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Abstract

The massive and increasing availability of mobility data enables the study
and the prediction of human mobility behavior and activities at vari-
ous levels. In this paper, we tackle the problem of predicting the crash
risk of a car driver in the long term. This is a very challenging task,
requiring a deep knowledge of both the driver and their surroundings,
yet it has several useful applications to public safety (e.g. by coaching
high-risk drivers) and the insurance market (e.g. by adapting pricing
to risk). We model each user with a data-driven approach based on a
network representation of users’ mobility. In addition, we represent the
areas in which users moves through the definition of a wide set of city
indicators that capture different aspects of the city. These indicators are
based on human mobility and are automatically computed from a set
of different data sources, including mobility traces and road networks.
Through these city indicators we develop a geographical transfer learn-
ing approach for the crash risk task such that we can build effective
predictive models for another area where labeled data is not available.
Empirical results over real datasets show the superiority of our solution.

Keywords: Mobility Data Model, Crash Prediction, Individual Mobility
Network, Mobility Data Mining, Car Insurance
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1 Introduction

Collecting and processing mobility data is a fundamental task of car telematics
and (modern) car insurance companies. Their main objective in doing that
is typically to provide to end-users services like pay-as-you-drive contracts,
anti-theft control, and prompt emergency rescue in case of accidents [1]. One
of their foremost priorities, however, is to adapt policy pricing to customers
in the best way, which mainly consists in finding a trade-off between profit
and competitiveness. In this context, risk assessment is probably the most
critical problem addressed. The risk from the company perspective can involve
several aspects, yet the most impactful one is the customer’s risk of having
accidents in the future [2] since high-risk ones are likely to cause the company
a loss (paying the costs of her accidents), while low-risk ones are more likely
to provide a plain profit. In this context, since the car insurance markets are
quickly expanding also towards new (for the market) geographical areas1, there
is the need to establish services in areas where very little or no prior knowledge
at all is available, making the risk assessment task even more challenging.

Along the lines mentioned above, our research pursues two distinct
objectives.

First, develop a methodology for predicting the customer’s risk score:
given a car insurance customer, provide a risk score relative to the long-term
future, e.g., the next month or the next year. Since this estimate is expected
to depend both on how the customer drives and on the conditions of the sur-
rounding environment [3–5], we adopt an approach based on the computation
of individual driving features, describing how much the user drives and how
much dynamically, also related to the general characteristics of mobility in the
places that the user visits. Since the raw mobility data collected by car telem-
atics and car insurance companies is typically limited to positions and events
of the vehicle [1], with no vision of what happens around it, our approach
elaborates the data to infer higher-level knowledge, such as driving behav-
iors (frequent accelerations, average speed, etc.), individual mobility demand
(detecting frequent trips, travel times during the day, etc.), habit changes,
etc. [6]. That is achieved, in particular, by exploiting Individual Mobility
Networks (IMNs) [6–8], a network-based representation that integrates impor-
tant locations, movements, and their temporal dimension in a succinct way.
Therefore, the proposed approach takes into account several different aspects:
individual components of the driving behavior including those that can be
derived from IMNs, elements considering the collective mobility of other users,
and static contextual information such as road categories and the presence of
points of interest.

The second objective, which is also the main focus of this paper, is to
enable the geographical transfer of crash prediction models, i.e. to
make the customer’s risk score prediction system usable and effective also on
areas where historical data about crashes is unavailable or too limited. Given

1https://tinyurl.com/32k589z2
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an area where we want to asses the customers’ risk scores and yet there is not
a local training dataset to learn from, we derive a prediction model through
techniques for geographical transfer learning which exploit the models and data
available in other areas, in particular those similar to the one analyzed [9]. We
define an array of geographical transfer learning strategies based on the data
and the models available in certain areas that can be applied to target areas
individually or as an ensemble. In particular, we rely on a set of city indica-
tors [9] that can be retrieved for every area to evaluate the similarity between
two or more areas. The measures considered covers a wide spectrum of features,
thus providing a multi-perspective description of area area. They include a set
of spatial concentration indexes of human activities; network features of intra-
city traffic flows; mobility characteristics of the individual mobility, obtained
from networks that represent the places and movement of single users; last,
characteristics of road networks and how traffic is distributed in them. The
city indicators allow to compare the different areas, using this similarity mea-
sure as a way to properly weight the contribution that each source area (i.e.
areas where data are available and local models could be built) should give to
the construction of a predictive model for the target area (i.e. the one where
no data for training a model is available). The paper proposes several different
strategies that exploit such weights in different ways, and provides an empir-
ical comparison to find out the best one in terms of prediction performances.
When comparing models, performances are an important aspect to consider,
but not the only one. Indeed, two models might have a similar accuracy, and
yet implement completely different logics, for instance considering completely
disjoint subsets of features. In the experimental section of this work we aim
to understand in depth in what aspects the different models actually differ,
and we realize that through the adoption of explainable AI approaches. That
allows us to provide some hints about the reasons why the transfer of the mod-
els trained on certain areas and applied to a certain target area works better
than in other cases.

We evaluate the proposed methodology on three datasets of real cars mov-
ing in three different areas, namely two cities (Rome and London), and one
region (Tuscany, Italy). In particular, a deep study on the models’ transfer-
ability is performed on the Tuscany dataset working at the province level,
which provided a good variability of city contexts yet involving areas of com-
parable complexity. The results show that the individual mobility-based and
context-aware modeling of the users that we propose improves the performance
over the baselines that adopt state-of-art features. These results support the
importance of the heavy feature engineering proposed in the paper to ade-
quately solve the crash prediction problem. Finally, we observe that the best
results in geographical transfer learning are obtained by the solutions based
on the city indicators for training the most adequate classifier in a certain
area. The explanation of these transferred models with SHAP reveals that the
most important aspects for the crash prediction on the transfers are related to



Springer Nature 2021 LATEX template

4 City Indicators for Geographical Transfer Learning

events that happens while driving towards regularly visited locations such as
harsh accelerations or harsh cornerings.

To summarize, the novel contributions of the paper are the following:

• we expand the work in [6] on crash prediction, by studying how much the
prediction span impacts on the performances and whether the feature engi-
neering implemented in our approach can be replaced by a deep learning
model over time series of basic mobility features (the answer being no);

• as follow up of the work in [9], we define the geographical transfer learn-
ing problem for a challenging task, namely individual, long-term crash
prediction;

• we propose three multi-source geographical transfer learning strategies based
on the city indicators introduced in [9], which are used to quantify the
similarity of two geographical areas;

• we empirically evaluate our solutions against baselines and competing meth-
ods on a large real dataset of private vehicles. The evaluation includes
a study of the features that characterize the different models, through
explainable AI methods.

The rest of the paper is organized as follows. Section 2 summarizes the
related works on crash prediction, transfer learning and city indicators. In
Section 3 we formalize the problem definition and we recall concepts involved
in the models designed in Section 4. Section 5 presents experiments in the
form of a case study. Finally, Section 6 concludes the paper and discusses next
challenges.

2 Related Work

In this section we report an overview of the most relevant works related to the
three research areas involved in this paper: crash prediction, transfer learning
and city indicators.

Crash Prediction. The literature on crash prediction is relatively large,
studying car accidents from various perspectives, such as the risk of roads, the
failure of safety devices or drivers’ lack of attention. Yet, at the time of writing
there are no works trying to exploit mobility data analysis and user modeling
for crash prediction and risk assessment, with the only exception of [6]. A large
part of the works focuses on real-time prediction of individual crashes, i.e., try
to identify the events that lead to a crash in the next few seconds, thus provid-
ing feedbacks to the user as she drives [10]. Similarly, [11] developed a model for
real-time collision detection at road intersections by mining collision patterns,
while [4], using different data, tries to relate crashes to both behavioral char-
acteristics and physiological parameters. Other approaches (e.g., [3, 12, 13])
work on identifying areas that show characteristics usually associated with
accidents, such as increased traffic density, adverse weather conditions, etc.
Besides features describing areas, the work in [14] also used individual vehicu-
lar data of cars (speed and time headway) passing through predefined detector
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stations for improving the performance of a probabilistic model. In [15] it is
presented a review of the key issues associated with crash-frequency data as
well as strengths and weaknesses of similar methodological approaches. While
extremely useful, such approaches result in being not applicable to fields like
car insurance, where the focus is in creating a general risk profile of the user,
thus implicitly involving the prediction of her crash risk in the long run, such
as few months in the future. Only a few, preliminary works are available in
this direction. In [2] machine learning methods are adopted to predict the
users’ driving behaviors, based on very basic movement statistics. The work
in [6], which provides the starting point of the present paper, designs a data-
driven model for predicting car drivers’ risk of experiencing a crash based
on the Individual Mobility Network model of the user and on statistical fea-
tures which describe her driving characteristics. Here we extend the work and
results of [6] with additional experimental studies and by boosting the crash
prediction model with geographical transfer learning.

