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Abstract

We introduce and investigate here a formalisation for condi-
tionals that allows the definition of a broad class of reasoning
systems. This framework covers the most popular kinds of
conditional reasoning in logic-based KR: the semantics we
propose is appropriate for a structural analysis of those con-
ditionals that do not satisfy closure properties associated to
classical logics.

1 Introduction
Conditionals are generally considered the backbone of hu-
man (and AI) reasoning: the “if-then” connection between
two propositions is the stepping stone of arguments and a
lot of the research effort in formal logic has focused on this
kind of connection. A conditional connection satisfies dif-
ferent properties according to the kind of arguments it is
used for. The classical material implication is appropriate
for modelling the “if-then” connection as it is used in Math-
ematics, but the equivalence between the material implica-
tion A → B and ¬A ∨ B is not appropriate for many other
contexts. Different kinds of reasoning use different kinds of
conditionals, modelling, among others, presumptive reason-
ing (e.g. “Birds typically fly”), normative reasoning (e.g. “if
you have had alcohol, you should not drive”), casual reason-
ing (e.g. “if you throw a stone against that window, then you
will break it”), probabilistic reasoning (e.g. “if you go out in
this weather, you will probably get a cold”), fuzzy reasoning
(e.g. “if the temperature is hot, then the fan speed is high”),
or counterfactual reasoning (e.g. “if I were you, I wouldn’t
do that”).

In different contexts we associate to the “if-then” expres-
sions distinct modalities, each of them validating different
argumentation patterns. A common way of formalising dif-
ferent reasoning patterns that are or are not endorsed in a
specific reasoning context is through structural properties.
That is, formal constraints specifying that a set of condi-
tionals is closed under certain reasoning patterns. This kind
of analysis was used already in classical logic, as the class
of Tarskian logical consequence relations have been charac-
terised in terms of three main properties:

Reflexivity: A ⊨ A (Ref)

Monotonicity: A⊨C, ⊨B→A
B⊨C (Mon)

Cut: A∧B⊨C, A⊨B
A⊨C (Cut) .

Referring to structural properties in analysing conditional
logics has become a standard in some areas (Gabbay 1995;
Makinson 1994; Makinson and van der Torre 2000). How-
ever, let us note that while some properties may appear ob-
vious in everyday reasoning, these may become in fact un-
desirable depending on the reasoning context in which we
apply them. For example, a property like

Right Conjunction: A⇒B, A⇒C
A⇒(B∧C)

(And)

dictates that if an agent believes “if A then B” and “if A
then C”, then it should also believe that “if A then B and
C” (⇒ stands for conditional implication). For instance, if
an agent believes that typically birds fly and that typically
birds nest on trees, it is reasonable to require for a rational
agent to abide to the (And) property, and, thus, to believe
the conjunction of the two, i.e. typically birds fly and nest
on trees.

While the (And) property is required in presumptive rea-
soning, it is not considered appropriate for other kinds
of reasoning, as, for example, in a probabilistic con-
text (Hawthorne and Makinson 2007) or in deontic reason-
ing. In the latter case, in some kind of normative reason-
ing involving incompatible preferences, (And) is not a desir-
able reasoning pattern: an agent could believe saturday ⇒
party (“On Saturday night I would like to go to a party”)
and saturday ⇒ tv (“On Saturday night I would like to
stay home watching TV”), but not saturday ⇒ party∧tv
(“On Saturday night I would like to go to a party and to stay
home watching TV”).

Another property that is usually satisfied in most of the
reasoning contexts is

Right Weakening: A⇒B, ⊨B→C
A⇒C

(RW) .

(RW) simply states that if an agent believes “if A then B”,
then it believes also “if A then C” for any (classical) conse-
quence C of B. For example, it is reasonable to impose that
believing that presumably birds fly implies also believing
that presumably birds move, since flying implies moving.

However, there are contexts in which (RW) gives back
counter-intuitive results, as in some forms of deontic and
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causal reasoning (Casini, Meyer, and Varzinczak 2019a), as
illustrated by the following examples:

• “if you are involved in a car accident, you should remain
on the spot” is an acceptable norm, but “if you are in-
volved in a car accident, you should remain on the spot or
paint yourself in blue” is not as acceptable;

• “if you turn the wheel of a moving car, the car will move
in a circle” is meaningful, while “If you turn the wheel of
a moving car, the car will move” is not really that mean-
ingful;

• “if you throw a stone against the window, it will break” is
meaningful, but “If you throw a stone against the window,
it will break or Ann will drink tea” is not.

(RW) is a property that is strongly connected to the tradi-
tional semantics that is used to formalise conditional rea-
soning, i.e. possible-worlds semantics. In fact, most for-
malisations of conditional reasoning have been built using a
possible-worlds semantics by referring more or less directly
to classical modal operators. Using such an approach it has
been possible to define logical systems modelling various
kinds of non-classical reasoning.

On the other hand, relying on possible worlds means re-
lying on closed logical theories, and such an approach en-
forces some properties (e.g. logical omniscience) that may
be in conflict with some modelling goals. Some works
have already considered ways of combining a possible world
approach with some constrained forms of (RW) (Casini,
Meyer, and Varzinczak 2019a; Rott 1989). Let us antici-
pate that, in contrast to those approaches, we will consider
here a kind of intentional semantics instead.

One limit of the possible-worlds approach to the formal-
isation of conditionals “if condition C holds, then effect
D holds with a given modality” is that it accounts for the
modality that is associated with the truth of D given the truth
of C. However, it does not account for whether the truth
of D given the truth of C has any relevance for the kind of
reasoning we are considering. The centrality of the notion of
relevance in conditional reasoning has already been pointed
out in (Delgrande 2011). However what ‘relevance’ means
in the context of conditional reasoning remains still vague
nowadays.

As we are going to show in the next section, our formali-
sation focuses on choice functions that model what the agent
considers as relevant effects and relevant conditions. Our
work is somewhat inspired by (Rott 2001) that also sug-
gested the use of choice functions in modelling the seman-
tics of conditionals.

The paper is organised as follows. In the next section we
introduce some background concepts we will rely on in our
formalisation of conditionals. In Section 3 we illustrate our
formalisation of conditionals, while Section 4 describes how
we may accommodate various structural properties within
our approach. Section 5 discusses how to formalise entail-
ment relations in our framework and shows possible future
developments. Eventually, Section 6 summarises our contri-
bution.

