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ABSTRACT 

The spread of sensors and intelligent devices of the Internet of 

Things and their integration in daily environments are changing the 

way we interact with some of the most common objects in everyday 

life. Therefore, there is an evident need to provide non-expert users 

with the ability to customize in a simple but effective way the 

behaviour of these devices based on their preferences and habits. 

This paper presents RuleBot, a conversational agent that uses 

machine learning and natural language processing techniques to 

allow end users to create automations according to a flexible 

implementation of the trigger-action paradigm, and thereby 

customize the behaviour of devices and sensors using natural 

language. In particular, the paper describes the design and 

implementation of RuleBot, and reports on a user test and lessons 

learnt. 
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1. Introduction 

The Internet of Things (IoT) has become very pervasive, and 

current forecasts1 indicate that such trend will even increase in the 

near future. In this context it is important to exploit such 

technological offer through automations that are able to coordinate 

 
1 https://www.statista.com/statistics/1101442/iot-number-of-connected   

devices-worldwide/ 
2 https://ifttt.com/home 

the behaviour of connected objects and devices. Various artificial 

intelligence techniques can be useful to automatically identify the 

most relevant ones. They may obtain mixed results (see for 

example [19]), because they may generate actions that do not match 

the real user needs or people may have difficulties in understanding 

the automatically generated automations. In addition, people have 

dynamic and specific needs, thus it becomes important to allow 

them to directly personalize the possible automations, even if they 

are not professional software developers, according to the End-

User Development (EUD) [16] paradigm. In this perspective, the 

Trigger-Action Programming (TAP) approach seems particularly 

suitable since does not require specific algorithmic abilities because 

it mainly allows users to connect the relevant dynamic events 

detected through sensors or services with the desired actions. 

Several tools have been put forward both at a research and 

commercial level (such as IFTTT2, Node-Red3, Zipato4) to provide 

support for some kind of TAP. At a research level, various ways to 

support end users in composing (e.g. [4, 5, 7, 11, 17]) or 

understanding trigger-action rules have been put forward, such as 

dynamic recommendations [10] or visual predictions of the future 

behaviour [6]. 

Various composition paradigms have been considered to support 

the development process of trigger-action rules. By composition 

paradigm we mean how the tailoring environments guide the rule 

development process, how they present the relevant concepts and 

interact with users. In general, such composition paradigms have 

exploited the visual modality supporting data flow representations 

or wizard-like styles or block-based manipulations. The 

conversational composition paradigm has received some attention 

but with limited solutions that have not considered the relevant 

aspects in TAP, such as the possibility to distinguish between 

events and conditions, compose multiple triggers and actions, and 

indicate triggers associated with when some event does not occur. 

In general, limited support by the tailoring environment can 

generate some of the potential issues in interpreting the trigger-

action rules [3]. For example, it is important to allow users to 

clearly understand the temporal dimension of the triggers and 

actions considered [13], since their misunderstanding may lead to 

undesired effects such as unlocking doors or activating heating 

systems at the wrong time. 

3 https://nodered.org/ 
4 https://www.zipato.com/ 
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In this paper we present a conversational agent able to support end 

users to create automations for daily environments, such as the 

home, in terms of trigger-action rules that allow them to flexibly 

indicate the desired objects’ behaviour. Thus, after discussing 

related work we introduce the design of the proposed tool, we then 

detail how we have implemented it, and the user feedback received. 

Lastly, we draw some conclusions and provide indications for 

future work. 

2. Related work 

The possibility to support end-user creation of automations in the 

trigger-action format is provided by several commercial or research 

tools. However, usually this is provided with limitations that do not 

allow users to express all the possible types of rules. For example, 

Amazon Alexa in addition to the “classic” features, relating to 

carrying out instant actions such as turning on the lights or starting 

the music, it provides the possibility of creating “routines” using 

the graphic interface made available by the relevant smartphone 

application. Similar functionalities are provided by Google Home. 

IFTTT is an online service accessible through visual interfaces that 

offers the possibility to create rules in trigger-action format (called 

applets) that give rise to simple applications for controlling smart 

objects or web applications. When using the free version, IFTTT 

allows the creation of maximum three rules consisting of a single 

trigger and a single action. While the commercial version supports 

the possibility to express more structured rules but without clearly 

indicate the difference between events and conditions. In general, 

such commercial tools have not considered the conversational style 

for creating trigger-action rules or when they consider it is only for 

some limited types of rules. 

Some research studies have started to consider the conversational 

approach. HeyTAP is a conversational agent for personalizing the 

behaviour of house smart objects [8]. It presents a multimodal 

interface through which the user can express preferences related to 

the functioning of the installed devices. HeyTAP requires the 

trigger part of the rule to be defined individually and separately 

from the action to be performed. Moreover, it does not allow the 

direct creation of the rule but requires further interaction with a 

“classic” interface to choose the routine, among those proposed by 

the system, that is closest to the user's request.  