Geographical Transfer Learning. Individual mobility models and crash
predictors, which are the basis of our proposed approach, are expected to
strongly dependent on the specific geographical area under study. For instance,
it has been empirically verified that the trip purpose classifiers in [7] work
very well in the geographical area where they were extracted, but their perfor-
mances dramatically degrade if applied to areas with different characteristics.
Since some geographical areas could be insufficiently covered by data, due to
the non-homogeneous penetration of tracking devices, it would be very difficult
to build different models for different areas from scratch. A possible approach
to the problem, then, is given by methodologies that make it possible to adapt
models built in data-rich areas to less rich ones, which is basically a geograph-
ical instance of the general transfer learning problem [16, 17]. The transfer
learning research area aims to transfer the knowledge available in one domain,
called the source domain, to another one, called the target domain [18]. We
refer to the particular case where the different domains are actually different
geographical areas as geographical transfer learning. This specific topic is stud-
ied only sparsely in the literature, usually with objectives rather different from
ours. The most common problem considered is image recognition, typically
satellite image labeling, as in [19] and [20]. Both papers deal with deep learn-
ing classifiers that are requested to work on data-poor areas, and therefore the
models learned in data-rich areas (usually CNN-based models) are adapted to
the new domain. The authors of [21] focus on crime prediction and, again, try
to exploit the knowledge available in some areas to make reliable predictions
on a different one having too little data to build a model. Finally, [22] builds
shared bike demand prediction models over some cities (especially large ones,
where more data is generally available) and then adapt them to other (usually
smaller) ones. The work in [23] shares some ideas with ours since it tackles
the problem of labeling road networks and shows how assessing the similarity
of street networks improves the transfer of a model from one city to another
one. Our work tackles a more complex prediction problem, and compares areas
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through a multi-dimensional view, yet our results confirm the general message
of the cited paper. The methods we propose start from the paper [9], which
exploited a set of descriptive features of cities to assess their similarities, study-
ing whether the transfer of models across cities works better among similar
ones. Both the prediction problems tackled and the model transfer method
adopted were very simple. In this work, we expand those results considerably,
considering a complex crash prediction problem and developing several more
sophisticated model transfer strategies, yet still, exploit city similarities.

City Indicators. We conclude this section by briefly reporting the most
important papers describing methods for characterizing urban spaces and
defining city indicators, which will be used in our work to compare geograph-
ical areas. In this area, Geographical Information Science introduced several
innovations that helped to automatize and extend an approach usually driven
by a domain expert, including statistical methods for geography [24] and com-
putational tools for managing large databases of information. City indicators
have an important application in defining the sustainability characteristics of
urban areas. Various attempts have been made to design indicators for moni-
toring sustainability at various levels, such as national [25] and city level [26].
As described in the review paper [27], the literature covers a wide range of
aspects, including mobility-related ones (e.g., mobility space usage and func-
tional diversity). However, very few attempts were made to systematically
exploit big data sources to estimate them. One example was the Air Qual-
ity Now EU project [28], which used vehicular and public transport data to
infer some measures. Yet, that is limited to direct and simple ones, such as
traffic, speeds, and exposure to pollution. The literature also considers mobil-
ity indicators and road network properties as potential measures to adopt,
which is aligned with our approach [29]. Finally, exploiting big mobility data to
understand the properties of geographical spaces is a very active area [30, 31].
However, to the best of our knowledge, [9] is the only proposal where a wide
set of complex indicators are collected in a systematic and reproducible way,
directly aimed to make cities comparable in a computational way. Therefore,
in our proposal, we aim at exploiting the approach and the city indicators
defined in [9].

3 Setting The Stage

We introduce here the definitions of trajectory [32] and individual mobility
network [7, 8], useful for understanding the rest of the paper and adapted
to the approach proposed. After that, we formalize the car crash prediction
problem in general and in the transfer learning setting.

Definition 1 (Trajectory) A trajectory is a sequence t = 〈p1, . . . , pn〉 of spatio-
temporal points, each being a tuple pi = (xi, yi, zi) that contains latitude xi, longitude
yi and timestamp zi of the point. The points of a trajectory are chronologically
ordered, i.e., ∀1 ≤ i < n : zi < zi+1.
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As additional notation, we refer to the i-th point of a trajectory t (namely,
pi) as t[i], and to its number of points with t.n. Also, we indicate the longitude,
latitude and timestamp components of point t[i] respectively with the notation
t[i].x, t[i].y, and t[i].z. We name individual history the set of trajectories that
a user followed in a time period. More formally:

Definition 2 (Individual History) Given a user u, we define the individual history
of u as the set of trajectories Hu = 〈t1, . . . , tn〉 traveled by u. Also, we denote

with H
[a,b]
u the subset of trajectories of Hu that occur in time interval [a, b], i.e.

H
[a,b]
u = {t ∈ Hu | [t[1].z, t[t.n].z] ⊆ [a, b]}.

Individual Mobility Network

Given a user u, their associated history Hu can be processed to extract their
individual mobility network (IMN) Gu. An IMN describes the individual mobil-
ity of a user through a graph representation of her locations and movements,
grasping the relevant properties and removing unnecessary details.

Definition 3 (Individual Mobility Network) Given a user u, we indicate with Gu =
(Lu,Mu) her individual mobility network, where Lu is the set of nodes and Mu is
the set of edges. Given an aggregation operator agg, for each node l ∈ Lu we define
the following functions:

• ω(l) = number of trips in Hu reaching location l;
• δ(l) = agg({durations of stops in l});
• ρ(l) = agg({arrival times of trips reaching l});
• πt(l) = agg({durations of trips reaching l});
• πd(l) = agg({lengths of trips reaching l});
Operator agg can return either a single value (e.g. median) or a n-ple (e.g. average
and standard deviation, or quartiles). The same functions are also defined on edges
(movements) m = (li, lj) ∈Mu in a similar way, this time considering only trips that
start from li and reach lj .

Nodes in Lu are locations that represent a group of stop points, and edges in
Mu are movements that represent groups of similar trips between two locations.
Given the individual history Hu, the IMN Gu is obtained by retrieving the
locations Lu through a spatial clustering-based aggregation of stop points [33],
and the movements Mu by grouping the trips between any pair of locations [8].

Problem Formulation

We define the crash prediction problem as the association of a user’s probabil-
ity of having an accident in the next time period with their recent historical
mobility. The duration of the user’s history to consider and of the next time
period for which we make predictions are two fixed parameters. Reasonable
durations for the context at hand will have the scale of one or more months.
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Definition 4 (Crash Prediction and Risk Assessment) Given the prediction time
τp, history depth τh and prediction span τs, we define the two time intervals z̄p =
[τp − τh, τp], named predictors interval, and z̄t = (τp, τp + τs], named target interval.
Then, the crash prediction problem consists in evaluating if user u will have a car
crash during period z̄t and what is the crash probability, based on the analysis of
the user’s mobility during period z̄p. More formally, we want to estimate:

pcrash(u) = P
(
u has crash in z̄t

∣∣ H z̄p
u

)
The period z̄p is the knowledge we have about the user at the moment of

assessing her risk, while z̄t is where/the period when the crash to predict will
or will not happen.

In a geographical transfer learning context, crash prediction has the same
overall objective, yet the available information for estimating pcrash mainly
comes from areas that are different from that of the user.

Definition 5 (Geographically Transferred Crash Prediction) Given a set A =
{A1, . . . , An} of n geographical areas, each associated to a set Ui of users, to a func-

tion π(i) that estimates pcrash within Ai (1 ≤ i ≤ n), and to the training set Htrain
u

of each user used to infer π(i) (u ∈ Ui, 1 ≤ i ≤ n); the predictors and target intervals
z̄p and z̄t; and an area A∗ 6∈ A, associated to a set U∗ of users; the geographically
transferred crash prediction problem consists in computing the function π∗ estimating
the crash risk probability for each user u ∈ U∗:

π∗(u) = P

(
u has crash in z̄t

∣∣ H z̄p
u ,
{
π(i)

}
1≤i≤n

,
{
Htrain

v

}
v∈Ui,1≤i≤n

)

The definition emphasizes the fact that the crash prediction function can
use both the training data and the locally inferred models of the geographical
areas in A, while for the area A∗ we do not have access to a training dataset,
the only information available being the data of the user in the predictors
interval H

z̄p
u (u ∈ U∗).

