
feature subsets shows 78.17% detection accuracy, which is 
1.2% lower than the LOSO cross-validation.

A similar result has been produced for tenfold cross-vali-
dation on the tenfold cross-validation of ForestPA classifier 
on ForEx++ framework. The result obtained is a bit oppo-
site to the SysFor. The detection accuracy achieved for FRFS 
ranked features of the combined feature segment shows a 
lower detection rate than the similar LOSO cross-validation. 
Not only that, when a subset of combined features is selected 
through FRFS, the detection accuracy is recorded more than 
the LOSO validation. A similar kind of mixed result has 
been ascertained for all the feature groups.

Both the LOSO and tenfold cross-validation revealed 
mixed results and mostly opposite to each other. Therefore, 
a third level of the test has been conducted using a train-
ing–testing split. However, the training–testing split pro-
cess has been automated and is not left to the users. Itera-
tively, the training instances are increased, and the testing 
instances are decreased. This process has been continued 
till a breakeven point where the highest detection result has 
been received.

4.3.3  Validation through training–testing instance split

The training–testing split of instances on different acous-
tic feature groups and combined feature groups are sent 
for evaluation both for SysFor and ForestPA, which yields 
four distinct PD detection systems. The proposed Parkin-
son’s detections are named Method I (ForEx++ based Sys-
For detection module on FRFS ranked features), Method 
II (ForEx++ based SysFor detection module on FRFS 
selected features), Method III (ForEx++ based ForestPA 
detection module on FRFS ranked features), and Method 
IV (ForEx++ based ForestPA detection module on FRFS 
selected features). The performance outcome of all four 
types of PDS is presented in Tables 8, 9, 10, 11.

For the Method I Parkinson’s detection, the SysFor clas-
sifier within the ForEx++ environment has been presented 
with the settings and results presented in Table 8. Accord-
ing to Table 8, the BF demonstrate the highest detection 
accuracy of 92.45%, claiming the highest AUC of 0.91. The 
training–testing split of 79%-21% is ideal with 32 decision 
tree ensembles to achieve such an impressive accuracy rate. 
However, combining all the feature groups, the decision 
trees of SysFor has been consolidated to only 3. Therefore, 
though the detection accuracy is slightly lower than that of 
the detection accuracy achieved by FRFS ranked BF, com-
bining all the features reduced the false positives signifi-
cantly. But looking towards the detection accuracy and better 
AUC, the Method I Parkinson’s detection system has been 
proposed with FRFS ranked BF having 32 decision trees in 
the SysFor forest.
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Method II Parkinson’s detection system has been pro-
posed using the same ForEx++ based SysFor decision 
forest on the FRFS feature subset. The proposed approach 
undertakes only 3, 1, and 6 features of BF, TFF, and VFF 
features. Like Method I, the Method II detection approach 
favors BF features to reveal 89.29% of detection accuracy 
with good sensitivity. However, all other feature groups 
and even combining all feature groups are not convincing 
for Method II Parkinson detection. Therefore, the Method 
II Parkinson detection is also proposed with FRFS ranked 
BF features subset with 28 decision trees in the ForEx++ 
based SysFor decision forest.

The Method III Parkinson’s detection system has been 
identified with FRFS ranked BF features at the third 
stage. The detector used in this case is the ForestPA in the 
ForEx++ environment. The ForEx++ based ForestPA 
decision forest reveals the highest ever 94.12% detection 
accuracy with the best sensitivity rate of 0.94. The AUC is 
also 0.97, which is also promising. The Method II approach 
takes the help of 36 decision trees to achieve such a mag-
nificent detection rate. Combining all the feature segments 
for ForEx++ based SysFor, the detection rate achieved 
(91.14%) is better than what was achieved (90.57%) while 
employing the same ranked combine features on ForEx++ 

Table 8  Performance of the proposed ForEx++ (SysFor) + FRFS (ranked features) Parkinson’s detection system through an ideal training–test-
ing instance split (Method I) on Sakar et al (2019) dataset

