
A Conversational Agent for Creating Flexible Daily Automations

Insert Subtitle Here

FirstName Surname†
 Department Name

 Institution/University Name

 City State Country

 email@email.com

FirstName Surname
 Department Name

 Institution/University Name

 City State Country

 email@email.com

FirstName Surname
 Department Name

 Institution/University Name

 City State Country

 email@email.com

ABSTRACT

The spread of sensors and intelligent devices of the Internet of

Things and their integration in daily environments are changing the

way we interact with some of the most common objects in everyday

life. Therefore, there is an evident need to provide non-expert users

with the ability to customize in a simple but effective way the

behaviour of these devices based on their preferences and habits.

This paper presents RuleBot, a conversational agent that uses

machine learning and natural language processing techniques to

allow end users to create automations according to a flexible

implementation of the trigger-action paradigm, and thereby

customize the behaviour of devices and sensors using natural

language. In particular, the paper describes the design and

implementation of RuleBot, and reports on a user test and lessons

learnt.

CCS CONCEPTS

• Human-centered Computing → Natural Language Interfaces •

Information Systems → Chat

KEYWORDS

Chatbot, Trigger-Action Rules, End-User Development

ACM Reference format:

FirstName Surname, FirstName Surname and FirstName Surname. 2018.

Insert Your Title Here: Insert Subtitle Here. In Proceedings of ACM

Woodstock conference (WOODSTOCK’18). ACM, New York, NY, USA, 2

pages. https://doi.org/10.1145/1234567890

1. Introduction

The Internet of Things (IoT) has become very pervasive, and

current forecasts1 indicate that such trend will even increase in the

near future. In this context it is important to exploit such

technological offer through automations that are able to coordinate

1 https://www.statista.com/statistics/1101442/iot-number-of-connected

devices-worldwide/
2 https://ifttt.com/home

the behaviour of connected objects and devices. Various artificial

intelligence techniques can be useful to automatically identify the

most relevant ones. They may obtain mixed results (see for

example [19]), because they may generate actions that do not match

the real user needs or people may have difficulties in understanding

the automatically generated automations. In addition, people have

dynamic and specific needs, thus it becomes important to allow

them to directly personalize the possible automations, even if they

are not professional software developers, according to the End-

User Development (EUD) [16] paradigm. In this perspective, the

Trigger-Action Programming (TAP) approach seems particularly

suitable since does not require specific algorithmic abilities because

it mainly allows users to connect the relevant dynamic events

detected through sensors or services with the desired actions.

Several tools have been put forward both at a research and

commercial level (such as IFTTT2, Node-Red3, Zipato4) to provide

support for some kind of TAP. At a research level, various ways to

support end users in composing (e.g. [4, 5, 7, 11, 17]) or

understanding trigger-action rules have been put forward, such as

dynamic recommendations [10] or visual predictions of the future

behaviour [6].

Various composition paradigms have been considered to support

the development process of trigger-action rules. By composition

paradigm we mean how the tailoring environments guide the rule

development process, how they present the relevant concepts and

interact with users. In general, such composition paradigms have

exploited the visual modality supporting data flow representations

or wizard-like styles or block-based manipulations. The

conversational composition paradigm has received some attention

but with limited solutions that have not considered the relevant

aspects in TAP, such as the possibility to distinguish between

events and conditions, compose multiple triggers and actions, and

indicate triggers associated with when some event does not occur.

In general, limited support by the tailoring environment can

generate some of the potential issues in interpreting the trigger-

action rules [3]. For example, it is important to allow users to

clearly understand the temporal dimension of the triggers and

actions considered [13], since their misunderstanding may lead to

undesired effects such as unlocking doors or activating heating

systems at the wrong time.

3 https://nodered.org/
4 https://www.zipato.com/

∗Article Title Footnote needs to be captured as Title Note
†Author Footnote to be captured as Author Note

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full

citation on the first page. Copyrights for third-party components of this work must

be honored. For all other uses, contact the owner/author(s).

WOODSTOCK’18, June, 2018, El Paso, Texas USA

© 2018 Copyright held by the owner/author(s). 978-1-4503-0000-0/18/06...$15.00

https://doi.org/10.1145/1234567890

mailto:email@email.com

WOODSTOCK’18, June, 2018, El Paso, Texas USA F. Surname et al.

In this paper we present a conversational agent able to support end

users to create automations for daily environments, such as the

home, in terms of trigger-action rules that allow them to flexibly

indicate the desired objects’ behaviour. Thus, after discussing

related work we introduce the design of the proposed tool, we then

detail how we have implemented it, and the user feedback received.

Lastly, we draw some conclusions and provide indications for

future work.

2. Related work

The possibility to support end-user creation of automations in the

trigger-action format is provided by several commercial or research

tools. However, usually this is provided with limitations that do not

allow users to express all the possible types of rules. For example,

Amazon Alexa in addition to the “classic” features, relating to

carrying out instant actions such as turning on the lights or starting

the music, it provides the possibility of creating “routines” using

the graphic interface made available by the relevant smartphone

application. Similar functionalities are provided by Google Home.

IFTTT is an online service accessible through visual interfaces that

offers the possibility to create rules in trigger-action format (called

applets) that give rise to simple applications for controlling smart

objects or web applications. When using the free version, IFTTT

allows the creation of maximum three rules consisting of a single

trigger and a single action. While the commercial version supports

the possibility to express more structured rules but without clearly

indicate the difference between events and conditions. In general,

such commercial tools have not considered the conversational style

for creating trigger-action rules or when they consider it is only for

some limited types of rules.