4 Methodology

In this section we first show how it is possible to characterize a geographical
area with mobility data driven indicators, following the work in [9]. Then, we
present the methodology proposed in [6] for long-term crash risk prediction
based on IMNs. Finally, we design a set of novel strategies for the geographical
transfer of crash prediction models across different areas.

4.1 Defining City Indicators

The transfer learning approaches proposed in this work revolve around the idea
that highly similar geographical areas can share data and models more easily.
Therefore, it is critical to define an effective way to compute similarity scores
between pairs of areas. We do that by defining a set of descriptive features,
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called city indicators, for each area, and then compute similarities through
standard metrics, such as the normalized Euclidean distance.

In this section, we briefly describe the families of city indicators we com-
puted and adopted for our purposes. In this setting, we use the word “city”
as a simplification, to generally refer to a geographical area (or geographi-
cal unit) which is not only the urban area of a city, but can also be a much
larger one, like having the size of a municipality, a province or even a whole
region. The city indicators are meant to provide a multilayered description of
geographical units through quantitative measures, which have been selected
among indexes adopted not only in traditional urban studies, but also mobility
analytics and network science. Hence, they can provide a multifaceted view of
the areas under study. As discussed in Section 2, such numerical descriptions
of geographical units can have a wide spectrum of applications. In the follow-
ing, we give to the reader an overview of the city indicators adopted. For the
details of the complete list and a formalization we refer the reader to [9].

City Indicators

Given a geographical unit (or city) A, we define its associated set of city
indicators CI(A) as CI(A) =< SC(A), NC(A), IC(A), RC(A) >, where each
element represents a set of features computed over the user mobility data and
the street network of A, briefly defined below:

• Spatial concentration indexes of human activities (SC). They answer the
question “how does the density of people and activities vary across the
area”? Examples of this indicators are spatial entropy [34], Moran’s mea-
sure [35], and the average nearest neighbor distance. The extraction process
exploits mobility data to infer stay locations, which are then used to approxi-
mate activity places and their distribution. These indexes help distinguishing
areas where activities are concentrated in a small space against those where
activities are well distributed over the territory.

• Network features of intra-city traffic flows (NC). Each area is partitioned
into a regular grid and then modeled as a network whose nodes are the
grid cells, and edges connect cells whenever some users moved from one
to the other. Nodes and edges are weighted according to the number of
matching trips. By representing the geographical unit as a network it is
possible to describe all the activities through network measures such as
node degrees [36], Louvain modularity [37], and interaction models like
gravitation [38] and radiation [39, 40].

• Characteristics of the individual mobility (IC). Consider the mobility at
the level of individual users. Then geographical units can be described by
aggregated values of their inhabitants’ mobility such as average distance and
duration per trip, average driving distance and duration per day, average
amount of trips per day. Also, an aggregation of the features of IMN can
be used in this setting. For instance we can consider the average size of the
network, the average individual radius of gyration, the average individual
modularity, etc.
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• Characteristics of road networks and how traffic is distributed in them (RC).
Consider the mobility at the level of roads. Modeling a geographical unit as a
network where nodes represent road intersections and edges road segments,
we have indicators like amount of edges and nodes, amount of intersections,
average node degree; as well as a set of measures typical of complex net-
work analysis such as road network’s closeness centrality [41]. Moreover,
through a combined analysis of mobility data and road structure, the traf-
fic concentration is characterized by indicators of distribution skewness and
concentration. The latter, for instance, allow to highlight areas where the
traffic is concentrated in a small portion of the road network.

4.2 IMN-based Crash Risk Prediction

Our objective is to estimate the probability pcrash(u) in the crash prediction
problem definition. In this section we do that through approximation, along
two steps: (i) first, the knowledge contained in H

z̄p
u is represented through a set

of meaningful yet (necessarily) lossy features, that will be discussed in details
in the next sections; then, (ii) the probability function is learned through
machine learning predictors.

Predictive Features

Each user u is represented by a vector of m features computed over her
predictors interval, namely: x

z̄p
u = 〈f1, f2, . . . , fm〉. We denote with X z̄p =

〈xz̄p1 , x
z̄p
2 , . . . , x

z̄p
n 〉 the matrix of n vectors describing the behavior of n users.

We indicate with yz̄t the vector saying if a user has experienced a crash in the
target interval z̄t, i.e., yz̄tu = 1 if user u had a car crash in period z̄t, y

z̄t
u = 0

otherwise.

Machine Learning Models

The matrix of features X z̄p and the vector of target values yz̄t are used to train
a machine learning classifier, which yields as output a car crash predictor func-

tion pcrash(·). The crash predictor takes as input a vector x
z̄′
p

u , describing user
u’s mobility in a given predictors interval z̄′p, and returns the probability she

will have a crash in the corresponding target period z̄′t, based on the training
performed on X z̄p and yz̄t . As machine learning classifiers [42] we considered
several possible options, including K-Nearest-Neighbors, Decision Trees, Sup-
port Vector Machines, Deep Neural Networks, Random Forests, LightGBM,
etc. Indeed, any prediction model working on standard tabular data could be
in principle applied, since the specificities of the data domain are already cap-
tured by the user’s features x

z̄p
u . Through preliminary experiments, we decided

to mainly focus on Random Forest (RF), Deep Neural Network (DNN), and
LightGBM (LGBM), since they yielded the best and most stable results. The
case studies in Section 5 are based on these models.

A secondary (yet very relevant) objective of our work is to find the possible
factors that lead to a crash, whatever the nature of each factor, either causal
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or simply correlated. In order to achieve that, we adopt three ways to infer the
role played by each feature in the classification. The first one comes as a built-
in feature of RFs, namely the feature importance score, which says how much
important is overall a feature, though not describing if that is a positive or
negative factor. The second way exploits recent results in the explainable AI
domain, in particular, the SHAP method [43], which assigns the positive/neg-
ative impact of each feature on every single prediction allowing to make both
single-user and collective considerations. The third approach consists in aggre-
gating the absolute SHAP values of different predictive models, in order to
compare them and get a glimpse of their differences in terms of logics followed,
in addition to performances.

Predictive Features

A key component of the proposed approach consists in translating the raw
mobility information contained in H

z̄p
u into a set of features 〈f1, . . . , fm〉 able

to capture its significant elements, and in particular, those useful for crash
prediction. The following were computed:

• Trajectory-based features. These features include position-based features,
containing classic indicators of trajectories, i.e., length, duration, speed;
and event-based features, measuring characteristics of the acceleration- and
direction-related events contained in the data.

• IMN-based Mobility features. These features adopt IMNs (introduced in
Section 3) as higher level of aggregation of the user’s mobility, to extract
three different types of information: (i) the network properties of the IMN,
(ii) mobility aggregates focused on high-frequency locations and movements,
and (iii) temporal stability measures of the IMN.

• Mobility Context features. These features estimate contextual indicators by
extracting collective aggregates from the history of all users in the dataset.
Information like the number of events, average speed, and acceleration statis-
tics are computed for each geographical section, and they are associated
to the single user based on which sections they stopped in at least once,
compute an average of each characteristic of the sections.

Details for each family of features are available in [6]. The features considered
can be inferred from the basic information that any car telematics service
is expected to provide, and in that sense provides a minimal solution that
can be very easily adapted to work in different geographical areas. Where
available, this set can be extended with other useful measures about details
of accidents, physical features of roads (pavement quality, size, visibility, etc.),
weather, and so on. Real applications that need to be fine-tuned over a specific
geographical area could indeed benefit from other information layers that can
be easily integrated into our solution as additional features. Considering such
extra layers and studying their impact, however, goes beyond the scope of this
paper, and is left as interesting future work.
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4.3 Geographical Transfer of Crash Prediction Models

The basic idea of transfer learning is that the phenomena we want to capture
(and that determine the value of the target variable to predict) are inherently
present in other datasets, although in different proportions and maybe in dif-
ferent shapes. Therefore, the problem is to understand which parts of the data
(in our case, which geographical areas) are more likely to contain cues and
information useful to capture relevant phenomena, and thus exploit them for
predictions. Hence, our objective for geographical transfer learning in crash
prediction, is to explore ways for exploiting all the knowledge available on
areas different from the target one, i.e., the one where we need a predictive
model. With respect to the categorization presented in Section 2, we design a
geographical transfer learning which is homogeneous (the data and the predic-
tion tasks in the source and target domains are of the same type), multi-source
(in general, we have several geographical areas with data we can exploit in
the transfer) and transductive (we assume that labeled data is available in
meaningful quantities only in the source domains).