Although not particularly focused on the Internet of Things, 

SUGILITE [15] uses the programming by demonstration paradigm 

for the creation of automations on mobile devices. The users can 

associate a set of actions with a custom voice command, showing 

how these actions are to be performed through direct navigation. 

Another relevant work is InstructableCrowd [12], a framework 

which enables users to converse with the crowd through their phone 

and describe a problem. Then, it provides a graphical interface for 

crowd workers to both chat with the user, and compose a rule with 

a part connected to the user’s phone sensors, and a part to its 

effectors. However, in IntructableCrowd the rules are created 

through a graphical interface. 

CAPIRCI [2] is a multi-modal interactive system for off-line 

collaborative robot programming. The approach provides the users 

with two different but integrated ways for defining robot tasks: the 

former, based on natural language processing, should be firstly 

used to address the programming problem, by obtaining the 

specification of a simple task; the latter, based on a component-

based visual language, can be used to refine the program. Valtolina 

et al. [18] reported on a study evaluating the benefits of a chatbot 

in comparison to traditional GUI, specifically for users with poor 

aptitude in using technologies. They considered two example 

scenarios in the healthcare and smart home fields, and found that 

for the user experience the chatbot application appears to be better 

than the GUI-based one. One further contribution [1] investigated 

the effects of including a conversational agent for helping end-user 

developers in defining the behaviour of point-and-click games 

through event-condition action rules. The comparison of the 

versions with and without the chatbot showed a decrease in the 

perceived cognitive load in complex tasks when using the chatbot. 

Despite such promising indications, the conversational interaction 

style has received limited attention for supporting creation of 

trigger-action rules in general, and in this paper we present RuleBot 

a proposal aiming to contribute to cover such gap.  

One work that addresses similar issues is Jarvis [14]. It allows users 

to create rules for the instantaneous or delayed execution of 

commands on devices inside the home, with a limit of one trigger 

and one action. Even if it supports the execution of instant actions 

(e.g. “turn off the lights or play some music”) and causality queries 

(e.g. “why did the lights turn on in the kitchen?”), it does not allow 

users to have a full and detailed control of trigger-action rules. 

Thus, in Jarvis it is not possible, for example, to specify rules with 

actions that require a certain delay and, at the same time, some 

condition to be verified in order to be triggered (e.g. “turn on the 

light in the living room at 7:00 pm if it’s dark”). This kind of rules 

can be created using RuleBot, since the implemented support 

allows the creation of rules containing multiple triggers and actions. 

Other aspects supported by RuleBot but not Jarvis concern the 

possibility to manage triggers with negation (e.g. when I don’t take 

the medicine”), and the possibility to clearly distinguish between 

events or conditions when creating a trigger. 

3. The Proposed Solution 

The purpose of the chatbot is to be able to perform conversations 

with end users aimed at creating trigger-action rules implementing 

automations for available connected objects and services, which 

can then be activated and executed. Considering the issues detected 

in several previous languages for trigger-action rules we adopted a 

language that is able to clearly distinguish between events and 

conditions, and express multiple triggers, which can be composed 

through logical operators (OR, AND); and it can support multiple 

actions, which can be composed sequentially; and the possibility to 

trigger a rule when some event does not occur. This flexibility of 

the language has implications in the design of the conversational 

agent that has to allow the users to specify all the relevant 

information. In addition, the possible triggers are logically 

organised according to three main dimensions: user, aspects related 

to their emotional, and physical state, and the activities that they 

perform; environment, aspects related to the surrounding elements, 

such as light, noise, temperature, humidity, and associated services 
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such as weather forecasts; and technology, related to the state of the 

various devices available, such as TV, smartphones, PCs, and their 

services. The possible actions can change the state of the appliances 

and devices available, can generate reminders and alarms through 

various channels, and can activate device dependent services, such 

as those associated with Alexa.  

We followed an iterative design process in developing the proposed 

solution for a conversational agent able to support such language. 

In the first version (V.1) to achieve greater accuracy in recognizing 

the user's intention, it was decided to create a specific intent for 

each possible trigger and action present in the language (66 intents 

were created for triggers and actions, 6 for rule creation support 

features such as saving and deleting rules, or providing information 

about its functionalities). For each intent, the set of training phrases 

included phrases that referred directly to the single element 

considered. For example, the intent for the recognition of inputs 

related to a motion sensor was trained with phrases such as “if the 

motion sensor in the kitchen is active”, or “if the motion sensor is 

activated in the bedroom”. This structure of intents and entities, 

however, presented limitations in the interaction between the 

chatbot and the user. In fact, to build the rule, each user input can 

include at most one trigger or action, making the conversation 

fragmented and unnatural when users want create rules with 

multiple triggers and actions. In addition, the training phrases used 

had a “device-centric” level of abstraction [9] (e.g. “when the 

motion sensor is the kitchen becomes active” or “if the thermostat 

detects a temperature lower than 10 degrees”), for which the user 

inputs must contain a direct reference to the sensor to be used, 

forcing the users to conform to this specific way of looking at 

automations. A first user test of the initial prototype was carried out 

with twenty-three students of a course of a Digital Humanities 

degree. They had to specify five rules with increasing level of 

complexity. Overall, they did not much like the composition style 

exploited in that chatbot prototype, which was judged somewhat 

imprecise, requiring several interactions, thus not very efficient, 

with some features requiring improvements. 