Some research studies have started to consider the conversational

approach. HeyTAP is a conversational agent for personalizing the

behaviour of house smart objects [8]. It presents a multimodal

interface through which the user can express preferences related to

the functioning of the installed devices. HeyTAP requires the

trigger part of the rule to be defined individually and separately

from the action to be performed. Moreover, it does not allow the

direct creation of the rule but requires further interaction with a

“classic” interface to choose the routine, among those proposed by

the system, that is closest to the user's request.

Although not particularly focused on the Internet of Things,

SUGILITE [15] uses the programming by demonstration paradigm

for the creation of automations on mobile devices. The users can

associate a set of actions with a custom voice command, showing

how these actions are to be performed through direct navigation.

Another relevant work is InstructableCrowd [12], a framework

which enables users to converse with the crowd through their phone

and describe a problem. Then, it provides a graphical interface for

crowd workers to both chat with the user, and compose a rule with

a part connected to the user’s phone sensors, and a part to its

effectors. However, in IntructableCrowd the rules are created

through a graphical interface.

CAPIRCI [2] is a multi-modal interactive system for off-line

collaborative robot programming. The approach provides the users

with two different but integrated ways for defining robot tasks: the

former, based on natural language processing, should be firstly

used to address the programming problem, by obtaining the

specification of a simple task; the latter, based on a component-

based visual language, can be used to refine the program. Valtolina

et al. [18] reported on a study evaluating the benefits of a chatbot

in comparison to traditional GUI, specifically for users with poor

aptitude in using technologies. They considered two example

scenarios in the healthcare and smart home fields, and found that

for the user experience the chatbot application appears to be better

than the GUI-based one. One further contribution [1] investigated

the effects of including a conversational agent for helping end-user

developers in defining the behaviour of point-and-click games

through event-condition action rules. The comparison of the

versions with and without the chatbot showed a decrease in the

perceived cognitive load in complex tasks when using the chatbot.

Despite such promising indications, the conversational interaction

style has received limited attention for supporting creation of

trigger-action rules in general, and in this paper we present RuleBot

a proposal aiming to contribute to cover such gap.

One work that addresses similar issues is Jarvis [14]. It allows users

to create rules for the instantaneous or delayed execution of

commands on devices inside the home, with a limit of one trigger

and one action. Even if it supports the execution of instant actions

(e.g. “turn off the lights or play some music”) and causality queries

(e.g. “why did the lights turn on in the kitchen?”), it does not allow

users to have a full and detailed control of trigger-action rules.

Thus, in Jarvis it is not possible, for example, to specify rules with

actions that require a certain delay and, at the same time, some

condition to be verified in order to be triggered (e.g. “turn on the

light in the living room at 7:00 pm if it’s dark”). This kind of rules

can be created using RuleBot, since the implemented support

allows the creation of rules containing multiple triggers and actions.

Other aspects supported by RuleBot but not Jarvis concern the

possibility to manage triggers with negation (e.g. when I don’t take

the medicine”), and the possibility to clearly distinguish between

events or conditions when creating a trigger.

3. The Proposed Solution

The purpose of the chatbot is to be able to perform conversations

with end users aimed at creating trigger-action rules implementing

automations for available connected objects and services, which

can then be activated and executed. Considering the issues detected

in several previous languages for trigger-action rules we adopted a

language that is able to clearly distinguish between events and

conditions, and express multiple triggers, which can be composed

through logical operators (OR, AND); and it can support multiple

actions, which can be composed sequentially; and the possibility to

trigger a rule when some event does not occur. This flexibility of

the language has implications in the design of the conversational

agent that has to allow the users to specify all the relevant

information. In addition, the possible triggers are logically

organised according to three main dimensions: user, aspects related

to their emotional, and physical state, and the activities that they

perform; environment, aspects related to the surrounding elements,

such as light, noise, temperature, humidity, and associated services

Insert Your Title Here WOODSTOCK’18, June, 2018, El Paso, Texas USA

such as weather forecasts; and technology, related to the state of the

various devices available, such as TV, smartphones, PCs, and their

services. The possible actions can change the state of the appliances

and devices available, can generate reminders and alarms through

various channels, and can activate device dependent services, such

as those associated with Alexa.

We followed an iterative design process in developing the proposed

solution for a conversational agent able to support such language.

In the first version (V.1) to achieve greater accuracy in recognizing

the user's intention, it was decided to create a specific intent for

each possible trigger and action present in the language (66 intents

were created for triggers and actions, 6 for rule creation support

features such as saving and deleting rules, or providing information

about its functionalities). For each intent, the set of training phrases

included phrases that referred directly to the single element

considered. For example, the intent for the recognition of inputs

related to a motion sensor was trained with phrases such as “if the

motion sensor in the kitchen is active”, or “if the motion sensor is

activated in the bedroom”. This structure of intents and entities,

however, presented limitations in the interaction between the

chatbot and the user. In fact, to build the rule, each user input can

include at most one trigger or action, making the conversation

fragmented and unnatural when users want create rules with

multiple triggers and actions. In addition, the training phrases used

had a “device-centric” level of abstraction [9] (e.g. “when the

motion sensor is the kitchen becomes active” or “if the thermostat

detects a temperature lower than 10 degrees”), for which the user

inputs must contain a direct reference to the sensor to be used,

forcing the users to conform to this specific way of looking at

automations. A first user test of the initial prototype was carried out

with twenty-three students of a course of a Digital Humanities

degree. They had to specify five rules with increasing level of

complexity. Overall, they did not much like the composition style

exploited in that chatbot prototype, which was judged somewhat

imprecise, requiring several interactions, thus not very efficient,

with some features requiring improvements.