The solutions proposed in this work try to overcome some of the main issues
highlighted in [6] (and further confirmed in our experiments in Section 5). first,
blindly applying a model from one region to another does not consider at any
level the differences that the two areas might have. In our context, for instance,
the road conditions in one area might require a different driving style than
another one (reflected in the accelerations and contextual features), or the city
size and traffic might impact the routine behaviors of users. Second, adopting
standard weighting schemata based on feature distribution is possible only if
rather significant data is available for the target domain, although unlabeled,
which can be difficult in practical applications. In particular, in our reference
insurance case study, the data is always associated with labels (crash or no-
crash), the problem being instead to reach in a geographical region a sufficient
mass of historical data. Also, since in our experiments we study the transfer
between areas in the same region (Tuscany), it resulted that the differences
between the features distributions are in most cases not significant. Third, the
empirical studies in [6] focused on rather large areas. This leads to building
models that are more generic, and therefore might not be able to capture local
behaviors of smaller locations.

In the following, we introduce a few solutions based on the following
principles:

• a good prediction model for an area can profit from the information (data
or models) coming from other areas, the main open question being how to
account for the differences;

• while each area might have its own local factors and patterns, driving and
crash risk are expected to follow a common (potentially large and diversified)
set of rules, although each area might adopt them in different proportions –
total absence being mainly an exception;
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Fig. 1 Schema of the three geographical transfer learning approaches explored.

• the factors behind the events to predict, i.e., crashes, are strongly linked
with the mobility context where the users move, therefore the city indicators
described in Section 4.1 should provide a good basis for understanding how
much two areas share the same type of context.

Based on these principles, we propose three approaches of varying complex-
ity that follow them at different extents. Each solution is described in detail
below, while a schematic summary is provided in Figure 1.

Approach 1: Best City Transfer

This is a direct application of the lessons learned in [6], namely that the model
built on a city (or geographical unit) can be sometimes usable as is in another
one, and that compliance is generally more likely to happen between cities that
have similar spatial and mobility characteristics. Following this idea, Approach
1 selects among the source domains, i.e., the source cities where a model can
be trained, the one that best matches the destination city in terms of city
indicators, and applies its corresponding predictive model to the destination.
With reference to Figure 1, the process starts from the individual city data,
representing all possible source domains, over which we build individual city
models. Finally, based on city indicators, we identify the source city that is
most similar to the destination, and select its model. More formally:

pbestcrash(u) = pk(u) with k = arg max
i

sim(d, i) (1)

where pi(u) is the crash probability of user u estimated by the individual
model of source city i, and sim(d, i) is the similarity between cities d (the
destination) and i (the sources). More precisely, sim(d, i) is computed from the
Euclidean distance between the corresponding (normalized) city indicators of
d and i, i.e.:

sim(d, i) = EuclidDist (z−score(CI(Ad)), (z−score(CI(Ai)))
−1

(2)



Springer Nature 2021 LATEX template

14 City Indicators for Geographical Transfer Learning

where z−score computes the attribute-by-attribute normalization of the city
indicators.

We name the model individual best city model (bottom line of Figure 1).

Approach 2: Weighted Ensemble Model

It extends the ideas used in Approach 1, considering that each individual city
dataset brings not only information that is specific for that location, but also
information of more general validity, that might apply to all cities or at least
to a subset. That means that each individual city model might, in principle,
highlight a pattern or rule of general validity that, for statistical reasons or
noise in data, could not be spotted in other cities. The idea is, therefore,
to combine together the knowledge brought by all the individual models in
an ensemble fashion, i.e., a meta-model is built by combination of the single
ones, and predictions are performed by a voting schema where every single
model provides a prediction, and the collection of results are combined. Since
more similar cities are more likely to share common rules, the models in the
ensemble can be associated with a weight corresponding to the city indicators-
based similarity. Also, since our models provide a crash probability, the single
predictions are combined through a weighted average. Formally:

pensemble
crash (u) =

N∑
i=1

wi · pi(u) with wi =
sim(d, i)∑
k sim(d, k)

(3)

As before, sim(d, i) is the similarity between the destination city d and
sources i, and pi(u) is the crash probability of u estimated by the local model of
source city i. In Figure 1 this corresponds to the central arrow, which yields the
weighted ensemble model (or simply ensemble model, if clear from the context)
that is then applied to the destination city data.

Approach 3: Weighted Sampling

The ideas of the ensemble approach are applied here from a slightly different
perspective. The ensemble model assumes that if the overall dataset contains
a pattern or rule that is relevant for the destination city, then at least a sub-
set of the individual models should be able to identify it, allowing the voting
schema to bring it to the destination. However, that is expected to hold only
for relatively strong rules, which can emerge from individual datasets, while
that might not work for smaller patterns that leave many weak traces in the
various datasets. Basically, the ensemble approach filters at the source weaker
patterns, some of which might actually result to be significant overall. As possi-
ble counter-measure for this effect, Approach 3 creates an ensemble of datasets
rather than models, i.e., it builds a representative dataset by a weighted sam-
pling of all individual datasets. This combined dataset, then, is used to build
a predictive model. Since, again, we expect to find more useful information
in source cities that are similar to the destination, the sampling weights are



Springer Nature 2021 LATEX template

City Indicators for Geographical Transfer Learning 15

proportional to the city similarities. More formally:

presample
crash (u) = P

(
u has crash in z̄t

∣∣ H z̄p
u ,
{
Htrain

v

}
v∈D

)
(4)

where D is the data sample built for destination d from sources A, and is
defined as:

D =
⋃

Ai∈A

Di with Di ⊆ Ui s.t. |Di| = N · wi (5)

where Ui represents the set of users described in source city i, and N is the
requested size of the sampled dataset, i.e., N =|D|. Weights wi are computed
as for Approach 2. The more complex form of Equation 4 highlights the fact
that this approach requires learning a model from scratch rather than simply
combining or selecting existing local ones.

In relation to existing generic transfer learning solutions, the first two
approaches presented above provide a form of relational-based transfer learn-
ing, since the models built in one domain are used (possibly adapted) in the
other; the last approach, instead, works through an instance weighting strat-
egy, which belongs to the category of instance-based transfer learning [18].
In particular, the latter is close in principle to Domain Weighting [44], yet
it relies on a higher-level notion of city similarity, rather than a comparison
of features distribution – which might be difficult to implement if only little
(unlabeled) data is available in the target domain, as it is expected to hap-
pen in our application scenario. Also, as already mentioned, depending on the
spatial granularity, in some cases the attribute distributions might not vary
significantly across geographical units, thus making it a weak criterion. Indeed,
preliminary tests on the datasets adopted in our experiments (see Section 5.1)
showed that the feature distributions over the provinces were rather similar,
being statistically not clearly distinguishable at the level of single features
(around 58% of province-vs-province comparisons over all features did not pass
the Kolmogorov-Smirnov rejection test [45] with threshold 0.05), and obtain-
ing PCA projections over the two largest principal components having visually
almost identical distributions.

5 Experiments

In this section, we present a case study on two datasets of private cars in which
we employ the proposed methodology2. We first introduce the datasets, and
then summarize the results obtained on the crash prediction problem with and
without geographical transfer learning, with a comparison between our solution
and some baselines. We also extract explanations of the predictions returned

2The source code is available at: https://github.com/riccotti/CrashPrediction. The city indica-
tors used in this paper can be obtained from the Track & Know project website (see next footnote),
while the mobility datasets are proprietary, and cannot be publicly shared.

https://github.com/riccotti/CrashPrediction
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Fig. 2 Geographical areas of experiments. Dataset 1 includes London in UK (left), Tuscany
and Rome in Italy (center). Dataset 2 is a zoom on the Tuscany area (highlighted in the
center) by also considering its 10 provinces, shown on the right.

by the various models, and try to infer useful general hints for improving
personal driving behaviors.

