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Abstract

Motivation: A dictionary of k-mers is a data structure that stores a set of n distinct k-mers and supports membership
queries. This data structure is at the hearth of many important tasks in computational biology. High-throughput
sequencing of DNA can produce very large k-mer sets, in the size of billions of strings—in such cases, the memory
consumption and query efficiency of the data structure is a concrete challenge.

Results: To tackle this problem, we describe a compressed and associative dictionary for k-mers, that is: a data struc-
ture where strings are represented in compact form and each of them is associated to a unique integer identifier in
the range ½0;nÞ. We show that some statistical properties of k-mer minimizers can be exploited by minimal perfect
hashing to substantially improve the space/time trade-off of the dictionary compared to the best-known solutions.

Availability and implementation: https://github.com/jermp/sshash.

Contact: giulio.ermanno.pibiri@isti.cnr.it

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

A k-mer is a string of length k over the DNA alphabet fA;C;G;Tg.
Software tools based on k-mers are in widespread use in
Bioinformatics. Many large-scale analyses of DNA share the elem-
entary need of determining the exact membership of k-mers to a
given set S, i.e. they rely on the space/time efficiency of a dictionary
data structure for k-mers (Chikhi et al., 2021). This work proposes
such an efficient dictionary. More precisely, the problem we study
here is defined as follows. Given a large string over the DNA alpha-
bet (e.g. a genome or a pan-genome), let S be the set of all its distinct
k-mers, with jSj ¼ n. A dictionary for S is a data structure that sup-
ports the following two operations:

• for any k-mer g, LookupðgÞ returns a unique integer 0 � i < n

if g 2 S (i is the ‘identifier’ of g in S) or i ¼ – 1 if g 62 S;
• for any 0 � i < n; AccessðiÞ extracts the k-mer g for which

LookupðgÞ ¼ i.

By means of the Lookup query, the dictionary is able to answer
membership queries in an exact way (rather than approximate) and
to associate satellite information to k-mers (such as abundances).
Thanks to the Access query, the original set S can be reconstructed,
meaning that the dictionary is a self-index for S.

In sequence analysis tasks, it is very often the case that we are
given a pattern P of length jPj � k and we are interested in answer-
ing membership to S for all the k-mers read consecutively from P,
i.e. for P½i; iþ kÞ; i ¼ 0; . . . ; jPj � k. For example, we may decide
that the whole pattern P is present in a genome if the number of k-
mers of P that belong to S is at least h � ðjPj � kþ 1Þ, for a pre-
scribed coverage threshold h > 0, such as h ¼ 0:8 (Bingmann et al.,
2019; Solomon and Kingsford, 2016). In other words, Lookup
queries are often issued for consecutive k-mers (one being the previ-
ous shifted to the right by one symbol) (Robidou and Peterlongo,
2021). While it is obviously possible to perform jPj � kþ 1 Lookup
queries for a pattern of length jPj, it also seems profitable to answer

‘Is P½i; iþ kÞ a member of S?’ more efficiently knowing that the pre-
vious k-mer shares k�1 symbols with P½i; iþ kÞ. We regard this lat-
ter scenario as that of streaming queries.

Therefore, our objective is to support Lookup, Access and
streaming membership queries as efficiently as possible in com-
pressed space. (The data structure is static: insertions/deletions of k-
mers are not supported.)

As a first introductory remark we shall mention that the algorith-
mic literature about the so-called compressed string dictionary prob-
lem is rich of solutions, e.g. based on Front-Coding, tries, hashing or
combinations of such techniques (see the survey by Mart�ınez-Prieto
et al. (2016)). However, these solutions are unlikely to be competi-
tive for the specialized version of the problem we tackle here because
they are relevant for ‘generic’ strings that usually: (i) have variable
length; (ii) are drawn from larger alphabets (e.g. ASCII); and (iii) do
not exhibit particular properties that can aid compression. Instead,
k-mers are fixed-length strings; their alphabet of representation is
very small (just 2 bits per alphabet symbol are sufficient); and since
k-mers are extracted consecutively from DNA, two consecutive
strings overlap by k�1 symbols that are redundant and should not
be represented twice in the dictionary. This motivates the study of
specialized solutions for k-mers.

These properties are elegantly captured by the de Bruijn graph
representation of S—a graph whose nodes are the k-mers in S and
the edges model the string overlaps between the k-mers. Using this
formalism, it is possible to reduce the redundancy of the symbols in
S by considering paths in the graph and their corresponding strings.
We will better formalize this point in Section 2.

For the scope of this work, it is sufficient to point out that: (i)
many algorithms have been proposed to build de Bruijn graphs
(dBGs) efficiently (Chikhi et al., 2016; Khan et al., 2021; Khan and
Patro, 2021) from which these paths can be extracted for indexing
purposes; (ii) not surprisingly, essentially all state-of-the-art diction-
aries for k-mers—that we briefly review in Section 3—are based on
the principle of indexing such collections of paths (Almodaresi et al.,
2018; Chikhi et al., 2014; Marchet et al., 2021; Rahman and
Medvedev, 2020). We also follow this direction.
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However, we note that existing dictionary data structures either
represent such paths with an FM-index (Ferragina and Manzini,
2000) (or one of its many variants), hence retain highly compressed
space but very slow query time in practice or, vice versa, resort on
hashing for fast evaluation but take much more space (Almodaresi
et al., 2018; Marchet et al., 2021). It is, therefore, desirable to have
a good balance between these two extremes.

For this reason, we show that we can still enjoy the query effi-
ciency of hashing while taking small space—significantly less space
than prior schemes based on (minimal and perfect) hashing. More
specifically, we show how two statistical properties of k-mer mini-
mizers—precisely, those of being sparse and skewly distributed in
DNA sequences—can be better exploited to derive an efficient dic-
tionary based on minimal perfect hashing and compact encodings
(Section 4). We evaluate the proposed data structure over sets of bil-
lions of k-mers, under different query distributions and modalities,
and exhibit a substantial performance improvement compared to
prior solutions for the problem (Section 5). Our Cþþ implementa-
tion of the dictionary is available at https://github.com/jermp/
sshash.

2 Preliminaries

In this section, we give some preliminary remarks to better support
the exposition in Sections 3 and 4. Let S be the collection of the n
distinct k-mers extracted from a given, large, string (or set of
strings). This string can be, e.g. the genome of an organism.

Throughout the article, we consider to be identical two k-mers
that are the reverse complement of each other.

Path covering the de Bruijn graph. A dBG for S is a directed
graph GðSÞ where the set of nodes is S and a direct edge from node
u to v exists if and only if the last k—1 symbols of u are equal to the
first k�1 symbols of v, i.e. u½1; k� 1� ¼ v½0; k� 2�. It follows that a
path traversing ‘ nodes corresponds to a string of length ‘þ k� 1
spelled out by the path, obtained by ‘glueing’ all the nodes’ k-mers
in order.