  

Then, we considered an approach based on intents that can 

categorise multiple triggers or actions in one sentence by providing 

training phrases containing, for example, one trigger and one 

action, two triggers and two actions. The organisation of the intents 

in this version (V.2) no longer followed the structure of the 

previous one (one intent for each single possible trigger or action), 

but referred to the possibility of intents associated with multiple 

triggers and/or actions within the user input. Initially, three main 

intents were considered, which correspond to inputs consisting of: 

two triggers, two actions, and one trigger and one action. So, for 

example, we used training phrases such as “turn off the lights when 

I’m leaving home” or “send me a notification if it will rain 

tomorrow” to categorise one trigger and one action. Training 

phrases such as “if it’s raining or snowing” would be associated to 

the intent that categorises two triggers, and “turn on the light and 

play some music” for the intent to categorise two actions. However, 

this approach raised several problems regarding: the quantity and 

the quality of the training phrases; the recognition of the specific 

trigger and action present in one input; the scalability of the 

corresponding architecture. The first point concerns the difficulty 

of managing all the possible instances of the various possible 

combinations (trigger + trigger, action + action and trigger + action) 

and the respective intents. To get an idea of the possible 

combinations, consider the number of triggers and actions types in 

the language (at the time of writing there are 58 and 8 respectively). 

In the worst case, represented by the combination of two triggers, 

we obtain exactly 1653 combinations, and then we need to consider 

the possible variants for each element (for example, the verification 

of the activation of the smoke sensor could be expressed with 

sentences such as “if the smoke sensor in the kitchen is active”, “if 

there is smoke in the kitchen”, “when smoke is detected in the 

kitchen” and so on). The second problem concerns the 

identification of sensors and/or actions within the user input. In 

fact, even if an intent can recognise that the input contains, for 

example, one trigger and one action, it is then problematic to 

identify exactly which sensors or devices are referred to. Finally, 

the scalability of the system is compromised because the addition 

of even one sensor to the language would require writing many 

training phrases considering the new sensor in association with all 

the existing ones.  

We thus designed and developed a new solution (V.3) with the aim 

of overcoming the limitations of the previous ones. The new system 

is based on the combined use of two different components: one 

dedicated to receiving inputs and sending responses with the user, 

called “Dialogue Interface”; another, to which the appropriately 

processed input is submitted, which deals with the classification of 

the intents and the extraction of the parameters, called “Intent 

Classifier”. A “Dialogue Manager”, implemented through a 

webhook server, is interposed between these two components, and 

processes the inputs received from the former and generates the 

responses to be sent back based on the data received from the Intent 

Classifier (see Figure 1). This process, explained in detail in the 

next section, allows the reception of even complex inputs, 

containing multiple triggers and actions at the same time. In 

addition, the sets of training sentences have been appropriately 

expanded with sentences that consider different syntactic 

constructions as well as different communication styles, like 

sentences that use “people-centric” and “info-centric” abstractions 

[6] to refer to a sensor or a device (e.g. “when I enter the bedroom” 

rather than “when the motion sensor in the bedroom becomes 

active”). 

 

Figure 1. RuleBot architecture 
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4. Implementation 

Dialogue Manager. The Dialogue Manager is implemented 

through a webhook component running on Node.js, and is essential 

for managing all the chatbot features. It receives the inputs from the 

Dialogue Interface and the related intents from the associated Intent 

Classifier, validates and processes the extracted parameters, 

manages the creation, updating and deletion of contexts, and carries 

out a set of secondary functions, such as the management of saving 

and deleting rules. 

When the Dialogue Interface receives a complex sentence 

containing more triggers and actions as input, it sends it to the 

Dialogue Manager, which breaks it down into smaller and simpler 

sentences that represent the single triggers/actions involved. Thus, 

a list of multiple sentences is obtained from a single complex one, 

and for each sentence obtained, a call is made to the Intent 

Classifier. For each of the phrases received this latter performs the 

classification of the intents, and identification of the relative 

parameters, and then returns a response in JSON format containing 

the extracted information to the Dialogue Manager. 

The subdivision of the initial sentence provided by the user into a 

list of smaller sentences has been implemented through an 

algorithm that uses regular expressions and a Parts of Speech (PoS) 

Tagger5. In particular, regular expressions search within the user 

input sentence for some specific words and characters that indicate 

the border point between multiple triggers with high probability. 