5.1 Dataset Description

The two datasets considered in our experiments consist of GPS traces of private
vehicles tracked by a car telematics company and made accessible to us within
the Track & Know project3. The first dataset, named Dataset 1, includes
London in UK (Figure 2 left), Tuscany and Rome in Italy (Figure 2 center),
each area having about 5,000 drivers. The second dataset, named Dataset 2,
includes about 26,000 drivers and it is a zoom on the Tuscany area (highlighted
in Figure 2 in the center) by also considering its administrative division into 10
provinces (Figure 2 right). We consider the partitioning of the Tuscany region
in subareas in order use them as source and destination domains for transfer
learning experiments. We decided to report results with respect to provinces
because they provide a good trade-off between granularity and data availability
on each partition. While testing model transfer across very different areas as
Rome and London would be interesting, the different scale and complexity
of these cities would require a more extensive dataset covering many other
international cities, which was not possible in the scope of this work. In the
rest of this section we will use the terms city, geographical unit, and province
interchangeably, when there is no risk of confusion.

For both datasets, the raw mobility data consists of anonymized traces of
vehicles of car insurance customers, containing the following information: (i)
a list of GPS timestamped positions (latitude and longitude); (ii) a list of
events in the form of timestamped position data enriched with labels describing
events such as harsh acceleration, harsh braking and (possibly multiple) harsh
cornering, with additional accelerometer metrics related to each event position.
These data are collected whenever the accelerometer detects an acceleration

3https://trackandknowproject.eu/

https://trackandknowproject.eu/
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exceeding predefined parameters; (iii) a list of crashes in form of timestamped
position data related to crash events. Such events were originally detected
through algorithms and later filtered by a human operator. The dataset is
collected at an average rate of one position every 1.5 minutes, though there
are some exceptions.

5.2 Experimental Settings

We organize the experimentation as follows. We use Dataset 1 to analyze the
performance of the models for the basic car crash prediction problem, focusing
the attention on the effect of the various features described in Section 4.2
and on the temporal dimension. On the other hand, we rely on the greater
data availability of Dataset 2 to address the geographically transferred crash
prediction problem with the city indicators described in Section 4.1 through
the transfer learning methodologies illustrated in Section 4.3.

Local Crash Prediction. In the experimental setting for Dataset 1
(D1 ), we consider different time periods, corresponding to prediction times
τ1
p = end of March, . . . , τ9

p = end of November . The corresponding experi-
ment periods z̄i are obtained by fixing the history depth τh to 3 months (used
to compute features) and prediction span to 1 month (the period where crashes
are checked). We run the experiments in three different experimental settings,
depending on how we consider the temporal and geographical components. In
the first setting (D1.1 ) we keep separated each experiment period z̄i and each
spatial region r (r ∈ {London,Rome, Tuscany}) from all the others. In par-
ticular, for each given pair (z̄i, r) we train a classifier over the corresponding
data of all the users in r, namely Xzi,p and yzi,p , and then use the model to
make predictions one month later, i.e., it is applied over Xzi+1,p and the results
are compared against the ground truth in yzi+1,p . Notice that we must have
i+ 1 ≤ 9, therefore we obtain a total of |{τ ip}|×|{r}| = 24 sets of experimental
results. In the second setting (D1.2 ), we still keep regions separated, while all
experiment periods are considered together. Users are split into a training set
and a test set, following a hold-out division4, all the 9 experiment periods of a
user in the training set are used (as 9 separate records) in the model training
and, similarly, all the 9 experiment periods of a user in the test set are used
for the model testing. The main difference between the two settings is that in
(D1.1 ) we check if we can predict the crash of observed users in the future
using a limited amount of data, while in (D1.2 ) we try to predict the crash of
unobserved users using a consistent amount of data but without a temporal
reference. Finally, the third setting (D1.3 ) amplifies the effects obtained by
(D1.2 ) by putting the users of different areas in a unique training dataset.

Geographical Transfer Learning. The experimental setting for Dataset
2 (D2 ) is organized similarly to (D1.2), i.e., geographical areas are kept sepa-
rated, yet putting together all time periods. The main distinction is that now
we have 10 areas corresponding to the provinces of Tuscany. In turn, each
province will be selected as target domain, while all the others are used as

4Cross-validation was also tested, yet results do not change in any significant way.
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Table 1 Datasets summary as average values of some features.

% crash tot traj traj per day tot evnt evnt per day nbr mov nbr loc degree

D1
London 1.08 280.54 3.39 2967 34.81 66.84 31.23 4.31
Rome 2.82 307.48 3.13 2655 25.74 82.80 41.10 4.02

Tuscany 3.12 327.11 3.28 3041 29.13 81.48 41.19 4.07
D2 Tuscany 0.84 375.41 3.92 1088 11.59 77.64 34.81 4.53

source domains, the task being to make predictions on the former using the
models or data from the latter. The data related to each province is partitioned
into a training and a test set, which are used to extract a local predictive model
for each province, and then to test it on the other ones. The transfer learning
approaches proposed will either select or combine such local models or build a
training set by resampling the local training data, and then test the resulting
model over the test partition of the province under analysis.

Datasets Preparation

In both experimental settings, before training the classifiers, we face two prob-
lems with the datasets analyzed. The first one is a class imbalance issue. Indeed
there is a very low number of crashes compared to the number of no crashes
(see Table 1). We tackle this problem by adopting the SMOTE oversampling
approach [46]. The minority class is over-sampled by taking minority class sam-
ples and introducing synthetic examples along the line joining the kSMOTE

minority class nearest neighbors. Depending upon the amount of over-sampling
required, neighbors from the kSMOTE nearest neighbors are randomly chosen.
We adopt kSMOTE = 5 by default as suggested in [46]. The effect of adopt-
ing SMOTE is to improve class balance and to reinforce the presence of the
minority class in the decision regions where it appears. We highlight that we
re-balance only the training datasets and not the test ones making the evalua-
tion harder but more realistic. The second problem is the high dimensionality
of the datasets analyzed. Indeed, the rich data engineering described in the
previous sections leads to the construction of more than 400 features, some
of them being highly correlated and redundant. This high dimensionality can
cause difficulties in the learning of classification models. Thus, we adopt a
dimensionality reduction technique based on correlation analysis. We calcu-
lated the Pearson correlation coefficient [47] between every pair of features
for the various settings. Then, we removed one attribute for each couple hav-
ing a correlation higher than 0.85. This operation reduced the dimensionality
of the datasets to 162 features, with a balanced presence of trajectory-based,
event-based, IMN-based, and contextual features. Table 1 reports the per-user
average values of a small sample of features.

Machine Learning Models

Our crash prediction approach and our geographical transfer learning strate-
gies can be in principle applied using any existing machine learning algorithm
as an underlying predictive model. In this work, we consider three modern and



Springer Nature 2021 LATEX template

City Indicators for Geographical Transfer Learning 19

powerful types of classifiers: Random Forests (RF, basically an ensemble of sev-
eral small decision trees), LightGBM (LGBM, a decision tree algorithm based
on gradient boosting, with an emphasis on scalability) and Neural Networks
(NN, here used in the simple form of a multi-layer perceptron).

Configuration details. For LGBM we used the lightgbm library5, while
for NN we experimented with both the Keras6 and Scikit-Learn7 libraries.
Since the latter two libraries are applied to the same algorithm type (NN), and
the models obtained with Keras yielded worse performances than Scikit-Learn,
in the next sections we show only results for the latter. For all models we used
the Randomized Search Cross Validation8 to select the best combination of
parameters. The parameters of the estimator used to apply these methods are
optimized by cross-validated search over parameter settings. For RF, we use the
RandomForestClassifier that is a meta estimator that fits a number of decision
tree classifiers on various sub-samples of the dataset and uses averaging to
improve the predictive accuracy and control over-fitting. The sub-sample size is
controlled with the ”max samples” parameter if ”bootstrap=True” (default),
otherwise the whole dataset is used to build each tree. We try different settings
to decide the number of trees in the forest (‘n estimators’ : [8, 16, 32, 64, 128,
256, 512, 1024]),the minimum number of samples required to split an internal
node and the minimum number of samples required to be at a leaf node (‘min
samples split’ :[2, 0.002, 0.01, 0.05, 0.1, 0.2], ‘min samples leaf ’ : [1, 0.001, 0.01,
0.05, 0.1, 0.2]). Final setting we adopted is the following:

• ‘number of estimators’: 128,
• ‘min samples split’: 0.05,
• ‘min samples leaf’: 0.05,

For NN we use the MLPClassifier, a Multi-layer Perceptron classifier that
optimizes the log-loss function using stochastic gradient descent. Also in this
case we tried different settings in order to find the optimal hidden layer size
and the learning rate. We tried the ‘relu’, ‘tanh’ and ‘logistic’ functions as
activation ones and we made experiments to try all configurations: ‘hidden
layer sizes’: [(64, 128), (128, 256), (512, 1024), (512, 1024, 256), (1025, 512,
256)]. After testing, the final setting we adopted is the following:

• ‘hidden layer sizes’: (128, 256),
• ‘activation function’: ‘relu’,
• ‘learning rate’: ‘constant’,

LightGBM is a gradient boosting framework that uses tree based learning
algorithms. It has a high training speed and low memory usage. LightGBM
uses the leaf-wise tree growth algorithm to get good results, and requires to
select a few important parameters. The number of leaves (num leaves) is the

5https://lightgbm.readthedocs.io/en/latest/index.html
6https://scikit-learn.org/stable/
7https://keras.io/
8https://scikit-learn.org/stable/modules/generated/sklearn.model selection.