ForEx++ (SysFor) m Tr (%) Ts (%) t ACC MAE RMSE FNR FPR SPE SEN AUC PRC

Baseline 21 79 21 32 92.45 0.14 0.28 0.08 0.25 0.75 0.92 0.91 0.94
Time Frequency 11 69 31 4 84.81 0.23 0.40 0.15 0.55 0.45 0.85 0.66 0.78
Vocal Fold 22 79 21 2 88.68 0.16 0.32 0.11 0.41 0.59 0.89 0.84 0.88
Combined 54 79 21 3 90.57 0.16 0.29 0.09 0.18 0.82 0.91 0.90 0.92

Table 9  Performance of the proposed ForEx++ (SysFor) + FRFS (features subset) Parkinson’s detection system through an ideal training–testing 
instance split (Method II) on Sakar et al. (2019) dataset

ForEx++ (SysFor) m Tr (%) Ts (%) t ACC MAE RMSE FNR FPR SPE SEN AUC PRC

Baseline 3 78 22 28 89.29 0.17 0.33 0.11 0.37 0.63 0.89 0.88 0.91
Time frequency 1 79 21 1 81.13 0.19 0.43 0.19 0.81 0.19 0.81 0.50 0.69
Vocal fold 6 79 21 84 84.91 0.18 0.36 0.15 0.50 0.50 0.85 0.73 0.82
Combined 7 79 21 3 86.79 0.18 0.34 0.13 0.49 0.51 0.87 0.79 0.84

Table 10  Performance of the proposed ForEx++ (ForestPA) + FRFS (ranked features) Parkinson’s detection system through an ideal training–
testing instance split (Method III) on Sakar et al. (2019) dataset

ForEx++ (ForestPA) m Tr (%) Ts (%) t ACC MAE RMSE FNR FPR SPE SEN AUC PRC

Baseline 21 80 20 36 94.12 0.25 0.29 0.06 0.24 0.76 0.94 0.97 0.98
Time frequency 11 78 22 90 87.50 0.33 0.38 0.13 0.51 0.49 0.88 0.68 0.82
Vocal fold 22 80 20 9 92.16 0.26 0.32 0.08 0.32 0.68 0.92 0.87 0.92
Combined 54 69 31 16 91.14 0.29 0.35 0.09 0.32 0.68 0.91 0.73 0.82

Table 11  Performance of the proposed ForEx++ (ForestPA) + FRFS (features subset) Parkinson’s detection system through an ideal training–
testing instance split (Method IV) on Sakar et al. (2019) dataset

ForEx++ (ForestPA) m Tr (%) Ts (%) t ACC MAE RMSE FNR FPR SPE SEN AUC PRC

Baseline 3 80 20 2 90.20 0.22 0.31 0.10 0.33 0.67 0.90 0.85 0.89
Time frequency 1 79 21 6 83.02 0.34 0.38 0.17 0.65 0.35 0.83 0.71 0.80
Vocal fold 6 78 22 81 87.50 0.32 0.37 0.13 0.51 0.49 0.88 0.68 0.81
Combined 7 79 21 22 92.45 0.29 0.34 0.08 0.32 0.68 0.92 0.84 0.91
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based SysFor detector. In a nutshell, the Method III Par-
kinson detection has been proposed with FRFS ranked BF 
features on ForEx++ based ForestPA decision forest having 
36 trees in the forest.

Finally, Method IV Parkinson’s detection approach has 
been devised on ForEx++ based ForestPA decision forest, 
combining and selecting only seven features through FRFS. 
It is because individual feature groups are not promising as 
compared to the combined result. However, the results were 
obtained for individual feature groups than the ForEx++ 
based SysFor approach.