Then, we considered an approach based on intents that can

categorise multiple triggers or actions in one sentence by providing

training phrases containing, for example, one trigger and one

action, two triggers and two actions. The organisation of the intents

in this version (V.2) no longer followed the structure of the

previous one (one intent for each single possible trigger or action),

but referred to the possibility of intents associated with multiple

triggers and/or actions within the user input. Initially, three main

intents were considered, which correspond to inputs consisting of:

two triggers, two actions, and one trigger and one action. So, for

example, we used training phrases such as “turn off the lights when

I’m leaving home” or “send me a notification if it will rain

tomorrow” to categorise one trigger and one action. Training

phrases such as “if it’s raining or snowing” would be associated to

the intent that categorises two triggers, and “turn on the light and

play some music” for the intent to categorise two actions. However,

this approach raised several problems regarding: the quantity and

the quality of the training phrases; the recognition of the specific

trigger and action present in one input; the scalability of the

corresponding architecture. The first point concerns the difficulty

of managing all the possible instances of the various possible

combinations (trigger + trigger, action + action and trigger + action)

and the respective intents. To get an idea of the possible

combinations, consider the number of triggers and actions types in

the language (at the time of writing there are 58 and 8 respectively).

In the worst case, represented by the combination of two triggers,

we obtain exactly 1653 combinations, and then we need to consider

the possible variants for each element (for example, the verification

of the activation of the smoke sensor could be expressed with

sentences such as “if the smoke sensor in the kitchen is active”, “if

there is smoke in the kitchen”, “when smoke is detected in the

kitchen” and so on). The second problem concerns the

identification of sensors and/or actions within the user input. In

fact, even if an intent can recognise that the input contains, for

example, one trigger and one action, it is then problematic to

identify exactly which sensors or devices are referred to. Finally,

the scalability of the system is compromised because the addition

of even one sensor to the language would require writing many

training phrases considering the new sensor in association with all

the existing ones.

We thus designed and developed a new solution (V.3) with the aim

of overcoming the limitations of the previous ones. The new system

is based on the combined use of two different components: one

dedicated to receiving inputs and sending responses with the user,

called “Dialogue Interface”; another, to which the appropriately

processed input is submitted, which deals with the classification of

the intents and the extraction of the parameters, called “Intent

Classifier”. A “Dialogue Manager”, implemented through a

webhook server, is interposed between these two components, and

processes the inputs received from the former and generates the

responses to be sent back based on the data received from the Intent

Classifier (see Figure 1). This process, explained in detail in the

next section, allows the reception of even complex inputs,

containing multiple triggers and actions at the same time. In

addition, the sets of training sentences have been appropriately

expanded with sentences that consider different syntactic

constructions as well as different communication styles, like

sentences that use “people-centric” and “info-centric” abstractions

[6] to refer to a sensor or a device (e.g. “when I enter the bedroom”

rather than “when the motion sensor in the bedroom becomes

active”).

Figure 1. RuleBot architecture

WOODSTOCK’18, June, 2018, El Paso, Texas USA F. Surname et al.

4. Implementation

Dialogue Manager. The Dialogue Manager is implemented

through a webhook component running on Node.js, and is essential

for managing all the chatbot features. It receives the inputs from the

Dialogue Interface and the related intents from the associated Intent

Classifier, validates and processes the extracted parameters,

manages the creation, updating and deletion of contexts, and carries

out a set of secondary functions, such as the management of saving

and deleting rules.

When the Dialogue Interface receives a complex sentence

containing more triggers and actions as input, it sends it to the

Dialogue Manager, which breaks it down into smaller and simpler

sentences that represent the single triggers/actions involved. Thus,

a list of multiple sentences is obtained from a single complex one,

and for each sentence obtained, a call is made to the Intent

Classifier. For each of the phrases received this latter performs the

classification of the intents, and identification of the relative

parameters, and then returns a response in JSON format containing

the extracted information to the Dialogue Manager.

The subdivision of the initial sentence provided by the user into a

list of smaller sentences has been implemented through an

algorithm that uses regular expressions and a Parts of Speech (PoS)

Tagger5. In particular, regular expressions search within the user

input sentence for some specific words and characters that indicate

the border point between multiple triggers with high probability.

The terms that support identification of the triggers are “when”, “if”

and “while”, in addition, the conjunctions “and” and “or”, and

punctuation marks such as commas and periods are also taken into

consideration. Regarding the actions, their identification is based

on the presence (through the data extracted from the PoS tagger) of

verbs that express actions such as “turn on”, “turn off”, “send”,

“play”, “open”, “close” and so on. Specifically, the verbs are taken

into consideration when they are6: in the second person singular,

present tense of the indicative mood; in the second person singular

of the imperative mood; infinitives.

After receiving the corresponding intents and related parameters

from the Intent Classifier, a verification process is initiated to

identify any missing parameters to successfully create the rule. For

this purpose, two reference models have been defined: one for

describing triggers and one for actions. Both templates (defined in

JSON) consist of “name intent: list of required parameters” pairs.

For each identified intent, the Dialogue Manager performs a

comparison between the extracted parameters and the mandatory

parameters, then a queue is created containing the missing

parameters. Subsequently, the chatbot asks the user to provide the

missing data, updating the queue as the requests are satisfied.

The generation of responses has been divided into two categories:

predefined and template-based responses. The former, used for

requesting parameters, have been statically defined within a JSON

file. Each trigger or action (identified by the name of the

corresponding intent) is associated with the list of mandatory

parameters; for each parameter there are two types of responses:

5 The Python NLP package called “Stanza” by Stanford University.
https://stanfordnlp.github.io/stanza/index.html

one for asking for the missing parameters and one for indicating

that the input parameter provided was of the wrong type.