RandomizedSearchCV.html

https://lightgbm.readthedocs.io/en/latest/index.html
https://scikit-learn.org/stable/
https://keras.io/
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.RandomizedSearchCV.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.RandomizedSearchCV.html
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Table 2 Performance for the experimental setting D1. For D1.1 the metrics are
aggregated in terms of means and standard deviation over different periods.

Rome Tuscany London
Model rec1 f11 auc rec1 f11 auc rec1 f11 auc

D
1
.1

CST 1.00±.00 .024±.01 .500±.00 1.00±.00 .025±.01 .500±.00 1.00±.00 .009±.00 .500±.00
RFI .877±.10 .149±.08 .588±.05 .992±.01 .056±.04 .719±.05 .994±.01 .574±.02 .962±.01
RFP .891±.08 .140±.07 .574±.03 .992±.01 .042±.03 .577±.04 .719±.10 .308±.05 .612±.04
RND .486±.05 .352±.02 .500±.00 .488±.03 .355±.01 .500±.00 .499±.08 .341±.00 .500±.00

D
1
.2

CST 1.00 .028 .500 1.00 .029 .500 1.00 .010 .500
RFI .882 .216 .619 .944 .243 .775 1.00 .580 .955
RFP .866 .180 .586 .970 .061 .584 .624 .329 .574
RND .500 .361 .500 .480 .355 .500 .489 .344 .500

All
Model rec1 f11 auc

D
1
.3

CST 1.00 .022 .500
RFI .991 .206 .776
RFP .996 .025 .641
RND .485 .352 .500

main parameter to control the complexity of the tree model. Theoretically,
we can set num leaves = 2maxdepth to obtain the same number of leaves as a
depth-wise tree. However, this simple conversion is not good in practice. We
tried to use num leaves = (10, 31, 50) with a maxdepth = (−1, 2, 5, 10). The
best parameters setting found is the following:

• ‘number of leaves’: 31,
• ‘max depth’: 5,
• ‘boosting type’: ‘gbdt’,

About the Keras experiments, we use the same configurations of MLPC
Classifier with the only addition of the dropout parameter that is used to
regularize the neurons activation and selection during the training phase. For
our experiments we set ‘dropout rate’=0.1.

Evaluation Measures

Given the application context around this work, our objective is to highlight
future risky and potentially harmful events, also with the aim of raising an
alarm that might help to prevent them. From this perspective, false positives
are less critical than false negatives. To this aim we use as main evaluation
guidelines [47] the recall of the positive class (rec1), i.e., aiming to find as many
risky drivers as possible, the f1-measure, i.e., the harmonic mean of precision
and recall of the positive class weighted with respect to the number of crashes
(f1 1), and the area under the roc curve (auc) of the positive class that is the
area under the curve comparing the false positive rate (FPR) and true positive
rate (TPR). All measures range from 0 to 1, the optimum being 1.

5.3 Crash Prediction Evaluation

In this section, we evaluate the results for the experimental settings in D1.
Among the various classifiers, we found out that Random forests (RF ) over-
come those of the other algorithms. Thus, in the following, we report the
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Fig. 3 ROC curve for different areas for D1.2 and D1.3.

results obtained using RF classifiers9. We show the effectiveness of RF using
the sophisticated IMN-based and contextual features described in Section 4.1
by comparing against three alternatives. The first two are baselines: a con-
stant classifier (CST) always returning the positive class (crash); a random
classifier (RND), predicting uniformly randomly crash or no-crash. The third
one, instead, implements the approach in [2] with the information available in
our dataset, adopting an RF only using the features from the state-of-the-art
of crash prediction (RFP), such as average speed, number of breaks, etc. We
name RFI the RF classifier that improves over RFP by extending the classical
features used in literature with those we designed.

Table 2 reports the result for the experimental settings in D1, showing
the evaluation measures returned by the classifiers for Rome, Tuscany, and
London. Note that for the D1.1 case the values are averaged among the various
periods. The overall results we observe in the various experimental settings
of D1 are the following. The simultaneous analysis of the reported indicators
shows that RFI provides the best and most reliable performances. Indeed,
the CST baseline obviously has the highest recall but a zero precision on no
crashes, making it useless for practical usage. On the other hand, RND easily
gets a high f1 1, thanks to the high imbalance of data, but it loses half of the
real crashes, with a recall below 0.5. RFP gives a better trade-off than CST and
RND for the f1 1, but it shows an auc just slightly better than CST and RND,
with a value around 0.6. On the other hand, RFI has always similar or larger
f1 1 and recall compared to RFP, and it has systematically a higher auc10.

In D1.1 we observe different behaviors of RFI in the three areas consid-
ered. In London, RFI has the highest rec1, f1 1, and auc. Notice that the other
methods considered show much worse results. In other words, the new features
introduced in this paper appear to make crashes easy to predict in London.
Understanding the reasons for this effect is part of our future works. For D1.2
we observe how the increased number of available records for the training leads
to a not negligible improvement in the performance of the classifiers in the
Rome, Tuscany, and London areas when compared to those of D1.1. In addi-
tion, the setting D1.3 that puts together records from all the different areas
(“All” section in Table 2) leads to a classifier even better than those result-
ing from D1.2. We highlight in Figure 3 the Receiver Operating Characteristic
(ROC) curve of the classifiers for the experimental settings D1.2 and D1.3.
These plots show the evidence that London classifiers are much more accurate

9In particular, we used RF with 100 estimators, allowing leaves with at least 1% of the training
data, and with a cost matrix weighting a crash 100 times more than a no crash.
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than the others and that RFI classifiers markedly benefit from the usage of
IMN-based and contextual features with respect to RFP, whose ROC curve is
always below.

LSTM-based approaches

The key component of our approach that makes it superior to its closest com-
petitor (RFP) is its extensive set of carefully engineered features, which are the
result of a long experience in mobility analytics and driving behavior modeling.
However, recent works in machine learning show that deep learning solutions
are able to skip the human-made features construction phase in many tasks,
and autonomously learn effective data representations directly from raw data,
achieving exceptionally good performances. It is, therefore, natural to won-
der if that can be the case also in the complex scenario we are considering.
Along this line, we tested an alternative approach to our problem-based deep
learning. In particular, we model the user’s mobility as time series of basic
mobility indicators, namely: maximum speed, distance covered, driving time
and average trip duration. Then, we apply an LSTM network to learn the asso-
ciation between such time series and the target variable (crash / no-crash). The
training and test data are partitioned exactly as in the experiments described
above, and the time series has a 1-hour sampling rate. Experiments have been
performed on Tuscany only since it is the richest dataset.

The network adopted follows the most commonly used structure for LSTM
and time series classification: one LSTM level with 1024 units, followed by a
drop-out of 0.5; then a dense layer with 256 nodes, followed by a drop-out
of 0.2; finally, another dense layer with 64 nodes, and a drop-out of 0.01. In
particular, the drop-out was necessary for the unbalance of the classes. A ReLu
activation function was used in the internal layers, and a sigmoid function for
the output. The training adopted an Adam optimizer with a binary cross-
entropy loss function, using the area under the ROC curve (auc) as evaluation
metrics. The misclassification weights were set to 0.5 for no-crashes and 95 for
crashes, again due to the class unbalance. The preliminary results obtained,
however, show rather poor performances. The auc has values close to random
classification (0.5± .008), and the f1 measure is significantly lower than those
obtained with the other methods (0.01 ± .005). That is mainly caused by a
low precision (0.005± .003), whereas the recall is relatively good (0.66± .491)
yet rather unstable and lower than the other methods. Our conclusions are,
therefore, that the approach, although interesting and worth exploring, does
not work well with the basic features and the standard setting adopted, and
further investigations are needed. We point them out as possible future works
of this paper.