A disjoint-node path cover for GðSÞ is a set of paths where each
node belongs to exactly one path, e.g. a set of unitigs, maximal uni-
tigs, or maximal stitched unitigs (Rahman and Medvedev, 2020)
(also known as simplitigs (B�rinda et al., 2021)). We denote such a
cover with S0.

The strings in S0 form the natural basis for a space-efficient dic-
tionary because: (i) by considering paths in the graph, the number of
symbols in S0 is less than the number of symbols in the original S
and, (ii) by being a disjoint-node path cover we are guaranteed that
there are no duplicate k-mers in S0. Therefore, we assume from now
on that a path cover S0 has been computed for GðSÞ as the input for
our problem.

Minimizers and super-k-mers. Given a k-mer g, an integer
m � k, and a total order relation R on all m-length strings, the
smallest m-mer of g according to R is called the minimizer of g. R
could be, e.g. the simple lexicographic order. Instead, here we use
the random order given by a hash function h, chosen from a univer-
sal family. Therefore, simply put, the minimizer of g is the m-mer of
g that minimizes the value of h (sometimes called a ‘random’
minimizer).

Minimizers are very popular in sequence analysis, such as for seed-
and-extend algorithms, because of the following empirical property:
consecutive k-mers tend to have the same minimizer (Roberts et al.,
2004; Schleimer et al., 2003). This means that there are far less dis-
tinct minimizers than k-mers—approximately, ðk�mþ 2Þ=2 times
less minimizers than k-mers (independently of the sequence length), if
m is not very small compared to k (more precisely, see Zheng et al.
(2020, Theorem 3)). For example, if k¼31 and m¼20, we should
expect to see�6:5� less minimizers than k-mers.

Given a string S of length at least k (e.g. a path in a dBG), we call
a super-k-mer of S a maximal sequence of consecutive k-mers having
the same minimizer (Li et al., 2013).

Minimal perfect hashing. Given a set X of n distinct keys, a func-
tion f that maps bijectively the keys into the integer range
f0; . . . ; n� 1g is called a minimal perfect hash function (MPHF) for
the set X . The function is allowed to return an arbitrary value in
½0;nÞ for any key that does not belong to X , hence it can be realized
in small space, in practice 2–3 bits/key (albeit log 2e � 1:44 bits/key
are sufficient in theory (Mehlhorn, 1982)). Many efficient algo-
rithms have been proposed to build MPHFs from static sets that
scale well to large values of n and retain practically-constant evalu-
ation time. In this paper, we use PTHash (Pibiri and Trani, 2021a,b)
for its very fast evaluation time, usually 2� 4� better than other
techniques, and good space effectiveness.

Elias–Fano encoding. Given a monotone integer sequence S½0::nÞ
whose largest (last) element is less than or equal to a known quantity
U, the Elias–Fano encoding represents S in at most nd log 2ðU=nÞe þ
2n bits (Elias, 1974; Fano, 1971). With o(n) extra bits it is possible
to decode any S½i� in constant time and support successor queries in
OðlogðU=nÞÞ time. We point the interested reader to the survey by
Pibiri and Venturini (2021, Section 3.4) for a complete description
and discussion of the encoding.

Elias–Fano has been recently used as a key ingredient of many
compressed, practical, data structures (see, e.g. Perego et al., 2021;
Pibiri and Venturini, 2017, 2019).

3 Related work

As anticipated in Section 1, most existing solutions for exact mem-
bership queries are based on indexing paths of the dBG (see also
Section 2), such as its unitigs or maximal (possibly, stitched) unitigs.
These approaches have also been summarized in the recent survey
by Chikhi et al. (2021, Section 4.2), hence we give a rather cursory
overview here.

The paths can be represented using an FM-index (Ferragina and
Manzini, 2000) for very compact space (Chikhi et al., 2014;
Rahman and Medvedev, 2020). The practical efficiency of the FM-
index mainly depends on how many samples of the suffix-array are
kept in the index.

Other approaches resort on hashing for fast lookup queries. For
example, Bifrost (Holley and Melsted, 2020) uses a hash table of
minimizers whose values are the locations of the minimizers in the
unitigs. The index was designed to be dynamic, hence allowing in-
sertion/removal of k-mers and consequent re-computation of the
unitigs. The dynamic nature of Bifrost makes it consume higher
space compared to static approaches using compressed hash repre-
sentations and succinct data structures, like Pufferfish (Almodaresi
et al., 2018) and Blight (Marchet et al., 2021). Hence, it is regarded
as out of scope for this work.

Pufferfish (Almodaresi et al., 2018) associates to each k-mer its
location in the unitigs using an MPHF and a vector of absolute posi-
tions. The authors also propose a sparse version of the index where
the vector of positions is sampled to improve space usage at the
expense of query time. Blight (Marchet et al., 2021) is another asso-
ciative dictionary based on minimal perfect hashing. All the super-k-
mers having the same minimizer are grouped together into an index
partition and a separate MPHF is built for all the k-mers in the parti-
tion. Since the k-mers’ offsets are relative to a given partition, the
space usage is improved compared to Pufferfish. To further reduce
space, a k-mer is associated to the segment of 2b super-k-mers where
it belongs to, for a given b � 0. This reduces the space of the diction-
ary by b bits per k-mer but a lookup needs to scan (at most) 2b

super-k-mers. Very importantly, Pufferfish and Blight are also opti-
mized for streaming membership queries.

4 Sparse and skew hashing

In this section, we describe our main contribution: an exact, associa-
tive and compressed dictionary data structure for k-mers, supporting
fast Lookup, Access and streaming queries. From a high-level point
of view, the dictionary is obtained via a careful combination of

i186 G.E.Pibiri

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/38/Supplem
ent_1/i185/6617506 by C

N
R

 user on 04 July 2022

https://github.com/jermp/sshash
https://github.com/jermp/sshash


minimal perfect hashing and compact encodings. In particular, we
show how two important properties of minimizers—those of being
sparse (Section 4.1) and skewly distributed (Section 4.2) in DNA
strings—can be exploited to achieve an efficient dictionary. We aim
at a good trade-off between dictionary space and query efficiency.

Recall from Section 2 that the dictionary is built from a collec-
tion of paths covering a dBG (e.g. the maximal stitched unitigs), that
is: a collection of strings, each of length at least k symbols, with no
duplicate k-mers. For ease of notation, we indicate with p the num-
ber of paths in the collection and with N their cumulative length
(the total number of DNA bases in the input). The number of (dis-
tinct) k-mers is, therefore, n ¼ N � pðk� 1Þ.

4.1 Sparse hashing
The starting point for our development is based on the well-known
empirical property of minimizers in that consecutive k-mers are like-
ly to have the same minimizer. Thus, instead of working with indi-
vidual k-mers, we focus on maximal sequences of k-mers having the
same minimizer—the so-called super-k-mers (see Section 2). Super-
k-mers are useful because of the following two reasons.

