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Abstract7

The COVID-19 pandemic has led to reduced anthropogenic pressure on ecosystems in

several world areas, but resulting ecosystem responses in these areas have not been inves-

tigated. This paper presents an approach to make quick assessments of potential habitat

changes in 2020 of eight marine species of commercial importance in the Adriatic Sea.

Measurements from floating probes are interpolated through an advection-equation based

model. The resulting distributions are then combined with species observations through

an ecological niche model to estimate habitat distributions in the past years (2015-2018)

at 0.1° spatial resolution. Habitat patterns over 2019 and 2020 are then extracted and ex-

plained in terms of specific environmental parameter changes. These changes are finally

assessed for their potential dependency on climate change patterns and anthropogenic

pressure change due to the pandemic. Our results demonstrate that the combined effect

of climate change and the pandemic could have heterogeneous effects on habitat distri-

butions: three species (Squilla mantis, Engraulis encrasicolus, and Solea solea) did not

show significant niche distribution change; habitat suitability positively changed for Sepia

officinalis, but negatively for Parapenaeus longirostris, due to increased temperature and
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decreasing dissolved oxygen (in the Adriatic) generally correlated with climate change;

the combination of these trends with an average decrease in chlorophyll, probably due

to the pandemic, extended the habitat distributions of Merluccius merluccius and Mullus

barbatus but reduced Sardina pilchardus distribution. Although our results are based on

approximated data and reliable at a macroscopic level, we present a very early insight of

modifications that will possibly be observed years after the end of the pandemic when

complete data will be available. Our approach is entirely based on Findable, Accessible,

Interoperable, and Reusable (FAIR) data and is general enough to be used for other species

and areas.

Keywords: Ecological Niche Modelling, Marine Science, COVID-19, Conservation8
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1. Introduction10

The COVID-19 pandemic has directly affected human activities in many world areas11

(Coro and Bove, 2022), but its direct and indirect effects on the ecosystems of these areas12

are still under study. The reduced anthropogenic pressure on these ecosystems may have13

been beneficial for species habitats. However, the combined effects of the pandemic and14

climate change may have triggered complex reactions. Analysing natural pattern changes15

can reveal how ecosystems have responded to general climatic trends and inter-annual cli-16

matic variations within the context of human pressure reduction in 2020. In particular,17

marine ecosystems, especially in the Adriatic Sea, have benefited from the reduction of18

stress factors such as (i) fishing and vessel traffic (Depellegrin et al., 2020), (ii) distur-19

bance of species life (Kemp et al., 2020), (iii) nutrient load in coastal areas (Adwibowo,20

2020; Mishra et al., 2020; Shehhi and Samad, 2021), and (iv) water pollution (Yunus et al.,21
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2020). Understanding these benefits is interesting to quantitatively assess the peculiar ma-22

rine ecosystem dynamics modifications that occurred at various levels (e.g., pollution,23

biodiversity, and ecosystems) and how these influenced human activities (e.g., fisheries,24

ecosystem services, social interaction and mobility, and illegal activities) (Snapshot-CNR,25

2020). Understanding these dynamics allows identifying correlations that would have26

been hidden without the lockdowns and help designing novel strategies for marine re-27

source sustainability. For example, the lockdowns have allowed scientists to better model28

the resilience of Adriatic fishing fleets to activity closure, i.e., the time to return to regime29

fishing activity and market saturation (Coro et al., 2022). Moreover, the 2020 lockdown30

restrictions to fishing activities in many areas (including the Adriatic) have limited scien-31

tific survey ranges and resulted in missing survey hauls with consequent information loss32

on stock biomass in 2020. This scenario calls for solutions to estimate biomass variation in33

2020 despite the data gaps, which in turn requires information about habitat modification34

as support to expert observations, biomass estimates, and fishing catch change understand-35

ing (Brown et al., 2010; Weatherdon et al., 2016; Trifonova et al., 2017; Coro et al., 2020,36

2021).37

This paper analyses the potential habitat change, in 2020, of eight marine species38

of commercial importance in the Adriatic Sea: European hake (Merluccius merluccius),39

common sole (Solea solea), mantis shrimp (Squilla mantis), red mullet (Mullus barba-40

tus), common cuttlefish (Sepia officinalis), European anchovy (Engraulis encrasicolus),41

European pilchard (Sardina pilchardus), and deep-water rose shrimp (Parapenaeus lon-42

girostris). These species are target of beam (common sole, mantis shrimp, common cut-43

tlefish), bottom (red mullet, deep-water rose shrimp, European hake), and mid-water (Eu-44
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ropean anchovy and pilchard) trawlers and purse seine vessels (European anchovy and45

pilchard). They currently account for about 70% of the total catch in the basin (FAO,46

2020). The related fishing grounds range from coastal and offshore waters to deeper wa-47

ters (e.g., the Pomo Pit) (Russo et al., 2020). The high fishing stress on these species48

and most Adriatic stocks (Froese et al., 2018) makes them relevant to understand how49

the combination of reduced anthropogenic stress during the COVID-19 pandemic and cli-50

matic changes influenced their distribution in the Adriatic. The study presented in this51

paper sheds light on the magnitude of change in one year of reduced anthropogenic pres-52

sure. Additionally, it indicates the sensitivity of the species’ habitats to environmental53

change and can be used to predict the economic and ecological impact of a return to the54

pre-pandemic human activity level.55

Habitat assessment often estimates the ecological niche of a species (Jones et al., 2012;56

Coro et al., 2016a; Weber et al., 2017; Deneu et al., 2021), i.e., the set of resources and en-57

vironmental conditions that foster its persistence and proliferation in an area. It indicates58

such conditions either in the species’ native habitat (native niche) or in other geographical59

areas (potential niche). Mathematically, a species’ ecological niche is the space within60

a hyper-volume, in a vector space made up of environmental parameters, associated to61

the species’ proliferation. Ecological niche models (ENMs) both estimate the parameters62

to use in the vector space and identify the hyper-volume boundaries. As a first step, an63

ENM uses statistical analysis or machine learning to estimate a predictive function be-64

tween species observation records and specific environmental parameters. As a second65

step (projection phase), it applies the predictive function to other environmental parameter66

values that refer to a new area or other environmental scenarios (Peterson et al., 2007).67
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For example, a model trained on the environmental parameters of an area in 2015 can68

be projected onto the parameter values in 2020 (Coro et al., 2018c; Coro, 2020). In the69

experiment presented in this paper, individual ENMs for the eight selected species were70

estimated for average environmental parameter values of the 2015-2018 years. Then they71

were projected onto the environmental parameters of 2020 to see if the COVID-19 re-72

lated changes influenced habitat distribution change. Furthermore, the major parameters73

driving change were checked against other studies to assess if the observed variations po-74

tentially depended on climate change (rather than inter-annual climatic variations) or the75

pandemic. Our experiment was conducted in a context of minimal environmental and76

species-occurrence data available for the pandemic period. Information extraction tech-77

niques were therefore used to estimate enough information to feed the ENMs. Pattern78

recognition was finally used to infer habitat change information over the years.79

ENMs have been used to identify suitable areas for species (Peterson, 2003; Menchetti80

et al., 2019). The generality of the approach made them adopted in early predictions of the81

potential spread of COVID-19 due to environmental and meteorological conditions, e.g.,82

they foresaw the lower summer outbreak rate of 2020 (Araujo and Naimi, 2020; Coro,83

2020). These models have demonstrated a sufficient prediction effectiveness when work-84

ing with few data, for example to predict rare species distributions (de Siqueira et al., 2009;85

Coro et al., 2013a, 2015b; Chunco et al., 2013). The possibility to process environmental86

parameters over time also makes them effective to monitor long-term habitat change (Ben87

Rais Lasram et al., 2010; Friedlaender et al., 2011; Ashraf et al., 2017; Coro et al., 2016a,88

2018c; Chala et al., 2019). ENMs commonly require uniformly distributed environmental89

parameters estimated from real observations over the study area. These distributions can90
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result from hydrodynamic models based on point observations coming from satellite (Du-91

rand et al., 2010; Werdell and Bailey, 2005; Alvera-Azcárate et al., 2005) or in situ probes92

(Peterson, 2001; Huang et al., 2008; Ravdas et al., 2018; Scarponi et al., 2018). Effective93

distributions are also obtainable through lower-complexity models, based on the advec-94

tion equation that simulates the dispersion of a quantity by currents (Lipizer et al., 2014;95

Troupin et al., 2012; Djakovac et al., 2015). Parameters estimated from these models com-96

monly find applications in ecological models (Toonen and Bush, 2020; Garcia et al., 2019;97

Blackford, 2002) and ecological niche models (Coll et al., 2007; Azzolin et al., 2020).98

Accurate parameter selection is also integral to ENMs, because these models are sensitive99

to mutually-dependent variables and achieve higher performance when using independent100

variables (Pearson, 2007). A correct variable selection is typically achieved through sta-101

tistical analysis (Sánchez-Tapia et al., 2017; Guo and Liu, 2010; Muscarella et al., 2014;102

Magliozzi et al., 2019; Schnase et al., 2021) or other ENMs (Warren and Seifert, 2011;103

Coro et al., 2013a, 2015b,a; Zeng et al., 2016; Bargain et al., 2017).104

This paper proposes a workflow based on the application of ENMs to in situ environ-105

mental parameter observations and expert-verified species observations to discover habitat106

change across 2015-2018, 2019, and 2020. The 2015-2018 period was used as an aggre-107

gated and meaningful reference for average environmental conditions and species presence108

in the near past, and 2019 data were used to assess if the variations observed in 2020 were109

due to the pandemic or climate change. First, punctual environmental observations were110

transformed into uniform parameter distributions through an advection equation-based111

model. Second, parameter selection per species was conducted to feed ENMs with the112

parameters mostly associable with the species habitat (e.g., its preferred depth range and113
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environmental conditions). Third, the consistency of our ENMs was verified against other114

ENMs calculated independently. Fourth, habitat variation over the years, per species, was115

studied to identify habitat change trends. Finally, these trends were explained in terms of116

environmental parameter change potentially correlated with climate change and the pan-117

demic. Our study used only a few, but reliable, environmental and species data. This118

choice was made to investigate the viability of open data and thus to only use actual obser-119

vations whose modulations contained information on the reduced anthropogenic pressure120

in 2020 due to the pandemic.121

Our analysis identified robust patterns at the Adriatic scale but cannot be considered122

punctually reliable because it is based on few data (i.e., it is a data-poor approach). Nev-123

ertheless, it offers an unprecedented possibility to shed light on the modifications that the124

combined action of the COVID-19 pandemic and climate change brought to species’ dis-125

tribution in the Adriatic Sea, way ahead of the time when data will be collected, collated,126

and analysed after the end of the pandemic. The open data approach was possible thanks127

to the recent investments by international communities on Findable, Accessible, Interop-128

erable, and Reusable (FAIR) data, Open Science, and data collection networks addressing129

the realisation of digital twins of marine systems (EU Commission, 2020b).130

2. Methods131

2.1. Data132

Our experiment used the data of the international Argo float network (Argo, 2000).133

This network includes robotic probes that drift with ocean currents while moving and134

measuring biogeochemical parameters along the water column. These probes collect en-135
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vironmental information with sampling frequencies ranging from 2s to several minutes,136

reaching down to 2000 m in 10-day data collection cycles. Data streams are transmitted137

via satellite to distributed information centres (Global Data Assembly Centers, GDACs).138

