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Abstract—The increasing sensing capabilities of mobile devices
enable the collection of sensing-based data sets, by exploiting
the active participation of the crowd. Often, it is not required
to disclose the identity of the owners of the data, as the
sensing information are analyzed only on an aggregated form.
In this work we propose a privacy-preserving schema based on
differential privacy which offers data integrity and fault tolerance
properties. In our schema, data providers firstly add a noise
component to the sensed data and, secondly, they encrypt and
send the cryptogram to the aggregator. The data aggregator is
in charge of only decrypting the cryptograms, by preserving the
identify of the data owners. We extend such schema by enabling
data providers to submit multiple cryptograms in a time window,
by using time-varying encryption keys. We evaluate the impact
of the noise component to the generated cryptograms so that to
evaluate the data loss during the encryption process.

Index Terms—Differential privacy, Aggregation, CrowdSensing

I. INTRODUCTION

The Mobile CrowdSensing (MCS) [1], [2] paradigm is
designed to build representative data sets by exploiting the
sensing capabilities of mobile devices that we daily use. More
specifically, the idea is to exploit smartphones, smart watches
or sensorized devices to collect data from the crowd, with a
participatory approach. Traditionally, a MCS data collection
campaign involves three actors: a set of volunteers’ end-users
providing sensed data, the mobile apps which asynchronously
receive tasks and a MCS back-end [3]. A task defines an action
to perform with or without the explicit intervention of the
end-users. As for example, a task might require to use the
microphone to sample the noise pollution in a geo-fenced area
or to monitor the wireless signal coverage by exploiting the
wireless network interface available with a smartphone. Often,
it is not required to reveal the identify of the end-users, rather
the MCS back-end only aggregates the collected data. In this
work, we study a privacy-preserving mechanism for a MCS
scenario guarantying anonymity of the volunteers’ end-users,
data integrity and fault tolerance of the collected data [4].

More specifically, we extend the approach followed in
[5] which relies on the data aggregator. The role of the
aggregator is to combine the data collected, such that it can
read the composition of the data, but it cannot disclose the
identify of the data owners. In particular, data providers collect

sensing data, they add a noise component and finally then
they cipher the resulting information. The aggregator receives
and combines such cryptograms, it can decode the aggregated
version but it cannot read who produced the cryptogram. We
extend the schema described in [5] by introducing the temporal
dimension. Indeed, in a MCS scenario data providers can
upload data asynchronously, this is the case of a sensing task
which requires to sample a specific environmental parameter
for 24h. In this example, data providers can upload data
at periodical intervals or they can upload data in burst. In
our schema, data providers upload cryptograms whose key
varies according to the time, so that each cryptogram varies
as time progresses. Moreover, data providers can transmit
an arbitrary number of cryptograms during a time window,
so that to match with the sampling frequency of sensors
available with smartphones. We evaluate the impact of the
cryptogram’s noise component to measure how much infor-
mation the aggregator can re-build after the decoding phase.
To this purpose, we implement a simulator designed to test
the encoding/decoding steps executed by data providers and
the aggregator by considering an environmental monitoring
task. Our experiments reproduce the behavior of a number
of data providers collecting a varying number of temperature
readings extracted from Weather Underground service for a
time period of 2 hours. Our results show that the, according
to the number of generated cryptograms, the aggregator can
re-build a median of the temperature with a very reduced error,
always below 0.02 Celsius degrees.

II. BACKGROUND AND RELATED WORK

Several techniques have been proposed to anonymize the
identify of the MCS volunteers, as reported in [6], [7]. Authors
of [8] propose a solution based on differential-privacy which
obtains low aggregation error but at a high communication
costs to transfer the ciphered information. A different ap-
proach is adopted in [9], [10], in which authors explore a
solution based on data aggregation at the level of time-series
with a lightweight encryption. Authors of [5] propose an
encryption schema specifically tailored on a MCS scenario.
In the reminder of this section, we briefly summarize such
solution, as it represents the approach that we extended in this
work. Authors of [5] identify 3 architectural components: the



devices, an aggregator and the Cloud. In particular, authors
address the following requirements:
• Efficient group: a strategy to partition the MCS users

in different groups. Users’ devices can join/leave the
group they belong to, and they can refresh the adopted
encryption mechanism;

• Data integrity: the aggregator can verify the integrity of
the collected data so that to prevent a man-in-the middle
attack;

• Fault tolerance: a strategy to prevent data corruption
during communications between end-devices and the ag-
gregator.