• As super-k-mers are likely to span several consecutive k-mers, we

expect to see far fewer super-k-mers than k-mers—approximate-

ly, ðk�mþ 2Þ=2 times less for a large-enough minimizer length

m. Informally, this property allows a space usage proportional to

the number of super-k-mers, thus sparsifying the dictionary.
• A super-k-mer of length K is a space-efficient representation for

its constituent K� kþ 1 k-mers since it takes 2K=ðK� kþ 1Þ
bits/k-mer instead of the trivial cost of 2k bits/k-mer.

Therefore, our refined ambition is to index the super-k-mers of the
input using minimizers. Although this can simply be achieved via
hashing the minimizers, i.e. by concatenating all the super-k-mers hav-
ing the same minimizer (like in the Blight index (Marchet et al.,
2021))—we claim that his approach is very wasteful in terms of space.
In fact, note that each super-k-mer has a fixed cost of 2ðk� 1Þ bits for
representing the ‘tail’ of its string (its last k�1 symbols). This fixed
cost is only well amortized (say, negligibly small) when the length of
the super-k-mer is much larger than k�1. In other words, when
the super-k-mer contains many more k-mers than k�1. While pos-
sible in some extreme cases (e.g. the same minimizer repeats in se-
quence), it is not usually so for the values of k and m used in
concrete applications; actually, a super-k-mer is more likely to
contain k�mþ 1 k-mers or less.

If z indicates the number of super-k-mers in the input, then the
space of this simple solution would be, at least, 2þ 2zðk� 1Þ=n
bits/k-mer (extra space is then needed to accelerate the queries). For
example, consider the whole human genome with k¼31 and
m¼20. There are more than z ¼ 396� 106 super-k-mers for,
roughly, n ¼ 2:5� 109 distinct k-mers. Therefore, partitioning the
strings according to super-k-mers would cost at least 11.50 bits/k-
mer. As we will better see in Section 5, our dictionary can be tuned
to take, overall, 8.28 bits/k-mer in this case (or less).

Thus, it is of utmost importance to not break the strings accord-
ing to super-k-mers if space-efficiency is a concern. Instead, we iden-
tify a super-k-mer in the strings, whose total length is N, with an
absolute offset of d log 2ðNÞe bits. To be precise, an offset is the pos-
ition in ½0;NÞ of the first base of a super-k-mer. Since k should be
chosen large enough to allow good k-mer specificity, 2ðk� 1Þ will
be much larger than d log 2ðNÞe in practice, even for the largest
genomes. For example, we use k¼31 in our experiments, as done in
many other works (Almodaresi et al., 2018; Bingmann et al., 2019;
Marchet et al., 2021; Rahman and Medvedev, 2020), whereas
d log 2ðNÞe is around 30–33 for collections with billions of k-mers
(see also Table 2 at page 6). The use of absolute offsets can almost
halve the space overhead for the indexing of super-k-mers in such
cases. The space saving is even larger for larger k.

Dictionary layout and compression. Based on the above discus-
sion, we now detail the different components of our dictionary data
structure.

• Strings. The p strings in the input are written one after the other

in a vector of 2N bits (2 bits per input base). We also keep in a

sorted integer sequence of length p the endpoints of the strings to

avoid detection of alien k-mers. This sequence, Endpoints, is

compressed with Elias–Fano and takes pd log 2ðN=pÞe þ 2pþ
oðpÞ bits.

• Minimizers. Let M be the set of all distinct minimizers seen in the

input, with M ¼ jMj, and z the number of super-k-mers.

Clearly, we have z �M because a minimizer can appear more

than once in the input. Given a minimizer r, let us call the bucket

of the minimizer r, Br, the set of all the super-k-mers that have

minimizer r. We build an MPHF f for M. The MPHF provides

us an addressable space of size M: for a minimizer r, the value

f ðrÞ 2 ½0;MÞ is the ‘bucket identifier’ of r. We keep an array

Sizes½0;Mþ 1Þ, where Sizes½f ðrÞ þ 1� ¼ jBrj is the size of the

bucket of r, and Sizes½0� ¼ 0. We then take the prefix-sums of

Sizes, i.e. we replace Sizes½i� with Sizes½i� þ Sizes½i� 1� for all i >

0. Therefore, for a given minimizer r, now Sizes½f ðrÞ� indicates

that there are Sizes½f ðrÞ� super-k-mers before bucket Br in the

order given by f.

The MPHF costs roughly 3 bits per minimizer; the Sizes array is

compressed with Elias–Fano too and takes ðMþ 1Þd log 2ðz=ðMþ
1ÞÞe þ 2ðMþ 1Þ þ oðMþ 1Þ bits.

• Offsets. The absolute offsets of the super-k-mers into the strings are

stored in an array, Offsets½0; zÞ, in the order given by f. For a min-

imizer r such that Sizes½f ðrÞ� ¼ begin, its jBrj offsets are written con-

secutively (and in sorted order) in Offsets½begin;beginþ jBrjÞ. Note

that, by construction, Sizes½f ðrÞ þ 1� � Sizes½f ðrÞ� ¼ jBrj > 0. The

space for the Offsets array is zd log 2ðNÞe bits.

Figure 1 illustrates the different components of the dictionary
and provides a concrete example for an input collection of four
strings. Next, we describe how the Lookup and Access queries are
supported.

Lookup. We first recall that the Lookup query takes as input a
k-mer g and returns a unique identifier i for g: i 2 ½0; nÞ if g is
found in the dictionary, or i ¼ – 1 otherwise. The Lookup algo-
rithm is as follows.

We compute the minimizer r of g and its bucket identifier as f(r).
Then, we locate the super-k-mers in its bucket Br by retrieving the
corresponding offsets from Offsets½begin; endÞ, where begin ¼
Sizes½f ðrÞ� and end ¼ Sizes½f ðrÞ þ 1�. For every offset t in
Offsets½begin; endÞ, we scan the super-k-mer starting from Strings½t�
comparing its k-mers to the query g. If g is not found, we just return
–1. Instead, if g is found in position w in the super-k-mer, we return
the ‘identifier’ i of g as i ¼ t þw� jðk� 1Þ, where j<p is the num-
ber of strings before the one containing the offset t (this quantity is
computed from the Endpoints array).

Refer to Figure 1 for an example of Lookup and to the
Supplementary Material for further technical details.

Double strandedness. A detail of crucial importance for the
Lookup algorithm is double strandedness. A k-mer and its reverse
complement are considered to be identical. This means that if a k-
mer g is not found by the Lookup algorithm, there can still be the
possibility for its reverse complement ĝ to be found in Strings.
Therefore, the actual Lookup routine will first search for g and—
only if not found—will also search for ĝ. This effectively doubles the
query time for Lookup in the worst case.

To guarantee that a Lookup will always inspect one single
bucket, we use a different minimizer computation (during both
query and dictionary construction): we select as minimizer the
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minimum between the minimizer of g and that of ĝ. In this way, it is
guaranteed that two k-mers being the reverse complements of each
other always belong to the same bucket.