GDACs make the data freely available for download (Argo, 2000). Argo currently ex-139

poses over 20-years of data and manages ∼4000 operational floats. Floats are located140

worldwide except for ice zones, with a higher density in the equatorial belt. The collected141

environmental parameters include depth, pressure, dissolved oxygen, ocean-current speed142

components, practical salinity, temperature, wind-stress components, electrical conductiv-143

ity, chlorophyll-a, and fluorescence. Argo data can be included in the class of FAIR data as144

being free, timely, and unrestricted-access data (Tanhua et al., 2019). Data access has the145

only policy to acknowledge the Argo network in scientific publications. Ethical oversight146

is left to the individual scientists or organizations using the data.147

To use Argo data in our niche models, they were aggregated and processed to reduce148

noise and computational complexity. Three groups of data were selected and downloaded149

from the GDACs - in CSV format - for the Adriatic Sea (using a bounding box extension of150

[+8;+20] longitude and [+38;+46] latitude). The first dataset contained observations from151

2015 to 2018; the second included observations collected in 2019; the third contained152

observations collected in 2020. The 2015-2018 range represents an aggregated reference153

of environmental conditions in the near past. This aggregation was necessary to provide154

reference statistical averages for the environmental parameters and allowed collecting a155

meaningful set of species observations for training ENMs. The 2019 data were used as a156

reference to assess if the variations observed in 2020 were either due to the pandemic or157

continuing trends from the previous years (possibly related to climate change). The 2020158
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data were assumed to contain observations with signals of the COVID-19 pandemic and159

climate change.160

Argo data were averaged at a 0.1° resolution to increase statistical viability (Coro et al.,161

2018b). The following parameters were extracted from the CSV data: temperature (°C),162

salinity (PSU), chlorophyll-a (mg/m3), dissolved oxygen (DOX) (µmol/kg). These are163

indeed the most abundant and reliable data downloadable from Argo. For each parameter,164

average values were calculated for surface range, seafloor (bottom), and the entire water165

column. Surface and bottom ranges were identified as the first and last ranges of a log-166

arithmic division, into five parts, of the maximum depth of each 0.1° cell in the Adriatic167

(Reyes, 2015; Coro et al., 2018b). Instead of using static ranges, this approach adapted168

the definition of surface and bottom ranges to the specific cell depth. It normally results169

in better niche modelling, especially for benthic and demersal species (Ready et al., 2010;170

Reyes, 2015). For each parameter, surface, bottom, and average (in the water column) val-171

ues were estimates at 0.1° resolution. Furthermore, locations outside of the Adriatic Sea172

were excluded by only using those within the geographical subareas 17 and 18 of the Gen-173

eral Fisheries Commission for the Mediterranean (GFCM, 2020). This process generated174

36 datasets overall, as the results of three aggregation types (surface, bottom, average), for175

each aggregation time (2015-2018, 2019, 2020), repeated for four parameters.176

As a final step, consistency between the observations from the different datasets was177

enhanced by constraining all datasets to cover the same areas. Different spatial coverage178

over the years can indeed be a source of bias. For example, if observations covered north179

Adriatic more extensively than south Adriatic in a particular year, sampling would be180

northward skewed with consequent over-representation of northern environmental values.181
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If this is not the case for the other years, inconsistency between parameter sampling and182

representation will occur. To avoid this issue, only probes locations that were present in all183

reference years were retained. A 0.5° spatial tolerance was used in the selection of these184

locations.185

The ENM used in the present experiment required environmental data uniformly dis-186

tributed over the Adriatic Sea. Consequently, all 0.1° cells required an environmental value187

assigned, either averaged from the Argo observations or estimated through a model. Given188

the low density and quantity of the available environmental observations (Section 3) and189

the importance of currents in the biogeochemical components’ drift and spread in the Adri-190

atic, parameter values were interpolated through a model based on the advection equation191

and depth information. In particular, the Data-Interpolating Variational Analysis (DIVA)192

was used (Barth et al., 2010). DIVA is commonly used to produce uniform distributions of193

environmental parameters (Coro et al., 2018a; Coro and Trumpy, 2020; Schaap and Lowry,194

2010) and solves the advection equation to simulate the transport of a substance or quantity195

by currents. DIVA also estimates the mutual spatial correlation between observations and196

requires minimal parametrisation to produce high-quality interpolation at a user-defined197

resolution (Troupin et al., 2010, 2012; Coro et al., 2016c). Internally, DIVA reconstructs198

a continuous field from discrete measurements through a numerical implementation of the199

Variational Inverse Model (Bennett, 1992). This algorithm fits a continuous field to the200

data through a minimization cost function (Watelet et al., 2016), using a finite-element201

statistical method that embeds topographic and dynamic constraints (based on bathymetry202

and oceanic-currents data). It can process irregularly-spaced observations to produce esti-203

mates on a regular grid. Based on this fit, DIVA estimates a triangular-element mesh over204
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the interpolation area, where the characteristic length of each element is directly linked to205

the mutual spatial correlation between observations.206

For our experiment, DIVA was applied to all Argo-aggregated data described in Sec-207

tion 2.1. Data of ocean current components were taken as NetCDF files from the Global208

Ocean Physic Analysis dataset hosted by the Copernicus Marine Service (Von Schuck-209

mann et al., 2018). In addition, depth information was taken from the GEBCO-2020210

bathymetry dataset, a global terrain model for ocean and land with 0.0042° uniform spatial211

resolution (GEBCO, 2020). To execute DIVA, the D4Science e-Infrastructure computa-212

tional platform was used (Candela et al., 2016; Coro et al., 2015a, 2017; Assante et al.,213

2019). As a result, 36 uniform parameter distributions at 0.1° resolution for our environ-214

mental parameter aggregations were produced and represented with the ESRI-grid format215

(ASC).216

2.2. Species observations217

In order to extract species observation data, we consulted the Ocean Biogeographic218

Information System (OBIS) (Grassle, 2000). OBIS contains taxonomic and occurrence219

information for ∼155,000 marine species and provides access to more than 163 million220

observation records, integrated from more than 4,000 sources. Its contributors include221

international research projects, national monitoring programs, museums, and individuals.222

OBIS is suitable for data mining and pattern recognition experiments, especially in data-223

poor scenarios where the quality of the data is fundamental to produce reliable analyses224

(Coro et al., 2013b, 2015c, 2016b, 2018c). The OBIS data quality checking is integral to225

ecological niche models that are particularly sensitive to data bias (Coro et al., 2015b).226

Furthermore, for each occurrence record, OBIS indicates if it underwent expert verifica-227
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tion. This feature makes OBIS more suited for ecological niche modelling in data-poor228

scenarios than other data collections (Coro et al., 2015b,c). In our experiment, the OBIS229

observation records in the Adriatic Sea, between 2015 and 2018, that underwent expert230

verification were retrieved for the eight species under study. Their coordinates were stored231

as CSV files to feed ENMs later.232

2.3. Ecological Niche Modelling233

Maximum Entropy (MaxEnt) is a widely used ENM for marine species (Raybaud234

et al., 2015; Angeletti et al., 2020; Capezzuto et al., 2018). MaxEnt is a shallow ma-235

chine learning model that estimates a function π(x̄) defined over real-valued vectors x̄236

of environmental parameters. This function is forced to reach maxima on the parameters237

associated with a species’ presence and minima on absence-related parameters. Follow-238

ing a common abuse of notation, π(x̄) can be considered a proxy of a probability density239

of a species’ presence given the x̄ environmental parameters (Phillips and Dudík, 2008;240

Elith et al., 2011; Merow et al., 2013). MaxEnt learns the relation between environmen-241

tal values in the species-observation locations and the general species’ presence (Pearson,242

2007; Coro et al., 2018c). One advantage of this model is that it can work with species-243

presence information only, but it is over-sensitive to biased data (Elith and Graham, 2009;244

Coro et al., 2015b). A MaxEnt model trained with parameters and species observations245

at 0.1° resolution will produce a probability distribution of species presence over the 0.1°246

cell subdivision of a study area. The π(x̄) function is thus the probability that a 0.1° cell247

is suitable species habitat. MaxEnt estimates π(x̄) after maximising the entropy func-248

tion H = −∑π(x̄) ln(π(x̄)) on the training locations with respect to randomly-selected249

environmental parameter vectors in the study area (background points). In the present250
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experiment, x̄ was made up of 13 parameters associated with the 2015-2018 year range:251

temperature, salinity, chlorophyll-a, DOX (with related surface, bottom, water-column ag-252

gregations), and depth (from the GEBCO-2020 bathymetry data set). Although depth was253

constant through the years, it was included in our models because it is a fundamental pa-254

rameter to estimate the niches of the studied species correctly. Depth was used as a proxy255

to model species preference to different seabeds and water column heights. Thus, it en-256

hanced prediction reliability by adding complementary and valuable information about the257

species habitat. On the other hand, it was not functional to the subsequent pattern analysis.258

Training locations were those associated with the OBIS observations between 2015 and259

2018. The used MaxEnt implementation (Phillips et al., 2021) accepted environmental260

parameters in ASC-raster format and species observation data in CSV format.261

The training algorithm estimates the coefficients of a linear combination of the en-262

vironmental parameters. These coefficients represent the weight of each environmental263

parameter in the species’ environmental preferences (percent contribution). MaxEnt also264

estimates the permutation importance of each parameter in the x̄ vector. The training pro-265

cess is based on the following function definitions: f(x̄), the probability density over the266

background parameters; f1(x̄), the density on the training set; and pr, the prior distribu-267

tion (prevalence) of the species (equal to 0.5 when no prior assumption is available, as in268

our case). Based on these functions, π(x̄) is defined as269

π(x̄) = f1(x̄) ⋅ pr
f(x̄)

In a maximum entropy condition, the optimal f1(x̄) is the closest function to f(x̄),270

because there would be no difference without species observations. Additionally, f1(x̄)271
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should have maxima on the parameter means in the training set locations. With these272

constraints, the model minimises the Kullback-Leibler distance between f1(x̄) and f(x̄)273

d(f1(x̄), f(x̄)) =∑
x̄

f1(x̄) ⋅ log2 (
f1(x̄)
f(x̄) )

This minimisation is solved by Gibbs distribution functions in the form f1(x̄) = f(x̄)eη(x̄)
274

(Phillips et al., 2006a), with η(x̄) = α + β h(x̄); α being a normalization constant that275

makes f1(x̄) sum to 1; h being an optional transformation of x̄ that simulates a com-276

plex relation between the environmental parameters; and β being the percent contribution277

coefficients. The minimisation of η(x̄) - which requires solving a log-linear equation -278

consequently minimises d(f1(x̄), f(x̄)). The used MaxEnt software automatically solves279

this minimisation problem. It also estimates percent parameter contribution through an280

iterative process that calculates and accumulates the percent performance gain provided281

by each parameter (Phillips et al., 2017).282

MaxEnt is generally preferred over linear and logistic regression for species habitat283

distribution modelling. It is equivalent to a Poisson regression (a generalized linear model)284

that is naturally suited for modelling the probability of a number of events in a fixed space285

(such as species occurrences) (Renner and Warton, 2013). Once the model parameters286

have been estimated, the π(x̄) function can be used to estimate probability distributions287

over new parameter values than those of the training set, e.g. the parameters of locations288

outside of the study area (to discover the potential species niche) or new environmental289

scenarios (to study niche change over time) (Elith and Graham, 2009; Phillips et al., 2017).290

