
Empirical Software Engineering (2022) 27:160
https://doi.org/10.1007/s10664-022-10149-y

Static detection of equivalent mutants in real-time
model-basedmutation testing

An Empirical Evaluation

Davide Basile1 ·Maurice H. ter Beek1 · Sami Lazreg2 ·Maxime Cordy2 ·Axel Legay3

Accepted: 3 March 2022
© The Author(s) 2022

Abstract
Model-based mutation testing has the potential to effectively drive test generation to reveal
faults in software systems. However, it faces a typical efficiency issue since it could produce
many mutants that are equivalent to the original system model, making it impossible to gen-
erate test cases from them. We consider this problem when model-based mutation testing is
applied to real-time system product lines, represented as timed automata. We define novel,
time-specific mutation operators and formulate the equivalent mutant problem in the frame
of timed refinement relations. Further, we study in which cases a mutation yields an equiv-
alent mutant. Our theoretical results provide guidance to system engineers, allowing them
to eliminate mutations from which no test case can be produced. Our empirical evaluation,
based on a proof-of-concept implementation and a set of benchmarks from the literature,
confirms the validity of our theory and demonstrates that in general our approach can avoid
the generation of a significant amount of the equivalent mutants.

Keywords Software product line · mutation-based testing · real-time system

1 Introduction

Testing a real-time system against safety-critical requirements is a difficult problem due to
the time-sensitiveness of its behaviour. To help in this task, model-based testing methods

Communicated by: Philippe Collet, Sarah Nadi, Christoph Seidl, and Leopoldo Motta Teixeira

This article belongs to the Topical Collection: Software Product Lines and Variability-rich Systems
(SPLC)

CRediT author statement: D. Basile (first author): Conceptualization, Writing - Original Draft,
Software, Validation, Data Curation, Investigation. M.H. ter Beek: Writing - Original Draft,
Visualization, Investigation, Project administration, Supervision. S. Lazreg: Writing - Review &
Editing, Software, Validation, Data Curation, Investigation. M. Cordy: Writing - Review & Editing,
Software, Data Curation, Project administration. A. Legay: Project administration.

� Davide Basile
davide.basile@isti.cnr.it

Extended author information available on the last page of the article.

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-022-10149-y&domain=pdf
http://orcid.org/0000-0002-7196-6609
mailto: davide.basile@isti.cnr.it

 160 Page 2 of 55 Empir Software Eng (2022) 27:160

automate the generation of test cases by using a formal model of the system (Utting et al.
2012). The model drives the generation of test cases according to different criteria, such as
classical state or branch coverage (Masri and Zaraket 2016), or feature combination cov-
erage in the specific context of software product lines (Lee et al. 2020). Testing a formal
model rather than source code allows to detect, among others, misinterpretations of require-
ments or systemic issues arising from time-dependent interactions of the system with its
environment. Such detections would be harder at source code level.

Mutation testing (Aichernig et al. 2015; Brillout et al. 2009) is a technique commonly
used to evaluate the thoroughness of test cases or to support their generation (Andrews et al.
2006; Offutt 2011). It can be applied both to the implementation (source code) and to the
specification (model). A set of mutation operators, simulating possible faults in the sys-
tem, are applied to the model, obtaining a so-called mutant. Thus, given a set of mutants,
the effectiveness of a set of test cases can be evaluated according to the number of mutants
it detects (i.e., mutants that produce different output than the original system). Test cases
generated from a mutant are capable to detect bugs mimicked by that mutation. The funda-
mental underlying assumption is the existence of a coupling effect, i.e. the fact that “simple
faults are coupled to more complex faults in such a way that a test suite that detects simple
faults is sensitive enough to likely detect complex faults as well” (Petrovic et al. 2021). It has
been shown (Andrews et al. 2006) that mutation-based testing is more effective in finding
real faults than other techniques (Offutt 2011; Baker and Habli 2013; Aichernig et al. 2013).

Scalability of this approach is of paramount importance, because a large number of muta-
tions is required in order to build effective test cases. However, many of these mutations are
useless because they generate mutants that have no behaviour that the original system had
not. In such cases, no test case can be generated to differentiate the mutant from the origi-
nal system, leading to useless analyses and waste of computational resources. Code-based
mutation testing research has worked on methods to detect and avoid equivalent mutants
that are semantically equivalent to the original program (Madeyski et al. 2014). In model-
based mutation testing, this problem generalizes to that of detecting subsumed mutants,
which have less (or equal) behaviour than the original system model.