The template-based responses are used in the final part of the rule

creation process. When the rule is complete, the agent reconstructs

it in natural language starting with the set of parameters that form

it. For this purpose, a set of templates have been defined that

“translate” and concatenate the parameters in a meaningful

sentence. This type of response is used to provide feedback to the

user in order to verify the correct understanding and creation of the

rule by the chatbot.

Dialogue Interface. This component manages the user inputs,

which can be of two types: new rules or parameters requested by

the chatbot to complete a rule under editing. Inputs to complete a

rule are identified because they are entered only when this

component is in specific contexts, in the other cases the input is

associated with the intent “Rule Identifier”, and, after appropriate

processing by the Dialogue Manager, is subjected to recognition by

the Intent Classifier.

The “prompt” and “get” intents manage the insertion of missing

data for completion of the rule (i.e. the mandatory entities not yet

present in the input rule). In particular, the “prompts”, which are

activated through the use of Dialogflow events, are used to activate

the message requesting the missing data (e.g. “In which room do

you want to turn on the lights?”), and set the contexts necessary to

receive the response. The user response is captured by the

corresponding “get” intent or, in the case of unexpected responses,

by the associate fallback intent. For each type of entity there are

therefore the intents “prompt”, “get” and “fallback”. In addition to

classic entities, we used composite entities: “triggerValue”, which

groups all the entities that refer to the possible values that can be

associated with a trigger (e.g. numbers, dates, weather conditions,

cognitive and emotional states and so on); “actionValue”, which

refers to the values that can be associated with the actions (e.g. the

colours of the lights or the text to be associated with the reminders).

Their use is linked to intents of type “get”; in fact, the respective

“get.triggerValue” and “get.actionValue” make use of these entities

to recognize the corresponding terms.

Therefore, referring to the intents of type “prompt”, “get” and

“fallback”, only the “get” intents contain training phrases because

those of the “prompt” type correspond to a support function and do

not need a user input, while the “fallback” ones are automatically

activated when the input does not match the correspondent “get”

intent.

Some training phrases (between 10 and 20) have been used for each

“get” intent. For example, the intent “get.binaryState” contains

training phrases such as “is open”, “is closed”, “activates”,

“deactivates”, “switch on”, “switch off”, associated with the entity

“BinaryState”. The intent “get.notificationMode” (which intercepts

the answer to the question “Do you want to send a notification, an

email, a voice message or an SMS?”) has among its training

phrases: “send an email”, “send an sms”, “a notification” and so on.

6 Currently the chatbot supports Italian.

Insert Your Title Here WOODSTOCK’18, June, 2018, El Paso, Texas USA

We have used Dialogflow contexts for directing the flow of the

conversation by limiting the intents that can be activated upon

receipt of a certain input, and also for tracking and storing the

interactions that take place during rule creation. In particular, the

two main contexts are: “queue”, after receiving the input containing

triggers and actions, and after recognizing them through the Intent

Classifier, a queue is created containing the missing parameters to

ask the user for, and each time the user provides a parameter, the

queue is updated to request the next one; “model” keeps track of

the recognized intents and related parameters with the extracted

values, and is updated in conjunction with the “queue” context.

Every time the user provides a missing parameter, the “parameter:

value” pair is added to the corresponding intent model. When the

queue ends, this context is saved and translated into a data structure

that describes the rule created.

Both contexts are generated and managed by the webhook server,

and are related to a single rule creation session.

Intent Classifier. This component is responsible for classifying

inputs that represent triggers or actions after the decomposition

performed by the Dialogue Manager. The classifier associates a

single intent for each possible trigger and action defined by the

language (66 intents have been created). Thus, for example, it

contains intents to classify inputs such as “when the light turns on”,

“if it’s raining”, “send me a reminder”, “play some music” and so

on, which will be respectively associated with the intents

“trigger_light”, “trigger_weather”, “action_reminder” and

“action_music”. A set of entities (26) has been defined to recognize

the terms that identify the required parameters. For instance, the

sentence “when the light turns on” contains the entity

“triggerType”, which determines if the trigger is an event or a

condition (“if” or “when”), and the entity “binaryState” to identify

state changes (“on” or “off”).

For each intent a variable number of training phrases has been

defined, considering the intent complexity and the number of

entities associated: intents that define triggers contain a number of

training phrases ranging from 40 up to 70. The actions are in

general simpler than triggers and have fewer required parameters,

and thus have received a number of training phrases between 20

and 40.

The training phrases aim to reflect different ways of expressing a

concept. Thus, we used phrases that refer directly to a sensor or

device (e.g. “If the motion sensor of the kitchen is active”), but also

to a person (e.g. “if I enter the kitchen”) or to information (e.g. “If

there is movement in the kitchen”).

Figure 2 shows an example of use, the texts have been translated in

English for wider readability. It illustrates the creation of a rule

containing two triggers and two actions. In this case, all the desired

triggers and actions are in the first user input (Fig. 2a), while the

successive interactions are limited to obtaining the necessary

information for completion of the rule. Figure 2b shows the next

steps followed by the request for the input of the logical operator

for the concatenation of the two triggers. The conversation ends

with a feedback message from the chatbot that summarizes the rule

created, followed by the proposal to save it (see Fig. 2c).

Figure 2a, b, c. Creation of a rule composed of two triggers and two actions with RuleBot

5. User Test

A user test has been carried out on the latest version of the chatbot

to better understand its usability. To make the test and user

feedback more consistent, exhaustive, and informative, it was

decided to define “scenarios” that represent situations in which it

would be appropriate to create customization rules.