MaxEnt is sensitive to sampling bias associated with species-observation locations and291

can over-fit small datasets (Merow et al., 2013; Wang et al., 2018). Our selected occur-292
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rence datasets were indeed small, as only expert-verified records were selected. They293

also had potentially biased distributions, as they belonged to OBIS-included surveys with294

frequent and fixed paths (Coro et al., 2015c). One way to manage this issue is to select295

background points far away from the presence locations (Hengl et al., 2009). However,296

our analysed species are common and widely distributed in the Adriatic, with absence lo-297

cations potentially dense in the presence areas. Therefore, it was not possible to focus298

background point sampling on specific areas. Providing the model with precise absence299

and background locations would also have required more presence data and precise envi-300

ronmental parameter distributions. However, specific studies on MaxEnt parametrisation301

(Zaniewski et al., 2002; Dudík et al., 2005; Phillips and Dudík, 2008; Phillips et al., 2017)302

have indicated general strategies to reduce presence location sampling and over-fitting bi-303

ases, which include (i) selecting background points to reflect the same sampling bias as304

the presence locations, (ii) including presence points among background points, (iii) using305

hinge features to model complex species response to the environmental parameters and306

make model fitting more flexible. The MaxEnt software used for this experiment offers307

options to use hinge features and include presence locations among background points if308

these are associated with unique combinations of environmental parameters (Phillips et al.,309

2021). These options were used to attenuate over-fitting and sampling bias issues as far as310

possible.311

In the present experiment, MaxEnt was trained with 2015-2018 Adriatic environmental312

data and species occurrence records to produce an ecological niche reference for the near313

past. Then it was projected onto the 2019 and 2020 environmental data to analyse prob-314

ability distribution change due to the different environmental parameters of these years.315
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Since the β vector indicates the parameters that carry the highest quantity of informa-316

tion to understand species habitat preferences (Coro et al., 2018c; Coro, 2020), it can be317

used to remove poorly niche-correlated parameters from the x̄ vector. This operation opti-318

mally selects the variables associated with the species habitat (Section 3.1). For example,319

deep-water and benthic species will likely be modelled with bottom-averaged parameters,320

whereas pelagic species habitat will likely be modelled with water-column or surface re-321

lated parameters. Furthermore, reducing the number of input environmental parameters322

decreases the inter-dependence between the variables and improves the model accuracy323

(Coro et al., 2015b). In the present experiment, the MaxEnt models of the studied species324

were first trained with all parameters and then re-trained using only those parameters hav-325

ing a percent contribution within 95% from the maximum contribution.326

In summary, MaxEnt ENMs were produced for the 8 Adriatic species through the fol-327

lowing steps: (i) MaxEnt models were trained with 2015-2018 OBIS observations and328

interpolated environmental data; (ii) after a first training phase, the parameters with the329

95% highest percent contributions were retained (thus, different parameter sets were as-330

sociated to the different species); (iii) the models were re-trained only with the retained331

parameters; (iv) the models were projected onto the 2019 and 2020 environmental param-332

eters. The produced models will be referred to as floating sensor (FS) based models -333

i.e., FS 2015-2018, FS 2019, and FS 2020 - to distinguish them from the baseline models334

used for evaluation. A total of 24 models was thus produced, i.e., three models for each335

analysed species.336
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2.4. Evaluation and pattern recognition337

The ENM distributions were used to discover driving factors of species habitat change338

over the years. The first goal of our quality evaluation was to assess the consistency of the339

produced maps. As our second goal, the principal environmental drivers of habitat suit-340

ability change were checked against evidence from general climate change and COVID-19341

pandemic related trends. The entire evaluation process was managed through four evalua-342

tion questions:343

Question 1: Are the produced distributions consistent?344

This question was answered by verifying the similarity between our models and other345

ENMs. This operation confirmed that our models consistently captured the species’ envi-346

ronmental preferences, although they were trained on scarce and scattered data and tested347

on the same training set (Section 3.1). Indeed, the partial reliability of our MaxEnt model348

was assessed using the training data, but this was insufficient to state they were consistent,349

due to the few data at hand. Thus, we set two consistency boundaries for our model: one350

similarity and one dissimilarity reference. We used the similarity reference to confirm that351

the produced distributions agreed with an independent habitat distribution. Instead, we352

used the dissimilarity reference to check for significant difference with respect to a known353

improbable scenario based on unlikely environmental parameter distributions.354

The AquaMaps distributions were used for these tasks (Kaschner et al., 2006). They355

were downloaded (not re-calculated) from the AquaMaps website (AquaMaps, 2020).356

AquaMaps is a presence-only ENM that incorporates scientific expert knowledge into357

species habitat modelling to account for known limitations of species occurrence records358

(Corsi et al., 2000; Ready et al., 2010). We used AquaMaps as a mechanistic model359
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to estimate species distributions independently of the data available in our experiment.360

Moreover, AquaMaps uses a complementary approach with respect to machine-learning-361

based approaches because it explicitly models the causality between species presence and362

environmental parameters (Pearson, 2007; Baker et al., 2018). AquaMaps has comparable363

accuracy to GAM- and GLM-based ecological niche models (Ready et al., 2010). It is364

particularly effective for large areas (e.g., the size of the Adriatic Sea) and when expert365

knowledge about the species is available at the global scale. Moreover, it is reliable for366

extracting macro-patterns of climate change influence on species distributions (Coro et al.,367

2016a).368

The AquaMaps native algorithm estimates the species niche distribution in its known369

habitat. It uses a multiplication of environmental parameter envelopes whose ranges are370

either statistically estimated or defined by an expert. The environmental parameters inte-371

grated with the model are 0.5° resolution distributions of depth, salinity, temperature, pri-372

mary production, distance from land, and sea ice concentration. In the present experiment,373

the AquaMaps native model based on 2019 annual environmental parameters (hereafter374

referred as AquaMaps 2019) was used as a similarity reference for our models.375

As a dissimilar reference model, the AquaMaps native-2050 model was used (hereafter376

referred as AquaMaps 2050). This model integrates environmental parameters estimated377

under the Special Report on Emissions Scenario (SRES) A2 of the Intergovernmental Panel378

on Climate Change (IPCC). This scenario describes a future world with independent, self-379

reliant nations with a continuously increasing population. Economic and technological380

development are assumed to increase non uniformly across the world countries. Of key381

importance are average surface temperature and salinity that have increasing trends (with382
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localised decreases for salinity), whereas ice concentration decreases globally and wa-383

ter level increases. Our models were checked to be significantly distant from AquaMaps384

2050 because this model represents an unlikely scenario for all selected species today.385

Using the AquaMaps 2050 distributions as unlikely scenarios was particularly consistent386

for our studied species because their 2050 distributions were significantly different from387

the AquaMaps native distributions (Section 3). The AquaMaps native models were down-388

loaded from the AquaMaps website (AquaMaps, 2020; Scarponi et al., 2018), whereas a389

NetCDF FAIR version of the AquaMaps 2050 model was used, whose consistency and va-390

lidity was confirmed by other experiments (Coro et al., 2018a). GDAL and CDO software391

(OSGeo, 2019) was used to downsample the models to 0.1° resolution, through first-order392

conservative remapping (Schulzweida, 2020), in order to be able to compare them with393

our models.394

Question 2: Can habitat patterns be identified in 2020 with respect to the previous395

years?396

A map comparison procedure was used to answer this question (described in Coro397

et al. (2014)). This process calculates discrepancy and agreement between two maps. It398

allows setting a threshold over each probability distribution to conduct presence/absence399

comparison. Absences are values under the threshold and presences are values over the400

threshold. The process then uses this classification to calculate discrepancy as the percent-401

age cells where the two distributions disagree. It also calculates Cohen’s kappa (Cohen402

et al., 1960) to estimate agreement with respect to chance. Kappa is classified as poor,403

slight, fair, moderate, substantial, or excellent according to the Landis and Koch range404

classifications (Landis and Koch, 1977).405
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The three FS distributions of each species had different probability ranges. This issue406

made it difficult to find a common threshold to compare low and high probability cells,407

which is a common problem when comparing different distributions (Coro et al., 2014;408

Phillips et al., 2006b). MaxEnt suggested potential habitat suitability thresholds out of a409

training session over the 2015-2018 data, using a sensitivity-specificity analysis that con-410

sidered only the observations and environmental data in 2015-2018. However, after this411

training session, the MaxEnt model was projected onto the 2019 and 2020 data without412

re-training, and this operation normally produces distributions with new probability ranges413

(Phillips et al., 2006b; Coro and Bove, 2022). One approach to accommodate for this is-414

sue is to allow MaxEnt to extend estimates beyond the parameter ranges observed on the415

training set (i.e., to disable the model’s clamping option). However, this technique should416

be used with caution because it could generate inconsistent results or unnatural projec-417

tions (Elith et al., 2011). Moreover, the approach assumes that the projection conditions418

represent a completely different environmental scenario (e.g., in the far past or future). In419

contrast, our projection scenarios fell within the clamped ranges for most variables (Sec-420

tion 3.3). We also experimentally verified that clamping was not useful in overcoming this421

issue with the data at hand.422

Thus, the thresholds suggested by the sensitivity-specificity analysis over the 2015-423

2018 data could not be used for the 2019 and 2020 distributions. Therefore, conducting a424

fair comparison between the MaxEnt distributions required setting appropriate thresholds425

for habitat suitability/unsuitability on each distribution separately; to transform a numer-426

ical comparison into a consistent classification comparison. In this case, one possible427

threshold to use is the first-quartile probability value, as also suggested by O’Brien (1980)428
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and Theil (1982). This property comes out of the observation that although the distribution429

ranges and shapes can differ between the models, one comparable measure of MaxEnt430

probability abundance (and thus of habitat suitability extent) is the number of elements431

with MaxEnt output value over the first quartile. Therefore, we used the first-quartile432

probability value of each FS distribution to identify areas of low and high suitability. Our433

results demonstrate that this approach generated comparable FS distributions (Section 3).434

As for AquaMaps, the log-linear nature of this model allows setting a 0.2 probability value435

as the threshold (Coro et al., 2013a, 2016a).436

Since discrepancy and agreement calculation does not indicate if one distribution cor-437

responds to more suitable habitat than the other, a new metric was introduced for this438

scope. In particular, a suitability score was defined on the discrepancy cells:439

S = ∑iP
′

H(i) −∑iP
′′

H(i)
N

where i refers to cells on which the two dichotomic P
′ and P

′′ distributions differ;440

N is the total number of cells involved in the comparison; and P
′

H(i) and P
′′

H(i) are the441

compared habitat distributions using new thresholds that identify very high probability442

zones. These thresholds were set to the 3rd quartiles of the FS distributions and to 0.8 for443

AquaMaps. The rationale behind the suitability score calculation is that if one distribution444

indicates very high suitability in the discrepancy areas more often than the other, that445

distribution is overall more favourable. Thus, S > 0 indicates that the first distribution is446

more suitable than the second (habitat gain) - and vice-versa when S < 0 (habitat loss)447

- whereas S = 0 indicates overall equal suitability between the two distributions (stable448

habitat).449
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Discrepancy, agreement, and suitability scores over the years can identify habitat change.450