Observing the performance of the four methods outlined 
in Tables 8, 9, 10, 11, it is relatively easy to conclude that the 
detection accuracy of the proposed methods lies in the order 
Method III, Method IV, Method I, and Method II, Where 
Method III is the top performer with highest detection accu-
racy. Method II is the most diminutive performer with the 
lowest detection accuracy. Both Method IV and Method I are 
equal contenders. Still, priority has been given to Method 
IV over Method I because Method IV outperforms with just 
seven hand features. However, Method I have the lowest 
mean absolute error than Method IV. Therefore, a Receiver 
Operating Curve (ROC) analysis has been conducted to get 
a precise result. A ROC analysis proved to be a great aid in 
medical data classification (Hajian-Tilaki 2013). The AUC 
represents the classification's intrinsic ability to discriminate 
between the diseased and healthy subjects (Metz 1978). The 
ROC curve and corresponding AUC have been presented in 
Fig. 5 for all four methods.

Figure 5 shows that the ROC of Method III is high-
est and occupies a maximum ROC of 0.97, and with the 
AUC of 0.84, the ROC lies at the lowest for Method IV. 

The ROC of Method I and Method II were recorded as 
0.91 and 0.88, respectively. Therefore, based on the AUC 
obtained, the Method I and Method III found excellent 
( AUC ≥ 0.91 ) and Method II and Method IV is a good 
choice ( 0.8 ≤ AUC ≥ 0.9 ) (Srivastava 2019).

At the next stage of results, the detection output has 
been visualized through concentration graphs. It allows us 
to visualize how effective the proposed models. According 
to the concentration analysis, a model is said to be effec-
tive if it concentrates more towards True Positives (TP) and 
True Negatives (TN) than False Positives (FP) and False 
Negatives (FN). The concentration graphs for all four mod-
els have been presented in Fig. 6. According to Fig. 6, the 
dark green and light green areas' concentration looks more 
for all the proposed methods. Especially for Method III, the 
concentration of false positive is the lowest, proving Method 
III is the best approach for Parkinson’s detection. The Penal-
izing Decision Forest (ForestPA) in a ForEx++ framework 
with FRFS ranked BF segment seems most effective for Par-
kinson’s detection with just 36 decision trees in the forest.

4.3.4  Comparing the proposed detection model 
with existing recent methods

The detailed validation has been conducted so far on the pro-
posed Parkinson’s detection methods. The proposed methods 
stand tall in all kinds of validation approaches. An effort has 
been made to compare our methods with existing state-of-
the-art models. Since all the proposed methods are based on 
the supervised classification principle, the models shortlisted 
from the literature reviewed are also based on supervised 
classification techniques. An unbiased comparison has been 
conducted by implementing the proposed approaches sepa-
rately both in the unbalanced Sakar et al. (2013) and Sakar 
et al. (2019) datasets and the balanced (Naranjo et al. 2016) 
dataset. Implementing the proposed models in multiple data-
sets have two benefits, (a) It provides a scope to understand 
how the proposed models are behaving both in a class bal-
anced and unbalanced environment (b) The strengths and 
weaknesses of the proposed models will be well figured out 
by comparing with the existing approaches on a specific to 
datasets. The existing Parkinson’s detection approaches and 
their detection outcomes along with the outcomes of the 
proposed methods, have been presented in Tables 12, 13, 
and 14. The comparison has been conducted in terms of 
detection accuracy, sensitivity, and specificity.

All the approaches of Table 12 have been implemented 
on the Sakar et al. (2013) dataset; thus, providing an unbi-
ased environment for comparison methods. The proposed 
approach FRFS (Subset) + ForEx++ (SysFor) (t = 40) 
(Method II) has been evolved as the detector having the 
highest detection accuracy and sensitivity of 92.86%. 
The sensitivity of the proposed Method II reveals that 
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Fig. 5  Receiver Operating Curve (ROC) analysis of the proposed 
methods on Sakar et al. (2019) dataset
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92.86% of all Parkinson’s subjects are detected success-
fully, and 7.14% of positive subjects are passed the test 
as controls. On the other hand, the proposed Method II is 
suffering for control subjects on the ground of specificity. 