Testing longer prediction spans

An interesting aspect to study is whether predicting crashes over a longer
time horizon is harder or actually simpler. Indeed, on the one hand we are
trying to infer events that are further in the future, and therefore harder to
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Fig. 4 F1 score and auc for the RFI and RFP approaches on the Tuscany dataset by
varying the prediction span from 1 month to 4 months.

Table 3 Crash prediction performance for the various geographical units inside Tuscany in
D2. Each model is trained and tested in the same area similarly to D1.2. The last line report
the performance of a model trained and tested on the whole dataset similarly to D1.3.

RF NN LGBM
City rec1 f11 auc rec1 f11 auc rec1 f11 auc

Arezzo 0.15 0.08 0.84 0.27 0.14 0.81 0.00 0.00 0.50
Florence 0.91 0.09 0.92 0.31 0.11 0.84 0.00 0.00 0.90
Grosseto 0.04 0.07 0.94 0.12 0.15 0.93 0.00 0.00 0.50
Livorno 0.83 0.10 0.90 0.00 0.00 0.97 0.00 0.00 0.50
Lucca 0.98 0.07 0.89 0.32 0.16 0.85 0.04 0.00 0.43
Massa 0.89 0.11 0.88 0.32 0.15 0.89 0.95 0.09 0.80
Pisa 0.53 0.12 0.92 0.31 0.26 0.85 0.00 0.00 0.10

Pistoia 0.31 0.06 0.83 0.40 0.07 0.85 0.00 0.00 0.50
Prato 0.35 0.25 0.91 0.45 0.21 0.94 0.00 0.00 0.91
Siena 0.36 0.20 0.86 0.36 0.34 0.93 0.00 0.00 0.50
All 0.44 0.12 0.91 0.34 0.11 0.96 0.46 0.07 0.83

capture; on the other hand, since we are enlarging the prediction window, and
not just moving the same window further, the number of positive cases we are
considering in the training phase is bound to increase, making the problem less
unbalanced. In order to understand what is the resulting trade-off, we repeated
the experiments made on the Tuscany area by changing the prediction span,
now ranging from 1 month (the value used in the previous experiments) to
4, and measuring the f1 and auc scores. The results are plotted in Figure 4,
where also the values obtained by our main competitor RFP are given. In both
cases, we can observe that longer spans are overall better captured by our
models, meaning that the class unbalance is a stronger factor of the problem.
We see, in particular, that while the f1 score grows at an almost constant
rate, the auc quickly reaches a sort of plateau, meaning that the associated
risk probabilities produced by the model form a significantly better sorting
when passing from 1 month to 2, yet no large improvement is given by further
extending the window to 3 and 4 months. Interestingly, RFP follows exactly
the same behavior, yet with much worse performances.
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Table 4 Geographically transferred crash prediction auc for NN and RF. The best
transfer are underlined, the transfer suggested by Approach 1 – Best City Transfer w.r.t
the similarity of city indicators are in bold.
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Arezzo .73 .73 .80 .81 .81 .73 .84 .80 .79 .82 .83 .83 .82 .83 .83 .82 .63 .82
Florence .69 .80 .86 .89 .90 .85 .93 .90 .86 .93 .92 .93 .92 .92 .93 .92 .57 .83
Grosseto .65 .87 .92 .82 .88 .81 .91 .90 .90 .92 .93 .92 .92 .93 .91 .90 .55 .84
Livorno .57 .93 .78 .92 .93 .90 .97 .97 .89 .96 .97 .96 .97 .97 .97 .98 .49 .98
Lucca .70 .72 .72 .87 .86 .74 .89 .85 .83 .88 .87 .89 .88 .87 .86 .87 .66 .86
Massa .58 .78 .64 .80 .86 .81 .87 .83 .77 .88 .87 .87 .89 .89 .85 .86 .68 .74
Pisa .46 .81 .71 .86 .89 .87 .88 .88 .83 .91 .90 .91 .91 .89 .89 .89 .68 .79

Pistoia .62 .63 .60 .79 .82 .83 .79 .82 .80 .84 .86 .84 .86 .86 .86 .83 .66 .80
Prato .69 .86 .69 .93 .85 .91 .73 .89 .85 .91 .90 .91 .92 .93 .89 .91 .91 .84
Siena .74 .73 .59 .86 .90 .89 .86 .90 .87 .91 .88 .90 .92 .93 .92 .89 .91 .64

Table 5 Geographically transferred crash prediction auc for NN and RF for the various
approaches. Best results for each target area are highlighted in bold.

NN auc RF auc
City A0 A1 A2.1 A2.2 A3 A0 A1 A2.1 A2.2 A3

Arezzo .546 .575 .828 .813 .813 .822 .969 .841 .841 .892
Florence .501 .636 .882 .845 .849 .921 .864 .928 .915 .848
Grosseto .645 .590 .849 .931 .931 .686 .908 .918 .938 .888
Livorno .493 .803 .775 .966 .961 .885 .834 .885 .896 .863
Lucca .451 .824 .842 .847 .808 .781 .861 .885 .890 .888
Massa .602 .811 .852 .887 .886 .678 .836 .890 .885 .865
Pisa .548 .818 .844 .854 .854 .877 .918 .898 .920 .868

Pistoia .561 .892 .763 .847 .850 .728 .872 .864 .833 .811
Prato .735 .823 .863 .937 .937 .843 .661 .905 .906 .860
Siena .522 .799 .869 .925 .920 .783 .826 .916 .856 .686
Avg .561 .756 .836 .885 .880 .800 .854 .893 .887 .847
Std .08 .11 .03 .05 .05 .08 .08 .02 .03 .06

5.4 Geographically Transferred Crash Prediction
Evaluation

In this section we evaluate the three geographical transfer learning strategies
proposed in Section 4.3 in the experimental setting (D2).

Testing local models

First, we analyze the performances of local models built separately on each
province, applying them to the test set of the same area, similarly to what was
done for setting (D1.2). We adopt and compare the three predictive models
described in Section 5.2: Random Forests (RF, the same used in (D1)), Deep
Neural Networks (NN) and LightGBM. The results are summarized in Table 3,
reporting recall, f11 and auc for each province and each algorithm. We can
easily see that both RF and NN have high and stable performances, especially
in terms of auc, which is the most informative measure. On the contrary,
LGBM performs poorly in most provinces (7 out of 10), and is always worse
than the other methods. This led us to focus the rest of the experiments only
on RF and NN. The last line of Table 3 reports the performances obtained
merging the data of all the provinces, thus building a unique global model and
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testing it on all provinces. This is equivalent to setting (D1.2) on a different
data sample or, from a different perspective, to setting (D1.3) at a smaller,
regional scale. The results show performances that are perfectly aligned with
the single provinces, suggesting that the larger training set of the global dataset
is well balanced by the specificities of the local models of the provinces. In
particular, this means that the local training data of provinces is sufficient to
infer reasonable models.

A0: Baseline approach

The straightforward approach to exploit the data available in the source
domains is to directly build a model using all the data, and try to apply it as is
to the target domain. We experimented this approach as a solution zero, and
its results are shown in Table 5, which will be used in the rest of this section
as a reference for evaluating our proposed approaches A1-A3. As expected,
this baseline results to be competitive with (though generally worse than) the
simpler approaches (A1), and in most cases, significantly worse than the more
sophisticated ones (A2-A3).

A1: Best City Transfer

Here we consider the first geographical transfer learning strategy we proposed,
namely to make predictions on a target domain (i.e., the province under anal-
ysis) using a local model selected among the source domains (in our case, the 9
provinces left) by taking the province which is most similar to the target one.
The results are summarized in Table 4, which reports the performances for
all the pairs “source province vs. target province“, marking in bold the values
suggested by our first strategy. The performances are reported in terms of auc,
and are shown for both the NN and RF algorithms. The values obtained sug-
gest that the strategy works slightly better with RF, yet in general, it does not
achieve satisfactory results, in most cases performing worse than the average.
Apparently, single models do not provide knowledge which is directly usable,
as is, in other areas, and then something more refined is needed.