Increasing habitat suitability from 2015-2018 to 2019 and 2020 may indicate overall habi-451

tat expansion (gain) in 2020, stable suitability may indicate unchanged habitat, and incon-452

stant habitat gain and loss over the years can be associated with potential habitat change.453

Question 3: Which parameters drove habitat change in 2020?454

MaxEnt also produces single-parameter distributions by training the model with one455

parameter at-a-time. These parameter distributions allow inferring the parameter ranges456

that correspond to higher suitability. The inference is straightforward when the involved457

parameters are independent or bring a high contribution (Coro et al., 2013a, 2015b, 2018c).458

Our approach enhances parameter independence by re-training MaxEnt after removing459

low-contributing parameters. Intersecting environmental parameter trends with MaxEnt460

single-parameter distributions identifies the key responsible parameters for habitat change.461

Question 4: Do environmental parameter changes in 2020 depend on the COVID-19462

pandemic or also on climate change?463

The change in key parameters for our selected species’ habitat change could be due464

to statistical inter-annual fluctuations, or to general global-scale changes such as climate465

change or the reduction of anthropogenic pressure due to the COVID-19 pandemic. The466

key factors were investigated by searching for other studies that specifically analysed these467

parameters in other locations and correlated their trends to climate change or the pandemic.468

This analysis, combined with the results from the previous evaluation phases, clarified the469

correlation between anthropogenic pressure on ecosystems due to the COVID-19 pan-470

demic, the coupling with climate change, and potential species habitat change.471
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2.5. Complete workflow472

The complete workflow can be summarised as the production and comparison of Max-473

Ent distributions of eight selected Adriatic Sea species out of OBIS species observations474

and Argo data. Each step of the workflow has code and data associated in the open-source475

repository linked to this paper (see Supplementary Material). The steps can be summarised476

through the following phases:477

Phase 1: Retrieve Argo data for the Adriatic and aggregate them at 0.1° spatial res-478

olution (from https://dataselection.euro-argo.eu/). Select probes across479

years that have a mutual distance under 0.5° . Produce surface, bottom, and water-column480

average values for each environmental parameter in every reference time frame, i.e., 2015-481

2018, 2019, and 2020. This phase generated 9 datasets (3 aggregations by 3 years) for482

Argo parameters (4 in total), i.e., 36 datasets overall. All processing R code and results of483

this phase are available in the repository linked in the Supplementary Material, within the484

"Phase 1 - Argo Data Preparation" folder.485

Phase 2: Interpolate the 36 environmental parameter datasets through DIVA, using486

data on ocean current speed components and depth, to obtain uniform 0.1° distributions for487

the entire Adriatic. Prepare the data as ASC files for MaxEnt. The used DIVA notebook488

and the results of this phase are available in the repository linked in the Supplementary489

Material, within the "Phase 2 - Environmental Parameter Distributions" folder.490

Phase 3: Retrieve species occurrence records from OBIS (https://obis.org/491

manual/access/) and prepare them for MaxEnt. For each species, use 2015-2018492

OBIS species occurrence records and environmental datasets (plus depth from GEBCO)493

within a MaxEnt model to produce 8 floating-sensor-based full-variable models for 2015-494
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2018 at 0.1° resolution. The retrieved and pre-processed OBIS occurrences, the data prepa-495

ration scripts, the link to the MaxEnt software, and the MaxEnt results are available in the496

repository linked in the Supplementary Material, within the "Phase 3 - Occurrence Records497

and First MaxEnt Run" folder.498

Phase 4: Execute MaxEnt again, for each species, using only the parameters that499

had the highest percent contribution, i.e., those within 95% relative difference from the500

maximum. This phase produced 8 final FS 2015-2018 models, one for each species. It501

also modelled each species with an optimal selection of parameters associated with their502

preferred depth ranges. For example, it selected depth and bottom-level parameters for503

deep-water and benthic species (Section 3.3). As a further step, project the MaxEnt models504

over the 2019 and 2020 parameter data to obtain FS 2019 and FS 2020 models for the 8505

species. The MaxEnt re-execution results are available in the repository linked in the506

Supplementary Material, within the "Phase 4 - MaxEnt Re-application" folder.507

Phase 5: Retrieve AquaMaps 2019 and 2050 distributions and downsample them to508

0.1° for consistent comparison with the MaxEnt distributions. The retrieved AquaMaps509

distributions are available as ESRI-grid files in the repository linked in the Supplementary510

Material, within the "Phase 5 - AquaMaps Distributions" folder.511

Phase 6: Extract parameter quantiles to study trends over the years. Compare Max-512

Ent distributions to quantify discrepancy and estimate habitat change (though suitability513

score). The results and the used scripts are available in the repository linked in the Sup-514

plementary Material, within the "Phase 6 - Estimate Quantiles" folder.515

Phase 7: Identify patterns of habitat change (gain, loss, stability). The extracted516

patterns are available in the repository linked in the Supplementary Material, within the517
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"Phase 7 - Patterns" folder.518

Phase 8: Study the main parameter trends to identify those that influenced habitat519

change. Understand the relation between these trends and climate change and COVID-19520

pandemic (Sections 3.3-3.4).521

3. Results522

Our method produced distribution maps for 2015-2018, 2019, and 2020 for each of523

the eight analysed species (Figure 2). Referring to our evaluation questions (Section 2.4),524

Section 3.1 addresses question 1; Section 3.2 addresses question 2; Section 3.3 addresses525

question 3; and Section 3.4 addresses question 4.526

For the present experiment, our workflow processed overall 2,166,025 in situ observa-527

tions for 2015-2018, 364,219 observations for 2019, and 463,352 observations for 2020.528

These observations covered from ∼600 (for chlorophyll-a and DOX) to ∼2100 (for tem-529

perature and salinity) 0.1° cells in the Adriatic Sea. OBIS occurrence records that had530

undergone expert review were extracted for these cells to increase observation reliability531

(at the expense of their quantity). The extracted records between 2015 and 2018 were532

47 for Sepia officinalis, 189 for Merluccius merluccius, 166 for Mullus barbatus, 39 for533

Sardina pilchardus, 30 for Parapenaeus longirostris, 28 for Solea solea, 40 for Squilla534

mantis, and 27 for Engraulis encrasicolus. These observations were distributed across535

the species’ Adriatic habitats (Figure 1). Although they were theoretically unsuitable for536

building a detailed model, they were useful for a macroscopic pattern-change analysis of537

species distributions, in agreement with other ENM approaches that use even a lower num-538

ber of observations to trace viable environmental envelopes for pattern analyses (Kaschner539
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et al., 2006; Rees, 2008; Ready et al., 2010; Kaschner et al., 2011; Coro et al., 2016a).540

3.1. Model consistency541

3.1.1. Variable selection and model optimisation542

Our feature selection criterion was evaluated using the Kuenm R package (Cobos et al.,543

2019), which also allowed us to fine-tune the models. This software exhaustively tests544

the performance of MaxEnt with multiple sets of environmental parameters and finds the545

optimal configuration of (i) the analytical form of h - among linear, quadratic, product,546

threshold, hinge, and their combinations (feature classes) - and (ii) a penalty factor on the547

β vector (regularisation multiplier) (Merow et al., 2013; Morales et al., 2017). Kuenm548

allows selecting the optimal model based on the highest Akaike Information Criterion549

value (AIC) calculated on a test set. To select the optimal parametrisations of our 2015-550

2018 models, several sets of environmental variables were prepared and evaluated in two551

ways: (i) on the entire training set (self-performance) and (ii) based on the average AIC552

over ten randomly extracted observation sets, with an 80-20% training-test set ratio for553

each extraction and considering only models with omission rate below 5%. The prepared554

sets of environmental variables included the entire set, the 95% percent contribution-based555

set (Section 2.3), and ten randomly chosen subsets.556

The Kuenm evaluation estimated that the optimal regularisation multipliers for all anal-557

ysed species ranged around 1. Thus, this parameter was fixed to 1 for all models for558

simplicity, i.e. no penalty was set on β. Moreover, both self-performance and 80-20%559

validation indicated that the optimal set of environmental variables was the one obtained560

using a 95% threshold percent contribution from the maximum contribution. Finally, us-561

ing a complex h function that combined all feature classes was optimal for 80-20% valida-562
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tion and also gained high self-accuracy performance. The average AIC over all tests was563

∼990, whereas the average optimal models’ AIC was ∼860. These results likely derive564

from the fact that our selection criterion discards the predictor variables that bring poor565

and potentially confounding information to the model. Moreover, using complex feature566

classes reduced the over-fitting bias (Section 2.3) and thus likely increased validation per-567

formance.568

As a further evaluation step, the Receiver Operating Characteristic (ROC) curve was569

traced for each optimal model to conduct a sensitivity analysis. This analysis calculated570

the true-positive rate and the false-positive rate using various decision-thresholds on the571

model output. Consequently, all optimal models were verified to achieve an Area Under572

the Curve (AUC) (i.e., the integral of the ROC curve) over 0.95. Specifically, AUC was573

averagely 0.96 [0.954;0.97] for the optimal models, and 0.83 [0.78;0.95] for sub-optimal574

models. This property guaranteed that the probability distributions simulated by each575

model were significantly higher on species-presence locations than on random locations.576

All these quality checks aimed to optimise model robustness in a context of scattered577

environmental data and few observation data.578

It is worth noting that using AIC as a selection criterion can be prone to criticisms,579

especially because AIC tends to select models with a higher number of parameters among580

equal-likelihood models (Guthery et al., 2005; Arnold, 2010). However, issues especially581

arise if AIC were used (i) as the only selection criterion, (ii) without adding prior infor-582

mation to guide selection, and (iii) to build models that pretend to assess ecological reality583

(Zhang et al., 2018; Reside et al., 2019; Roy-Dufresne et al., 2019). Therefore, our use of584

AIS, through Kuenm, can be tolerated because we (i) did not assume the optimal models585
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to be punctually reliable, but generally reliable to assess macroscopic changes when com-586

pared to each other, (ii) used a prior condition to evaluate only the models with omission587

rates below 5%, (iii) forcibly introduced a further parametrisation that involved the 95%588

percent contribution-based set; (iv) added sensitivity analysis to assess model validity fur-589

ther; (v) checked model consistency through comparison with AquaMaps; (vi) introduced590

constraints to avoid over-fitting. Indeed, the optimal models did not use the highest number591

of environmental parameters and complex regularisation and penalty conditions.592

The optimal parametrisations estimated for the FS 2015-2018 models were also used593

for the FS 2019 and FS 2020 projections. The resulting optimal distributions are reported594

in Figure 2.595

3.1.2. Comparison with AquaMaps596

The dissimilarity between our maps and AquaMaps 2019 was reasonably low, i.e., av-597

eraging below 20% (19.14%, Table 1). Furthermore, a fair kappa agreement (according598

to Landis and Koch classification, Landis and Koch (1977)) occurred for 81.3% of the599

comparisons. The greatest discrepancy, corresponding to slight agreement, was found for600

Engraulis encrasicolus and Merluccius merluccius. For these species (Figures 2-h and601

-b), AquaMap 2019 extended more into south Adriatic. As for AquaMaps 2050, the IPCC602

SRES A2 scenario was found to be significantly distant from our distributions, with a603

∼30% average discrepancy and poor/marginal agreement with 87.5% of the distributions.604

The highest similarity - with moderate kappa agreement - occurred for Squilla mantis605