The terms that support identification of the triggers are “when”, “if” 

and “while”, in addition, the conjunctions “and” and “or”, and 

punctuation marks such as commas and periods are also taken into 

consideration. Regarding the actions, their identification is based 

on the presence (through the data extracted from the PoS tagger) of 

verbs that express actions such as “turn on”, “turn off”, “send”, 

“play”, “open”, “close” and so on. Specifically, the verbs are taken 

into consideration when they are6: in the second person singular, 

present tense of the indicative mood; in the second person singular 

of the imperative mood; infinitives. 

After receiving the corresponding intents and related parameters 

from the Intent Classifier, a verification process is initiated to 

identify any missing parameters to successfully create the rule. For 

this purpose, two reference models have been defined: one for 

describing triggers and one for actions. Both templates (defined in 

JSON) consist of “name intent: list of required parameters” pairs. 

For each identified intent, the Dialogue Manager performs a 

comparison between the extracted parameters and the mandatory 

parameters, then a queue is created containing the missing 

parameters. Subsequently, the chatbot asks the user to provide the 

missing data, updating the queue as the requests are satisfied. 

The generation of responses has been divided into two categories: 

predefined and template-based responses. The former, used for 

requesting parameters, have been statically defined within a JSON 

file. Each trigger or action (identified by the name of the 

corresponding intent) is associated with the list of mandatory 

parameters; for each parameter there are two types of responses: 

 
5  The Python NLP package called “Stanza” by Stanford University. 
https://stanfordnlp.github.io/stanza/index.html 

one for asking for the missing parameters and one for indicating 

that the input parameter provided was of the wrong type.  

The template-based responses are used in the final part of the rule 

creation process. When the rule is complete, the agent reconstructs 

it in natural language starting with the set of parameters that form 

it. For this purpose, a set of templates have been defined that 

“translate” and concatenate the parameters in a meaningful 

sentence. This type of response is used to provide feedback to the 

user in order to verify the correct understanding and creation of the 

rule by the chatbot. 

 

Dialogue Interface. This component manages the user inputs, 

which can be of two types: new rules or parameters requested by 

the chatbot to complete a rule under editing. Inputs to complete a 

rule are identified because they are entered only when this 

component is in specific contexts, in the other cases the input is 

associated with the intent “Rule Identifier”, and, after appropriate 

processing by the Dialogue Manager, is subjected to recognition by 

the Intent Classifier.  

The “prompt” and “get” intents manage the insertion of missing 

data for completion of the rule (i.e. the mandatory entities not yet 

present in the input rule). In particular, the “prompts”, which are 

activated through the use of Dialogflow events, are used to activate 

the message requesting the missing data (e.g. “In which room do 

you want to turn on the lights?”), and set the contexts necessary to 

receive the response. The user response is captured by the 

corresponding “get” intent or, in the case of unexpected responses, 

by the associate fallback intent. For each type of entity there are 

therefore the intents “prompt”, “get” and “fallback”. In addition to 

classic entities, we used composite entities: “triggerValue”, which 

groups all the entities that refer to the possible values that can be 

associated with a trigger (e.g. numbers, dates, weather conditions, 

cognitive and emotional states and so on); “actionValue”, which 

refers to the values that can be associated with the actions (e.g. the 

colours of the lights or the text to be associated with the reminders). 

Their use is linked to intents of type “get”; in fact, the respective 

“get.triggerValue” and “get.actionValue” make use of these entities 

to recognize the corresponding terms. 

Therefore, referring to the intents of type “prompt”, “get” and 

“fallback”, only the “get” intents contain training phrases because 

those of the “prompt” type correspond to a support function and do 

not need a user input, while the “fallback” ones are automatically 

activated when the input does not match the correspondent “get” 

intent. 

Some training phrases (between 10 and 20) have been used for each 

“get” intent. For example, the intent “get.binaryState” contains 

training phrases such as “is open”, “is closed”, “activates”, 

“deactivates”, “switch on”, “switch off”, associated with the entity 

“BinaryState”. The intent “get.notificationMode” (which intercepts 

the answer to the question “Do you want to send a notification, an 

email, a voice message or an SMS?”) has among its training 

phrases: “send an email”, “send an sms”, “a notification” and so on. 

6 Currently the chatbot supports Italian. 
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We have used Dialogflow contexts for directing the flow of the 

conversation by limiting the intents that can be activated upon 

receipt of a certain input, and also for tracking and storing the 

interactions that take place during rule creation. In particular, the 

two main contexts are: “queue”, after receiving the input containing 

triggers and actions, and after recognizing them through the Intent 

Classifier, a queue is created containing the missing parameters to 

ask the user for, and each time the user provides a parameter, the 

queue is updated to request the next one; “model” keeps track of 

the recognized intents and related parameters with the extracted 

values, and is updated in conjunction with the “queue” context. 

