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Using Low-Resolution SAR Scattering Features
for Ship Classification

Emanuele Salerno , Senior Member, IEEE

Abstract— This letter reports an experimental study aimed at
establishing the questionable usefulness of scattering attributes
for ship classification from moderate-resolution synthetic aper-
ture radar (SAR) images. About 2700 example images represent-
ing four ship types have been extracted from the OpenSARShip
annotated dataset and used to form the training and test sets
for random forest models. After importance ranking and cross-
validation, different subsets of both geometric and scattering
attributes were selected from a fixed training set and used to train
the classifier. The results from the validation using the test sets
show that the scattering attributes give a significant contribution
in terms of overall classification accuracy.

Index Terms— Low-resolution synthetic aperture radar (SAR)
ship classification, random forests, scattering attributes.

I. INTRODUCTION

MARINE traffic surveillance is becoming more and more
important as the increase in the number of vessels

makes it essential to face different issues, such as border
control, fisheries regulations enforcement, and monitoring of
illegal activities, as well as for general security and emergency
management. To date, this is made possible on large scale
by terrestrial or space-based identification systems, such as
automatic identification system (AIS) and long-range identi-
fication and tacking (LRIT), and other systems deployed by
the national maritime authorities.1 In areas not covered by
vessel traffic services, or when dealing with vessels that are
noncollaborative or send falsified messages, ship detection,
and identification through remote-sensed images remains the
only possibility to accomplish the above-mentioned missions.
Satellite-borne synthetic aperture radar (SAR) systems are
particularly suited to this task for their insensitivity to weather
and light conditions and their global coverage in very large
swaths. SAR images offer the possibility of using Doppler
processing and polarimetry to discriminate between different
types of target, but their appearance is different from the
usual optical images for a marked dependence on the imaging
geometry and spatial resolutions of meters to tens of meters.
This letter deals with resolutions of tens of meters, often
referred to as moderate resolutions in the literature, such as
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the ones provided by the C-band SAR system onboard the
Sentinel-1 satellites,2 and uses random forests [1], a non-
deep-learning classification method, to identify different types
of ships. The choice of moderate-resolution images makes
sense, as a high-resolution SAR image is obtained at the
cost of a narrow swath, which is unsuitable for maritime
surveillance [2]. Despite deep learning is proving to be very
effective in marine applications [3], [4], the results produced
from moderate-resolution data are not so overwhelmingly
better than those obtained by classical algorithms using hand-
crafted features [5], [6].

With moderate-resolution images, the non-deep-learning
algorithms often perform comparably to the deep-learning
ones [7]. Lang and Wu [8], Lang et al. [2], and
Snapir et al. [9], however, maintain that the only significant
features to be used are the geometric ones. In [2], it is
suggested that with such images the so-called “naive” geo-
metric features (NGF), only depending on length and width
of the target vessel, are sufficient for classification. Indeed, the
spatial distribution of the strong scattering centers in moderate-
resolution images does not have the clear patterns shown by
high-resolution images, thus displaying that their discrimina-
tive power is limited. The results presented here contradict
this claim, as we always found some scattering features in
the subsets that produce the best classification accuracies.
We selected four ship types to be classified—bulk carriers,
cargo ships, container ships, and tankers—and extracted a
number of annotated images thereof from the OpenSARShip
dataset [10], featuring Sentinel-1 wide-swath, ground-range-
detected images (IW-GRDH), with a spatial resolution of
20 m × 20 m and a pixel size of 10 m × 10 m. By 2021, these
four types constitute more than an 88% of the global merchant
fleet [11]. Following [2], we chose the NGFs as geometric
attributes and, inspired by other suggestions found in [12]
and [8], we chose electromagnetic features related to the mean
scattering values in different sections of the ship footprint and
the distribution of the peaks in the scattering profile. Using
the images and the ground truth provided by OpenSARShip,
we trained random forest models with different subsets of the
geometric and scattering features and compared the results
obtained using only geometric, only scattering, and both
geometric and scattering features. It emerged that significantly
improved classification performances are obtained using both
geometric and scattering features.