(19.2% discrepancy vs FS 2015-2018, 17.57% vs FS 2019, and 19.07% vs FS 2020). The606

FS models indicated that this species had a stable habitat concentrated in northern Adriatic,607

whereas AquaMaps 2019 estimated a possible presence in south Adriatic. Notably, OBIS608
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does not report expert-verified occurrences of Squilla mantis in south Adriatic, which en-609

forces the consistency of our model.610

Overall, this assessment indicates that our distributions generally agreed with an in-611

dependent reference model (AquaMaps 2019) and were far from an unlikely scenario612

(AquaMaps 2050). Thus, despite the poor data, the predictions of our models were not613

poor, which permitted us to conduct further analyses and extract general patterns over the614

Adriatic.615

3.2. Habitat change classification616

Based on the discrepancy (Table 1) and the suitability score (Table 2) calculations,617

detailed habitat gain and loss trends were traced per species. In particular, Sepia of-618

ficinalis habitat expanded in 2020 with respect to both 2015-2018 (+3.95%) and 2019619

(+0.14%) with significant discrepancy (12.36% vs. 2015-2018 and 7.18% vs. 2019) (Fig-620

ure 2-a). Distributional differences were found off the Apulian coasts and in the south621

Balkans. The FS 2020 distribution was also similar to AquaMaps 2019, with substantial622

kappa agreement, because both the distributions indicated extension towards south-east623

and south-west. In northern Adriatic, the FS 2020 map presented a similar distribution624

to the other FS maps, with substantial kappa agreement. This distribution was differ-625

ent from AquaMaps 2050 (24.72% discrepancy), which predicted habitat loss throughout626

south Adriatic. Overall, this analysis indicates habitat gain for this species in 2020.627

Merluccius merluccius habitat expanded in 2020 with respect to 2015-2018 (+5.68%)628

but minimally lost habitat with respect to 2019 (-0.36%) (Figure 2-b). The discrepancy vs629

2019 (5.89%) was lower than vs 2015-2018 (17.82%). The similarity between FS 2020630

and FS 2019 was due to minimal differences in the south-eastern Adriatic. Furthermore,631
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FS 2019 reported habitat gain (+7.04%) against FS 2015-2018, which indicated an increas-632

ing habitat extension trend over the years. The greatest discrepancy between FS 2020 and633

AquaMaps 2019 was in the south Adriatic, where AquaMaps reported high suitability.634

The FS 2020 distribution was also different from AquaMaps 2050 (41.03% discrepancy)635

due to the AquaMaps-predicted habitat loss throughout south Adriatic in 2050. Overall,636

this analysis suggests habitat gain for this species in 2020 because its habitat substantially637

expanded with respect to 2015-2018 and was similar to a habitat-favourable 2019.638

Similarly, Mullus barbatus habitat expanded in 2020 with respect to 2015-2018 (+3.38%)639

and slightly lost habitat with respect to 2019 (-1.94%) (Figure 2-c). The discrepancy vs640

2019 (9.20%) was lower than vs 2015-2018 (16.24%). The similarity between FS 2020641

and FS 2019 was due to minimal differences in middle Adriatic. Furthermore, FS 2019642

resulted in habitat gain (+7.61%) against FS 2015-2018, which indicated an increasing643

habitat extension trend over the years. The FS 2020 was also similar to AquaMaps 2019644

(19.6% discrepancy and moderate agreement) because both models reported high suit-645

ability for south Adriatic. For this reason, FS 2020 was different from AquaMaps 2050646

(27.42% discrepancy and poor agreement), which foresaw habitat loss in south Adriatic.647

Overall, this analysis indicates habitat gain for Mullus barbatus in 2020 because its habi-648

tat substantially expanded with respect to 2015-2018 and was similar to an advantageous649

2019.650

Sardina pilchardus habitat expanded with respect to 2015-2018 (+4.6%) but substan-651

tially lost habitat with respect to 2019 (-5.46%) (Figure 2-d). The discrepancy between FS652

2020 and FS 2019 (29.6%) was concentrated off Apulian coasts (with gain in 2020) and in653

the Balkans (with gain in 2019). Furthermore, FS 2019 reported habitat gain (+4.31%) vs654
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2015-2018 especially in south-western Adriatic and off central Italian coasts. Thus, habi-655

tat trend was not stable, and the FS 2020 habitat suitability patterns changed with respect656

to FS 2015-2018 and FS 2019. Due to the high suitability reported in south Adriatic, all657

FS distributions had moderate agreement with AquaMaps 2019. The discrepancy between658

FS 2020 and AquaMaps 2050 (20.89%) was lower than the one of the previous species659

because also AquaMaps 2050 foresaw suitable habitat in 2050 in south Adriatic. Overall,660

this analysis indicates habitat change for Sardina pilchardus in 2020 because no definite661

trend and pattern was present across the models.662

Similarly, Parapenaeus longirostris habitat expanded with respect to 2015-2018 (+8.33%)663

but substantially lost habitat with respect to 2019 (-7.04%) (Figure 2-e). The discrepancy664

between FS 2020 and FS 2019 (20.83%) was concentrated in the south and middle Adri-665

atic (with gain in 2019). In the same areas, FS 2019 reported substantial habitat gain666

(+14.87%) vs 2015-2018. Thus, habitat trend was unstable since the FS 2020 habitat suit-667

ability patterns were substantially different with respect to FS 2015-2018 and FS 2019.668

All FS distributions had moderate kappa agreement with AquaMaps 2019 due to the high669

habitat suitability AquaMaps indicated in south Adriatic. In contrast, since AquaMaps670

2050 indicated great habitat loss in south Adriatic, the discrepancy with FS distributions671

was large (42.37% average). Overall, this analysis indicates habitat change for Parape-672

naeus longirostris in 2020 because no definite trend and pattern was present across the673

models.674

Solea solea slightly gained habitat with respect to 2015-2018 (+0.5%) and presented675

stable habitat suitability with respect to 2019 (Figure 2-f). The discrepancy between FS676

2020 and FS 2015-2018 (6.75%) was due to a slightly higher suitability area off Apulian677
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coasts by FS 2020. The habitat change trend was thus stable, and the similarity and the678

kappa agreement between the FS 2020 and the other distribution was substantial. The679

FS distributions also had substantial kappa agreement with AquaMaps 2019, with very680

similar patterns throughout the Adriatic. Since AquaMaps 2050 foresaw great habitat loss681

in south Adriatic (except for a small area in southern Balkans), its discrepancy with respect682

to the FS distributions was high (34.63%). Overall, this analysis indicates stable habitat683

for Solea solea from 2015-2018 to 2020.684

Squilla mantis slightly gained habitat with respect to 2015-2018 (+0.36%) and slightly685

lost habitat with respect to 2019 (-0.72%) (Figure 2-g). The discrepancy between FS686

2020 and the other FS distributions was concentrated off the Apulian coasts. The habitat687

change trend was overall stable, and kappa agreement between the FS 2020 and the other688

distribution was substantial. The FS distributions also had moderate kappa agreement689

with AquaMaps 2019, which reported habitat suitability for most of the Adriatic. Since690

AquaMaps 2050 reported high probability areas in northern and middle Adriatic and off691

northern Albanian coasts, kappa agreement with the FS maps was moderate. Overall,692

Solea solea presented an overall stable habitat from 2015-2018 to 2020.693

Engraulis encrasicolus presented stable habitat distribution with respect to 2015-2018694

and a slight suitability loss with respect to 2019 (-1.15%) (Figure 2-h). The discrep-695

ancy between FS 2020 and FS 2019 was due to a higher probability area off Albanian696

coasts. The habitat change trend was overall stable, and the mutual similarity had sub-697

stantial kappa agreement. The FS distributions also had moderate kappa agreement with698

AquaMaps 2019, which presented a decreasing gradient from north to south. Since AquaMaps699

2050 reported habitat loss for middle and south Adriatic, kappa agreement with the FS700
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maps was poor. Overall, Engraulis encrasicolus presented an approximately stable habi-701

tat from 2015-2018 to 2020.702

3.3. Habitat change due to environmental parameter change703

The key driving parameters for habitat change in 2020 were identified through the704

analysis of their percent contributions (Table 4). Notably, the MaxEnt parameter selection705

corresponded to known environmental preferences of the studies species. For example,706

Mullus barbatus lives in sandy, muddy bottoms near river mouths (Esposito et al., 2014),707

and indeed its key parameters were bottom temperature and depth, but also chlorophyll-a708

and DOX averages in the upper water column. Sardina pilchardus habitat-depth ranges709

between 10 and 100 m (Santos et al., 2006), and indeed it was associated with bottom and710

water-column averaged parameters. Parapenaeus longirostris is a deep-water species, and711

its habitat was indeed highly dependent on depth. However, its distribution also depends712

on temperature and DOX in the water column (Ardizzone et al., 1990) as confirmed by our713

MaxEnt model.714

The single-parameter charts of FS 2015-2018 - produced by MaxEnt after training -715

were used to identify the most significant driving factors of the change (Figure 3). In addi-716

tion, parameter quartiles were extracted to understand if variation trends could be identified717

among the driving factors (Table 3). To enhance readability, only the parameter distribu-718

tions that were sensitive to parameter change over the years, i.e., with probability density719

variation over 0.05 - were reported in Figure 3. Other probability distributions indicated720

non-significant variation in correspondence of the median parameter change over the years721

(e.g., they reported a plateau over the variation range), and were omitted. Since this anal-722

ysis was conducted on the optimal models, only the parameters that showed significant723
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percent contribution were analysed for each species’ distribution.724

As regards the species that expanded habitat, Sepia officinalis was mainly supported by725

a general decreasing trend, from 2015 to 2020, of average DOX (with median going from726

234.1 to 213.7 µmol/kg, Table 3) and an increasing trend of bottom temperature over the727

years (with median rising from 14.15 to 14.32 °C, Table 3). These two parameters sig-728

nificantly contributed to the MaxEnt model, and their trends went towards maxima of the729

single-parameter densities (Figure 3-a). Change in the other parameters did not influence730

habitat gain and thus was not discussed. Merluccius merluccius and Mullus barbatus ex-731

panded habitat especially because of increasing bottom temperature trend and decreasing732

average chlorophyll-a over time (from 0.039 to 0.034 mg/m3, Table 3). These changes733

moved the habitat to higher MaxEnt probability values and consequently increased habitat734

gain (Figures 3-b and -c).735

As regards the species that changed habitat, the inconstant trend of Sardina pilchardus736

was due to average DOX and average chlorophyll-a decrease (Table 3). This decrease737

changed habitat suitability in 2020 with respect to 2015-2018 (Figure 3-d), and also gen-738

erated different patterns between the FS 2019 and 2020 distributions. Habitat change for739

Parapenaeus longirostris was mainly driven by surface temperature modulations (from740

16.6 °C in 2015-2018 to 19.7 °C in 2019 and 18.4 °C in 2020, Table 3) and surface DOX741

modulations (from 228.36 µmol/kg in 2015-2018 to 227.8 µmol/kg in 2019 and 214.7742

µmol/kg in 2020, Table 3). For this species, this parameter combination resulted in a less743

favourable habitat in 2020 than the previous years (Figure 3-e).744

The species with stable habitat distributions presented a robust response to environ-745

mental change, and no parameter could be highlighted over the others.746
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3.4. Environmental parameter relation with climate change and COVID-19 pandemic747