The considered scenario is characterized by a set of devices
ui, i ∈ [1, n] collecting sensing information at different time
periods. We refer to xi,t as the data collected by ui at time
t. More specifically, authors detail a periodic aggregation
schema, through which devices can periodically encrypt and
transmit sensed information to the aggregator. The cryptogram
sent by ui at time t is composed by:

ci,t = xi,t + ∪Ri,t (1)

where xi,t represents the collected data summed with a noise
given by the difference between two Gamma distributed ran-
dom variables of shape α: Ĝi(α, λ) = Gi,1(α, λ)Gi,2(α, λ).
As discussed in [5], the perturbation given by Ĝi(α, λ) is not
enough to obfuscate xi,t therefore, us adds the factor R̂i,t
which is obtained from the the cipher keys R(i, i − 1) and
R(i, i+ 1) used at time t by device i to encrypt xi,t. R̂i,t is
given by:

(2)R̂i,t =H2(FH1(R(i,i+1))(t))−H2(FH1(R(i,i−1))(t))+ si

mod q

R̂ is obtained by 2 one-way hash functions H1, H2 and F
is defined as a PseudoRandom function using H1 as input
parameter1. Every device can apply Equation 1 to build the
cryptogram and to send it to the aggregator with a wireless
link, e.g. WiFi or Bluetooth. In turn, at every time step,
the aggregator receives a sequence of cryptograms that it
aggregates (sums) as follows:

n∑
i=1

ci,t =

n∑
i=1

xi,t +

n∑
i=1

R̂i,t (3)

It is worth to notice that the the sum of all perturbations
Ĝi(n, λ),∀ui, returns a Laplacian random variable (r.v) of
mean µ = 0 and scale λ: Lap(µ, λ) = 1

2λ exp(− |x|λ ),
commonly used with differential privacy problems.

III. SYSTEM MODEL

We consider a Mobile CrowdSensing (MCS) platform that
involves a number of end-users. Each end-user installs in
her/his smartphone a mobile application interacting with the
MCS platform to implement sensing tasks, that may or may
not require the assistance of the end-user. The platform is

1Authors adopt HMAC-SHA256 as PRF function

managed by a centralized component, (hereafter MCS man-
ager) that injects tasks and that collects the results. Each task
specifies the sensing activity to be executed by the mobile app,
and it may be directed to a specific subset of apps, depending
on the profile of their end-users.

We assume that a task, in general, produces a stream of
sensed data flowing from the apps to the MCS manager. The
MCS manager, in turn, stores the collected data for further
analysis. To the purpose of making more efficient the process
of data collection, especially when a task involves a large
number of apps, the MCS platform relies on an intermediate
layer of edge computing servers, each covering a given logical
or physical area. Such layer is in charge of collecting and
aggregating the data streams produced by the apps operating
in their respective area of coverage. We refer to such layer as
the aggregator.

More specifically, in this work we focus on tasks for which
it is possible to perform data aggregation. As a matter of
example, let us consider a task to measure the quality of
a wireless signal, e.g. WiFi or LTE propagated by a set of
base stations. The task activates the app of the end-user to
periodically measure the received signal strength indicator
(RSSI) estimated by the the wireless interface. For each data
read from the wireless interface, the app tags it with the current
timestamp and sends it to the local aggregator. In turn, the
aggregator sums all the received data with a matching times-
tamp. Finally, the aggregator averages the sensed information
and sends it to the MCS manager.

In the rest of the paper, we assume that the MCS platform
involves n end-users, each of which has installed in her/his
smartphone an instance ui (i ∈ [1, n]) of the MCS app. We
also denote by M the MCS manager, and by aj (j ∈ [1, p]) the
aggregation servers previously introduced. In a given period
of time, each aj aggregates the data received from ui. A task
T sent by M to the MCS apps, is defined for a time frame
[t, t′] and it requests the apps to perform a periodic sampling
with period s. We assume that the interval [t, t′] is slotted,
where each slot lasts a period l ≥ s, and that each aggregator
performs elaborated the data within a single slot. Focusing
to a given area covered by the aggregator aj , we assume
that all the apps in Aj are synchronized with the beginning
of each slot, hence each app produces a number of sampled
data (each tagged with the corresponding timestamp) in each
slot, and all these data are aggregated together. Note that
the messages exchanged between the apps and the aggregator
may be delayed or even lost, and the apps themselves are
not necessarily reliable as they can be disabled by their end-
users without any notice or a end-user herself may migrate
(along with his smartphone and MCS app) to the area covered
by another aggregation server. Hence the aggregation process
should be tolerant to missing data.

IV. PRIVACY AND ENCRYPTED DATA AGGREGATION IN
MOBILE CROWDSENSING

In the described model the data the aggregator might be not
a trusted agent in our MCS architecture. If this is the case,