II. FEATURES AND DATASET

The algorithm we used to extract the ship footprint from
each SAR image is described in [13], with a refinement
inspired by the study [14]. The ship length and width are

2https://sentinel.esa.int/web/sentinel/missions/sentinel-1
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Fig. 1. (Top) Longitudinal scattering profile from a typical ship footprint.
Horizontal scale in meters, vertical scale in absolute, calibrated scattering
values. (Bottom) Matched target image divided into the stern, midship, and
bow sections.

estimated from this refined footprint as its maximum lengths
along the principal inertia axes. By averaging the scattering
values along lines orthogonal to the keel (that is, orthogonally
to the minimum inertia axis), we obtain a scattering profile
normally characterized by several peaks (see Fig. 1). The
highest between the first and the last peaks detected is referred
to as “Peak 1”; all the other peaks are labeled by progressive
numbers. Since normally the stern section scatters more than
the bow, we assume that the stern corresponds to our Peak 1.
Then, we locate the boundaries of the stern, midship, and bow
sections in the profile relative minima that are the closest,
respectively, to one-third and two-thirds of the ship length.
The first four of our scattering features are the mean scattering
values over the whole ship footprint and the three sections thus
defined. The remaining features are the label and the value of
the highest peak in the profile, the total number of peaks and
the number of peaks that exceed half the maximum. We thus
have eight scattering features that, along with the eight NGFs,
form our overall feature set, described in Table I.

Each Sentinel-1 scene in OpenSARShip is accompanied by
an annotation xml file with the ground truth of each target
and a folder containing two-channel tiffs with the vv- and
vh-polarized, calibrated image chips representing all the listed
targets. From the 2755 image pairs extracted, we first elim-
inated the ones with no ground-truth size available and then
applied our feature extraction algorithm. The estimated geo-
metric features were often affected by very large errors caused
by the different clutter levels, imaging artifacts, and other
anomalies in the data. Removing the targets with relative errors
larger than a 40%, however, still leaves a sufficient number of
records to be processed. In any case, the estimation algorithm
still offers the possibility to be refined and corrected for
possible systematic errors. Finally, 1418 vh-polarized images

TABLE I

GEOMETRIC AND SCATTERING FEATURES CONSIDERED

with 39 ship types and 1332 vv-polarized images with 37 ship
types survived this selection. From the vh targets, we extracted
521 bulk carriers, 443 cargo ships, and 164 container ships.
Then, assuming that their features are similar, we grouped
together in the type “Tanker” the 122 ships marked as
“Bunkering Tanker,” “Chemical Tanker,” “Crude Oil Tanker,”
“Oil Products Tanker,” “Oil/Chemical Tanker,” or “Tanker.”
The same process on the vv images produced 515 bulk carriers,
406 cargo, 167 container ships, and 100 tankers. The features
extracted from the vh dataset were used to build a perfectly
balanced training set with 100 randomly chosen ships per
type. From the remaining 850 records, we built a test set
with 100 bulk carriers, 100 cargo, 64 container ships, and
22 tankers. The no-information rate (NIR) for such a set is
0.35. A classification task can be considered successful when
the resulting accuracy lies above the NIR. For the vv images,
with the same modalities, we were able to build a training
set with 80 ships per type and a test set with 20 ships per
type, with an NIR of 0.25. The results in the vv case would
probably be less reliable than in the vh case because of the
smaller training and test sets used.

III. EXPERIMENTS

To train and test the random forest models, we used the
R packages randomForest and caret, which include
useful functions to produce and evaluate the results.3 Through
these functions, we are able to compute the relative feature
importances, train random forest models using different feature

3https://www.rdocumentation.org/packages/randomForest/versions/4.6-14/
topics/randomForest; https://www.rdocumentation.org/packages/caret/versions/
6.0-91
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Fig. 2. Classification accuracies and 95% confidence intervals, vh polarization, as functions of the number of features: (a) geometric features alone,
(b) scattering features alone, and (c) both geometric and scattering features.

subsets, and then evaluate their performances using the test
sets. The models have been trained through the feature values
as estimated by the algorithm, with no centering or normal-
ization. This choice was motivated by the need to leverage the
actual sizes and scattering amplitudes to characterize the ship
types. This is also why we used the floating-point calibrated
image chips rather than their 16-bit unsigned integer versions.
A series of experiments has been tried using the principal
components of the normalized features. The results obtained
are not reported here, as they showed no relevant difference
with respect to the ones presented below.