The parameters that principally drove distribution changes - i.e., temperature, chlorophyll-748

a, and DOX - were analysed to understand if their change depended on inter-annual cli-749

matic variations, general climate change trends or the COVID-19 pandemic (Table 5).750

The general change of temperature positively affected the distributions of Sepia offic-751

inalis, Merluccius merluccius, Mullus barbatus, but negatively the one of Parapenaeus752

longirostris. Despite the cooling effect of La Niña since August 2020 - which mainly af-753

fected surface temperature - global temperature increased up to 1.2 ° C above pre-industrial754

value (DownToEarth; United Nations, 2021a; World Meterological Organization, 2021).755

Similarly, the general decrease of DOX positively affected the habitat of Sepia of-756

ficinalis, but negatively the habitats of Sardina pilchardus and Parapenaeus longirostris.757

Although in 2020 DOX increased in several world areas, as the consequence of the qual-758

ity improvement of coastal environments during the pandemic (Arif et al., 2020), in the759

Adriatic Sea the trend has been strongly decreasing in the last two decades (Kralj et al.,760

2019b). The Adriatic has a generally increasing DOX gradient from north to south conse-761

quent to its water circulation, a decreasing nutrient concentration provided by rivers, and762

a higher phytoplankton development in northern regions (especially in autumn and win-763

ter) (Zavatarelli et al., 1998). The overall average DOX decrease trend is probably due to a764

general DOX depletion at the Adriatic Sea floor. DOX level correlates with plankton respi-765

ration and benthic oxygen consumption, which has been exceeding the oxygen produced766

by microalgae and the one coming from oxygenated water (Kralj et al., 2019b; Lipizer767

et al., 2014). This condition has been assessed as being a probable consequence of bottom768

temperature and salinity increase due to climate change (Marasović et al., 2005; Lipizer769
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et al., 2014; Kralj et al., 2019a), and indeed was never observed before 1984 (Justić et al.,770

1987).771

Conversely, the strong chlorophyll-a decrease in 2020 - i.e., -6% in the water column,772

-50% at the sea bottom, and -14% at the surface than 2019, based on the Argo data (Table773

3) - could be correlated with the COVID-19 pandemic. Although this correlation cannot774

be demonstrated with our data, some supporting conjectures can be reported from other775

studies. Chlorophyll-a is indeed one of the main indicators of ocean productivity and is an776

integral part of the carbon cycle and oxygen production. The carbon cycle indeed depends777

on carbon dioxide consumption during photosynthetic primary production and inorganic778

carbon production during biomineralisation. The global balance of the natural carbon779

cycle implies that a large decrease of carbon dioxide (CO2) in the atmosphere likely corre-780

sponds to a lower chlorophyll-a level because of the lower demand for CO2 uptake (Shehhi781

and Samad, 2021). In 2020, a 7% reduction in the global carbon dioxide emissions was782

measured from satellite and in situ estimates due to big industry closure in several world783

countries with high industrial activity and large population (Le Quéré et al., 2020). As784

a probable consequence (Adwibowo, 2020; Mishra et al., 2020), a consistent decrease of785

chlorophyll-a was observed in many areas throughout 2020. For example, a 123 tonne786

reduction of CO2 emission in south China corresponded to a measured 5% reduction of787

chlorophyll-a during the pandemic (Shehhi and Samad, 2021). This phenomenon was also788

observed in north Europe, South Korea, south-east United States, the Pacific Ocean, Mid-789

dle East, western Africa, and south-east Australia. Thus, the chlorophyll-a decrease was790

probably a global phenomenon correlated with anthropogenic activity reduction (Shehhi791

and Samad, 2021).792
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Thus, our analysis indicates that the COVID-19 pandemic likely resulted in modify-793

ing three species habitats among those studied: it positively affected the distributions of794

Merluccius merluccius and Mullus barbatus, but negatively the one of Sardina pilchardus.795

4. Discussion and Conclusions796

This paper has presented an analysis of habitat change in 2020 with respect to the pre-797

vious years (2015-2018 aggregated and 2019), based on floating sensor information and798

species occurrence records from the OBIS data collection. Our experiment estimated the799

habitat of 8 commercial species of the Adriatic Sea over this period. The produced eco-800

logical niche distributions were sufficiently reliable when compared to those produced by801

an independent model. They were similar to a model based on 2019 environmental con-802

ditions (AquaMaps 2019) and very distant from a model based on a currently improbable803

environmental scenario (AquaMaps 2050).804

Our distributions were suitable for a pattern analysis to investigate if habitat change805

depended on climate change or the COVID-19 pandemic. The main parameters that influ-806

enced habitat change were the general increase of temperature and the overall decrease of807

dissolved oxygen and chlorophyll-a. Although the observed temperature and DOX trends808

depend on climate change, the chlorophyll-a decrease in 2020 was likely a consequence809

of the COVID-19 pandemic.810

Although some species - Solea solea, Squilla mantis, and Engraulis encrasicolus -811

were not significantly affected by these changes, heterogeneous effects on the other species812

habitat were observed. The increasing temperature and decreasing DOX trends - i.e., the813

potential effects of climate change - negatively affected the distribution of Parapenaeus814
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longirostris by making its habitat overall unstable and less suitable in 2020 than in 2019.815

This potential negative dependency on climate change finds confirmation by several stud-816

ies on this species (Ungaro and Gramolini, 2006; Colloca et al., 2014; Sbrana et al., 2019;817

Quattrocchi et al., 2020). Conversely, these trends favoured Sepia officinalis and extended818

its potential habitat, in agreement with other studies that analysed its response to the single819

parameter changes (Palmegiano and d’Apote, 1983; Capaz et al., 2017).820

The potential coupling between climate change and COVID-19 - manifested as a821

simultaneous decreasing trend of DOX and chlorophyll-a - negatively affected the dis-822

tribution of Sardina pilchardus. Other studies have also reported habitat instability of823

this species’ habitat as the consequence of the variation of these parameters (Sinovčić,824

2001; Ganias, 2009). However, the combination of rising temperature and decreasing825

chlorophyll-a positively affected the habitats of Merluccius merluccius and Mullus barba-826

tus. This observation agrees with parameter-specific indications by other studies (Gucu827

and Bingel, 2011; García-Rodríguez et al., 2011; Sabates et al., 2015; Sion et al., 2019).828

These two species were the major beneficiary of the two parameter trend combination.829

Thus, reduced anthropogenic stress on ecosystems in 2020 was beneficial for some species’830

habitats.831

4.1. Reusability and limitations of the approach832

Our approach predicted potential general consequences of climate change on species833

habitat and its coupling with the COVID-19 pandemic. In this view, it can be useful for834

integrated environmental assessments (Antunes and Santos, 1999; Kristensen, 2004). For835

example, it can be combined with human activity analysis and when estimating available836

biomass, and can be used in models that predict risk of regime shift caused by habitat loss837
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(deyoung et al., 2008; Graham et al., 2015; Wernberg et al., 2016). Notably, the potential838

effects of reduced fishing activity - due to sanitary restrictions and market closure - on839

habitat distributions are yet unclear. Only a 10% reduction of fishing hours with respect to840

the 2019 level has been estimated globally (for large and small scale fisheries) (Clavelle,841

2020; WWF, 2020). Furthermore, the overall fishing activity reduction was just 4% in the842

Italian seas (Clavelle, 2020). Such a low reduction possibly had minor effects on the habi-843

tat distributions of our analysed species and will be the subject of our future investigations.844

Our approach is also general enough to be applied to other species and areas. To this aim,845

our workflow uses FAIR data that have a global-scale coverage. Furthermore, our software846

is open source, and all data are reported under the ESRI-grid format (see Supplementary847

Material). Specifically, the optimal MaxEnt models and the data are all available as raster848

ESRI-grid files in the repository linked in the Supplementary Material, within the "Phase849

4 - MaxEnt Re-application/MaxEnt Distributions and Statistics" folder, for re-use in GIS850

software and other experiments.851

The main limitation of our experiment is the low amount of data used, due to current852

data availability, which was partially compensated by accurate data selection and model853

optimisation. Although the proposed Adriatic-scale pattern analysis is reliable enough to854

extract habitat change trends, the produced maps cannot be considered punctually reliable855

(Queiroz et al., 2021). Conducting a precise analysis will require collecting, collating,856

and analysing a massive amount of data that will be available only years after the end of857

the pandemic. Nevertheless, data-poor approaches like ours can predict realistic macro-858

scopic patterns and indicate priority directions for investigating species modifications in859

the search for confirmation or confutation of the reported results (Coro et al., 2015b,860
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2016a). In this view, our model allows looking ahead to the possible significant modi-861

fications that will possibly be observed in the Adriatic in the following years due to the862

impact of the combined action of the COVID-19 pandemic and climate change on species863

distributions. Small-scale reliability can also be enhanced in our model when marine en-864

vironmental data and species records will be more dense and uniform in the study area.865

Several initiatives are promoting the collection of these data (EU Commission, 2020a;866

Snapshot-CNR, 2020; EU Commission, 2020b), but they are ongoing and main address867

regional scales. These data will be a fundamental source of information to repeat our anal-868

ysis and validate its predictions. We believe that these activities are justified to understand869

the effects of natural and man-made pressure on marine ecosystems in current and future870

scenarios. Our study also confirmed that in order to realise the UN Decade on Ecosystem871

Restoration motto "the science we need for the ocean we want" (United Nations, 2021b)872

an Open Science approach can be successful.873

Supplementary Material874

Experimental data and source code are publicly available on the D4Science e-Infrastructure875

https://data.d4science.net/WLNn876
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Sinovčić, G., 2001. Biotic and abiotic factors influencing sardine, sardina pilchardus1264

(walb.) abundance in the croatian part of the eastern adriatic. FAO Adriamed paper1265

.1266

Sion, L., Zupa, W., Calculli, C., Garofalo, G., Hidalgo, M., Jadaud, A., Lefkaditou, E.,1267

Ligas, A., Peristeraki, P., Bitetto, I., et al., 2019. Spatial distribution pattern of european1268

hake, merluccius merluccius (pisces: Merlucciidae), in the mediterranean sea. Scientia1269

Marina 83, 21–32.1270

de Siqueira, M.F., Durigan, G., de Marco Júnior, P., Peterson, A.T., 2009. Something from1271

59

https://code.mpimet.mpg.de/projects/cdo/embedded/index.html##x1-5710002.12.6
https://code.mpimet.mpg.de/projects/cdo/embedded/index.html##x1-5710002.12.6
https://code.mpimet.mpg.de/projects/cdo/embedded/index.html##x1-5710002.12.6
http://dx.doi.org/10.1080/2150704X.2021.1880658


nothing: using landscape similarity and ecological niche modeling to find rare plant1272

species. Journal for Nature Conservation 17, 25–32.1273

Snapshot-CNR, 2020. Synoptic Assessment of Human Pressures on Key Mediterranean1274

Hot Spots: The Snapshot-CNR project. http://snapshot.cnr.it.1275

Tanhua, T., Pouliquen, S., Hausman, J., O’brien, K., Bricher, P., De Bruin, T., Buck, J.J.,1276

Burger, E.F., Carval, T., Casey, K.S., et al., 2019. Ocean fair data services. Frontiers in1277