then the aggregator may make improper use of the data and
possibly attempt attacks to infer other information about the
subscribers. It should be observed however that the same issues
remains even if the MCS platform does not use intermediate
aggregation servers. In this case, in fact, the subscribers data
is available in cleartext to the MCS manager that may also
make improper use of the subscribers data. Note in fact that,
to the specific purpose of the MCS campaign, the objective
is to obtain an aggregation of the data and not the single
individual data alone. For this reason, even using an encrypted
transmission of the data from the apps to the MCS manager
would not provide any privacy guarantee to the subscribers
under this respect. Hence, we consider an approach in which
the data are aggregated in an encrypted form, so that the
aggregation server, which does not have the decryption keys,
does not have access to the clear-text data, and the MCS
manager receives only reports of aggregated data that hence
do not bring any individual information about the subscribers.
More specifically we adopt the encryption method proposed
in [5] and described in Section II. The proposed schema, is
sensible to the loss of data in the communication from the apps
ui to the aggregator, which may happen for several reasons.
As for example, the data are delayed, the user is offline or the
wireless links between users and the aggregator is subject to
interference. To cope with these issues, authors of [5] propose
the use of a buffering mechanism of the future messages (that
can be used if the aggregation does not operate in strict real-
time), and that lets the aggregator to fill the missing data in
order to compute correctly the aggregation. Let us consider
the case in which the n app instances are instructed to collect
data at a given frequency during the time interval [t, t′], and
that these data need to be aggregated at each time slot, so
that in each slot the aggregator expects to receive f samples
from each ui. In practice, referring to a given slot, say [t1, t2],
the aggregator receives from each ui a number of samples
equal to fi ≤ f . In order to perform a correct aggregation, the
aggregator needs to compute the average by considering the
same number of samples from each ui. As in general this is not
possible, the aggregator computes fM = maxi∈[1,n]{fi}, and
it considers the computation only the data from the ui such
that fi ≥ δ × fM , where δ ∈ [0, 1] is a system parameter. In
order to replace the missing data with potentially meaningful
data for a given ui, the aggregator includes in the computation
also the first fM−fi data provided by the buffering mechanism
of the aggregator of the data provided by ui [5]. However, the
problem in this approach is that, as these data are replacement
and hence not real data taken in the slot, this may alter the
result of the aggregation. This is particularly problematic in a
MCS context where the amount of loss data may be significant.
A second aspect to be considered is the effect of the random
noise inserted by the ui before the encryption (see equation
1 to ensure the differential privacy property, which may also
alter the final result of the data aggregation.

V. EXPERIMENTAL SETTINGS AND RESULTS

To the purpose of assessing the effect of noise and loss of
data in a MCS platform, we developed a simulator modeling
the interaction between an aggregator and n applications. To
feed the simulation with real data, we considered environ-
mental data (specifically temperature readings from Bologna
city, Italy) measured by 10 meteorological stations available by
Weather Underground2. The stations sample the temperature
every 10 minutes over a period of 2 hours, we consider data
collected on November 4th, 2016. The encryption algorithm
is configured by setting the parameters of the Gamma dis-
tribution to α = 1/10 and λ = 2. The simulator makes
an exhaustive analysis of all possible combinations of data
received by the stations, and it compares the outcome of
the aggregation against an aggregation conducted in the same
conditions but without encrypted aggregation.

The results of the simulation are summarized in Figures 1
to 3. Figure 1 reports the real and the computed average, by
varying the number of noisy input values that are received
by the aggregator (this simulates the presence of missing data
from some of the sources), with the respective 95% confidence
interval (the shaded area). The aggregation is performed with
10 readings, reproducing a scenario with low data collected
from end-users. Figures 2 and 3 report the results with a higher
number of readings, 80 and 120 readings, respectively. These
scenarios reproduce a more significant scenarios in which
the intensity of noise injected at the encryption time varies
between 10% to 90%. As a general consideration, the reported
figures show that the system is tolerant to noise since the error
due to the encrypted aggregation is affected by an error that
is limited to around 0.02 Celsius degrees in all cases.

Finally, Figure 4 shows how the average temperature value
vary with a varying number of readings, from 1 to 120. The
box plots show an increasing trend of the noisy of the resulting
average. Specifically, each box plot shows the median of the
average temperature for a given number of readings, and the
25-th and 75-th percentile, as well as the outliers. The increase
of size of the box plots depends from the fact that each data
brings to the aggregator its additional noise, and this suggests
that the aggregation should be execute on limited time frames
in order to avoid the divergence between real data (sampled
buy the stations) and the results of the aggregator.

VI. CONCLUSIONS

We explore in this work how the Mobile CrowdSensing
paradigm can be enriched with a privacy-preserving encryption
schema, able to guarantee the privacy of the end-users, e.g. the
data providers, data integrity and fault tolerance. We extend the
work presented in [5], by introducing a temporal management
for the cryptograms generated by the data providers. This
extension allows to generate an arbitrary number of cryp-
tograms which, in turn, can be aggregated and sent to the
MCS back-end. We analyze the effect of the noise component
added to the cryptograms with the goal of measuring how

2www.wunderground.com



Fig. 1. Average temperature obtained with 10 sample readings.

Fig. 2. Average temperature obtained with 80 sample readings.

much information is lost during the aggregation level. To this
purpose, we simulate the generation of ciphered temperature
readings extracted from Weather Underground, by measuring
the difference between the actual and aggregated median value
of the temperature for as period of 2 hours. Our results show
that such difference is always below 0.02 Celsius degrees.
Further studies are however necessary to extend the time frame
of the aggregated data, and to analyze other kind of data that
possibly has a larger variability than the temperature.
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