One viable method is to organise the mutants as a product line of mutations, in the
featured mutant model (Devroey et al. 2016). Such a product line enables the effective gen-
eration and validation of mutants against given test cases. However, an efficient featured
mutant model should be built upon a set of effective mutations (i.e., those producing useful
mutants), rather than from random mutations. This constitutes an important contribution to
avoiding the equivalent/subsumed mutant problem.

In this paper, we tackle the problem of testing real-time systems effectively and
efficiently. We adopt the model-based mutation testing approach for real-time systems pre-
sented in Larsen et al. (2017). We augment the set of existing mutations with a few mutation
operators that affect the timing of the system behaviour (e.g., one such operator delays the
execution of an action by the system), first introduced in Basile et al. (2020a). Then, we
address the subsumed mutant problem: we formally prove the conditions under which muta-
tions inherently (i.e., by construction) produce subsumed mutants. We achieve this on the
basis of refinement relations, which can be used to show that a model (the system) subsumes
another (the mutant). Our endeavour yields clear guidelines for real-time system engineers,
which they can follow in order to reduce their testing effort by ignoring equivalent mutants.

This paper builds on results from Basile et al. (2020a); more precisely, we extend it in
the following way. We prove novel auxiliary theoretical results concerning non-subsumed
mutants (in Section 4.2), while we refer to Basile et al. (2020a) for proofs of earlier

Empir Software Eng (2022) 27:160 Page 3 of 55 160

theoretical results reported here for the sake of completeness. Moreover, we add a thor-
ough empirical evaluation (in Section 5), considering more case studies retrieved from the
literature, and extending the experiments to consider second-order mutations, for all case
studies. Finally, the experiments protocol has been fully automatised (cf. Section 5.2) and
the implementation of mutant generation and checking is open source and available online,
thus allowing reproducibility of the experiments.

Summarising, our contributions are as follows.

1. We propose novel time-specific mutation operators for real-time models.
2. We study and formally prove under which conditions mutation operators, including the

time-specific ones, yield equivalent (or subsumed) mutants, from which no test case
can be generated, and we provide guidelines that can be used to prevent the generation
of such mutants.

3. We study and formally prove under which conditions mutation operators, including
the time-specific ones, yield non-equivalent (or non-subsumed) mutants. These results
must also consider when a mutation produces a non-redundant mutant, and auxiliary
results not presented before address this issue formally.

4. We formalise our theoretical results using product lines of mutants. We use the featured
mutant model (Devroey et al. 2016) to model the variability of the different mutations
that can be applied, using a feature-aware extension of timed graphs (the mathematical
structure used to check refinement relations), in a similar way that other formalisms
have been extended with variability (Cordy et al. 2012b; Cordy et al. 2012a; Classen
et al. 2013; Ter Beek et al. 2016; Basile et al. 2020b; Ter Beek et al. 2020; Ter Beek
et al. 2021).

5. We implement our approach in a proof-of-concept tool and validate the soundness
and effectiveness of the guidelines, based on an industrial system from the automo-
tive domain and several other case studies from the literature, for first-order as well as
second-order mutants.

6. The experiments protocol is completely automatised based on software for (i) mutant
generation, (ii) mutant checking with the provided tool, and (iii) automatic refine-
ment checking using the off-the-shelf tools Uppaal TIGA (Behrmann et al. 2007) and
Ecdar (David et al. 2010b), to validate the proposed approach empirically.

Outline In Section 2, we discuss related work, followed by background material on (fea-
tured) timed games and the featured mutant model in Section 3, where we also introduce
the novel mutation operators. Our main contributions are presented in Section 4, where we
classify mutation operators and present guidelines for selecting effective mutations, and in
Section 5, where we report the results of an empirical evaluation of our guidelines for both
first- and second-order mutants. In Section 6, finally, we conclude the paper and provide
some ideas for future work. Due to their size, the results of the aforementioned empirical
evaluation for second-order mutants are reported in Appendix A.

2 RelatedWork

This paper, as an extension of Basile et al. (2020a), mainly builds upon two recent results
on mutation-based testing (Devroey et al. 2016; Larsen et al. 2017). Featured mutant mod-
els were introduced in Devroey et al. (2016) for efficiently validating test cases against
different possible mutations. Indeed, a single execution on the generated featured transition

 160 Page 4 of 55 Empir Software Eng (2022) 27:160

system (Classen et al. 2013) suffices to check all mutants at once. However, in contrast to
our approach, no guidelines are provided on how to select the mutations to generate the
featured mutant model, that is, the mutations are selected randomly.