2 Preliminaries
We use a conditional language containing conditionals of
the form C ⇒ D. We do not consider here the possibility
of nesting the conditionals or combining them via proposi-
tional operators.

Let L be a finitely generated propositional language, with
logical connectives ¬,∨,∧,→ and ↔ and propositional
symbol ⊥ having usual meaning. Capital letters A,B, . . .
will be used to refer to propositions, while A,B, . . . will re-
fer to sets of propositions. With ⊨ we denote the classical
propositional consequence relation.

Our language will be L⇒, the conditional language built
on top of L: namely,

L⇒ ≡def {C ⇒ D | C,D ∈ L} .

On the semantics side we will use a relation ≤⊆ L × L
among propositional formulae, where A ≤ B iff ⊨ A →
B, so that ≤ generates the classical lattice semantics over
propositional formulas, with ∨ and ∧ represented by the join
and meet operations, respectively. The relations < and ≡ are
defined as usual from ≤. Note that, using ≤ as a represen-
tation of →, A < B represents A → B and ¬(B → A),
while A ≡ B is a representative of A ↔ B. Of course, ≤ is
reflexive and transitive.

With min≤(A) we denote the minimal elements in A
w.r.t. ≤, i.e. min≤(A) ≡def {B ∈ A| ̸∃C ∈ A s.t. C < B},
while A↑ ≡def {B | A ≤ B for some A ∈ A} and
A↓ ≡def {B | B ≤ A for some A ∈ A} (we will write
A↑, A↓ for {A}↑, {A}↓).
We are going to use a well-known order among sets of for-
mulae, based on ≤: the Smyth order ⪯ over power sets (see,
e.g. (Straccia, Ojeda-Aciego, and Damásio 2009, Section 3)
for a short introduction).1 Specifically,

A ⪯ B iff ∀B ∈ B ∃A ∈ A s.t. A ≤ B .

We also write A ∼= B iff A ⪯ B and B ⪯ A.
A choice function is a set-valued function h : L → 2L,

mapping a formula to a set of formulae. We say that h
is Smyth-monotone, or simply S-monotone, iff for every
A,B ∈ L, if A ≤ B then h(A) ⪯ h(B). Furthermore,
A ∈ L is a fixed-point of h iff A ∈ h(A) (see, e.g. (Straccia,
Ojeda-Aciego, and Damásio 2009)).

Eventually, we say that h is ⋆-closed, where ⋆ ∈ {≤,≡},
iff for all A,B,C ∈ L, if A ∈ h(C) and B ⋆ A then B ∈
h(C).2 On the other hand, we will say that h is ⋆-closed,
where ⋆ ∈ {∧,∨}, iff for all A,B,C ∈ L, if A ∈ h(C) and
B ∈ h(C) then A ⋆ B ∈ h(C).

3 Semantics
We build our semantics on top of two choice functions, f
and g, representing what an agent considers as relevant con-
nections. Specifically, a conditional interpretation I is a pair

I = (f, g)

1Orders of this type are often used in the context of so-called
power domains (Knijnenburg 1993; Knijnenburg 1996; Plotkin
1976; Smyth 1978; Winskel 1985).

2Note that for ≤ order matters as ≤ is not symmetric.
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Figure 1: Graphical representation of I ⊩ A ⇒ B.

s.t. f : L → 2L and g : L → 2L. f represents the relevant
effects of a proposition, and g the possible conditions for a
proposition to hold.
Definition 1 (Satisfaction). Let I = (f, g) be a conditional
interpretation. I satisfies a conditional A ⇒ B, denoted
I ⊩ A ⇒ B, iff the following conditions hold:

1. there is B′ ∈ L s.t. B′ ∈ f(A) and B′ ≤ B; and
2. A ∈ g(B).
A ⇒ B is satisfiable (has a model) if there is a conditional
interpretation I such that I ⊩ A ⇒ B. A set of conditionals
is satisfiable (has a model) iff each conditional in it is so.
Fig. 1 gives a graphical representation of the satisfaction

relation: I ⊩ A ⇒ B iff there is a “triangle” A
f−→ B′ ≤

B
g−→ A. We indicate with A△B that there is a triangle

A
f−→ B′ ≤ B

g−→ A passing through some B′ ≤ B.
The meaning of the above definition has an epistemic

flavour: an agent accepts a conditional connection between
A and B if B is a logical consequence of some relevant ef-
fect B′ of A (B′ ∈ f(A)), and A is recognised as a relevant
condition for B (A ∈ g(B)).

Given an interpretation I, with SI we indicate the set of
conditionals satisfied by I, i.e. SI ≡def {A ⇒ B | I ⊩
A ⇒ B}.

Let us note that our class of interpretations is quite generic
and, in particular, can represent any set of conditionals. In
fact, given a set of conditionals S, we may define a model
I characterising it, that is, satisfying exactly the condition-
als in S (i.e., SI = S). To do so, given S, we construct a
conditional interpretation w.r.t. S

IS = (fS , gS)

in the following way:
1. define the following sets: AB ≡def {A | A ⇒ B ∈ S}

and CA ≡def {B | A ⇒ B ∈ S}.
2. for every D ∈ L, we set

fS(D) = min
≤

(CD) and gS(D) = AD .

IS characterises S, as the following proposition proves.
Proposition 1. Given a set of conditionals S, IS is its char-
acteristic model, that is, a conditional A ⇒ B is in S iff
IS ⊩ A ⇒ B.

Proof. From left to right. Assume A ⇒ B is in S. Then,
by definition of IS , we have that A ∈ gS(B) and there is
a B′ ∈ fS(A) s.t. B′ ≤ B (it could be B itself). Hence
IS ⊩ A ⇒ B.

From right to left. Assume IS ⊩ A ⇒ B. Then A ∈
gS(B), and that, by construction of IS , can be only if A ⇒
B ∈ S.

Please note that, as we have proved Proposition 1 for any
arbitrary set of conditionals S, the following immediate
corollary tells us that the class of conditional interpretations
I = (f, g) do not impose any form of closure under any
structural property.
Corollary 1. The class of conditional interpretations can
represent any set of conditionals.
Corollary 2. Any set of conditionals S is satisfiable.