This different minimizer selection actually changes the parsing of
super-k-mers from the input during the construction of the diction-
ary. We refer to this parsing modality as canonical henceforth, in
contrast to the regular modality we assumed so far. When this mo-
dality is chosen, we expect to see an increase in the number of dis-
tinct minimizers used (on average, the minimizers of g and ĝ have
equal probability of being the minimum one) for a higher space
usage, but faster query time.

We will explore the space/time trade-off between the regular and
canonical modalities in Section 5.1.

Access. The Access query retrieves the k-mer string g given its
identifier i. This identifier represents the rank of g in Strings but,
since the strings have variable lengths and their last k�1 symbols do
not correspond to valid ranks, we cannot directly access Strings at
position i. Instead, we have to compute the offset t corresponding to
the k-mer g of rank i. Therefore, we perform a binary search for i in
Endpoints to determine t and return g ¼ Strings½t; t þ kÞ.

Lastly, in this section, we point out that the minimizer length m
controls a space/time trade-off for the proposed dictionary data
structure. Small values of m create fewer and longer super-k-mers,
thus lowering the space for the smaller values of z and M. On the
other hand, m should not be chosen too small to avoid the scan of
many super-k-mers at query time. We will experimentally show the

trade-off in Section 5.1. Next, we take a deeper look at lookup
time.

4.2 Skew hashing
The efficiency of the Lookup query depends on the number of super-
k-mers in the bucket of a minimizer, which we refer to as the ‘size’
of the bucket. Since a minimizer can appear multiple times in the in-
put strings, nothing prevents its bucket size to grow unbounded. For
example, on the human genome, the largest bucket size can be as
large as 3:6� 104 for m¼20 (or even larger for smaller values of
m), meaning that a query inspecting such a bucket would be very
slow in practice.

To avoid the burden of these heavy buckets, i.e. to guarantee
that a Lookup inspects a constant number of super-k-mers in the
worst case, we exploit another important property of minimizers:
the distribution of the bucket size is (very) skewed for sufficiently
large m. That is, most minimizers appear just once and relatively
few of them repeat many times—an observation also made in several
previous works (see, e.g. Chikhi et al., 2014; Jain et al., 2020).

Table 1 shows an example of such distribution for the first n ¼
109 k-mers (for k¼31) of the human genome. Similar values were
obtained for other genomes. (See the tables for other values of n in
Supplementary Material.) More precisely, a value in the table repre-
sents the fraction of buckets having size s, for s ¼ 1; 2;3;4; 5 (only
the first 5 sizes are shown for conciseness). The important thing to
observe in the example is that, for m>17, the distribution is very

Table 1. Bucket size distribution (%) for k¼ 31 and the first n ¼ 109

k-mers of the human genome, by varying minimizer length m

Size/m 11 12 13 14 15 16 17 18 19 20 21

1 13.7 19.8 29.7 42.4 61.5 79.5 89.8 94.4 96.3 97.1 97.5

2 7.5 10.6 14.4 17.7 19.4 13.6 7.3 3.9 2.4 1.7 1.4

3 5.2 7.3 8.8 10.4 8.4 3.7 1.4 0.8 0.5 0.4 0.4

4 4.0 5.5 6.0 7.0 4.1 1.3 0.5 0.3 0.2 0.2 0.2

5 3.2 4.4 4.5 5.0 2.2 0.6 0.3 0.2 0.1 0.1 0.1

Fig. 1. A schematic representation of the proposed dictionary data structure. The input of the example contains p¼4 strings (pictorially separated by a ‘.’ symbol, but practic-

ally by the Endpoints array) for a total of N¼405 bases, and N � pðk� 1Þ ¼ 405� 4 � ð31� 1Þ ¼ 285 k-mers for k¼31. There are M¼24 minimizers for m¼8 and z¼28

super-k-mers, thus the Sizes and Offsets arrays have length, respectively, Mþ 1 ¼ 25 and z¼ 28. All minimizers have bucket size equal to 1 except for 3 of them (i.e.

AACCTGAA, ATCCTGAA, TGTCAAAG) that have bucket size equal to 2. The picture also shows an example of Lookup for the k-mer g ¼
ACATCCTGAAAATTGTCAAAGAATGGCGGCG, whose minimizer r¼ATCCTGAA is highlighted in bold font. The flow of the algorithm is represented by the arrows. First, the func-

tion f returns the identifier of r as f(r) ¼ 5. Then the bucket size of r is computed: in this case, we have jBrj ¼ end � begin ¼ Sizes½5þ 1� � Sizes½5� ¼ 9� 7 ¼ 2, indicating that

there are 2 super-k-mers to consider. The offsets of the super-k-mers are retrieved as Offsets½begin� ¼ Offsets½7� ¼ 9 and Offsets½beginþ 1� ¼ Offsets½8� ¼ 255. The two

super-k-mers are scanned in Strings starting at Strings½9� and Strings½255�, respectively. (At most k�mþ 1 ¼ 31� 8þ 1 ¼ 24 k-mers are considered in each super-k-mer,

as highlighted by the gray box. See the Supplementary Material for a discussion about this point.) Lastly, the k-mer g is found at position w¼8 in the second super-k-

mer, i.e. at offset t þw ¼ 255þ 8 ¼ 263. Since there are two strings before the one containing g, then j¼ 2, and we have to discard jðk� 1Þ ¼ 2 � ð31� 1Þ ¼ 60 invalid

ranks for the calculation of the identifier i of g. Therefore, we return i ¼ t þw� jðk� 1Þ ¼ 263� 60 ¼ 203

Table 2. Some basic statistics for the datasets used in the experi-

ments, for k¼ 31, such as number of: k-mers (n), paths (p), and

bases (N)

Dataset n p N d log 2ðNÞe

Cod 502 465 200 2 406 681 574 665 630 30

Kestrel 1 150 399 205 682 344 1 170 869 525 31

Human 2 505 445 761 13 014 641 2 895 884 991 32

Bacterial 5 350 807 438 26 449 008 6 144 277 678 33
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skewed, e.g. most buckets (> 90%) contain just 1 super-k-mer. As
we want to take advantage of this distribution, we proceed as
follows.