The specificity shows that 57.14% of the control subjects 
are correctly identified as controls, whereas 42.86% of 
the control subjects are detected as Parkinson’s. How-
ever, Method III detects the control subjects with satisfied 
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Fig. 6  Detection result with the concentration of the proposed meth-
ods a ForEx++ (SysFor) + FRFS (ranked features) (Method I) 
(t = 32, m = 21) on BF segment b ForEx++ (SysFor) + FRFS (fea-
tures subset) (Method II) (t = 28, m = 3) on BF segment c ForEx++ 

(ForestPA) + FRFS (ranked features) (Method III) (t = 36, m = 21) 
on BF segment d ForEx++ (ForestPA) + FRFS (features subset) 
(Method IV) (t = 22, m = 7) on combined features on Sakar et  al. 
(2019) dataset

Table 12  Performance 
comparison of the proposed 
Parkinson’s detection methods 
along with existing approaches 
on Sakar et al. (2013) dataset

Existing and proposed methods ACC (%) SEN (%) SPE (%)

Ensemble of k-NN, NB and SVM + A-MCFS (Behroozi and 
Sami 2016)

82.50 80.00 85.00

k-NN with GA + LDA (Ali et al. 2019a, b) 92.50 95.00 90.00
ELM (Log Sigmoid) (Agarwal et al. 2016) 87.50 85.71 89.47
Ensemble of RF, SVM, ELM (Li et al. 2017) 87.50 80.00 95.00
Multiple neural network ensemble (Berus et al. 2018) 81.33 76.33 86.33
MENN + RF (Zhang et al. 2016) 81.50 70.50 92.50
k-Nearest Neighbour (k = 3) (Cantürk and Karabiber 2016) 68.75 70.60 66.90
FRFS (Ranked) + ForEx++ (SysFor) (t = 32) (Method I) 88.24 88.24 45.10
FRFS (Subset) + ForEx++ (SysFor) (t = 40) (Method II) 92.86 92.86 57.14
FRFS (Ranked) + ForEx++ (ForestPA) (t = 9) (Method III) 87.50 87.50 71.47
FRFS (Subset) + ForEx++ (ForestPA) (t = 14) (Method IV) 88.24 88.24 45.10
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specificity of 71.47%. Among the other approaches, the 
ensemble of RF, SVM, ELM (Li et al. 2017) detects the 
controls as control with the highest ever 95.00%. It can 
be seen from Table 13 that the k-NN with GA + LDA (Ali 
et al. 2019a, b) shows the best result of detection among 
all other approaches, including our proposed approaches. 
Nevertheless, proposed approaches show similar or better 
results than the peer detection models.

The proposed approaches are tested with many other 
existing Parkinson’s detection models at the next level of 
comparison on the Sakar et al. (2019)) dataset. It is interest-
ing to notice the performance of the proposed model in a 
recent and modern acoustic dataset having more instances 
than Sakar et al. (2013) dataset. The detection results of our 
proposed models with other peer models on the Sakar et al. 
(2019) dataset have been presented in Table 13.

On the Sakar et al. (2019) dataset, the proposed FRFS 
(Ranked) + ForEx++ (ForestPA) (t = 36) (Method III) 
model shows the highest detection accuracy of 94.12%. The 
ForestPA classifier took only 36 decision trees to gather sen-
sitivity and specificity of 94.00% and 76.00%. The FRFS 
ranked features proved to be a better choice in Sakar et al.'s 
(2019) dataset. The SAE (LDA + mRMR) (Xiong and Lu 
2020) approach also shows consistent results in terms of 
detection accuracy, specificity, and sensitivity. It should be 
noted that the proposed approaches are still showing better 
results than other peer models.