The importance ranking for the geometric features in the
vh case is as follows (values in parentheses): 1) P (50.96);
2) L (48.16); 3) A (47.22); 4) W (36.15); 5) Ci (26.21);
6) Co (25.70); 7) AR (25.49); and 8) El (25.22). From a
fivefold cross validation computed through function rfcv,
the minimum relative classification error, 0.535, is obtained
by using the first three features. To validate this result through
never-seen-before data, we trained seven models, with two to
eight features, and tested them against our 286-record test
set. The results, in terms of the overall accuracies and the
related 95% confidence intervals as functions of the number
of features, are reported in Fig. 2(a). The maximum accuracy,
0.465, is obtained with just two features, P and L.

The same procedure has been followed for the scattering
features; the result is summarized in Fig. 2(b). The importance
ranking is in this case: 1) avg_mid (57.01); 2) v_mxpk (51.55);
3) avg_bow (50.73); 4) avg_all (47.93); 5) avg_stern (46.88);
6) N_pks (16.28); 7) l_mxpk (13.93); and 8) N_top.pks (10.90).
The minimum error obtained by cross validation is 0.502, with
all the eight features, whereas the maximum accuracy using
the test set, 0.518, is obtained with three features: avg_mid,
v_mxpk and avg_bow. Note that the accuracy reached through
scattering features alone is comparable to the one obtained
through geometric features alone. Indeed, all the confidence
intervals obtained overlap in the range [0.458, 0.514]. Con-
sidering that these intervals are entirely above the NIR; this
means that our scattering features are indeed significant for
the classification of these four types of ships.

The importance ranking of all the 16 features is: 1) avg_mid
(34.13); 2) P (33.07); 3) L (28.89); 4) A (27.97); 5) avg_bow
(27.19); 6) avg_all (23.23); 7) W (20.42); 8) avg_stern
(20.35); 9) v_mxpk (20.11); 10) Ci (11.28); 11) Co (11.28);

12) El (10.87); 13) AR (10.64); 14) l_mxpk (8.47); 15) N_pks
(5.93); and 16) N_top.pks (5.40). The minimum error by
cross validation, 0.385, is obtained with 11 features. Note that
the top ranking feature is of scattering type, confirming that
these are useful with moderate-resolution images. Among the
11 most important features, there are five scattering features,
namely, the ones directly related to the scattering values.
The remaining three, only related to number and position
of the peaks in the scattering profile, are at the bottom of
the ranking. The results of the accuracy evaluation using the
test set are summarized in Fig. 2(c). The maximum accuracy,
0.636, is obtained with ten and 11 features. Also, a simple
comparison of the three plots in Fig. 2 shows that not only
the scattering features are as discriminative as the geometric
ones for the four ship types considered, but also that the use
of both kinds of features produces an apparent advantage in
terms of overall classification accuracy.