4 Structural Properties
In the following, we are going to show that by constrain-
ing the functions f and g, it is possible to enforce the clo-
sure of the set of conditionals under structural properties that
are considered as appropriate for modelling various kinds of
reasoning. We start by analysing some classical reasoning
patterns.

At first, as f and g range over formulae and not over
possible worlds, i.e. logically closed theories, Definition 1
does not imply any form of closure under logical equiva-
lence. Such a behaviour may be desirable in some epistemic
contexts in which we would like to avoid some form of a
priori logical omniscience (Fagin et al. 1995). That is, the
well known reasoning patterns of Left Logical Equivalence
(LLE) and Right Logical Equivalence (RLE) do not hold in
general in our framework. However, if these are desired, it
is quite straightforward to enforce (LLE) and (RLE) in our
setting. Specifically, for

Left Logical Equivalence:

A ⇒ C, A ≡ B

B ⇒ C
(LLE)

it suffices to impose the following semantic constraints on a
conditional interpretation I = (f, g):

(LLEI) for all A,B:
1. if A ≡ B, then f(A) = f(B);
2. g is ≡-closed.

Similarly, for

Right Logical Equivalence:

A ⇒ B, B ≡ C

A ⇒ C
(RLE)

the semantic constraint to be imposed on a conditional inter-
pretation I = (f, g) is:

(RLEI) for all A,B:
1. if A ≡ B, then g(A) = g(B).

The conditions (LLEI) and (RLEI) characterise the classes
of the conditional interpretations satisfying, respectively,
(LLE) and (RLE). In fact, it can be shown that3

3Since the proof is straightforward we omit it.
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Proposition 2. A set of conditionals S is closed under (LLE)
(resp. (RLE)) iff it can be characterised by a conditional
model I = (f, g) that satisfies (LLEI) (resp. (RLEI)).
Another basic property is Reflexivity, that simply states that
for every proposition A it holds ‘If A, then A’. Despite ap-
pearing as an obviously valid conditional, there are some
contexts in which it is not a desirable property. Consider for
example a deontic system expressing recommendations, in
which A ⇒ B is read as “if A holds, then B would be pre-
ferrable”. This kind of conditionals can result quite counter-
intuitive if it embeds reflexivity (see e.g. (Makinson and van
der Torre 2000)): while “if there is an act of violence, then
you should call the police” appears to be a reasonable condi-
tional, to be forced to conclude “if there is an act of violence,
then there should be an act of violence” is counter-intuitive.
Reflexivity does not hold in our framework, though if we
would like to have this pattern, it suffices to impose a simple
constraint on conditional interpretations. For
Reflexivity:

A ⇒ A (Ref)

the semantic constraint to be imposed on a conditional inter-
pretation I = (f, g) is:
(RefI) for all A:

1. A is a fixed-point of both f and g.
Proposition 3. A set of conditionals S is closed under (Ref)
iff it can be characterised by a conditional model I = (f, g)
that satisfies (RefI).

Proof. From right to left. Assume that S is characterised by
some conditional model I = (f, g) that satisfies (RefI), that
is, S = SI . We have to show that SI is closed under (Ref),
and it is immediate to see that (RefI) implies I ⊩ A ⇒ A
for every A.

From left to right. Let S be a set of conditionals closed
under (Ref). We need to prove that there is a conditional
interpretation I = (f, g) characterising it and satisfying
(RefI). We can define such an I by slightly modifying the
characteristic model IS = (fS , gS). Specifically, it suf-
fices to consider I = (f, g), where g(A) = gS(A) and
f(A) = fS(A) ∪ {A}, for every A. Clearly, I satisfies
(RefI). The proof that A ⇒ B ∈ S iff I ⊩ A ⇒ B is anal-
ogous to the proof of Proposition 1, considering also that S
is closed under (Ref).

As next, we consider more elaborate structural properties.
We start with considering the Cut reasoning pattern, one
of the main structural properties in classical logic (cf. Sec-
tion 1). So, for

Cut:
A ∧B ⇒ C, A ⇒ B

A ⇒ C
(Cut)

the semantic constraints to be imposed on a conditional in-
terpretation I = (f, g) are:
(CutI) for all A,B,C:

1. If A△B, then f(A) ⪯ f(A ∧B);

2. If A ∈ g(B) and A ∧B ∈ g(C), then A ∈ g(C).

Then, we can show that

Proposition 4. A set of conditionals S is closed under (Cut)
iff it can be characterised by a conditional model I = (f, g)
that satisfies (CutI).

Proof. From right to left. Assume that S is characterised by
some conditional model I = (f, g) that satisfies (CutI), that
is S = SI . We need to prove that SI is closed under (Cut).
Suppose I ⊩ A ⇒ B and I ⊩ A ∧ B ⇒ C. Then there is
some C ′ ∈ f(A∧B) s.t. C ′ ≤ C. Since f(A) ⪯ f(A∧B)
there is some C ′′ ∈ f(A) s.t. C ′′ ≤ C ′, that is, C ′′ ≤ C.
Regarding g, we have A ∈ g(B) and A ∧ B ∈ g(C), hence
A ∈ g(C). C ′′ ∈ f(A) and A ∈ g(C) imply I ⊩ A ⇒ C.
Therefore, SI is closed under (Cut).

From left to right. Let S be a set of conditionals closed
under (Cut). We need to prove that there is a conditional
interpretation I = (f, g) characterising it and satisfying
(CutI). Let us consider the characteristic model IS .We need
to prove that it satisfies the two conditions of (CutI). So, as-
sume A△B and C ∈ fS(A∧B). A△B implies IS ⊩ A ⇒
B, that by Proposition 1 implies A ⇒ B ∈ S. By construc-
tion of IS , C ∈ fS(A ∧ B) implies that A ∧ B ⇒ C ∈ S.
From {A ⇒ B,A ∧ B ⇒ C} ⊆ S and (Cut) we have that
A ⇒ C ∈ S, and, by Proposition 1, IS ⊩ A ⇒ C. There-
fore, there is a C ′ s.t. C ′ ∈ fS(A) and C ′ ≤ C. That is,
fS(A) ≤S fS(A ∧ B) holds. Regarding the second con-
dition on gS , let A ∈ gS(B) and A ∧ B ∈ gS(C). By
construction of IS , A ⇒ B and A ∧ B ⇒ C are in S, and
by (Cut) A ⇒ C ∈ S. Therefore, by construction of IS ,
A ∈ gS(C), which concludes the proof.