We fix two quantities ‘ and L, with 0 � ‘ < L. By virtue of the
skew distribution, we have that the number of buckets whose size is
larger than 2‘ is small for a proper choice of ‘, as well as the number
of k-mers belonging to such buckets. For example with m¼20 and
‘ ¼ 2, we see from Table 1 that we have 100:0� ð97:1þ 1:7þ
0:4þ 0:2Þ% ¼ 0:6% of buckets with more than 2‘¼2 ¼ 4 super-k-
mers. This allows us to build an MPHF to speed up Lookup but
only for a small fraction of the total k-mers—in marked contrast
with prior schemes (reviewed in Section 3) that build the function
over the entire set of k-mers. For ease of exposition, in the following
we assume that 2L � max, where max is the largest bucket size (the
corner case for 2‘ � max < 2L is straightforward to handle). For
‘ � i � L, let Si be the set of all the k-mers belonging to buckets of
size s, with s such that

�
2i < s � 2iþ1 ‘ � i < L
2L < s � max i ¼ L

:

We build an MPHF fi for each set Si. Now, given a k-mer g 2 Si,
we know that it belongs to a bucket containing at most 2iþ1 super-k-
mers. Therefore, we can store the identifier of the super-k-mer con-
taining g in a vector, Vi½0; jSijÞ, at position fiðgÞ. Importantly, each
integer in Vi requires just iþ1 bits to be represented (VL is formed
by d log 2maxe-bit integers). Figure 2a illustrates this structure.

We point out that, again thanks to the skew distribution, it is
very likely to have jS‘j � jS‘þ1j � . . . � jSL�1j. Therefore, for a
proper choice of ‘ and L, we expect this additional skew index com-
ponent of the dictionary to take little space, while granting very fast
searches.

To make a concrete example, let us consider the human genome
and the skew index with ‘ ¼ 6 and L¼12. So we form L� ‘þ 1 ¼
12� 6þ 1 ¼ 7 partitions; each partition is made up of an MPHF
and a compact vector. Each MPHF fi can be tuned to take 2:5� 3:0
bits per key, whereas we spend iþ1 bits per integer in Vi,
i ¼ 6; . . . ; 11. (As already mentioned, max ¼ 3:6� 104 for m¼20,
thus we spend d log 2maxe ¼ 16 bits per integer in VL¼12.) The cru-
cial point is that we have 0.016% of buckets that comprise more
than 2‘¼6 super-k-mers, for just 1.86% of the total k-mers. For this
reason, the skew index costs less than 0.21 bits/k-mer over a total of
8.28 bits/k-mer (see also Supplementary Fig. S1a).

Accelerated lookup. Using the skew index to accelerate
LookupðgÞ is simple. As for regular Lookup, we compute the minim-
izer r of g and the quantities begin ¼ Sizes½f ðrÞ� and
end ¼ Sizes½f ðrÞ þ 1�. Therefore, we know that the bucket of r has

size end � begin � max. Let b ¼ d log 2ðend � beginÞe. If b � ‘,
then the bucket is ‘small’ and we proceed as already explained in
Section 4.1. Otherwise, we know that g, if present in the dictionary,
belongs to some partition i of the skew index that, as per our de-
scription above, has MPHF fi and compact vector Vi. Thus, we
retrieve the super-k-mer identifier q ¼ Vi½fiðgÞ� and finally search for
g in the super-k-mer whose offset is Offsets½beginþ q�. (Note that if
q � end, then g cannot belong to the dictionary.) In conclusion,
although the skew index performs 2 additional accesses per Lookup,
one for fi and one for Vi, it limits the number of accesses made
to Strings to 2‘. (To handle reverse complements, we may have to
repeat the process also for the reverse complement of g.)

Figure 2b shows a concrete example of Lookup.

4.3 Streaming queries
The Lookup algorithm we have described in the previous section is
context-less, i.e. it does not take advantage of the specific, consecu-
tive, query order issued by sequence analysis tasks. As already men-
tioned in Section 1, given a string P of length jPj � k, we are
interested in determining the result of Lookup for all the k-mers
read consecutively from P. We would like to do it faster than just
performing jPj � kþ 1 independent lookups. Therefore, in this sec-
tion, we describe some important optimizations for streaming look-
up queries that work well with the proposed dictionary data
structure. The general idea is to cache some extra information about
the result for the k-mer g ¼ P½i; iþ kÞ to speed up the computation
for the next k-mer in P, say gnx ¼ P½iþ 1; iþ kþ 1Þ.

The algorithm keeps track of the minimizer r of g and the pos-
ition j at which the last match was found in Strings, i.e. if g belongs
to the dictionary, then it is located at Strings½j; jþ kÞ for some j.
These two variables make up a state information that is updated
during the execution of the algorithm. Given that consecutive k-
mers are likely to share the same minimizers, we compare r to the
minimizer of gnx, say rnx.

• If rnx ¼ r, then we know that gnx belongs to the same bucket Br

of g, thus we avoid recomputing f and spare the accesses to both

Sizes and Offsets. Also, if g was actually found in the dictionary

(therefore, starting at Strings½j�) good chances are that gnx is

found at Strings½jþ 1�. If so, we refer to the latter matching case

as an extension. Intuitively, if the algorithm ‘extends’ frequently,

i.e. most matches in P are determined by just looking at consecu-

tive k-mers in Strings, then fast evaluation is retained. If the algo-

rithm does not extend from g to gnx, i.e. gnx is not found at

Strings½jþ 1�, then we scan the bucket Br. Therefore, if present in

(a) (b)

Fig. 2. A schematic view of the skew index component of the dictionary (a), comprising partitions ‘ � i � L, each consisting of an MPHF fi and a compact vector Vi. Let us

consider an example (b) of Lookup for g ¼ GAACCTGAAAACATCCTGAAAATTGTCAAAG and ‘ ¼ 3. Suppose that the bucket for the minimizer r ¼ GAAAACAT contains s¼13

super-k-mers (whose offsets are Offsets½8475; 8488Þ in the picture), thus it belongs to partition i¼ 3 because 23 < 13 � 23þ1. (Each integer in V3 is less than 23þ1, so it can

be coded in iþ 1 ¼ log 2ð23þ1Þ ¼ 4 bits.) Now, also suppose that g is located in the 9-th super-k-mer of the bucket (i.e. that of index 8). It would then be time-consuming to

fully scan the 8 super-k-mers before the 9-th. Therefore, we retrieve 8—the index of the 9-th super-k-mer where g is located—from V3½f3ðgÞ� and know that g has to be

searched for in the super-k-mer whose offset is Offsets½8475þ 8�
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the dictionary, gnx will be found at some other position jnx. So

we update the state by setting j ¼ jnx.
• If rnx 6¼ r, then we proceed as for a regular Lookup query, locat-

ing the new bucket Brnx
and searching for gnx. We then set

r ¼ rnx.

Of course it can happen that the minimizer r does not belong to
the set of minimizers indexed by the dictionary. Recall from Section
4.1 that we build the MPHF f for the setM of all the distinct mini-
mizers in the input. In this case, we are sure that any k-mer g whose
minimizer r 62 M is not to be found in the dictionary. By definition,
however, we are not able to detect if r 62 M using the MPHF f. That
is, f will still locate a bucket and all the k-mers in the bucket will
have (the same) minimizer, different from r. Therefore, when search-
ing for g, we first compare r with the minimizer of the first k-mer
read in the bucket: if they are different, we know that r 62 M and g
does not belong to the dictionary. In the case when r 62 M, the algo-
rithm still caches the last seen minimizer because if rnx ¼ r then also
rnx 62 M and gnx cannot belong to the dictionary.