Every time the user provides a missing parameter, the “parameter: 

value” pair is added to the corresponding intent model. When the 

queue ends, this context is saved and translated into a data structure 

that describes the rule created. 

Both contexts are generated and managed by the webhook server, 

and are related to a single rule creation session.  

 

Intent Classifier. This component is responsible for classifying 

inputs that represent triggers or actions after the decomposition 

performed by the Dialogue Manager. The classifier associates a 

single intent for each possible trigger and action defined by the 

language (66 intents have been created). Thus, for example, it 

contains intents to classify inputs such as “when the light turns on”, 

“if it’s raining”, “send me a reminder”, “play some music” and so 

on, which will be respectively associated with the intents 

“trigger_light”, “trigger_weather”, “action_reminder” and 

“action_music”. A set of entities (26) has been defined to recognize 

the terms that identify the required parameters. For instance, the 

sentence “when the light turns on” contains the entity 

“triggerType”, which determines if the trigger is an event or a 

condition (“if” or “when”), and the entity “binaryState” to identify 

state changes (“on” or “off”). 

For each intent a variable number of training phrases has been 

defined, considering the intent complexity and the number of 

entities associated: intents that define triggers contain a number of 

training phrases ranging from 40 up to 70. The actions are in 

general simpler than triggers and have fewer required parameters, 

and thus have received a number of training phrases between 20 

and 40. 

The training phrases aim to reflect different ways of expressing a 

concept. Thus, we used phrases that refer directly to a sensor or 

device (e.g. “If the motion sensor of the kitchen is active”), but also 

to a person (e.g. “if I enter the kitchen”) or to information (e.g. “If 

there is movement in the kitchen”). 

 

Figure 2 shows an example of use, the texts have been translated in 

English for wider readability. It illustrates the creation of a rule 

containing two triggers and two actions. In this case, all the desired 

triggers and actions are in the first user input (Fig. 2a), while the 

successive interactions are limited to obtaining the necessary 

information for completion of the rule. Figure 2b shows the next 

steps followed by the request for the input of the logical operator 

for the concatenation of the two triggers. The conversation ends 

with a feedback message from the chatbot that summarizes the rule 

created, followed by the proposal to save it (see Fig. 2c). 

 

 

   

Figure 2a, b, c. Creation of a rule composed of two triggers and two actions with RuleBot 

5. User Test 

A user test has been carried out on the latest version of the chatbot 

to better understand its usability. To make the test and user 

feedback more consistent, exhaustive, and informative, it was 

decided to define “scenarios” that represent situations in which it 

would be appropriate to create customization rules.  

The scenarios were presented in order of increasing difficulty, 

requiring the specification of simple rules consisting of one trigger 

and one action, to more complex rules consisting of two of each. 

Users were asked to address the proposed scenarios by creating 

 
7 https://tare.isti.cnr.it/RuleEditor/login 

customization rules using two different tools: TAREME and 

RuleBot. Finally, each user filled out a questionnaire in which they 

were asked to express their opinions about the efficiency, and their 

appreciation of the experience with the two tools. 

TAREME7 [7, 17] is a publicly available tool supporting graphical 

wizard composition of TAP rules. It is visually structured into two 

main parts, one for triggers and one for actions, and one sidebar 

providing feedback on the progress achieved in creating the rules. 

Both the trigger and action parts are organized in terms of main 

categories, which when selected, unfold their sub-categories, and it 

is possible to iterate until the basic elements with their attributes are 
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visualised. Depending on the rule elements selected, a sentence 

appears on the top part of the user interface during the editing 

process to provide feedback in natural language of the rule created. 

It applies a wizard-like compositional style, and we chose it also 

because it is able to support the same rule language as RuleBot, 

thus the usability evaluation is not affected by issues related to the 

different ability to express rules between the two considered tools. 

5.1 Users and Tasks 

We had ten participants: eight had no expertise in programming 

languages, only two had knowledge of languages such as HTML 

and CSS; eight males, two females, their ages ranged from 20 to 

30, with an average of 27. They were divided into two groups of 

five. Both groups used TAREME and RuleBot, in inverse order to 

balance learning effects. After the creation of the rules, they were 

then asked to rate six statements about the two tools used, on a scale 

of 1 to 5, indicating respectively full disagreement and full 

agreement. Users then gave a motivation for each score assigned. 

  

They received the following four scenarios requiring writing 

corresponding personalisation rules in trigger-action format. 

Main context: You are the son/daughter of an older adult who lives 

alone. The house s/he lives in is equipped with sensors and smart 

objects that allow checking what happens inside the house (lights, 

parent’s presence in a given room, temperature or acoustic noise in 

a room etc.) and execute actions as a consequence (turn on lights, 

send alarms or reminders, start music, …). 