As next, we address monotonicity (cf. Section 1), also a
main property of classical logic. It states that strength-
ening the antecedent of a conditional from a logical point
of view, we still preserve the effects. For example, the
conditional horse ⇒ mammal in a monotonic system im-
poses to conclude that any kind of horse is a mammal,
e.g. horse ∧ mustang ⇒ mammal. That is, (Mon) makes
our conditionals strict, in the sense that they do not admit
exceptions. So, for

Monotonicity:

A ⇒ C, ⊨ B → A

B ⇒ C
(Mon)

the semantic constraints to be imposed on a conditional in-
terpretation I = (f, g) are:

(MonI)
1. f is S-Monotone;
2. g is ≤-closed.

Proposition 5. A set of conditionals S is closed under
(Mon) iff it can be characterised by a conditional model
I = (f, g) that satisfies (MonI).

Proof. From right to left. Assume that S is characterised by
some conditional model I = (f, g) that satisfies (MonI),
that is, S = SI . We need to prove that SI is closed under
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(Mon). Assume I ⊩ A ⇒ C and ⊨ B → A, i.e. B ≤ A.
I ⊩ A ⇒ C implies that there is some B′ ∈ f(A) s.t.
B′ ≤ C. By S-Monotonicity f(B) ⪯ f(A) and, thus, there
is some B′′ ∈ f(B) s.t. B′′ ≤ B′, that implies B′′ ≤ C.
As g is ≤-closed and B ≤ A, A ∈ g(C) implies B ∈ g(C).
Hence I ⊩ B ⇒ C. Therefore, SI is closed under (Mon).

From left to right. Let S be a set of conditionals closed un-
der (Mon). We need to prove that there is a conditional inter-
pretation I = (f, g) characterising it and satisfying (MonI).
Let us consider the characteristic model IS of S as by Propo-
sition 1. We need to prove that it satisfies the two conditions
of (MonI). So, let B ≤ A, and let C ∈ fS(A). By con-
struction of IS , C ∈ fS(A) implies that A ⇒ C ∈ S,
and by (Mon) B ⇒ C ∈ S. By construction of IS , either
C ∈ fS(B), or there is a C ′ ∈ fS(B) s.t. C ′ ≤ C. Hence
fS is S-Monotone. Also the ≤-closure of gS is an imme-
diate consequence of the closure under (Mon) of S and the
definition of gS in IS , , which concludes the proof.

As by Section 1, (And) is a property that appears desirable
in many contexts, but may have some exceptions. For

Right Conjunction:
A ⇒ B, A ⇒ C

A ⇒ (B ∧ C)
(And)

the semantic constraints to be imposed on a conditional in-
terpretation I = (f, g) that characterise (And) are:
(AndI) for all A,B:

1. if B,C ∈ min≤(f(A)), then B ≡ C;
2. g(A) ∩ g(B) ⊆ g(B ∧ C).

Proposition 6. A set of conditionals S is closed under (And)
iff it can be characterised by a conditional model I = (f, g)
that satisfies (AndI).

Proof. From right to left. Assume that S is characterised
by some conditional model I = (f, g) that satisfies (AndI),
that is, S = SI . We need to prove that SI is closed under
(And). Assume I ⊩ A ⇒ B and I ⊩ A ⇒ C. Then
there is some B′ ∈ f(A) s.t. B′ ≤ B and some C ′ ∈ f(A)
s.t. C ′ ≤ C. min≤(f(A)) contains some B∗ s.t. B∗ ≤
B and some C∗ s.t. C∗ ≤ C. By the first condition of
(AndI) we have B∗ ≡ C∗, and as a consequence we have
B∗ ≤ C and eventually B∗ ≤ B ∧ C. Regarding g, we
have A ∈ g(B) and A ∈ g(C), hence A ∈ g(B ∧ C).
B∗ ∈ f(A), B∗ ≤ B∧C and A ∈ g(B∧C) together imply
I ⊩ A ⇒ (B ∧ C). Therefore, SI is closed under (And).

From left to right. Let S be a set of conditionals closed un-
der (And). We need to prove that there is a conditional inter-
pretation I = (f, g) characterising it and satisfying (AndI).
Let us consider the characteristic model IS of S as by Propo-
sition 1. We need to prove that it satisfies the two conditions
of (AndI). So, assume there are three propositions A,B,C
s.t. B,C ∈ min≤(fS(A)) and B ̸≡ C. From the construc-
tion of IS we have that B,C ∈ min≤(fS(A)) implies that
B ∧ C /∈ fS(A), and that for any A,B, if B ∈ fS(A),
then IS ⊩ A ⇒ B. Hence we have IS ⊩ A ⇒ B and
IS ⊩ A ⇒ C, but not IS ⊩ A ⇒ B ∧ C, against the
closure of S under (And). Regarding the second condition,

for all A,B, A ∈ gS(B) iff IS ⊩ A ⇒ B. Let A ∈
gS(B) ∩ gS(C). Then IS ⊩ A ⇒ B, IS ⊩ A ⇒ C, and,
by (And), IS ⊩ A ⇒ B ∧ C, that implies A ∈ gS(B ∧ C),
which concludes the proof.

Reasoning by cases is another well-known characteristics of
classical reasoning, which is formalised by the Left Disjunc-
tion reasoning pattern. To deal with it, for

Left Disjunction: A⇒C, B⇒C
A∨B⇒C

(Or)
the semantic constraints to be imposed on a conditional in-
terpretation I = (f, g) that characterise (Or) are:
(OrI) for all A,B:

1. min≤(f(A)↑ ∩ f↑(B)) ⊆ f(A ∨B);
2. g is ∨-closed.

Proposition 7. A set of conditionals S is closed under (Or)
iff it can be characterised by a conditional model I = (f, g)
that satisfies (OrI).