Marine Science 6, 440.1278

Theil, H., 1982. Some recent and new results on the maximum entropy distribution. Statis-1279

tics & Probability Letters 1, 17–22.1280

Toonen, H.M., Bush, S.R., 2020. The digital frontiers of fisheries governance: Fish at-1281

traction devices, drones and satellites. Journal of environmental policy & planning 22,1282

125–137.1283

Trifonova, N., Maxwell, D., Pinnegar, J., Kenny, A., Tucker, A., 2017. Predicting ecosys-1284

tem responses to changes in fisheries catch, temperature, and primary productivity with1285

a dynamic bayesian network model. ICES Journal of Marine Science 74, 1334–1343.1286

Troupin, C., Barth, A., Sirjacobs, D., Ouberdous, M., Brankart, J.M., Brasseur, P., Rixen,1287

M., Alvera-Azcárate, A., Belounis, M., Capet, A., et al., 2012. Generation of analysis1288

and consistent error fields using the data interpolating variational analysis (diva). Ocean1289

Modelling 52, 90–101.1290

Troupin, C., Machin, F., Ouberdous, M., Sirjacobs, D., Barth, A., Beckers, J.M., 2010.1291

60

http://snapshot.cnr.it


High-resolution climatology of the northeast atlantic using data-interpolating variational1292

analysis (diva). Journal of Geophysical Research: Oceans 115.1293

Ungaro, N., Gramolini, R., 2006. Possible effect of bottom temperature on distribution1294

of parapenaeus longirostris (lucas, 1846) in the southern adriatic (mediterranean sea).1295

Turkish Journal of Fisheries and Aquatic Sciences 6, –.1296

United Nations, 2021a. Cooling La Niña is on the wane, but temperatures set to rise: UN1297

weather agency. https://news.un.org/en/story/2021/02/1084222.1298

United Nations, 2021b. UN Decade on Ecosystem Restoration. https://www.1299

decadeonrestoration.org/.1300

Von Schuckmann, K., Le Traon, P.Y., Smith, N., Pascual, A., Brasseur, P., Fennel, K.,1301

Djavidnia, S., Aaboe, S., Fanjul, E.A., Autret, E., et al., 2018. Copernicus marine1302

service ocean state report. Journal of Operational Oceanography 11, S1–S142.1303

Wang, L., Kerr, L.A., Record, N.R., Bridger, E., Tupper, B., Mills, K.E., Armstrong, E.M.,1304

Pershing, A.J., 2018. Modeling marine pelagic fish species spatiotemporal distributions1305

utilizing a maximum entropy approach. Fisheries Oceanography 27, 571–586.1306

Warren, D.L., Seifert, S.N., 2011. Ecological niche modeling in maxent: the importance1307

of model complexity and the performance of model selection criteria. Ecological appli-1308

cations 21, 335–342.1309

Watelet, S., Back, Ö., Barth, A., Beckers, J.M., 2016. Data-interpolating variational anal-1310

ysis (diva) software: recent development and application, in: Proceedings of the EGU1311

General Assembly 2016, European Geosciences Union General Assembly. p. 1.1312

61

https://news.un.org/en/story/2021/02/1084222
https://www.decadeonrestoration.org/
https://www.decadeonrestoration.org/
https://www.decadeonrestoration.org/


Weatherdon, L.V., Magnan, A.K., Rogers, A.D., Sumaila, U.R., Cheung, W.W., 2016.1313

Observed and projected impacts of climate change on marine fisheries, aquaculture,1314

coastal tourism, and human health: an update. Frontiers in Marine Science , 48.1315

Weber, M.M., Stevens, R.D., Diniz-Filho, J.A.F., Grelle, C.E.V., 2017. Is there a corre-1316

lation between abundance and environmental suitability derived from ecological niche1317

modelling? a meta-analysis. Ecography 40, 817–828.1318

Werdell, P.J., Bailey, S.W., 2005. An improved in-situ bio-optical data set for ocean color1319

algorithm development and satellite data product validation. Remote sensing of envi-1320

ronment 98, 122–140.1321

Wernberg, T., Bennett, S., Babcock, R.C., De Bettignies, T., Cure, K., Depczynski, M.,1322

Dufois, F., Fromont, J., Fulton, C.J., Hovey, R.K., et al., 2016. Climate-driven regime1323

shift of a temperate marine ecosystem. Science 353, 169–172.1324

World Meterological Organization, 2021. Climate change indicators and impacts wors-1325

ened in 2020. https://public.wmo.int/en/media/press-release/1326

climate-change-indicators-and-impacts-worsened-2020.1327

WWF, 2020. World Wide Fund for Nature - Impact of COVID-19 on Mediter-1328

ranean Fisheries. https://www.wwfmmi.org/what_we_do/fisheries/1329

transforming_small_scale_fisheries/impact_of_covid_on_1330

mediterranean_fisheries/.1331

Yunus, A.P., Masago, Y., Hijioka, Y., 2020. Covid-19 and surface water quality: Improved1332

lake water quality during the lockdown. Science of the Total Environment 731, 139012.1333

62

https://public.wmo.int/en/media/press-release/climate-change-indicators-and-impacts-worsened-2020
https://public.wmo.int/en/media/press-release/climate-change-indicators-and-impacts-worsened-2020
https://public.wmo.int/en/media/press-release/climate-change-indicators-and-impacts-worsened-2020
https://www.wwfmmi.org/what_we_do/fisheries/transforming_small_scale_fisheries/impact_of_covid_on_mediterranean_fisheries/
https://www.wwfmmi.org/what_we_do/fisheries/transforming_small_scale_fisheries/impact_of_covid_on_mediterranean_fisheries/
https://www.wwfmmi.org/what_we_do/fisheries/transforming_small_scale_fisheries/impact_of_covid_on_mediterranean_fisheries/
https://www.wwfmmi.org/what_we_do/fisheries/transforming_small_scale_fisheries/impact_of_covid_on_mediterranean_fisheries/
https://www.wwfmmi.org/what_we_do/fisheries/transforming_small_scale_fisheries/impact_of_covid_on_mediterranean_fisheries/


Zaniewski, A.E., Lehmann, A., Overton, J.M., 2002. Predicting species spatial distribu-1334

tions using presence-only data: a case study of native new zealand ferns. Ecological1335

modelling 157, 261–280.1336

Zavatarelli, M., Raicich, F., Bregant, D., Russo, A., Artegiani, A., 1998. Cli-1337

matological biogeochemical characteristics of the adriatic sea. Journal of1338

Marine Systems 18, 227–263. URL: https://www.sciencedirect.1339

com/science/article/pii/S0924796398000141, doi:https:1340

//doi.org/10.1016/S0924-7963(98)00014-1.1341

Zeng, Y., Low, B.W., Yeo, D.C., 2016. Novel methods to select environmental variables1342

in maxent: A case study using invasive crayfish. Ecological Modelling 341, 5–13.1343

Zhang, G., Zhu, A.X., Windels, S.K., Qin, C.Z., 2018. Modelling species habitat suitabil-1344

ity from presence-only data using kernel density estimation. Ecological Indicators 93,1345

387–396.1346

63

https://www.sciencedirect.com/science/article/pii/S0924796398000141
https://www.sciencedirect.com/science/article/pii/S0924796398000141
https://www.sciencedirect.com/science/article/pii/S0924796398000141
http://dx.doi.org/https://doi.org/10.1016/S0924-7963(98)00014-1
http://dx.doi.org/https://doi.org/10.1016/S0924-7963(98)00014-1
http://dx.doi.org/https://doi.org/10.1016/S0924-7963(98)00014-1


Table 1: Discrepancy between the ecological niche models of the eight species involved in our experiment. Model names refer to floating sensor
models for 2015-2018 (FS 2015-2018), 2019 (FS 2019), 2020 (FS 2020), and AquaMaps 2019 and 2050. Coloured numbers refer to Cohen’s
kappa values corresponding to at-least-moderate (green), slight (orange), or poor agreement (red) according to Landis & Koch interpretation.
Bold-highlighted text indicates the most similar distribution for each model. Coloured species names indicate habitat gain (green), change (red),
or stability (blue) in 2020 with respect to 2015-2018.

Sepia officinalis

FS 2015-2018 FS 2019 FS 2020 AquaMaps

2019

AquaMaps

2050

FS 2015-2018 - 10.06% 12.36% 15.24% 21.71%

FS 2019 10.06% - 7.18% 15.50% 22.71%

FS 2020 12.36% 7.18% - 14.87% 24.72%

AquaMaps 2019 15.24% 15.50% 14.87% - 43.14%

AquaMaps 2050 21.71% 22.71% 24.72% 43.14% -

Merluccius merluccius

FS 2015-2018 FS 2019 FS 2020 AquaMaps

2019

AquaMaps

2050

FS 2015-2018 - 18.53% 17.82% 25.92% 34.25%

FS 2019 18.53% - 5.89% 22.61% 40.90%

FS 2020 17.82% 5.89% - 22.47% 41.03%

AquaMaps 2019 25.92% 22.61% 22.47% - 52.26%

AquaMaps 2050 34.25% 40.90% 41.03% 52.26% -

Mullus barbatus

FS 2015-2018 FS 2019 FS 2020 AquaMaps

2019

AquaMaps

2050

FS 2015-2018 - 18.53% 16.24% 22.61% 24.28%

FS 2019 18.53% - 9.20% 18.88% 30.43%

FS 2020 16.24% 9.20% - 19.60% 27.42%

AquaMaps 2019 22.61% 18.88% 19.60% - 38.25%

AquaMaps 2050 24.28% 30.43% 27.42% 38.25% -

Sardina pilchardus

FS 2015-2018 FS 2019 FS 2020 AquaMaps

2019

AquaMaps

2050

FS 2015-2018 - 14.51% 22.84% 16.69% 21.64%

FS 2019 14.51% - 29.60% 24.22% 29.17%

FS 2020 22.84% 29.60% - 18.32% 20.89%

AquaMaps 2019 16.69% 24.22% 18.32% - 32.69%

AquaMaps 2050 21.64% 29.17% 20.89% 32.69% -

Parapenaeus longirostris

FS 2015-2018 FS 2019 FS 2020 AquaMaps

2019

AquaMaps

2050

FS 2015-2018 - 47.13% 34.34% 21.71% 26.35%

FS 2019 47.13% - 20.83% 21.83% 58.85%

FS 2020 34.34% 20.83% - 20.70% 41.91%

AquaMaps 2019 21.71% 21.83% 20.70% - 47.88%

AquaMaps 2050 26.35% 58.85% 41.91% 47.88% -

Solea solea

FS 2015-2018 FS 2019 FS 2020 AquaMaps

2019

AquaMaps

2050

FS 2015-2018 - 6.18% 6.75% 11.23% 34.63%

FS 2019 6.18% - 2.73% 11.23% 34.63%

FS 2020 6.75% 2.73% - 10.85% 34.63%

AquaMaps 2019 11.23% 11.23% 10.85% - 52.46%

AquaMaps 2050 34.63% 34.63% 34.63% 52.46% -

Squilla mantis

FS 2015-2018 FS 2019 FS 2020 AquaMaps

2019

AquaMaps

2050

FS 2015-2018 - 12.07% 4.74% 19.70% 19.20%

FS 2019 12.07% - 10.63% 19.70% 17.57%

FS 2020 4.74% 10.63% - 19.70% 19.07%

AquaMaps 2019 19.70% 19.70% 19.70% - 41.87%

AquaMaps 2050 19.20% 17.57% 19.07% 41.87% -

Engraulis encrasicolus

FS 2015-2018 FS 2019 FS 2020 AquaMaps

2019

AquaMaps

2050

FS 2015-2018 - 12.79% 12.07% 21.90% 30.80%

FS 2019 12.79% - 4.45% 21.90% 30.80%

FS 2020 12.07% 4.45% - 21.90% 30.65%

AquaMaps 2019 21.90% 21.90% 21.90% - 53.00%

AquaMaps 2050 30.80% 30.80% 30.65% 53.00% -



Table 2: Suitability score comparison between the ecological niche models of the eight species involved in our experiment. Model names indicate
floating sensor models for 2015-2018 (FS 2015-2018), 2019 (FS 2019), 2020 (FS 2020), and AquaMaps 2019 and 2050. Scores are reported only
for the FS models to ease the reading. Coloured numbers highlight habitat gain (green), loss (red), or stability (blue) in 2020. Coloured species
names indicate habitat gain (green), change (red), or stability (blue) in 2020 with respect to 2015-2018.