The analysis of the vv-polarization case confirmed the
usefulness of the scattering features for classification. Since
our fundamental claim is thus demonstrated, here we only
report the results from the cross validation, showing that the
classification errors obtained using both types of features are
significantly smaller than the ones obtained through either the
NGFs or the scattering features alone. Due to the smaller train-
ing and test sets, in this case, the confidence intervals around
the accuracy values are wider than in the vh-polarization case.
The importance ranking of the features extracted from the
vv images is: 1) P (29.01); 2) L (26.06); 3) A (22.52);
4) avg_mid (19.00); 5) avg_bow (16.85); 6) W (16.45);
7) avg_stern (15.77); 8) avg_all (15.47); 9) v_mxpk (13.78);
10) l_mxpk (10.97); 11) AR (10.96); 12) Ci (10.87); 13) El
(10.60); 14) Co (10.02); 15) N_pks (6.25); and 16) N_top.pks
(4.65). The usual fivefold cross validation found a minimum
error of 0.434 using 15 features. The above-reported ranking
confirms, for vv-polarized images too, that at these resolutions
the features related to the distribution of strong scattering
points, namely, l_mxpk, N_pks, and N_top.pks, are not very
important for classification. Conversely, the scattering features
directly related to scattering amplitudes are always among the
most important ones, and contribute significantly to increase
the accuracy. Indeed, the cross validation finds a minimum
error of 0.547, with five features, using the NGFs alone,
and a minimum error of 0.597 using all the eight scattering
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features. It can be noted that the error obtained with 15 features
is much smaller than the last two figures. The accuracy in
classifying the test set, using the 15 most important features of
both types, is 55%, with 95% confidence interval [0.43, 0.66].
Using the five most important NGFs, we obtain an accuracy of
47.5% with confidence interval [0.36, 0.59]. Finally, using all
the scattering features we obtain an accuracy of 48.8% with
confidence interval [0.37, 0.60].

IV. DISCUSSION

This experimental work demonstrates how some scattering
features offer a significantly beneficial effect in ship classifica-
tion from even moderate-resolution SAR images. In the case
treated here, the best classification has been obtained from
vh-polarized images using a feature subset with 11 entries.
Richer training sets would be needed to fully exploit the
discriminative potentialities of the whole feature set. Strictly,
the results obtained with vv-polarized images could not be
compared to the vh ones, as the vv-based training set was less
populated than the other. A further study will use more data,
thus allowing for a fair comparison.

Even though trying to maximize the classification perfor-
mance was out of our scope, we observe that the accuracies
reported here are comparable to other results presented in
the literature regarding non-deep-learning classification mod-
els applied to moderate-resolution images [15]. Interestingly,
in [16], a convolutional neural network (CNN) is used for
classification, also leveraging the incident angle extracted from
the SAR metadata in view of the fact that the appearance
of an SAR target depends on the imaging geometry. Despite
the claimed improvement over a CNN with no SAR-geometry
integration, the results for the three classes Container, Bulk
Carrier, and Tanker produce a maximum accuracy of 74.5%
using a total of 1371 ship chips from OpenSARShip. Other
deep learning strategies proposed claim results that are gen-
erally much better than the ones mentioned so far, with
the advantage of avoiding the use of handcrafted features.
In [3], [4], accuracies close to 100% are obtained by using
pretrained convolutional networks with, respectively, fine-
tuning and transfer learning from small sets of high-resolution
SAR images. The four CNN models used in [5] distinguish
among cargo ships, tankers, platforms, windmills, and harbor
structures from high-resolution TerraSAR-X data, with F1-
scores from 59% to 80% for cargo and tankers and close to
100% for the other structures. A fifth CNN model, trained
with multiresolution data, produces F1-scores of 85% and
87% for cargo and tankers, respectively. In [17], a custom-
made CNN is trained through variously augmented training
sets from few originals and obtains very good results on eight
types of marine objects imaged at resolutions between 0.5 and
5 m. Again, despite the high resolution in input and although
the accuracies reached are generally very high, the figures
obtained for ships are smaller than the ones obtained for
platforms and other classes of marine targets. Maybe hybrid
approaches, such as the ones proposed in [18], complementing
handcrafted features and a deep learning approach, would
deserve to be examined in-depth in the future.

V. CONCLUSION

The aim of this letter was to demonstrate experimentally that
using both geometric and scattering attributes extracted from

moderate-resolution SAR images is advantageous for ship
classification over using only one kind of attributes. The results
shown confirm this conjecture. The datasets used are not so
large to allow all the features devised to be included in the
training and no optimization has been attempted in the feature
extraction and classification algorithm. This notwithstanding,
the classification performances obtained are comparable to
several results reported in the literature.
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