Proof. From right to left. Assume that S is characterised by
a conditional model I = (f, g) that satisfies (OrI), that is,
S = SI . We need to prove that SI is closed under (Or).
Assume I ⊩ A ⇒ C and I ⊩ B ⇒ C. Then there are C ′ ∈
f(A) s.t. C ′ ≤ C, and C ′′ ∈ f(B) s.t. C ′′ ≤ C. Then there
must be some C∗ s.t. C ′ ≤ C∗, C ′′ ≤ C∗, and C∗ ≤ C (C
itself satisfies the constraint), and the minimal among them
w.r.t. ≤ are in f(A ∨B) by condition 1. of (OrI). Hence in
f(A ∨ B) there is some C∗ s.t. C∗ ≤ C. But, I ⊩ A ⇒ C
and I ⊩ B ⇒ C imply also that A,B ∈ g(C) and, thus, as
g is ∨-closed, A ∨ B ∈ g(C). Therefore, we can conclude
I ⊩ A ∨B ⇒ C. Therefore, SI is closed under (Or).

From left to right. Let S be a set of conditionals closed
under (Or). We need to prove that there is a conditional inter-
pretation I = (f, g) characterising it and satisfying (OrI).
So, let us consider the characteristic model IS as by Propo-
sition 1. At first, we show that IS satisfies the second con-
dition of (OrI). In fact, by construction of IS , for all C,D,
if C ∈ gS(D) then C ⇒ D ∈ S. Therefore, as S is closed
under (Or), gS must be ∨-closed. On the other hand, if IS
does not satisfy the first condition of (OrI), we transform
IS into a model I ′ by extending fS only. Specifically, it is
sufficient that for every disjunction A ∨ B we add the set
min≤(fS)

↑(A) ∩ f↑
S(B)) to fS(A ∨ B). Now, it is easily

verified that indeed I ′ satisfies exactly the same set of con-
ditionals as IS , i.e. S. In fact, in I ′ we have an extension of
fS , while gS stays the same. Therefore, as by construction
of IS , C ∈ g(D) iff C ⇒ D ∈ S, the same holds for I ′

and, thus, the set of satisfied conditionals by I ′ remains the
same as for IS , i.e. S, which concludes the proof.

As mentioned in Section 1, Right Weakening is a property
that is generally desirable in many context with some excep-
tions. To support the reasoning pattern of
Right Weakening:

A ⇒ B, ⊨ B → C

A ⇒ C
(RW)

the semantic constraint to be imposed on a conditional inter-
pretation I = (f, g) that characterise (RW) is:
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(RWI) for all A,B:

1. if A ≤ B then g(A) ⊆ g(B).

Proposition 8. A set of conditionals S is closed under (RW)
iff it can be characterised by a conditional model I = (f, g)
that satisfies (RWI).

Proof. From right to left. Assume that S is characterised by
a conditional model I = (f, g) that satisfies (RWI), that is,
S = SI . We need to prove that SI is closed under (RW).
So, assume I ⊩ A ⇒ B and ⊨ B → C, i.e. B ≤ C. Then
there is some B′ ∈ f(A) s.t. B′ ≤ B, and consequently
B′ ≤ C. Since B ≤ C, A ∈ g(B), by condition 1. we have
A ∈ g(C). Hence I ⊩ A ⇒ C. SI is closed under (RW).

From left to right. Let S be a set of conditionals closed un-
der (RW). We need to prove that there is a conditional inter-
pretation I = (f, g) characterising it and satisfying (RWI).
So, consider the characteristic model IS , assume B ≤ C,
i.e. ⊨ B → C, and let A ∈ gS(B). By construction of
IS , A ∈ gS(B) implies I ⊩ A ⇒ B, that, by (RW), im-
plies I ⊩ A ⇒ C. By construction of IS , A ∈ gS(C), as
desired.

So far, we have taken under consideration most of the prop-
erties characterising classical entailment. However, we still
miss two important consistency properties: namely, ex falso
quodlibet and consistency preservation. The former is a
classical property strongly connected with classical impli-
cation and entailment, and stating that we can conclude any-
thing from a false premise. This property, for example, is not
fully desirable in counterfactual reasoning, where we would
like to be able to reason coherently about false situation, but
that are at least conceivable. Nevertheless, to support the
reasoning pattern of

Ex Falso Quodlibet:

⊨ ¬A
A ⇒ B

(EFQ)

the semantic constraints to be imposed on a conditional in-
terpretation I = (f, g) that characterise (EFQ) are:

(EFQI) for all A: if A ≡ ⊥, then

1. ⊥ ∈ f(A);
2. A ∈ g(B), for all B.

Proposition 9. A set of conditionals S is closed under
(EFQ) iff it can be characterised by a conditional model
I = (f, g) that satisfies (EFQI).

Proof. From right to left. Assume that S is characterised by
a conditional model I = (f, g) that satisfies (EFQI), that is,
S = SI . We need to prove that SI is closed under (EFQ).
Assume ⊨ ¬A. We need to prove that I ⊩ A ⇒ B holds
for all B. ⊨ ¬A implies A ≡ ⊥, hence, by (EFQI), we
have ⊥ ∈ f(A), ⊥ ≤ B and, thus, A ∈ g(B). Therefore,
I ⊩ A ⇒ B and, thus, SI is closed under (EFQ).

From left to right. Let S be a set of conditionals closed un-
der (EFQ). We need to prove that there is a conditional inter-
pretation I = (f, g) characterising it and satisfying (EFQI).
So, consider the characteristic model IS and let ⊨ ¬A. By

(EFQ), A ⇒ ⊥ ∈ S follows, and, since ⊥ ∈ min≤(CD),
⊥ ∈ fS(A) holds. Furthermore, by (EFQ), A ⇒ B ∈ S
holds, for all B ∈ L. Therefore, by construction of IS ,
A ∈ gS(B) holds, for any B ∈ L and, thus, IS satisfies
(EFQI), which concludes the proof.

Please note that (EFQ) is an immediate consequence of
(RLE), (And) and (RW). However, we may have contexts
that do not satisfy some of these three properties, but still
satisfies (EFQ). If this is the case, the semantic constraint
(EFQI) has to be considered.

Consistency preservation tells us that we cannot conclude
absurdity from a classically consistent premise. To support
the reasoning pattern of

Consistency Preservation:

A ⇒ B, ⊨ ¬B
⊨ ¬A

(Con)

the semantic constraint to be imposed on a conditional inter-
pretation I = (f, g) that characterise (Con) is:
(ConI) for all A,

1. if B ∈ f(A), for some B ≤ ⊥, then A ≤ ⊥.
Please note that only if we assume (RLE) we can express
(Con) in the classical (equivalent) forms

A ⇒ ⊥
⊨ ¬A

̸⊨ ¬A
A ̸⇒ ⊥

where the reading of the latter is: “if ¬A is not a tautology
then the conditional A ⇒ ⊥ cannot be concluded”.
Proposition 10. A set of conditionals S is closed under
(Con) iff it can be characterised by a conditional model
I = (f, g) that satisfies (ConI).