While Devroey et al. (2016) studies the problem of checking given test cases, Larsen et al.
(2017) considers the problem of generating valid test cases for real-time system models.
Basically, a test case generated through mutation-based testing is guaranteed by construction
to distinguish certain mutants from the system model.

Compared to Devroey et al. (2016), in Larsen et al. (2017) the mutants are not organ-
ised as a product line and thus have to be checked one by one to generate the test cases.
Moreover, both approaches generate randommutations that may result ineffective for gener-
ating/validating the test cases. Our approach improves on this by providing clear guidelines
that allow to establish upfront which mutations can safely be ignored since no test case can
be produced from them.

In Luthmann et al. (2017) and Luthmann et al. (2019), an approach to the generation
of non-subsumed mutants is proposed, using Configurable Parametric Timed Automata
(CoPTA) models, which analyses constraints of the generated zone graph. We do not gen-
erate zone graphs but instead statically identify mutations to be discarded based on the fact
that we know from our theoretical results that they will generate subsumed mutants.

Earlier, in Aichernig et al. (2013), mutation-based testing for timed automata was intro-
duced, extending standard mutation operators presented in Fabbri et al. (1999) with new
mutations tailored for timed automata. We use some of those mutations, but also some of
the new ones we introduced in Basile et al. (2020a). Compared to Larsen et al. (2017), a
k-bounded language inclusion test between the mutant and the system model is used rather
than refinement checking with Ecdar.

In Aichernig et al. (2013), a Car Alarm System (CAS) model of Ford is used as case
study for experiments and evaluation. In Basile et al. (2020a), we used the same case study;
in this paper, we consider five further case studies from the literature (Hune et al. 2001;
Feo-Arenis et al. 2014; Hoxha et al. 2015; André et al. 2019; Basile et al. 2020c). Similar
to Larsen et al. (2017), the approach in Aichernig et al. (2013) comes without a procedure or
guidelines for selecting effective mutations, and no product line is used either. In particular,
471 out of a total of 1099 generated mutants are tested and subsequently discarded, because
they cannot be used for generating test cases. We present a technique that allows to avoid
the generation of ineffective mutants.

Mutation-based test-case generation is also discussed in Aichernig et al. (2015), for the
case of UML state machine diagrams. The technique for comparing the mutant with the
systemmodel is similar to the one in Aichernig et al. (2013), and the same CAS case study is
used for experiments. Mutations are applied randomly and ineffective mutants (i.e., mutants
subsumed by the system model) are discarded subsequent to their generation.

Finally, the survey in Jia and Harman (2011) points out that “one barrier to wider appli-
cation of mutation testing centers on the problems associated with equivalent mutants”. Our
paper is an effort in the direction of reducing the generation of ineffective mutants upfront,
within the framework proposed by Larsen et al. (2017) and adopting the featured mutant
model construction of Devroey et al. (2016).

3 Background

In this section, we provide some background needed for the sequel.

Empir Software Eng (2022) 27:160 Page 5 of 55 160

3.1 Timed Games

Timed games (TG) are transition systems which can remain in a certain state or location only
a specific amount of time, can execute a transition only within a certain time interval, and
distinguish between controllable and uncontrollable actions. TG are based on timed (game)
automata (Alur and Dill 1994; Asarin et al. 1998) and form the underlying behavioral
structure of featured timed game (automata) (Cordy et al. 2012b; Cordy et al. 2013).

In reactive systems, one usually distinguishes between uncontrollable and control-
lable actions, that are assigned to inputs and outputs, respectively, if the environment is
uncontrollable and vice versa otherwise.

Time is represented by clocks whose values evolve continuously. Clocks can be regarded
as chronometers: their value can be inspected and reset, but not modified arbitrarily.
Conditions over clock values are called clock constraints.

Definition 1 (Clock constraints) A clock constraint over a set C of clocks is formed
according to the grammar g ::= � | n ∼ c | g ∧ g, with n ∈ N, c ∈ C, and
∼ ∈ {<,≤,≥,>}.

We denote by CC(C) the set of clock constraints over C. In TG, a clock constraint can
label either a state or a transition. In case it labels a state, the constraint is a location invari-
ant, which defines the interval of time in which the system can be in the state. In case
it labels a transition, it is a transition guard specifying the interval of time during which
the system can execute the transition. Note that the domain of the numeric constants in
clock constraints is limited to natural numbers. Without loss of generality, we could use real
numbers. However, natural numbers facilitate the implementation of clock constraints by
allowing efficient data structures.