In the final level of comparative analysis, the proposed 
model again tested with few more existing models on 
Naranjo et al. (2016) dataset. It is worth watching the mod-
els’ performance because the Naranjo et al. (2016) dataset 
is a balanced dataset having an equal number of Parkinson’s 

Table 13  Performance 
comparison of the proposed 
Parkinson’s detection methods 
along with existing approaches 
on Sakar et al. (2019) dataset

Existing and proposed methods ACC (%) SEN (%) SPE (%)

OAA + SVM (Polat and Nour 2020) 83.75 81.67 85.83
OAA + K-NN (Polat and Nour 2020) 82.08 79.17 85.00
OAA + LR (Polat and Nour 2020) 77.50 80.00 75.00
RBF (Upadhya et al. 2019) 83.80 97.50 70.00
SAE (LDA + all features) (Xiong and Lu 2020) 76.00 84.00 89.00
SAE (LDA + CFS) (Xiong and Lu 2020) 89.00 92.00 93.00
SAE (RF + RFE) (Xiong and Lu 2020) 81.00 84.00 86.00
SAE (LDA + MRMR) (Xiong and Lu 2020) 91.00 92.00 94.00
Support vector machine (Bourouhou Et Al. 2016) 80.00 77.00 83.00
Random forest (Smekal et al. 2015) 71.43 72.60 69.40
Classification and regression trees (Mekyska et al. 2015) 75.19 79.80 67.40
Gaussian mixtures models (Jeancolas et al. 2017) 48.50 55.30 39.30
FRFS (RANKED) + FOREX++ (SYSFOR) (T = 32) (Method I) 92.45 92.00 75.00
FRFS (SUBSET) + FOREX++ (SYSFOR) (T = 28) (Method II) 89.29 89.00 63.00
FRFS (RANKED) + FOREX++ (FORESTPA) (T = 36) (Method III) 94.12 94.00 76.00
FRFS (SUBSET) + FOREX++ (FORESTPA) (T = 22) (Method IV) 92.45 92.00 68.00

Table 14  Performance 
comparison of the proposed 
Parkinson’s detection methods 
along with existing approaches 
on Naranjo et al. (2016) dataset

Methods implemented on Naranzo et al. (2016) dataset*** ACC (%) SEN (%) SPE (%)

CPC (Group) + FMM (Naranjo et al. 2019) 83.60 82.70 84.70
CPC (Joint) + FMM (Naranjo et al. 2019) 82.20 82.10 83.70
Ensemble k-NN + ReliefF (Yaman et al. 2020) 90.42 90.83 90.00
Cosine k-NN + ReliefF (Yaman et al. 2020) 91.25 93.33 89.17
Gaussian SVM + ReliefF (Yaman et al. 2020) 91.25 90.83 91.67
Quadratic SVM + ReliefF (Yaman et al. 2020) 87.50 86.67 88.33
Radial basis function (Perez et al. 2016) 85.25 90.23 80.28
Fuzzy neural network (Guimarães et al. 2020) 80.88 85.34 78.75
Radial basis function (Viswanathan et al. 2018) 70.00 67.00 73.00
FRFS (Ranked) + ForEx++ (SysFor) (t = 25) (Method I) 96.88 96.88 96.88
FRFS (Subset) + ForEx++ (SysFor) (t = 99) (Method II) 95.65 95.65 96.01
FRFS (Ranked) + ForEx++ (ForestPA) (t = 11) (Method III) 96.67 96.67 96.67
FRFS (Subset) + ForEx++ (ForestPA) (t = 14) (Method IV) 96.67 96.67 96.67
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and controls subjects. The result of the proposed models 
with other peer models has been presented in Table 14.

Table 14 shows, the FRFS ranked features are a better 
choice than the FRFS feature subsets. The Method I of the 
proposed work shows the highest detection accuracy, sensi-
tivity, and specificity of 96.88%. In a landscape, the perfor-
mance of Method I, Method II, Method III, and Method IV 
appears to be far ahead of other recent models implemented 
on Naranjo et al. (2016) dataset.