Scenario 1 (1 trigger + 1 action): You as the child are concerned 

that your parent is not eating healthily, and that s/he is resorting to 

cold foods too often. Therefore, you would like to receive an email 

whenever your parent is using the microwave oven. 

Scenario 2 (2 triggers + 1 action): Sometimes the parent does not 

notice that s/he keeps the TV volume too high, even in the late 

evening. To solve the problem, you would like to receive a message 

on your cell phone when there is too much noise in the living room 

after 10 pm (30 decibels are exceeded). 

Scenario 3 (1 trigger with negation + 2 actions): You want to make 

sure that your parent correctly takes a certain medicine, Pradaxa, 

which must be taken by 3 pm. To this end, you would like to create 

an automation that reminds your parent to take the Pradaxa if s/he 

has not yet done so. To be effective, it would be helpful to send a 

notification to the parent's phone, and also to turn on a red light for 

1 minute in the kitchen, where your parent is usually at that time. 

Scenario 4 (2 triggers + 2 actions): Your parent too often spends 

the afternoon (after 3:30 pm) in the living room reading the 

newspaper. The living room is dark, consequently s/he always turns 

on the lights to read. You would like your parent to receive a 

notification by cell phone in these situations, something like, “Dad, 

why don't you go out for a walk?”. In addition, the “activating” light 

scene should also start. 

5.2 Task Performance 

Time measurement. RuleBot supported more efficient 

performance than TAREME. On average, to perform all the tasks 

users took 7.38 minutes with RuleBot, and 11.33 minutes with 

TAREME. The mean execution time (in minutes) per task are:  

Task 1: RuleBot (1.26), TAREME (1.41);  

Task 2: RuleBot (1.54), TAREME (1.41);  

Task 3: RuleBot (1.57), TAREME (3.55);  

Task 4:  RuleBot (2.36), TAREME (3.19). 

 

Errors analysis. We checked whether the rules created were well-

formed. The errors present were classified according to three 

categories, and refer to correctness of: the trigger or action, the 

choice between an event or a condition, and the use of the NOT 

operator for the creation of triggers with negation. In addition, for 

each category, errors have been classified as severe (scored 1 point) 

or moderate (scored 0.5). Severe errors are those that completely 

change the behavior of the rule or lack a required element from the 

task description. An error is considered moderate if when it occurs 

the rule does not correspond exactly to the task description, but the 

behavior obtained is very similar to it. A total of 80 rules were 

analysed. The total error score in rules created with RuleBot was 

27.5, while with TAREME it was 23.5. The overall error score for 

each task was:  

Task 1: RuleBot (1), TAREME (2);  

Task 2: RuleBot (9), TAREME (5.5);  

Task 3: RuleBot (7.5), TAREME (8.5);  

Task 4: RuleBot (9.5), TAREME (7). 

 

The data obtained indicate that the wizard-based tool is less prone 

to errors than the chatbot. Both the total errors and the overall error 

scores per task describe greater accuracy in the use of the visual 

environment over the conversational one.  

 

Errors in triggers and actions: in RuleBot most errors concern 

the incorrect use of the comparatives of equality, greater or lesser 

(9 rules out of 40), often associated with triggers on schedules (e.g. 

user said “if it’s 3pm” instead of saying “if it’s after 3pm”); 8 rules 

out of 40 present errors concerning the addition of an extra trigger 

or the non-insertion of a necessary trigger. Regarding TAREME, 7 

rules out of 40 present an unsolicited trigger or the non-insertion of 

a necessary trigger; only 4 rules contain the incorrect use of 

comparisons; 3 rules present an incorrect choice of trigger, even if 

for all three cases the error was considered moderate as they 

concerned the choice of similar triggers (e.g. the trigger on the 

brightness in a room is used rather than the one on the state of the 

light).  

Errors in the choice between event and condition: for RuleBot 

this is the most common type of error: 20 out of 40 rules have 

moderate errors regarding the choice between event and condition. 

Only 1 rule has an error classified as severe because it prevents the 

rule being activated. TAREME instead presents 16 rules out of 40 

with a moderate error regarding the choice between event and 

condition and 1 rule in which the error was considered severe. 

Regarding errors related to the use of the NOT operator, these 

only occurred in rules produced with TAREME. In two rules there 

was a moderate error concerning the specification of the incorrect 
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time. One rule has a severe error because the negation was added 

to a trigger for which it was not required. 

 

Conversational turns. The conversational turns have been 

counted starting from the first user input to describe the rule to be 

created. The turns count ends when the user sends the message to 

save the rule (thus considered complete and correct). Fallback 

messages have been included in the count. On average the number 

of turns was:  

Task 1: 6.2, Task 2: 8.2, Task 3: 7.2, Task 4: 7.1. 