Proof. From right to left. Assume that S is characterised by
a conditional model I = (f, g) that satisfies (ConI), that is
S = SI . We need to prove that S is closed under (Con).
So, assume I ⊩ A ⇒ B and ⊨ ¬B, i.e. B ≤ ⊥. We need
to prove that ⊨ ¬A holds. I ⊩ A ⇒ B implies that there
is B′ ∈ f(A) s.t. B′ ≤ B, hence B′ ≤ ⊥. Therefore, by
(ConI) we have A ≤ ⊥, that is, ⊨ ¬A.

From left to right. Let S be a set of conditionals satisfying
(Con). We need to prove that there is a conditional interpre-
tation I = (f, g) characterising it and satisfying (ConI). We
prove that the characteristic model IS is such an interpreta-
tion, by proving that for any A, if ⊥ < A then there is no
B ≤ ⊥ s.t. B ∈ fS(A). Let ⊥ < A and B ≤ ⊥; hence
̸⊨ ¬A and ⊨ ¬B. By (Con), A ⇒ B /∈ S. By construction
of IS , A ⇒ B /∈ S implies that B is not in fS(A), since
otherwise we would have A ⇒ B ∈ S.

A stronger property that connects conditional reasoning to
classical entailment is supraclassicality, that is, the condi-
tional systems extends classical reasoning. To support the
reasoning pattern of

Supraclassicality: ⊨A→B
A⇒B

(Sup)

the semantic constraints to be imposed on a conditional in-
terpretation I = (f, g) that characterise (Sup) are:
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(ConI) for all A,

1. A is a fixed-point of f ;
2. A↓ ⊆ g(A).

Proposition 11. A set of conditionals S is closed under
(Sup) iff it can be characterised by a conditional model
I = (f, g) that satisfies (SupI).

Proof. From right to left. Assume that S is characterised
by a conditional model I = (f, g) and, thus, S = SI , that
satisfies (SupI). We need to prove that SI is closed under
(Sup). So, assume ⊨ A → B, i.e. A ≤ B. Then A ∈ B↓,
hence A ∈ g(B), A ∈ f(A), and A ≤ B, hence I ⊩ A ⇒
B.

From left to right. Let S be a set of conditionals satisfying
(Sup). We need to prove that there is a conditional interpre-
tation I = (f, g) characterising it and satisfying (SupI).
Consider the characteristic model IS : it clearly satisfies the
second condition, the one over g. It is possible it does not
satisfy the condition over f , in case S contains some condi-
tional A ⇒ B with B < A. To cover such a case it is suffi-
cient to modify IS into a model I in the same way as done
in the proof of Proposition 3. I is a characteristic model of
S satisfying both the conditions in (SupI).

Please note that (i) (Sup) is a consequence of (Ref) and
(RW) together, but it is not equivalent to the combination
of those two properties; and (ii) if we change the second
condition in (SupI) into A↓ = g(A), we model the classical
propositional entailment (proof omitted).

A main portion of the research in conditional reasoning
has focused on forms of defeasible reasoning. Defeasible
reasoning is characterised by a degree of uncertainty con-
nected some of the drawn conclusions that may be revised
when faced with more complete and specific information.
Presumptive reasoning, that is, reasoning based on expecta-
tions, represents the most popular context in which it is nec-
essary to constraint (Mon). The basic form of constrainted
monotonicity is Cautious Monotonicity. To support the rea-
soning pattern of

Cautious Monotonicity:

A ⇒ B, A ⇒ C

A ∧B ⇒ C
(CM)

the semantic constraints to be imposed on a conditional in-
terpretation I = (f, g) that characterise (CM) are:

(CMI) for all A,B,

1. if A△B, then f(A ∧B) ⪯ f(A);
2. if A ∈ g(B) ∩ g(C) then A ∧B ∈ g(C).

Proposition 12. A set of conditionals S is closed under
(CM) iff it can be characterised by a conditional model
I = (f, g) that satisfies (CMI).

Proof. From right to left. Assume that S can be charac-
terised by a conditional model I = (f, g) and, thus, S = SI ,
that satisfies (CMI). We need to prove that SI is closed un-
der (CM). So, assume I ⊩ A ⇒ B and I ⊩ A ⇒ C.
Therefore, there is some C ′ ∈ f(A) s.t. C ′ ≤ C, and

f(A ∧ B) ≤S f(A). As a consequence, there is some
C ′′ ∈ f(A ∧ B) s.t. C ′′ ≤ C ′, that is, C ′′ ≤ C. Regarding
g, we have A ∈ g(B) and A ∈ g(C), hence A ∧B ∈ g(C).
Therefore, I ⊩ A ∧B ⇒ C holds.

From left to right. Let S be a set of conditionals closed
under (CM). We need to prove that there is a conditional
interpretation I = (f, g) characterising it and satisfying
(CMI). Consider the characteristic model IS as by Propo-
sition 1. We need to prove that it satisfies the two con-
ditions of (CMI). Let A△B and C ∈ fS(A). A△B
implies IS ⊩ A ⇒ B, which by Proposition 1 implies
A ⇒ B ∈ S. By construction of IS , C ∈ fS(A) im-
plies that A ⇒ C ∈ S. From {A ⇒ B,A ⇒ C} ⊆ S and
(CM) we have that A ∧B ⇒ C ∈ S, and, by Proposition 1,
IS ⊩ A∧B ⇒ C. That is, there is a C ′ s.t. C ′ ∈ fS(A∧B)
and C ′ ≤ C. Therefore, fS(A ∧ B) ⪯ fS(A) holds. Re-
garding the second condition on gS , let A ∈ gS(B)∩gS(C).
By construction of IS , A ⇒ B and A ⇒ C are in S, and
by (CM) A ∧ B ⇒ C ∈ S, that is, by construction of IS ,
A ∧B ∈ gs(C), which concludes the prove.