Sepia officinalis

FS 2015-2018 FS 2019 FS 2020 AquaMaps

2019

AquaMaps

2050

FS 2015-2018 - Loss (-0.29%) Loss (-3.95%) Loss Gain

FS 2019 Gain (+0.29%) - Loss (-0.14%) Loss Gain

FS 2020 Gain (+3.95%) Gain (+0.14%) - Loss Gain

AquaMaps 2019 Gain Gain Gain - Gain

AquaMaps 2050 Loss Loss Loss Loss -

Merluccius merluccius

FS 2015-2018 FS 2019 FS 2020 AquaMaps

2019

AquaMaps

2050

FS 2015-2018 - Loss (-7.04%) Loss (-5.68%) Loss Gain

FS 2019 Gain (+7.04%) - Gain (+0.36%) Loss Gain

FS 2020 Gain (+5.68%) Loss (-0.36%) - Loss Gain

AquaMaps 2019 Gain Gain Gain - Stable

AquaMaps 2050 Loss Loss Loss Stable -

Mullus barbatus

FS 2015-2018 FS 2019 FS 2020 AquaMaps

2019

AquaMaps

2050

FS 2015-2018 - Loss (-7.61%) Loss (-3.38%) Loss Gain

FS 2019 Gain (+7.61%) - Gain (+1.94%) Loss Gain

FS 2020 Gain (+3.38%) Loss (-1.94%) - Loss Gain

AquaMaps 2019 Gain Gain Gain - Gain

AquaMaps 2050 Loss Loss Loss Loss -

Sardina pilchardus

FS 2015-2018 FS 2019 FS 2020 AquaMaps

2019

AquaMaps

2050

FS 2015-2018 - Loss (-4.31%) Loss (-4.6%) Loss Gain

FS 2019 Gain (+4.31%) - Gain (+5.46%) Gain Gain

FS 2020 Gain (+4.6%) Loss (-5.46%) - Gain Gain

AquaMaps 2019 Gain Loss Loss - Gain

AquaMaps 2050 Loss Loss Loss Loss -

Parapenaeus longirostris

FS 2015-2018 FS 2019 FS 2020 AquaMaps

2019

AquaMaps

2050

FS 2015-2018 - Loss (-14.87%) Loss (-8.33%) Loss Gain

FS 2019 Gain (+14.87%) - Gain (+7.04%) Loss Gain

FS 2020 Gain (+8.33%) Loss (-7.04%) - Loss Gain

AquaMaps 2019 Gain Gain Gain - Gain

AquaMaps 2050 Loss Loss Loss Loss -

Solea solea

FS 2015-2018 FS 2019 FS 2020 AquaMaps

2019

AquaMaps

2050

FS 2015-2018 - Stable Loss (-0.5%) Gain Gain

FS 2019 Stable - Stable Gain Gain

FS 2020 Gain (+0.5%) Stable - Gain Gain

AquaMaps 2019 Loss Loss Loss - Gain

AquaMaps 2050 Loss Loss Loss Loss -

Squilla mantis

FS 2015-2018 FS 2019 FS 2020 AquaMaps

2019

AquaMaps

2050

FS 2015-2018 - Loss (-1.22%) Loss (-0.36%) Loss Gain

FS 2019 Gain (+1.22%) - Gain (+0.72%) Loss Gain

FS 2020 Gain (+0.36%) Loss (-0.72%) - Loss Gain

AquaMaps 2019 Gain Gain Gain - Gain

AquaMaps 2050 Loss Loss Loss Loss -

Engraulis encrasicolus

FS 2015-2018 FS 2019 FS 2020 AquaMaps

2019

AquaMaps

2050

FS 2015-2018 - Loss (-5.6%) Stable Gain Gain

FS 2019 Gain (+5.6%) - Gain (+1.15%) Stable Gain

FS 2020 Stable Loss (-1.15%) - Gain Gain

AquaMaps 2019 Loss Stable Loss - Stable

AquaMaps 2050 Loss Loss Loss Stable -



Table 3: Median, 1st and 3rd quartiles of the environmental parameter distributions used in our experiment over the Adriatic Sea, estimated from
Argo data. Average aggregation type indicates parameter average over the entire water column.

Parameter name Aggregation

type

Years Median 1st Quartile 3rd Quartile

Temperature (° C)

average

2015-2018 14.95 14.94 15.02

2019 14.74 14.74 14.75

2020 15.26 15.25 15.26

bottom

2015-2018 14.15 14.14 14.16

2019 14.10 14.09 14.10

2020 14.32 14.31 14.32

surface

2015-2018 16.58 16.50 18.48

2019 19.67 18.51 19.71

2020 18.40 18.35 18.55

Salinity (PSU)

average

2015-2018 38.83 38.83 38.83

2019 38.90 38.90 38.90

2020 38.97 38.97 38.97

bottom

2015-2018 38.82 38.82 38.82

2019 38.86 38.85 38.86

2020 38.90 38.89 38.90

surface

2015-2018 38.78 38.77 38.78

2019 38.80 38.80 38.82

2020 39.01 39.00 39.01

Chlorophyll-a (mg/m3)

average

2015-2018 0.0391 0.0389 0.0392

2019 0.0366 0.0365 0.0377

2020 0.0343 0.0331 0.0344

bottom

2015-2018 0.0051 0.0027 0.0052

2019 0.0056 0.0056 0.0057

2020 0.0028 0.0027 0.0029

surface

2015-2018 0.0436 0.0432 0.0438

2019 0.2213 0.2202 0.2222

2020 0.1896 0.1888 0.1907

Dissolved oxygen (µmol/kg)

average

2015-2018 234.12 228.72 234.26

2019 220.50 219.88 220.53

2020 213.70 213.67 213.72

bottom

2015-2018 214.32 212.41 214.39

2019 216.81 216.40 216.84

2020 210.33 210.16 210.35

surface

2015-2018 228.36 228.25 228.64

2019 227.80 227.66 227.92

2020 214.73 214.47 214.84



Table 4: Percent contribution and permutation importance of the most habitat-predictive parameters for the 8 analysed species. Bold-highlighted
text indicates, for each species, the major drivers of habitat change from 2015-2018 to 2020. Coloured species names indicate habitat gain
(green), change (red), or stability (blue) in 2020 with respect to 2015-2018.

Species name Parameter Percent con-

tribution (%)

Permutation

importance

(%)

Sepia officinalis

depth 77.6 59.3

average dissolved oxygen 5.4 8.4

average salinity 5.3 21.2

bottom dissolved oxygen 4.9 0

bottom temperature 4.6 0.1

bottom salinity 1.4 5.6

surface chlorophyll-a 0.8 5.5

Merluccius merluccius

bottom temperature 48.2 27.6

average chlorophyll-a 24.6 14.2

depth 7.8 26.4

surface chlorophyll-a 6.4 16.5

average salinity 4.7 5.4

surface dissolved oxygen 3.9 3

surface salinity 2.4 1.5

average temperature 1.9 5.4

Mullus barbatus

bottom temperature 49.5 24.7

average chlorophyll-a 24.7 13.6

surface dissolved oxygen 6.7 6.8

depth 6.5 20.1

bottom chlorophyll-a 5.5 17.4

surface chlorophyll-a 3.1 10.4

bottom dissolved oxygen 2.3 3.8

surface salinity 1.7 3.2

Sardina pilchardus

bottom chlorophyll-a 66.6 54.4

average dissolved oxygen 16.7 0.5

average chlorophyll-a 11.9 20

bottom dissolved oxygen 4.2 0

depth 0.6 25.1

Parapenaeus longirostris

depth 66.2 45

surface temperature 12.9 40.4

average temperature 9.6 14.5

average dissolved oxygen 8.1 0

surface dissolved oxygen 3.2 0.1

Solea solea

depth 80.6 84.9

average temperature 9.7 0

average dissolved oxygen 5.1 0

bottom chlorophyll-a 2.8 9.7

average salinity 1.8 5.4

Squilla mantis

depth 66 77.3

bottom chlorophyll-a 14.4 6.3

average temperature 14.1 16.1

surface temperature 4.1 0.3

bottom salinity 1.5 0

Engraulis encrasicolus

depth 63 31

surface dissolved oxygen 20.1 43.6

bottom chlorophyll-a 5.6 25.4

bottom dissolved oxygen 5.5 0

average chlorophyll-a 3.5 0

average dissolved oxygen 2.4 0



Table 5: Summary of the principal environmental parameters that drove species distribution change in 2020. For each parameter, the table
reports (i) the general (increasing/decreasing) trend with respect to the past years, (ii) the main reasons of the change, (iii-iv) the species whose
distributions were positively affected (i.e. they increased in 2020) or negatively affected by that parameter change.

Principal parameters that

drove selected-species distri-

bution change in 2020

General trend in

2020 wrt past years

Possible reason of the

change

Species with positively af-

fected distribution by the

change

Species with negatively af-

fected distribution by the

change

Temperature Increasing Climate change Sepia officinalis, Merluccius

merluccius, Mullus barbatus

Parapenaeus longirostris

Dissolved Oxygen Decreasing Climate change and pollution Sepia officinalis Sardina pilchardus, Parape-

naeus longirostris

Chlorophyll-a Decreasing COVID-19 pandemic Merluccius merluccius, Mullus

barbatus

Sardina pilchardus



Figure 1: Distribution of the analysed species’ occurrence records, used for our floating sensor based ecological niche models.



Figure 2: Ecological niches estimated by our floating sensor based (FS) models for 2015-2018, 2019, and 2020, and AquaMaps 2019 and 2050
over the eight analysed species. Coloured species names indicate habitat gain (green), change (red), or stability (blue) in 2020 with respect to
2015-2018.



Figure 3: Single-parameter MaxEnt probability densities across the studied species. Only the charts of the key parameters driving habitat gain
and change are reported. Coloured species names in the chart titles indicate those that gained (green) or changed (red) habitat in 2020 with respect
to 2015-2018. Vertical bars highlight the values in 2015-2018 and 2020 at the intersection with medians as dashed lines and quartiles 1 and 3 as
dotted lines. A green horizontal arrow, from a red to a green vertical line, indicates a general habitat suitability increase from 2015-2018 to 2020.
Conversely, a yellow horizontal arrow, from a green to a red vertical line, indicates habitat suitability decrease from 2015-2018 to 2020.
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