The scenarios were presented in order of increasing difficulty,

requiring the specification of simple rules consisting of one trigger

and one action, to more complex rules consisting of two of each.

Users were asked to address the proposed scenarios by creating

7 https://tare.isti.cnr.it/RuleEditor/login

customization rules using two different tools: TAREME and

RuleBot. Finally, each user filled out a questionnaire in which they

were asked to express their opinions about the efficiency, and their

appreciation of the experience with the two tools.

TAREME7 [7, 17] is a publicly available tool supporting graphical

wizard composition of TAP rules. It is visually structured into two

main parts, one for triggers and one for actions, and one sidebar

providing feedback on the progress achieved in creating the rules.

Both the trigger and action parts are organized in terms of main

categories, which when selected, unfold their sub-categories, and it

is possible to iterate until the basic elements with their attributes are

WOODSTOCK’18, June, 2018, El Paso, Texas USA F. Surname et al.

visualised. Depending on the rule elements selected, a sentence

appears on the top part of the user interface during the editing

process to provide feedback in natural language of the rule created.

It applies a wizard-like compositional style, and we chose it also

because it is able to support the same rule language as RuleBot,

thus the usability evaluation is not affected by issues related to the

different ability to express rules between the two considered tools.

5.1 Users and Tasks

We had ten participants: eight had no expertise in programming

languages, only two had knowledge of languages such as HTML

and CSS; eight males, two females, their ages ranged from 20 to

30, with an average of 27. They were divided into two groups of

five. Both groups used TAREME and RuleBot, in inverse order to

balance learning effects. After the creation of the rules, they were

then asked to rate six statements about the two tools used, on a scale

of 1 to 5, indicating respectively full disagreement and full

agreement. Users then gave a motivation for each score assigned.

They received the following four scenarios requiring writing

corresponding personalisation rules in trigger-action format.

Main context: You are the son/daughter of an older adult who lives

alone. The house s/he lives in is equipped with sensors and smart

objects that allow checking what happens inside the house (lights,

parent’s presence in a given room, temperature or acoustic noise in

a room etc.) and execute actions as a consequence (turn on lights,

send alarms or reminders, start music, …).

Scenario 1 (1 trigger + 1 action): You as the child are concerned

that your parent is not eating healthily, and that s/he is resorting to

cold foods too often. Therefore, you would like to receive an email

whenever your parent is using the microwave oven.

Scenario 2 (2 triggers + 1 action): Sometimes the parent does not

notice that s/he keeps the TV volume too high, even in the late

evening. To solve the problem, you would like to receive a message

on your cell phone when there is too much noise in the living room

after 10 pm (30 decibels are exceeded).

Scenario 3 (1 trigger with negation + 2 actions): You want to make

sure that your parent correctly takes a certain medicine, Pradaxa,

which must be taken by 3 pm. To this end, you would like to create

an automation that reminds your parent to take the Pradaxa if s/he

has not yet done so. To be effective, it would be helpful to send a

notification to the parent's phone, and also to turn on a red light for

1 minute in the kitchen, where your parent is usually at that time.

Scenario 4 (2 triggers + 2 actions): Your parent too often spends

the afternoon (after 3:30 pm) in the living room reading the

newspaper. The living room is dark, consequently s/he always turns

on the lights to read. You would like your parent to receive a

notification by cell phone in these situations, something like, “Dad,

why don't you go out for a walk?”. In addition, the “activating” light

scene should also start.

5.2 Task Performance

Time measurement. RuleBot supported more efficient

performance than TAREME. On average, to perform all the tasks

users took 7.38 minutes with RuleBot, and 11.33 minutes with

TAREME. The mean execution time (in minutes) per task are:

Task 1: RuleBot (1.26), TAREME (1.41);

Task 2: RuleBot (1.54), TAREME (1.41);

Task 3: RuleBot (1.57), TAREME (3.55);

Task 4: RuleBot (2.36), TAREME (3.19).

Errors analysis. We checked whether the rules created were well-

formed. The errors present were classified according to three

categories, and refer to correctness of: the trigger or action, the

choice between an event or a condition, and the use of the NOT

operator for the creation of triggers with negation. In addition, for

each category, errors have been classified as severe (scored 1 point)

or moderate (scored 0.5). Severe errors are those that completely

change the behavior of the rule or lack a required element from the

task description. An error is considered moderate if when it occurs

the rule does not correspond exactly to the task description, but the

behavior obtained is very similar to it. A total of 80 rules were

analysed. The total error score in rules created with RuleBot was

27.5, while with TAREME it was 23.5. The overall error score for

each task was:

Task 1: RuleBot (1), TAREME (2);

Task 2: RuleBot (9), TAREME (5.5);

Task 3: RuleBot (7.5), TAREME (8.5);

Task 4: RuleBot (9.5), TAREME (7).

The data obtained indicate that the wizard-based tool is less prone

to errors than the chatbot. Both the total errors and the overall error

scores per task describe greater accuracy in the use of the visual

environment over the conversational one.

Errors in triggers and actions: in RuleBot most errors concern

the incorrect use of the comparatives of equality, greater or lesser

(9 rules out of 40), often associated with triggers on schedules (e.g.

user said “if it’s 3pm” instead of saying “if it’s after 3pm”); 8 rules

out of 40 present errors concerning the addition of an extra trigger

or the non-insertion of a necessary trigger. Regarding TAREME, 7

rules out of 40 present an unsolicited trigger or the non-insertion of

a necessary trigger; only 4 rules contain the incorrect use of

comparisons; 3 rules present an incorrect choice of trigger, even if

for all three cases the error was considered moderate as they

concerned the choice of similar triggers (e.g. the trigger on the

brightness in a room is used rather than the one on the state of the

light).