In conclusion—as long as the minimizer is the same—either the
algorithm works locally in the same bucket, or safely skips the
search.

Another convenient information to cache in the state of the algo-
rithm is the orientation of the last match, i.e. whether the last
queried k-mer g was found in the dictionary as g or as its reverse
complement ĝ. In fact, if g was found as g then also gnx is likely to
be found as gnx and extension should be tried in forward direction
(say, from lower to higher offsets in Strings). But if g was found as
ĝ, then is more efficient to try to extend the matching in backward
direction, hence effectively iterating backwards in Strings. In fact,
suppose that the whole string P (for ease of exposition) is present in
Strings but in its reverse complement form. Then the first k-mer g of
P will be found as ĝ in last position in the located ‘region’ of Strings,
say at some position j. Any other attempt to extend the matching in
forward direction (from j to jþ1) will then fail and any subsequent
gnx will be searched for by re-scanning the bucket again. That is, we
end up in scanning the bucket for c ¼ jPj � kþ 1 times, for at least
Oðc2Þ k-mer comparisons. To prevent this quadratic behavior in
case of reverse complemented patterns, we try to directly extend the
matching for gnx moving from j to j�1.

5 Experiments

In this section, we benchmark the proposed dictionary data struc-
ture—which we refer to as SSHash in the following—and compare it

against the indexes reviewed in Section 3. For all our experiments,
we fix k to 31.

Our implementation of SSHash is written in Cþþ17 and available
at https://github.com/jermp/sshash. For the experiments we report
here, the code was compiled with gcc 11.2.0 under Ubuntu 19.10
(Linux kernel 5.3.0, 64 bits), using the flags -O3 and -march¼native.
We do not explicitly use any SIMD instruction in our codebase.

We use a server machine equipped with an Intel i9-9940X pro-
cessor (clocked at 3.30 GHz) and 128 GB of RAM. The reported
timings were collected using a single core of the processor. All dic-
tionaries were fully loaded in internal memory before running the
experiments. The SSHash dictionaries were also built entirely in in-
ternal memory.

Datasets. We downloaded some DNA collections (in.fasta for-
mat) and built the compacted dBG using the tool BCALM (v2)
(Chikhi et al., 2016), without any k-mer filtering, to extract the
maximal unitigs. We then run the tool UST (Rahman and
Medvedev, 2020) to compute the corresponding path covers.
Table 2 reports the basic statistics of the path covers. In particular
we used: the whole genomes of the atlantic cod (Gadus morhua) and
the common kestrel (Falco tinnunculus), the whole GRCh38 human
genome (Homo sapiens), and a collection of more than 8000 bacter-
ial genomes from Almodaresi et al. (2018).

At the code repository https://github.com/jermp/sshash we pro-
vide further instructions on how to download and prepare the data-
sets for indexing.

5.1 Tuning
Before comparing SSHash against other dictionaries, we first bench-
mark SSHash in isolation to fix a suitable choice for m and quantify
the impact of the different parsing modalities (regular vs. canonical)
that we introduced in Section 4.1. Following our discussion in
Section 4.2, we use ‘ ¼ 6 and L¼12 for all SSHash dictionaries.

To measure query time, we use 106 queries and report the mean
between 5 measurements. For positive lookups, i.e. those for k-mers
present in the dictionary, we sampled uniformly at random 106 k-
mers from each collection and use them as queries. Very important-
ly, 50% of them were transformed into their reverse complements to
make sure we benchmark the dictionaries in the most general case.
For negative lookups, we simply use randomly generated k-mer
strings. For Access, we generated 106 integers uniformly at random
in the range ½0; nÞ for each collection and extract the corresponding
k-mer strings.

Access and iteration time. We first recall that the time for Access
(and thus, that for iteration) does not depend on m nor ‘. The aver-
age Access time is, instead, affected by the size of the data structure,

Table 3. Space in bits/k-mer (bpk) and Lookup time (indicated by Lkpþ for positive queries; by Lkp– for negative) in average ns/k-mer for

regular and canonical SSHash dictionaries by varying minimizer length m

Dataset m m m m

bpk Lkpþ Lkp– bpk Lkpþ Lkp– bpk Lkpþ Lkp– bpk Lkpþ Lkp–

Cod 15 16 17 18

Regular 6.60 1236 1267 6.82 1100 1174 6.98 1045 1158 7.21 1015 1157

Canonical 7.68 945 768 7.92 834 690 8.18 786 672 8.47 755 658

Kestrel 16 17 18 19

Regular 6.19 1137 1323 6.48 1042 1265 6.79 1005 1245 7.12 997 1240

Canonical 7.30 882 781 7.68 790 722 8.09 743 696 8.51 730 691

Human 17 18 19 20

Regular 7.44 1591 1668 7.67 1459 1573 7.95 1406 1547 8.28 1338 1530

Canonical 8.76 1150 936 9.04 1054 881 9.39 990 854 9.80 958 838

Bacterial 18 19 20 21

Regular 7.42 1535 1867 7.80 1425 1813 8.22 1389 1780 8.70 1368 1774

Canonical 8.75 1129 1043 9.22 1051 995 9.75 1028 947 10.34 998 956

Note: For each dataset, we indicate promising configurations in bold font.
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i.e. by n and p: Access is on average 2� 3� faster than Lookup since
the wanted string is accessed directly, rather than searched for in the
dictionary. Iterating thorough all k-mers in the dictionary is very
fast and even independent from n: on average, it costs 20–22 ns/k-
mer. Therefore, for the rest of this section, we entirely focus on look-
up time.

Space and lookup time. With the help of Supplementary Table
S1 (see also the example at page 5 for n ¼ 109), we choose some
suitable ranges of m for the different dataset sizes. The space/time
trade-off by varying m in such ranges, for both regular and canonic-
al parsing modalities, is shown in Table 3. As we discussed in
Section 4.1 and apparent from the table, m controls a trade-off be-
tween dictionary size and lookup time: the smaller the m value, the
more compact the dictionary, but the slower the dictionary as well
(and vice versa). While it is difficult to precisely tell by how much
the space will grow when moving from m to mþ1, we see that the
space grows by �0:3� 0:4 bits/k-mer, for both regular and canonic-
al parsing. The canonical parsing modality costs �1:0� 1:5 bits/k-
mer more than the regular one for the same value of m because
more distinct minimizers are used. However, the canonical version
improves lookup time significantly (especially for negative queries),
by a factor of 1:4� 2:0� on average, because only one bucket per
query is inspected in the worst case rather than two by the regular
modality.

Since we seek for a good balance between dictionary space and
lookup time, in the light of the results reported in Table 3, we
choose m as follows. For Cod and Kestrel: m¼17 with regular pars-
ing; m¼16 with canonical parsing; for Human and Bacterial:
m¼20 with regular parsing; m¼19 with canonical parsing. In the
following, we assume these values of m are used and omit the indica-
tion from the tables.