Beyond being a desirable property from the point of view of
many reasoning contexts, such as presumptive and prototyp-
ical reasoning (Kraus, Lehmann, and Magidor 1990), (CM)
if formally important because combining it with (Cut) we
obtain Cumulativity:

Cumulativity:

If A ⇒ B then (A ⇒ C iff A ∧B ⇒ C) (Cumul)

(Cumul) is formally important because entailment relations
satisfying (Cumul) satisfy also Idempotence, a classical clo-
sure property.

The semantic constraints to be imposed on a conditional in-
terpretation I = (f, g) that characterise (Cumul) are ob-
tained by combining (CutI) and (CMI): that is,

(CumulI) for all A,B,C,
1. If A△B then f(A) ∼= f(A ∧B);
2. If A ∈ g(B) then ( A ∈ g(C) iff A ∧B ∈ g(C) ).

Proceeding in this way we can introduce many other struc-
tural properties / reasoning patterns as formal constraints
specified over the the functions f and g. For example, con-
sider (AntiRW), a form of constrained (RW) (Casini, Meyer,
and Varzinczak 2019a):

Anti Right Weakening:

A ⇒ B, ⊨ B → C, ⊨ C → D, A ̸⇒ C

A ̸⇒ D
(AntiRW)

Or, equivalently,

A ⇒ B, ⊨ B → C, ⊨ C → D, A ⇒ D

A ⇒ C
(AntiRW*)

(AntiRW), that is implied by (RW), states that we can
weaken the conclusions, but, once we block the right weak-
ening process, we cannot recover it anymore. It is a prop-
erty that, for example, appears appropriate for some causal
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or deontic forms of reasoning (see (Casini, Meyer, and Varz-
inczak 2019a) for details).

We can enforce (AntiRW) in our framework via the fol-
lowing semantic constraints:

(AntiRWI) for all A,B,C,D,

1. if A ∈ g(B), A ∈ g(D) and B ≤ D then B ≤ C ≤ D
implies A ∈ g(C) .

Proposition 13. A set of conditionals S is closed under
(AntiRW) iff it can be characterised by a conditional model
I = (f, g) that satisfies (AntiRWI).

Proof. From right to left. Assume that S can be charac-
terised by a conditional model I = (f, g) and, thus, S = SI ,
that satisfies (AntiRWI). We prove that SI is closed un-
der (AntiRW*) (that is equivalent to (AntiRW)). So, assume
I ⊩ A ⇒ B and I ⊩ A ⇒ D, with B ≤ C ≤ D.
Then there is some B′ ∈ f(A) s.t. B′ ≤ B ≤ C ≤ D.
Also, A ∈ g(B) and A ∈ g(D), that, by condition 1. of
(AntiRWI), imply A ∈ g(C). The latter and B′ ≤ C imply
I ⊩ A ⇒ C, as desired.

From left to right. Let S be a set of conditionals closed
under (AntiRW*). We need to prove that there is a condi-
tional interpretation I = (f, g) characterising it and satisfy-
ing (AntiRWI). Let us consider the characteristic model IS ,
and we prove that it satisfies the condition (AntiRWI). So,
let A ∈ gS(B), A ∈ gS(D), and B ≤ C ≤ D. By the con-
struction of IS we have IS ⊩ A ⇒ B and IS ⊩ A ⇒ D.
Since B ≤ C ≤ D and S is closed under (AntiRW*),
IS ⊩ A ⇒ C, that implies A ∈ gS(C). Hence condition 1.
is satisfied, which completes the prove.

Finally, let P be the set of structural properties presented
in this section. We have taken under consideration each
of them, and we have given a semantic counterpart in our
framework. Each semantic property is a sufficient condi-
tion for obtaining a characterising model, but not a neces-
sary condition. Specifically, given any set of conditionals S
closed under some structural property (X), we have proved
that there must be a characterising model satisfying (XI),
not that every model characterising S must satisfy (XI).

In the following, we clarify whether all these semantic
properties are compatible among them. That is, given a set
of conditionals closed under some of the structural proper-
ties in P , we are going to answer to the problem whether
there is a characterising model closed under all the corre-
spondent semantic properties.

Proposition 14. Let X ⊆ P be a set of structural proper-
ties in P , and XI be the set of the correspondent semantic
properties. If a set S of conditionals is closed under the
properties in X , then there is a conditional interpretation
characterising S and satisfying all the properties in XI .

Proof. (Sketch) Let P ′ = P \ {(Ref),(Sup),(Or)}. If X ⊆
P ′ the proof is straightforward: as seen in the proof of the
propositions in this section, given a set S satisfying any
property in P ′, the characteristic model IS satisfies the cor-
respondent semantic property. So, if we are dealing only
with properties in P ′, the characteristic model of S is the

model we are looking for. It remains to take under con-
sideration the combinations between properties in P ′ and
{(Ref),(Sup),(Or)}.

For (Ref) in Proposition 3 we have extended fS in the
model IS into a function f s.t. f(A) = fS(A)∪{A} for ev-
ery proposition A, and that the new model satisfies the same
set of conditionals S. It is easy to check that the satisfac-
tion of any property in P and of their semantic counterparts
is preserved in this extension of f , with the only exception
of (LLE), that requires a further extension of f : namely, for
every A, f(A) = fS(A) ∪ {B | B ≡ A}. It is easy to
check that, given any set of conditionals closed under (LLE)
and (Ref), this further extension of f w.r.t. fS does not affect
neither the set of conditionals satisfied by the model (that is,
it is still the characteristic model of the initial set S), nor the
satisfaction of the other semantic properties.

For (Sup) we introduce the same extension to fS , and the
same argument applies.

For (Or) in Proposition 7, we define a model I that ex-
tends IS by adding min≤(fS(A)↑ ∩ fS(B)↑ to fS(A ∨B),
for every disjunction A ∨ B. Again, this change of IS
does not affect any of the other semantic properties, apart
from (LLE), that requires an extra change as for (Ref) and
(Sup): we need to extend fS imposing f(C) = fS(C) ∪
min≤(fS(A)↑ ∩ fS(B)↑) to any C s.t. C ≡ (A ∨ B) for
some disjunction A ∨ B. As for (Ref) and (Sup), this extra
change does not affect the set of the satisfied conditionals
and the satisfaction of the other semantic properties, which
completes the prove.