Errors in the choice between event and condition: for RuleBot

this is the most common type of error: 20 out of 40 rules have

moderate errors regarding the choice between event and condition.

Only 1 rule has an error classified as severe because it prevents the

rule being activated. TAREME instead presents 16 rules out of 40

with a moderate error regarding the choice between event and

condition and 1 rule in which the error was considered severe.

Regarding errors related to the use of the NOT operator, these

only occurred in rules produced with TAREME. In two rules there

was a moderate error concerning the specification of the incorrect

Insert Your Title Here WOODSTOCK’18, June, 2018, El Paso, Texas USA

time. One rule has a severe error because the negation was added

to a trigger for which it was not required.

Conversational turns. The conversational turns have been

counted starting from the first user input to describe the rule to be

created. The turns count ends when the user sends the message to

save the rule (thus considered complete and correct). Fallback

messages have been included in the count. On average the number

of turns was:

Task 1: 6.2, Task 2: 8.2, Task 3: 7.2, Task 4: 7.1.

In general, there does not appear to be a particular correlation

between the complexity of the rule, the time taken to create it, and

the number of turns taken. For all the tasks, in fact, most of the

interactions refer to the fulfilment phases and, in particular, to the

collection of data needed to create the actions associated with

reminders (present in all the tasks), which require the presence of

several parameters.

5.3 User Feedback

Users assigned scores on a 1 to 5 scale to statements associated with

each task and provided associated comments.

Composing one trigger. The scores were assigned to the

statements: “I found it easy to edit the “trigger” portion of a rule

using the TAREME/RuleBot tool user interface”:

TAREME (Min 2, Max 5, Median 4, Mean 3.9),

RuleBot (Min 2, Max 5, Median 5, Mean 4.4).

As the scores show, for both tools, users had no particular difficulty

in creating a single trigger. For TAREME, although the comments

highlight good usability and intuitiveness, some express difficulty

in moving between the different categories of triggers and actions.

The comments about RuleBot refer to the ease of use given by the

possibility of expressing oneself in natural language, and of

producing commands independently without having to be limited

by rigid categories.

Composing two triggers. The scores were assigned to the

statements: “I found it easy to compose two “triggers” of a rule

using the TAREME/RuleBot tool user interface:

TAREME (Min 2, Max 5, Median 4, Mean 3.7),

RuleBot (Min 2, Max 5, Median 5, Mean 4.3).

As mentioned, the composition of two triggers is done through the

use of the logical operators (AND/OR). Also in this case for

TAREME the comments focused on the increasing difficulty in

identifying the correct trigger among the various categories. Thus,

the time spent and the attention required increased. No particular

problem was reported regarding the specification of the logical

operators, which were immediately identified and easily used by all

users. In this case RuleBot was preferred over TAREME for the

possibility of specifying the operators to be used directly in the

initial input, concatenating multiple events and/or conditions using

the conjunctions “and” or “or”. In addition, it was emphasized how

the greater freedom in the production of the rule makes the task

faster and more intuitive, especially with an increasing number of

triggers.

Use of “NOT” operator. The scores were assigned to the

statements: “I found it easy to edit a “trigger” that uses the “not”

operator using the TAREME/RuleBot tool user interface”:

TAREME (Min 2, Max 5, Median 4, Mean 3.8),

RuleBot (Min 2, Max 5, Median 5, Mean 4.3).

The performance of this task received mixed comments. For both

tools some users had no particular difficulty, while some others

needed longer time to understand the correct functioning. In

particular, TAREME requires the selection of a box named “not”,

which activates an additional button named “when”. When the

“when” button is clicked, a window opens in which the user is

asked to enter the start and end time of the negation using text

fields. Although this dynamic behaviour, was intuitive for the

majority of users (7 users), the remaining found it cumbersome, as

they did not fully understand the operation and the need to enter the

start and end times of the negation. Less critical comments were

provided for RuleBot, which simply requires the user to add the

term “not” for entering the requested negation. If no start or end

time is specified, the chatbot asks the user what time the missing

event or condition needs to be verified. Only one user pointed out

the difficulty in producing the correct command for RuleBot to

understand. The rest of the users found it natural and obvious.

Composing one action. The scores were assigned to the

statements: “I found it easy to edit the action portion of a rule using

the TAREME/RuleBot tool user interface”:

TAREME (Min 3, Max 5, Median 4, Mean 3.9),

RuleBot (Min 2, Max 5, Median 5, Mean 4.4).

A couple of users found difficulty in finding the actions on the

lights; five users misunderstood some items during the

specification of the actions on the reminders. These require the

inclusion of a recipient depending on the type of reminder chosen:

a phone number in the case of SMS reminders, an e-mail address in

the case of e-mail reminders. In this case, users entered “my father”

or “to me” as the recipient, assuming that the software would

automatically figure out how to send the reminder to them. In the

case of RuleBot, no particular problems were highlighted;

moreover, the chatbot itself asks which email or phone number to

send the reminder to, thereby eliminating the possibility of errors.

Composing two actions. The scores were assigned to the

statement: “I found it simple to compose two actions within a rule

using the TAREME/RuleBot tool user interface”:

TAREME (Min 2, Max 5, Median 4, Mean 3.9),

RuleBot (Min 2, Max 5, Median 5, Mean 4.3).

Comments consistent with those for composing an action were

provided for both tools. Problems in finding the right elements to

select in TAREME and quicker composition time for RuleBot were

highlighted. Some additional comments were provided for

TAREME: one user had problems because, considering what he

had to do to concatenate two triggers by using logical operators, he

WOODSTOCK’18, June, 2018, El Paso, Texas USA F. Surname et al.

could not understand if the same procedure was necessary also for

the concatenation of two actions.