The proposed four methods of Parkinson’s’ detection are 
implemented on three acoustic datasets (Sakar et al. 2013, 
2019; Naranjo et al. 2016). Many more recent Parkinson’s 
detection approaches have been compared based on detec-
tion accuracy, sensitivity, and specificity. In all the data-
sets, the proposed methods come up with excellent results. 
Nevertheless, few observations or inferences have been 
evolved. From the comparisons, it is evident that the pro-
posed approaches respond to the control subjects in the case 
of Naranjo et al. (2016) dataset, where the specificity gears 
up to 96.88%. On the other hand, Method I suffer miserably 
for Sakar et al. (2013) dataset with the lowest ever specific-
ity. The reason for low specificity is the inability of SysFor 
to score more in a smaller training sample. It should be noted 
that the Sakar et al. (2013) dataset holds only 68 instances 
having 48 Parkinson’s and 20 controls. Due to the low num-
ber of instances with a high-class imbalance ratio, the Sys-
For becomes biased towards the Parkinson’s subjects, result-
ing in lower specificity. A similar type of results is observed 
for Sakar et al. (2019) dataset. Although the dataset holds 
acoustic information of the adequate number of subjects, 
but the class imbalance issues subside the performance of 
the proposed PDSs. But this was not the case with Naranjo 
et al. (2016) dataset. The Naranjo et al. (2016) dataset holds 
acoustic information of 80 subjects comprising of 40 con-
trols and 40 Parkinson’s. The perfect class imbalance ratio 
of Naranjo et al. (2016) dataset shows an exemplary perfor-
mance of proposed Method I. The Method I show highest 
detection accuracy, sensitivity and specificity of 96.88%.

5  Conclusion

This article presented four distinct approaches to Parkinson’s 
Disease detection methods. The methods rely on acoustic 
voice signal data to detect the presence of Parkinson's in its 
early stage. The proposed methods have been developed on 
prominent acoustic features. The acoustic feature groups are 
ranked through a new feature selection scheme known as 
Feature Ranking to Feature Selection (FRFS) via Directed 
Tests of Normality (FRFS-DTN). The FRFS scheme ranked 
the features based on the normality score and selects only 
those normally distributed features and contributed most 
towards classification. The four Parkinson’s Detection 

Methods proposed here have been developed through SysFor 
and ForestPA decision forest algorithms through a state-of-
the-art ForEx++ framework. The ForEx++ framework has 
been employed to improve the decision forest building pro-
cess, thus improving detection. The volume of trees in the 
decision forests of SysFor and ForestPA is controlled during 
the training process, which yields significant detection accu-
racy. All the four proposed methods are validated separately 
through tenfold cross-validation, LOSO cross-validation, 
and through an ideal training–testing split of instances. All 
four methods are proposed with the minimum number of 
decision trees in the forest. Method III found most effective 
through ForestPA decision forest having 36 decision trees 
when trained and tested on FRFS ranked BF segment. In the 
end, a comparative analysis has also been conducted with 
recent Parkinson detection approaches, where all the four 
methods found better efficiency in segregating Parkinson’s 
subjects from controls.

Like any other PDS, the proposed methods also have limi-
tations; if addressed, detection efficiency can be improved 
further. The proposed methods do not consider a feedback 
approach to the training module. A feedback mechanism to 
the training module essentially brings more dynamism to the 
proposed methods. The proposed methods can be modelled 
to detect the stages of Parkinson's, which helps to identify 
the severity of the disease. Moreover, the methods can be 
extended following Unified Parkinson's Disease Rating Scale 
to map the disease severity level. The baseline, time fre-
quency, and vocal fold features are considered for Parkin-
son’s detection in this proposed work. However, the MFCC, 
wavelet and TQWT features contain more informative 
vocal features. Therefore, modern function-based ensemble 
approaches can be explored on these feature groups for bet-
ter detection results. The age and gender of the subjects are 
not considered in the article. However, vocal features like 
pitch, voice intensity and detrended fluctuation have a differ-
ent curve for different gender and age groups. Therefore, the 
proposed model can be improvised further to detect Parkin-
son’s in different age groups and genders. The shorter length 
of phonation in PD could be another factor influencing voice 
analysis. In future work, the proposed model can be tested 
on phonation of varying duration.
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