5 Entailment and Future Work

Most of the results in this paper are representational ones
showing how conditional interpretations are appropriate for
modelling different forms of closure. The next step is the
definition of an actual reasoning systems in this framework:
we start from a finite set of conditionals K = {A1 ⇒
B1, . . . , An ⇒ Bn}, and we would like to derive new con-
ditionals according to reasoning patterns satisfied, or, more
generally, according to some predefined functions f and g.
In this preliminary report, we present only intuition behind
our approach that aims at modelling conditionals entailed by
predefined functions f and g.

To do so, we consider the following example for illustra-
tive purposes, showing how one may derive new condition-
als, for instance, under (Ref) and (Cut).
Example 1. Let K = {feline ⇒ carnivore, feline ∧
carnivore ⇒ mammal} (we use only the initials of the
propositional letters in what follows). The conditionals in
K represent the information an agent is aware of. That is,
if A ⇒ B ∈ K then the agent is aware that B is a relevant
effect of A and A is a relevant condition for B. Formally,
this translates into a model I = (f, g) where, for every A,

f(A) ≡def {B | A ⇒ B ∈ K}
g(A) ≡def {B | B ⇒ A ∈ K} .

Hence in the present case we have f(f) = {c}, f(f ∧ c) =
{m} and f(A) = ∅ for any other formula A; g(c) = {f},
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Figure 2: Alternative configuration for I ⊩ A ⇒ B.

g(m) = {f ∧ c} and g(A) = ∅ for any other formula A.
This model satisfies only the conditionals in K, and in order
to impose the closure under (Ref) and (Cut), we impose the
satisfaction of (RefI) and (CutI) by extending f and g into,
respectively, f ′ and g′: in order to satisfy (RefI) we add
A to f(A) and g(A) for every formula A, while to satisfy
(CutI) we need to add m to f(f) (for condition 1.) and f
to g(m) (for condition 2.). Hence, we end up with the model
I ′ = (f ′, g′) with f ′(f) = {c, m, f}, f(f ∧ c) = {m, f ∧ c}
and f(A) = {A} for any other formula A; g(c) = {f, c},
g(m) = {f, f∧c, m} and g(A) = {A} for any other formula
A. To determine which conditionals are satisfied by I ′, we
have to look for ‘triangles’ (see Fig. 1) that occur under f ′,
g′ and ≤. In this case, one may verify that indeed I ′ satisfies
also f ⇒ m, i.e., I ′ ⊩ f ⇒ m (“a feline is a mammal”) and
all the reflexive conditionals.

Therefore, the main idea to formalise reasoning is, given a
knowledge base K, to build a model characterising K and
then to modify its f and g according to the reasoning pat-
terns we would like to implement. The first step is to define
closure operations over f and g that result into the small-
est extension of K satisfying the desired properties, in line
with classical Tarskian approach to entailment. This is the
approach taken in Example 1, that is compatible with the
structural proprieties we have considered here: all of them
can be used also as derivation rules, and are compatible with
the existence of a single smallest closure.

The following step would be the definition of forms of
reasoning that are stronger from the inferential point of view,
looking at more complex structural properties that allow for
multiple smallest closed extensions. This would be in line
with some popular approaches for modelling defeasible rea-
soning using possible-worlds semantics: they take under
consideration more complex structural properties like Ratio-
nal Monotonicity, and define the entailment relations refer-
ring to specific semantic constructions (Lehmann and Magi-
dor 1992; Lehmann 1995; Pearl 1990; Casini, Meyer, and
Varzinczak 2019b).

Beyond the development of decision procedures built on
top of this semantics, we would also like to point out the
flexibility of our approach. In particular working on the vari-
ation of two aspects: (i) the configuration of the satisfaction
relation; and (ii) the interpretation of the relation ≤.

For example, we have also considered the satisfaction re-
lation of a conditional A ⇒ B based on the rectangle in
Fig. 2, which extends the one based on triangle illustrated
in Fig. 1: namely, I ⊩ A ⇒ B iff there is a “rectangle”

A
f−→ B′ ≤ B

g−→ A′ ≥ A. Now, in case ≤ is transitive, as
it is if A ≤ B is interpreted as |= A → B, such a configura-
tion imposes the closure under the following property (proof
omitted):

A ⇒ B, C ⇒ D, A ≤ C, B ≤ D

A ⇒ D

Such a property may be counter-intuitive as it imposes im-
plicitly a form of restricted (Mon) and (RW) that is not al-
ways desired. However such a reasoning pattern may be-
come interesting if, for example, we interpret A ≤ C as
stating that C is similar to A instead: from A ⇒ B, C ⇒ D,
C similar to A, and D similar to B we derive A ⇒ D. This
kind of reinterpretation of ≤ would allow the analysis of to-
tally different kinds of reasoning, depending on the meaning
of ≤ and its properties, such as e.g. reflexivity, constrained
forms of transitivity or symmetry.

We are looking forward to investigate entailment proce-
dures and interpretation variants of ≤ in more detail.

6 Conclusions
There have been a few attempts to formalise non-classical
forms of conditional reasoning that do not satisfy properties,
like (RW), that are endemic in the possible-worlds seman-
tics, e.g. (Casini, Meyer, and Varzinczak 2019a; Rott 2019).
The approach we consider here is quite different from that
usually found in the literature, as our semantics renounces
the use of possible worlds: reasoning is modelled through
the manipulation of the choice functions f and g, which we
believe, is more flexible than the possible-worlds approach.
Clearly, if we consider forms of reasoning that satisfy at least
(LLE), (RLE), and (Anti-RW), we may revert also to the
possible-worlds framework as presented in (Casini, Meyer,
and Varzinczak 2019a). The relationship between that se-
mantics and the present one still needs to be investigated,
however. Beside, let us note that another system, a deontic
one, that satisfies implicitly (only) (RLE) has been presented
by Parent and van der Torre (2014), and is based on the se-
mantics of I/O logics (Makinson and van der Torre 2000).

In summary, in this preliminary work, we have only
started to investigate conditionals A ⇒ B via the manip-
ulation of the set-valued functions f (the relevant effects of
A) and g (relevant conditions for B). Moreover, as men-
tioned in Section 5, we think that by modifying the inter-
pretation and the properties of ≤ the present semantics also
paves the way to accommodate and analyse various other
different kinds of non-classical reasoning.
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