 

In general, there does not appear to be a particular correlation 

between the complexity of the rule, the time taken to create it, and 

the number of turns taken. For all the tasks, in fact, most of the 

interactions refer to the fulfilment phases and, in particular, to the 

collection of data needed to create the actions associated with 

reminders (present in all the tasks), which require the presence of 

several parameters. 

5.3 User Feedback 

Users assigned scores on a 1 to 5 scale to statements associated with 

each task and provided associated comments. 

 

Composing one trigger. The scores were assigned to the 

statements: “I found it easy to edit the “trigger” portion of a rule 

using the TAREME/RuleBot tool user interface”:  

TAREME (Min 2, Max 5, Median 4, Mean 3.9), 

RuleBot (Min 2, Max 5, Median 5, Mean 4.4). 

As the scores show, for both tools, users had no particular difficulty 

in creating a single trigger. For TAREME, although the comments 

highlight good usability and intuitiveness, some express difficulty 

in moving between the different categories of triggers and actions. 

The comments about RuleBot refer to the ease of use given by the 

possibility of expressing oneself in natural language, and of 

producing commands independently without having to be limited 

by rigid categories. 

 

Composing two triggers. The scores were assigned to the 

statements: “I found it easy to compose two “triggers” of a rule 

using the TAREME/RuleBot tool user interface: 

TAREME (Min 2, Max 5, Median 4, Mean 3.7), 

RuleBot (Min 2, Max 5, Median 5, Mean 4.3). 

As mentioned, the composition of two triggers is done through the 

use of the logical operators (AND/OR). Also in this case for 

TAREME the comments focused on the increasing difficulty in 

identifying the correct trigger among the various categories. Thus, 

the time spent and the attention required increased. No particular 

problem was reported regarding the specification of the logical 

operators, which were immediately identified and easily used by all 

users. In this case RuleBot was preferred over TAREME for the 

possibility of specifying the operators to be used directly in the 

initial input, concatenating multiple events and/or conditions using 

the conjunctions “and” or “or”. In addition, it was emphasized how 

the greater freedom in the production of the rule makes the task 

faster and more intuitive, especially with an increasing number of 

triggers. 

 

Use of “NOT” operator. The scores were assigned to the 

statements: “I found it easy to edit a “trigger” that uses the “not” 

operator using the TAREME/RuleBot tool user interface”: 

TAREME (Min 2, Max 5, Median 4, Mean 3.8), 

RuleBot (Min 2, Max 5, Median 5, Mean 4.3). 

The performance of this task received mixed comments. For both 

tools some users had no particular difficulty, while some others 

needed longer time to understand the correct functioning. In 

particular, TAREME requires the selection of a box named “not”, 

which activates an additional button named “when”. When the 

“when” button is clicked, a window opens in which the user is 

asked to enter the start and end time of the negation using text 

fields. Although this dynamic behaviour, was intuitive for the 

majority of users (7 users), the remaining found it cumbersome, as 

they did not fully understand the operation and the need to enter the 

start and end times of the negation. Less critical comments were 

provided for RuleBot, which simply requires the user to add the 

term “not” for entering the requested negation. If no start or end 

time is specified, the chatbot asks the user what time the missing 

event or condition needs to be verified. Only one user pointed out 

the difficulty in producing the correct command for RuleBot to 

understand. The rest of the users found it natural and obvious. 

 

Composing one action. The scores were assigned to the 

statements: “I found it easy to edit the action portion of a rule using 

the TAREME/RuleBot tool user interface”: 

TAREME (Min 3, Max 5, Median 4, Mean 3.9), 

RuleBot (Min 2, Max 5, Median 5, Mean 4.4). 

A couple of users found difficulty in finding the actions on the 

lights; five users misunderstood some items during the 

specification of the actions on the reminders. These require the 

inclusion of a recipient depending on the type of reminder chosen: 

a phone number in the case of SMS reminders, an e-mail address in 

the case of e-mail reminders. In this case, users entered “my father” 

or “to me” as the recipient, assuming that the software would 

automatically figure out how to send the reminder to them. In the 

case of RuleBot, no particular problems were highlighted; 

moreover, the chatbot itself asks which email or phone number to 

send the reminder to, thereby eliminating the possibility of errors. 

 

Composing two actions. The scores were assigned to the 

statement: “I found it simple to compose two actions within a rule 

using the TAREME/RuleBot tool user interface”: 

TAREME (Min 2, Max 5, Median 4, Mean 3.9), 

RuleBot (Min 2, Max 5, Median 5, Mean 4.3). 

Comments consistent with those for composing an action were 

provided for both tools. Problems in finding the right elements to 

select in TAREME and quicker composition time for RuleBot were 

highlighted. Some additional comments were provided for 

TAREME: one user had problems because, considering what he 

had to do to concatenate two triggers by using logical operators, he 
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could not understand if the same procedure was necessary also for 

the concatenation of two actions.  