A2: Weighted Ensemble Model

We test the second proposed approach, which consists of combining all the
local (source) models into an ensemble, where their predictions over the target
domain are aggregated. We compare our weighted combination, where each
province votes with a weight proportional to its similarity w.r.t. the target,
against a baseline where the weights are perfectly homogeneous. The baseline
is named A2.1, while the weighted solution is named A2.2. Table 5 reports the
results obtained for the two methods over each province, taken in turn as target
domain, compared against the corresponding results of the best city transfer
approach, named A1. Again, the results are shown bot for NN and RF, using
auc as reference metrics, and highlighting in bold the best results. We can see
that both A2.1 and A2.2 consistently improve over A1, thus confirming that
combining the information of multiple sources is better than focusing only on
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Fig. 5 Receiver Operating Characteristic (ROC) curve for geographically transferred crash
prediction with target areas Pisa and Florence for D2.

one. At the same time, we can observe that A2.2 performs overall much better
than A2.1, especially with NN, proving that in this strategy, the similarity
information becomes much more useful than what happened with the single-
domain approach. Besides that, we can also notice that between NN and RF
there is not a clear winner.

A3: Weighted Sampling

With the third strategy, we combine the local information of all (source)
provinces at a lower level, combining data rather than models. As before, each
province is considered in turn as target domain, yet this time we build a predic-
tive model from scratch, obtaining the training data by sampling the training
set of each source domain, taking larger samples from more similar provinces.
The results are shown again in Table 5, under the column A3. Since the method
involves a random sampling, the values shown are obtained as average over
10 distinct runs. The values point out that the strategy works relatively well
in combination with NN, reaching very often performances equal or close to
the best ones, yet providing overall slightly less convincing results (on average,
there is a drop of 0.5% of auc w.r.t. A2.2 ). Also, the performances with RF
are much worse since the average drop is 4%, and it never gets close to the
best solutions.

An additional overall comparison of the results is provided by Figure 5,
which shows the ROC curves of the models obtained with all four strategies
discussed above, over two sample provinces: Pisa and Florence. In the case of
A3, one of the 10 models generated was (randomly) selected. The plots show
that in both cities, despite the differences in total auc, all strategies provide
rather steep curves, and thus reasonable results, except for A1, which is less
stable and, indeed, in the case of the NN predictor has significantly worse
performances w.r.t. the others.

Conclusions on selecting the best transfer learning method

Summarizing the results seen above, we can conclude that combining the local
knowledge of multiple sources is the key to improve performances in this trans-
fer learning setting. This means, in particular, that using the baseline method
A0 and the single-source method A1 is not recommended. In addition, the
best level to perform such combination appears to be the weighted ensem-
bling of local models (A2.2), rather than directly combining local datasets
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Fig. 6 Aggregated SHAP exlanation of the five most important features for geographically
transferred crash prediction with target areas Pisa and Florence for D2 using A1.

Fig. 7 Aggregated SHAP exlanation of the five most important features for geographically
transferred crash prediction with target areas Pisa and Florence for D2 using A3.

(A3), suggesting that in our data, the more detailed information that resam-
pling strategies could in principle provide is outweighed by the noise that they
introduce – noise that the local models have lost, together with other bits of
(potentially useful) information. However, the data size and variability in dif-
ferent applications might change this equilibrium. Thus we suggest considering
both approaches as reasonable candidates to test.

Geographically Transferred Crash Prediction Explanation

Like in [6], a parallel objective of this work is to understand which behaviors
in a driver more likely could lead to future crashes. We realize it by adopting
the SHapley Additive exPlanations (SHAP) method [43] to locally estimate
for each prediction the expected contribution of each feature. SHAP returns
the shapely values: the higher is a shapely value, the higher is the contri-
bution of the feature; if the shapely value is positive, it contributes towards
the positive class (crash); otherwise it contributes towards the negative class
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(no crash). From [6] emerges that IMN-based features and collective features
are fundamental for detecting crashes: the average maximum acceleration of
break events in areas visited occasionally performed by other users is crucial
in pushing towards the crash. Another feature having this effect is the number
of acceleration and break events between the second and third most visited
locations.

In the following, we summarize SHAP explanations by reporting the mean
values of the absolute SHAP values for the drivers having a car crash. We
focus our study on A1 and A3 to observe the differences between an approach
trained on a single geographical unit (A1), and an approach trained on mul-
tiple weighted areas (A3). The idea is to understand which features are the
most important for recognizing crashes in geographical transfer learning. The
results are reported in Figure 6 for A1 and in Figure 7 for A3. We report the
explanations for the records for both NN and RF, using Pisa and Florence as
target domains. The longer is the value bar, the higher is the contribution of
the corresponding feature. We focus on the top five values.

In general, we observe that there is not a clear pattern among the differ-
ent classifiers and geographical units. Similarly to the observation reported
in [6], for A1 in Figure 6, we have the presence of several IMN-based features
like the betweenness of the movement from the first and third most impor-
tant locations (l1l1 betweenness), the number of incoming edges in the second
most visited location (l2 indegree), the events at the most important locations
(tot events loc1), and the acceleration for reaching them (avg max acc loc1).
Moving the observations to Figure 7, we notice how all the classifiers highly rely
on features related to events. This means that, when aggregating data from dif-
ferent sources, it becomes fundamental to predict a crash to discriminate along
dimensions involving harsh accelerations, harsh braking, and harsh cornering.
In particular, besides the events happening in general (like tot duration Q
that means the total duration of harsh cornering), we notice how the focus
is on events happening when driving towards the second most visited loca-
tion (like tot events type Q loc2 that counts the number of harsh cornerings
for going to loc2). Finally, we underline again how IMN-based features are
important. For instance, with NN over Florence using A3 (bottom right of
Figure 7) we have that the most important feature for deriving a car crash is
avg reg mov duration, i.e., the average duration of the movements performed
regularly. This suggests that performing general actions to reduce the travel
time for such a specific portion of the mobility can have a significant impact
on the probability of a crash in the area, improving safety overall.

6 Conclusion and Future Work

In this paper, we have introduced the long-term car crash prediction prob-
lem, its associated task of risk assessment and the geographically transferred
car crash prediction problem. For the first problem, we proposed a solution
consisting in extracting sophisticated features of the user’s mobility, able to
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capture not only basic characteristics of her mobility, but also higher-level
information derived from a network view of her mobility history as well as
contextual knowledge directly inferred through analysis of the collective data
of all users. On top of such features, machine learning models can be trained
and successfully employed. Experiments on real data showed that our solution
outperforms basic solutions based on state-of-art features, and a preliminary
inspection of the prediction models through explainable AI methods allowed
us to identify a few representative features associated with crash risk. For the
second problem, the solution proposed consists in exploiting city indicators
that can be derived from mobility data to design geographical transfer learning
solutions based on the ensemble principle and weighted through city similari-
ties. The experimentation on real data demonstrated that solutions employing
city indicators for driving the transfer overcome standard baselines that do
not use them. Explanation techniques also revealed some of the features that
are most important for the success of the transfer learning methodology.

The results and insights obtained with this work opened several research
and practical questions that we would like to address in the future, among
which we mention the following. First, the IMN representation adopted in the
driving modeling phase appears to be the right tool for enriching the data with
higher-level semantics, such as the purpose of trips and stops, as done in [7],
the driving moods (e.g., through unsupervised analysis of speeds and accelera-
tions, or driving through dangerous intersections [11]), or by better describing
the evolution of driving habits. Also, contextual data might be expanded, inte-
grating several external, public data sources, such as the presence of Points of
Interest, the road network structure, weather conditions, etc. While the model
explanation tools were used in this work as a means for understanding the
causes of crashes, their application can be further extended to improve the per-
formance of the models by integrating feedback from domain experts – a human
in the loop approach that can be made possible by model explanation itself.
The city indicators we adopted, which are at the basis of our transfer learning
proposals, are just a subset of a large spectrum of possible choices, our current
purpose being to yield a general characterization of the urban areas involved.
However, searching the optimal set of city indicators to reach the best model
transferrability on the specific prediction problem would be indeed an inter-
esting extension of the current work. Finally, geographical transfer learning is
a poorly explored area, and the results discussed in this paper represent only
a first step in this direction. More sophisticated solutions could be obtained
by an appropriate combination of standard techniques (for instance, domain
resampling for aligning distributions) and context-aware methods (e.g., the
city indicators themselves or external information about the territory).
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