Perceived speed and efficiency in creating the rule. The scores

were assigned to the statements: “The way rules are built using the

TAREME/RuleBot tool is fast and efficient”:

TAREME (Min 3, Max 5, Median 3, Mean 3.5),

RuleBot (Min 3, Max 5, Median 4, Mean 4.3).

For TAREME users agree on the difficulty employed in finding the

right triggers and actions required to complete tasks, and the

presence of ambiguity in the different categories. This can generate

uncertainties, and in some cases errors, in selecting the right items,

and as a result the time spent and perceived difficulty can increase

as the number of triggers and actions required to complete the rule

increases. On the other hand, after having found the right element,

the possibility to have an overall view of the parameters that make

up the trigger and the action, and the possibility to verify the

correctness thanks to the displayed natural language explanation of

the composed rule, make the tool efficient.

RuleBot was assessed, overall, as faster, but in some cases less

precise than TAREME in determining some elements of the rule to

create. While the ability to express oneself in natural language

makes the interaction more immediate, problems in understanding

some terms were highlighted. In some cases, this problem led to the

generation of imperfect rules, in others to having to repeat parts of

sentences already expressed in the initial input, but requested again

during rule completion.

6. Discussion

Although the scores assigned to both tools indicate good usability,

the use of the conversational interface received better scores than

the classic wizard style interface. In particular, the creation of

multiple triggers, the use of the NOT operator, and the efficiency

of the system, are those in which RuleBot received clearly better

assessments.

Finally, each user was asked which of the two tools they would

prefer to adopt and use in their home. Nine out of ten expressed

their preference for RuleBot, while one user preferred TAREME.

In particular, this user preferred the use of a classical visual

interface declaring that it is less liable to generate

misunderstandings, especially in reference to long and complex

rules.

In general, users found RuleBot faster and easier to use than

TAREME. On the other hand, TAREME proved to be more

accurate overall due to its ability to keep track of the rule creation

steps showing the user the triggers and actions included in the rule

in real time. The time spent and frustration experienced -

particularly when searching for the right triggers - negatively

affected user feedback.

As far as RuleBot is concerned, the problems highlighted by some

user regard some uncertainties during the first interactions in

figuring out how to formulate the initial sentence containing the

triggers and actions, and the non-understanding of some input parts.

The first problem does not occur if the user, after logging in for the

first time, answers positively to the initial chatbot question “Do you

want to know what I can do?”. In this case, in addition to an

explanation of the functionality, some input examples describing

customization rules are provided.

From the analysis carried out it can be seen that RuleBot is faster

and more intuitive in creating rules but at the same time it can lead

users to make more mistakes than TAREME. The time spent on

rule creation with TAREME is proportional to the difficulty of the

task to be performed, while with RuleBot the variation in time does

not follow such a well-defined trend. In particular, Task 3 with

TAREME took the longest times due to the presence of the NOT

operator, whose mechanism for entering the start and end times of

negation does not seem to be immediate for users.

In general, referring to some user comments, most of the time used

for rule creation with TAREME is spent in searching for the right

trigger/action among the different available categories. After

having selected the right trigger, the error analysis shows that

TAREME is more precise when setting the parameters of the

chosen trigger (e.g. the choice between event and condition and

between the different operators). The ability to try different values

and combinations, and at the same time visualize the explanation in

natural language provides the chance to notice and correct errors

more easily than with RuleBot, which provides feedback on the

trigger-action rule only at the end of the creation process.

In particular, the errors concerning the choice between event and

condition can be attributed to users’ limited understanding of their

difference, since RuleBot is well trained in understanding the terms

that identify events and conditions. Errors regarding the choice of

operator or the absence of required triggers or actions can refer not

only to misunderstandings on the part of the user but also on the

part of RuleBot, which may fail to fully understand the input

received.

7. Conclusions and Future Work

In this paper we present the design and development of a

conversational agent dedicated to supporting the end user in

creating automations in environments populated by sensors and

smart objects. We have analysed different possibilities and arrived

at a solution able to allow users the specification of flexible

automations in trigger-action format with the ability to manage

multiple triggers and actions, and clearly distinguish between

events and conditions. As a final result, the chatbot is able to

perform a conversation with the user thanks to the use of machine

learning and natural language processing techniques, and correctly

manage the creation of personalization rules even starting from

complex inputs.

In future work we want to address the implementation of a

multimodal interface that allows for conversations in speech,

integrating it with devices such as Alexa and Google Home; adding

functionalities that support causality queries (e.g. “Why did the

light turn on in the living room?”); and develop a recommendation

system that can propose personalized rules to the user based on the

use of devices and sensors.

Insert Your Title Here WOODSTOCK’18, June, 2018, El Paso, Texas USA

REFERENCES
[1] Luca Asunis, Vittoria Frau, Riccardo Macis, Chiara Pireddu, and Lucio Davide

Spano. 2021. PAC-Bot: Writing Text Messages for Developing Point-and-Click

Games. In End-User Development, Daniela Fogli, Daniel Tetteroo, Barbara Rita

Barricelli, Simone Borsci, Panos Markopoulos and George A. Papadopoulos

(eds.). Springer International Publishing, Cham, 213–221.

https://doi.org/10.1007/978-3-030-79840-6_15

[2] Sara Beschi, Daniela Fogli, and Fabio Tampalini. 2019. CAPIRCI: A Multi-

modal System for Collaborative Robot Programming. In End-User

Development, Alessio Malizia, Stefano Valtolina, Anders Morch, Alan Serrano

and Andrew Stratton (eds.). Springer International Publishing, Cham, 51–66.

https://doi.org/10.1007/978-3-030-24781-2_4

[3] Will Brackenbury, Abhimanyu Deora, Jillian Ritchey, Jason Vallee, Weijia He,

Guan Wang, Michael L. Littman, and Blase Ur. 2019. How Users Interpret Bugs

in Trigger-Action Programming. In Proceedings of the 2019 CHI Conference

on Human Factors in Computing Systems, 1–12.

https://doi.org/10.1145/3290605.3300782

[4] Federico Cabitza, Daniela Fogli, Rosa Lanzilotti, and Antonio Piccinno. 2017.