 

Perceived speed and efficiency in creating the rule. The scores 

were assigned to the statements: “The way rules are built using the 

TAREME/RuleBot tool is fast and efficient”: 

TAREME (Min 3, Max 5, Median 3, Mean 3.5), 

RuleBot (Min 3, Max 5, Median 4, Mean 4.3). 

For TAREME users agree on the difficulty employed in finding the 

right triggers and actions required to complete tasks, and the 

presence of ambiguity in the different categories. This can generate 

uncertainties, and in some cases errors, in selecting the right items, 

and as a result the time spent and perceived difficulty can increase 

as the number of triggers and actions required to complete the rule 

increases. On the other hand, after having found the right element, 

the possibility to have an overall view of the parameters that make 

up the trigger and the action, and the possibility to verify the 

correctness thanks to the displayed natural language explanation of 

the composed rule, make the tool efficient.  

RuleBot was assessed, overall, as faster, but in some cases less 

precise than TAREME in determining some elements of the rule to 

create. While the ability to express oneself in natural language 

makes the interaction more immediate, problems in understanding 

some terms were highlighted. In some cases, this problem led to the 

generation of imperfect rules, in others to having to repeat parts of 

sentences already expressed in the initial input, but requested again 

during rule completion. 

 

6. Discussion 

Although the scores assigned to both tools indicate good usability, 

the use of the conversational interface received better scores than 

the classic wizard style interface. In particular, the creation of 

multiple triggers, the use of the NOT operator, and the efficiency 

of the system, are those in which RuleBot received clearly better 

assessments. 

Finally, each user was asked which of the two tools they would 

prefer to adopt and use in their home. Nine out of ten expressed 

their preference for RuleBot, while one user preferred TAREME. 

In particular, this user preferred the use of a classical visual 

interface declaring that it is less liable to generate 

misunderstandings, especially in reference to long and complex 

rules. 

In general, users found RuleBot faster and easier to use than 

TAREME. On the other hand, TAREME proved to be more 

accurate overall due to its ability to keep track of the rule creation 

steps showing the user the triggers and actions included in the rule 

in real time. The time spent and frustration experienced - 

particularly when searching for the right triggers - negatively 

affected user feedback.  

As far as RuleBot is concerned, the problems highlighted by some 

user regard some uncertainties during the first interactions in 

figuring out how to formulate the initial sentence containing the 

triggers and actions, and the non-understanding of some input parts. 

The first problem does not occur if the user, after logging in for the 

first time, answers positively to the initial chatbot question “Do you 

want to know what I can do?”. In this case, in addition to an 

explanation of the functionality, some input examples describing 

customization rules are provided.  

From the analysis carried out it can be seen that RuleBot is faster 

and more intuitive in creating rules but at the same time it can lead 

users to make more mistakes than TAREME. The time spent on 

rule creation with TAREME is proportional to the difficulty of the 

task to be performed, while with RuleBot the variation in time does 

not follow such a well-defined trend. In particular, Task 3 with 

TAREME took the longest times due to the presence of the NOT 

operator, whose mechanism for entering the start and end times of 

negation does not seem to be immediate for users.  

In general, referring to some user comments, most of the time used 

for rule creation with TAREME is spent in searching for the right 

trigger/action among the different available categories. After 

having selected the right trigger, the error analysis shows that 

TAREME is more precise when setting the parameters of the 

chosen trigger (e.g. the choice between event and condition and 

between the different operators). The ability to try different values 

and combinations, and at the same time visualize the explanation in 

natural language provides the chance to notice and correct errors 

more easily than with RuleBot, which provides feedback on the 

trigger-action rule only at the end of the creation process. 

In particular, the errors concerning the choice between event and 

condition can be attributed to users’ limited understanding of their 

difference, since RuleBot is well trained in understanding the terms 

that identify events and conditions. Errors regarding the choice of 

operator or the absence of required triggers or actions can refer not 

only to misunderstandings on the part of the user but also on the 

part of RuleBot, which may fail to fully understand the input 

received. 

7. Conclusions and Future Work 

In this paper we present the design and development of a 

conversational agent dedicated to supporting the end user in 

creating automations in environments populated by sensors and 

smart objects. We have analysed different possibilities and arrived 

at a solution able to allow users the specification of flexible 

automations in trigger-action format with the ability to manage 

multiple triggers and actions, and clearly distinguish between 

events and conditions. As a final result, the chatbot is able to 

perform a conversation with the user thanks to the use of machine 

learning and natural language processing techniques, and correctly 

manage the creation of personalization rules even starting from 

complex inputs.  

In future work we want to address the implementation of a 

multimodal interface that allows for conversations in speech, 

integrating it with devices such as Alexa and Google Home; adding 

functionalities that support causality queries (e.g. “Why did the 

light turn on in the living room?”); and develop a recommendation 

system that can propose personalized rules to the user based on the 

use of devices and sensors. 
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