In general, we observe that a good value for m satisfies 4m > N,
i.e. m should be chosen as to have—at least—as many possible mini-

mizers as the number of bases in the input. It is therefore recom-
mended to use m ¼ d log 4ðNÞe þ 1 or m ¼ d log 4ðNÞe þ 2.

5.2 Comparison against other dictionaries
In this section, we compare SSHash against the following state-of-
the-art dictionaries that we briefly reviewed in Section 3:

• dBG-FM (Chikhi et al., 2014)—An implementation of the popu-

lar FM-index tailored for DNA. This implementation is widely

used as an exact membership data structure for k-mers (Chikhi

et al., 2014; Rahman and Medvedev, 2020), also in the ABySS

assembler (Simpson et al., 2009; Jackman et al., 2017). The

implementation has a main trade-off parameter (a sampling

factor) that we vary as s ¼ 32, 64, 128.
• Pufferfish (Almodaresi et al., 2018)—We test both the dense and

sparse versions of the index. The sparse version was obtained

with parameters s ¼ 9 and e ¼ 4 as used in the original paper.
• Blight (Marchet et al., 2021)—We test the index with sampling

rate b ¼ 0, 2, 4 and minimizer length m ¼ 10 as suggested in the

paper. We recall that a sampling rate of b > 0 reduces the index

space by b bits/k-mer at the expense of query time.

We use the Cþþ implementations from the respective authors:

links to the various GitHub libraries are provided in the References.
All sources were compiled using the same compilation flags as used
for SSHash.

Table 4. Dictionary space in total GB and average bits/k-mer (bpk)

Dictionary Cod Kestrel Human Bacterial

GB bpk GB bpk GB bpk GB bpk

dBG-FM, s¼ 128 0.22 3.48 0.44 3.07 — — — —

dBG-FM, s¼ 64 0.27 4.38 0.55 3.86 — — — —

dBG-FM, s¼ 32 0.39 6.16 0.78 5.43 — — — —

Pufferfish, sparse 1.75 27.80 3.69 25.66 8.87 28.32 18.91 28.28

1.49 23.70 3.37 23.40 7.50 23.96 16.09 24.06

Pufferfish, dense 2.69 42.76 5.97 41.54 14.11 45.04 30.70 45.89

2.43 38.66 5.65 39.28 12.74 40.68 27.88 41.68

Blight, b¼ 4 0.91 14.53 2.16 15.00 5.04 16.11 11.40 17.04

Blight, b¼ 2 1.04 16.57 2.45 17.04 5.67 18.13 12.74 19.05

Blight, b¼ 0 1.17 18.61 2.74 19.06 6.32 20.17 14.12 21.11

SSHash, regular 0.44 6.98 0.93 6.48 2.59 8.28 5.50 8.22

SSHash, canonical 0.50 7.92 1.00 7.30 2.94 9.39 6.17 9.22

Table 5. Dictionary Lookup time in average ns/k-mer

Dictionary Cod Kestrel Human Bacterial

Lkpþ Lkp– Lkpþ Lkp– Lkpþ Lkp– Lkpþ Lkp–

dBG-FM, s¼ 128 22 980 16 501 23 934 16 764 — — — —

dBG-FM, s¼ 64 15 013 10 919 15 929 11 462 — — — —

dBG-FM, s¼ 32 11 386 7929 11 703 8073 — — — —

Pufferfish, sparse 1110 700 5456 769 13 656 862 27 748 983

Pufferfish, dense 624 439 635 485 720 519 816 582

Blight, b¼ 4 2520 2751 2743 3104 2820 3329 3105 3913

Blight, b¼ 2 1800 1643 1916 1820 2008 1975 2095 2146

Blight, b¼ 0 1571 1317 1692 1472 1780 1610 1859 1751

SSHash, regular 1045 1158 1042 1265 1338 1530 1389 1780

SSHash, canonical 834 690 882 781 990 854 1051 995
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Space and lookup time. We first consider the space of the dic-
tionaries, reported in Table 4. The space of SSHash is significantly
better than that of the other approaches based on minimal perfect
hashing, roughly: 2� 2:5� (or more) better than Blight, and 3� 5�
better than Pufferfish. This is so primarily because these approaches
build an MPHF for the entire set of k-mers, hence associate a pos-
itional information (e.g. in the reference genome) to each k-mer in
the input. We point out that, unlike for Blight, this is expected for
Pufferfish dense since it was exactly designed for the purpose of ref-
erence mapping. (The shaded rows in Table 4 account for the space
needed by Pufferfish to only support Lookup, i.e. discarding the
color information in its colored dBG structure.)

The dBG-FM index is, not surprisingly, the most compact,
thanks to the compression of the powerful Burrows–Wheeler trans-
form (BWT) (Burrows and Wheeler, 1994). (We were unable to
build the index correctly on the larger Human and Bacterial data-
sets.) While dBG-FM is several times smaller than Pufferfish and
Blight, note that its smallest version tested (for s¼128) is only essen-
tially 2� smaller than regular SSHash and this gap diminishes at
higher sampling rates. For example, dBG-FM for s¼32 is only 13�
17% smaller than regular SSHash. However, SSHash answers look-
up queries much faster than dBG-FM as shown in Table 5. A lookup
query in the dBG-FM index is implemented as a classic count query
on a FM-index (see the paper by Ferragina and Manzini (2000) for
details) which, for a pattern of length k, generates at least k cache-
misses. This cost is even higher for the handling of reverse comple-
ments that may induce two distinct count queries.

We observe that SSHash regular is as fast as (or faster than) the
fastest Blight’s version, for b¼0, and faster for higher b. SSHash ca-
nonical is always much faster than Blight. Pufferfish dense is instead

faster than SSHash thanks to its simpler lookup procedure that just
needs to retrieve the absolute offset of a k-mer using hashing and
check the k-mer against the reference string. However, we point out
that: (i) this higher Lookup efficiency comes at a significant penalty
in space effectiveness compared to SSHash, and (ii) the sparse var-
iant’s performance degrades on larger datasets.

Streaming membership query time. We now consider streaming
membership queries. Pufferfish and Blight are also optimized to an-
swer these kind of stateful queries. To query the dictionaries, we use
some reads (in.fastq format) downloaded from the European
Nucleotide Archive, and related to each dataset—Cod: run accession
SRR12858649 with 2 041 092 reads, each of length 110 bases;
Kestrel: run accession SRR11449743 with 14 647 106 reads, each of
length 125 bases; Human: run accession SRR5833294 with
34 129 891 reads, each of length 76 bases; Bacterial: run accession
SRR5901135 with 4 628 576 reads of variable length (a sequencing
run of Escherichia Coli).

We lookup for every k-mer read in sequence from the query files.
For all the indexes, we just count the number of returned results ra-
ther than saving them to a vector. The result is reported in Table 6.