Rule-based tools for the configuration of ambient intelligence systems: a

comparative user study. Multimedia Tools and Applications 76, 4: 5221–5241.

https://doi.org/10.1007/s11042-016-3511-2

[5] Danilo Caivano, Daniela Fogli, Rosa Lanzilotti, Antonio Piccinno, and Fabio

Cassano. 2018. Supporting end users to control their smart home: design

implications from a literature review and an empirical investigation. Journal of

Systems and Software 144: 295–313. https://doi.org/10.1016/j.jss.2018.06.035

[6] Sven Coppers, Davy Vanacken, and Kris Luyten. 2020. FORTNIoT: Intelligible

Predictions to Improve User Understanding of Smart Home Behavior.

Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous

Technologies 4, 4: 1–24. https://doi.org/10.1145/3432225

[7] Luca Corcella, Marco Manca, Jan Egil Nordvik, Fabio Paternò, Anne-Marthe

Sanders, and Carmen Santoro. 2019. Enabling personalisation of remote elderly

assistance. Multimedia Tools and Applications 78, 15: 21557–21583.

https://doi.org/10.1007/s11042-019-7449-z

[8] Fulvio Corno, Luigi De Russis, and Alberto Monge Roffarello. 2020. HeyTAP:

Bridging the Gaps Between Users’ Needs and Technology in IF-THEN Rules

via Conversation. In Proceedings of the International Conference on Advanced

Visual Interfaces, 1–9. https://doi.org/10.1145/3399715.3399905

[9] Fulvio Corno, Luigi De Russis, and Alberto Monge Roffarello. 2021. Devices,

Information, and People: Abstracting the Internet of Things for End-User

Personalization. In End-User Development, Daniela Fogli, Daniel Tetteroo,

Barbara Rita Barricelli, Simone Borsci, Panos Markopoulos and George A.

Papadopoulos (eds.). Springer International Publishing, Cham, 71–86.

https://doi.org/10.1007/978-3-030-79840-6_5

[10] Fulvio Corno, Luigi De Russis, and Alberto Monge Roffarello. 2020. TAPrec:

supporting the composition of trigger-action rules through dynamic

recommendations. In Proceedings of the 25th International Conference on

Intelligent User Interfaces, 579–588. https://doi.org/10.1145/3377325.3377499

[11] Giuseppe Desolda, Carmelo Ardito, and Maristella Matera. 2017. Empowering

End Users to Customize their Smart Environments: Model, Composition

Paradigms, and Domain-Specific Tools. ACM Transactions on Computer-

Human Interaction 24, 2: 1–52. https://doi.org/10.1145/3057859

[12] Ting-Hao K. Huang, Amos Azaria, Oscar J. Romero, and Jeffrey P. Bigham.

2019. InstructableCrowd: Creating IF-THEN Rules for Smartphones via

Conversations with the Crowd. Human Computation 6: 113–146.

https://doi.org/10.15346/hc.v6i1.7

[13] Justin Huang and Maya Cakmak. 2015. Supporting mental model accuracy in

trigger-action programming. In Proceedings of the 2015 ACM International

Joint Conference on Pervasive and Ubiquitous Computing - UbiComp ’15, 215–

225. https://doi.org/10.1145/2750858.2805830

[14] André Sousa Lago, João Pedro Dias, and Hugo Sereno Ferreira. 2021. Managing

non-trivial internet-of-things systems with conversational assistants: A

prototype and a feasibility experiment. Journal of Computational Science 51:

101324. https://doi.org/10.1016/j.jocs.2021.101324

[15] Toby Jia-Jun Li, Amos Azaria, and Brad A. Myers. 2017. SUGILITE: Creating

Multimodal Smartphone Automation by Demonstration. In Proceedings of the

2017 CHI Conference on Human Factors in Computing Systems, 6038–6049.

https://doi.org/10.1145/3025453.3025483

[16] Henry Lieberman, Fabio Paternò, Markus Klann, and Volker Wulf. 2006. End-

User Development: An Emerging Paradigm. In End User Development, Henry

Lieberman, Fabio Paternò and Volker Wulf (eds.). Springer Netherlands,

Dordrecht, 1–8. https://doi.org/10.1007/1-4020-5386-X_1

[17] Marco Manca, Fabio Paternò, and Carmen Santoro. 2021. Remote monitoring

of end-user created automations in field trials. Journal of Ambient Intelligence

and Humanized Computing. https://doi.org/10.1007/s12652-021-03239-0

[18] Stefano Valtolina, Barbara Rita Barricelli, and Serena Di Gaetano. 2020.

Communicability of traditional interfaces VS chatbots in healthcare and smart

home domains. Behaviour & Information Technology 39, 1: 108–132.

https://doi.org/10.1080/0144929X.2019.1637025

[19] Rayoung Yang and Mark W. Newman. 2013. Learning from a learning

thermostat: lessons for intelligent systems for the home. In Proceedings of the

2013 ACM international joint conference on Pervasive and ubiquitous

computing, 93–102. https://doi.org/10.1145/2493432.2493489