In general terms, we see that SSHash is either comparable to or
faster (by 2� 3�) than Pufferfish and Blight. This holds true for
both high-hit workloads (> 70% hits, i.e. k-mers present in the dic-
tionary) and low-hit workloads (< 1% hits). It is important to
benchmark the dictionaries under these two different query scen-
arios as both situations are meaningful in practice. (In our experi-
ments, low-hit workloads are obtained by querying the dictionaries
using a different query file as indicated in Table 6.) Indeed, observe
that while Pufferfish’s performance is robust under both scenarios,
Blight’s query time significantly degrades when most queries are

Table 6. Query time for streaming membership queries for various dictionaries

(a) high-hit workload

Dictionary Cod Kestrel Human Bacterial

SRR12858649 SRR11449743 SRR5833294 SRR5901135

81.37% hits 74.60% hits 91.65% hits 87.79% hits

Tot Avg Tot Avg Tot Avg Tot Avg

Pufferfish, sparse 0.6 214 14.1 609 17.0 651 9.1 691

Pufferfish, dense 0.2 92 8.5 368 10.5 402 5.3 404

Blight, b¼ 4 2.1 766 32.5 1400 27.3 1041 11.4 864

Blight, b¼ 2 1.2 453 16.6 714 17.5 670 8.6 648

Blight, b¼ 0 0.8 282 10.8 464 11.5 440 5.8 434

SSHash, regular 0.5 166 6.2 267 8.2 311 3.0 223

SSHash, canonical 0.3 111 5.1 219 6.7 253 2.4 184

(b) low-hit workload

Dictionary Cod Kestrel Human Bacterial

SRR11449743 SRR12858649 SRR5901135 SRR5833294

0.659% hits 0.484% hits 0.002% hits 0.086% hits

Tot Avg Tot Avg Tot Avg Tot Avg

Pufferfish, sparse 14.6 627 0.9 312 11.3 855 25.5 975

Pufferfish, dense 8.7 374 0.2 92 5.8 435 13.6 518

Blight, b¼ 4 72.2 3112 6.6 2407 35.7 2704 253.2 9675

Blight, b¼ 2 45.9 1978 3.0 1115 19.1 1445 117.7 4498

Blight, b¼ 0 18.1 780 1.8 655 14.4 1088 32.2 1232

SSHash, regular 10.7 463 0.9 314 6.2 463 14.3 544

SSHash, canonical 5.1 220 0.4 155 2.5 183 6.4 244

Note: The query time is reported as total time in minutes (tot), and average ns/k-mer (avg). We also indicate the query file (SRR number) and the percentage of

hits. Both high-hit (> 70% hits) and low-hit (< 1% hits) workloads are considered.
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negative, especially for b>0. Also regular SSHash is almost 2�
slower for low-hit workloads compared to high-hit workloads. This
is expected, however, because almost all queries are exhaustively
inspecting two buckets per k-mer as we explained in Section 4.1.
Note that its performance is anyway better than Blight’s and not
much worse than Pufferfish’s (dense variant). The canonical version
of SSHash protects against this behavior in case of low-hit workload
and, in fact, is generally the fastest dictionary.

Another meaningful point to mention is that SSHash does not al-
locate extra memory at query time, i.e. only the memory of the
index—as reported in Table 4—is retained (the memory for the state
information maintained by the streaming algorithm described in
Section 4.3 is constant). Pufferfish also does not allocate extra mem-
ory. Blight, instead, consumes more memory at query time than that
required by its index layout on disk. For example, to perform the
queries on the Human dataset in Table 6a, Blight with b¼0 uses a
maximum resident set size of 7.51 GB compared to the 6.32 GB
taken by its index on disk (23.98 versus 20.17 bits/k-mer). This ef-
fect is even accentuated for higher b values.

Construction time. Table 7 reports the time and internal memory
used to build the dictionaries. The dBG-FM index needs to build the
BWT of the input prior to indexing. This step can be very time con-
suming for large collections such as the ones of practical interest. That
is, another important advantage of schemes based on hashing com-
pared to BWT-based indexes is that they require significantly less time
to build. This is evident from the result reported in the table.

Due to space constraints, we do not describe the SSHash’s con-
struction algorithm in this article. We just point out that the con-
struction is efficient; indeed SSHash took much less time to build on
the test collections compared to both Blight and Pufferfish. Its mem-
ory usage is comparable to that of Pufferfish, while Blight scales bet-
ter in this regard (e.g. by retaining 2� less internal memory on
Human and Bacterial) as it partially uses external memory. In future
work, we will adapt the SSHash dictionary construction to use ex-
ternal memory too.

We also note that the SSHash canonical takes consistently more
time and space to build than the regular variant: this is a direct con-
sequence of the denser sampling of minimizers.

6 Conclusions and future work

We have studied the compressed dictionary problem for k-mers and
proposed a solution, SSHash, based on a careful orchestration of
minimal perfect hashing and compact encodings. In particular,
SSHash is an exact and associative k-mer dictionary designed to de-
liver good practical performance. From a technical perspective,
SSHash exploits the sparseness and the skew distribution of k-mer
minimizers to achieve compact space, while allowing fast lookup
queries.

We tested SSHash on collections of billions of k-mers and com-
pared it against other indexes, under different query workloads
(high- versus low-hit) and modalities (random versus streaming).
Our implementation of SSHash is written in Cþþ and open source.

Compared to BWT-based indexes (like the dBG-FM index),
SSHash is more than one order of magnitudes faster at lookup for
only 2� larger space on average. Compared to prior schemes based
on minimal perfect hashing (like Pufferfish and Blight), SSHash is
significantly more compact (2� 5� depending on the configuration)
without sacrificing query efficiency. Indeed, SSHash is also the fast-
est dictionary for streaming membership queries. For these reasons,
we believe that SSHash embodies a superior space/time trade-off for
the problem tackled in this work.

Several avenues for future work are possible. We mention some
promising ones. First, we will engineer the dictionary construction
to use multi-threading and external memory. Parallel query process-
ing is also interesting; since SSHash is a read-only data structure, its
queries are amenable to parallelism. We could also add support for
other types of queries, such as navigational queries (Chikhi et al.,
2014) that, given a k-mer g, ask to enumerate all the extensions of g
(i.e. in both forward and backward direction) that are present in the
dictionary. Another promising direction could adapt the SSHash
data structure to also store the abundances of k-mers, which is a sep-
arate but related problem in the literature (Italiano et al., 2021;
Shibuya et al., 2021). Based on the observation that consecutive k-
mers tend to have the same or very similar abundance we expect to
add a small extra space to SSHash to store this information. In this
article, we focused on minimizers for their simplicity and practical
efficiency but one could also explore the effects of replacing the min-
imizers with other types of string sampling mechanisms (Loukides
and Pissis, 2021; Sahlin, 2021). Lastly, we also plan to study the ap-
proximate version of the dictionary problem where it is allowed to
tolerate a prescribed false positive rate.
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