Definition 2 (Timed games) Let (Loc,Act, C, Trans, �0, Inv,AP, L) be a timed game (TG)
where

– Loc is a finite set of locations;
– Act is a finite set of actions, partitioned into controllable actions Actc and uncontrollable

actions Actu;
– C is a finite set of clocks;
– Trans ⊆ Loc × CC(C) × Act × 2C × Loc is a transition relation;
– �0 ∈ Loc is the initial location;
– Inv : Loc → CC(C) is a total function associating locations with invariants;
– AP is a set of atomic propositions; and
– L : Loc → 2AP is a total function associating locations with atomic propositions

satisfied in those locations.

For a transition t = (�, g, α, R, �′), � is the starting location, g is the transition guard, α
is the action triggering the transition, R is the subset of clocks to reset, and �′ is the target
location. We may also write t as �

g,α,R−−−→ �′ and omit g and/or R when immaterial, and
instead of {x} for a reset of clock x, we may also write x := 0.

Example 1 In Fig. 1(left), a TG model of a soda vending machine is depicted. From its
initial state s0, the insertion of a euro coin (e) results in the clock being (re)set to zero and a
move to state s1. This input action is modelled as a controllable transition (drawn as a solid

 160 Page 6 of 55 Empir Software Eng (2022) 27:160

arc). The vending machine can remain in this state for at most 5 time units but only within
2 time units it can deliver a soda bottle (), returning to its initial state. The latter action is
modelled as an uncontrollable transition (drawn as dotted arc). Note that we may speak of
(un)controllable transitions when their action labels are (un)controllable. A TG model of a
tea vending machine is depicted in Fig. 1(right).

The semantics of a TG is commonly defined as an infinite transition system (TS) whose
states consist of a location and a valuation of the clocks. The transitions can be categorised
into two types. Delay transitions do not change the location of the system, but only rep-
resent the passing of time. They may occur only if the invariant of the current location is
still satisfied after the delay modelled by the transition. Discrete transitions instead occur
when the system moves from one location to another. They may occur only if the current
clock values satisfy both the guard of the executed transition and the invariant of the target
location. After the execution of such transitions, clock values can be reset.

Definition 3 (TG semantics) We define the semantics of a timed game tg = (Loc,Act, C,

Trans, �0, Inv,AP, L) as the semantics of the TS (Loc × Val(C),Act ∪ R≥0,Trans′, (�0,
v0),AP ∪ CC(C), L′), denoted by [[tg]]TG, and such that Val(C) is the set of clock evalu-
ations, i.e., the set of total functions v : C → R

+ that assign a non-negative real value to
every clock; v0 = { v0(c) = 0 | c ∈ C }; L′(�, v) = L(�) ∪ { cc ∈ CC(C) | v |= cc }; and

[[tg]]TG = {L(�0), L(�1), . . . ∈ (2AP∪CC(C)) |
∀i ∈ N • ∃αi ∈ Act ∪ R≥0 • ((�i, v)

αi−→ (�i+1, v
′)) }

3.2 Featured Timed Games

Featured timed games (FTG) extend TG with variability in the same way that featured tran-
sition systems (FTS) (Classen et al. 2013) extend (labelled) transition systems (LTS). FTS
concisely model the behaviour of all products of a product line in a single superimposed LTS
through the annotation of transitions with feature expressions, i.e., conditions expressing
their existence in products, based on a feature model.

We assume products to be represented by sets of Boolean features and a feature model
to be defined as a pair (F, P ⊆ 2F), where F is a set of features and P is the set of valid
products. The semantics of a feature model ϕ, denoted by [[ϕ]]FM, is then its set of valid
products. It can be represented by either a propositional formula or by the usual feature
diagram. Let B = {�,⊥} denote the Boolean constants true (�) and false (⊥), and let B(F)

denote the set of Boolean expressions over F (i.e., using features as propositional variables).
The elements of B(F) are also called feature expressions. Formally, a feature expression χ

is a total function {�, ⊥}|F | → {�,⊥} that associates every combination of features with a
truth value. A feature expression can be interpreted as a set of products [[χ]] ⊆ 2F defined

Fig. 1 TG models of a soda vending machine (left) and a tea vending machine (right)

Empir Software Eng (2022) 27:160 Page 7 of 55 160

as all products p for which the induced truth assignment (� for f ∈ p, ⊥ for f �∈ p, for
features f ∈ F) validates χ . Feature expressions and clock constraints allow modelling the
behaviour of real-time variable-intensive systems.

Definition 4 (Featured timed games) Given a timed game (Loc,Act, C, Trans,Loc0, Inv,
AP, L), the decuple (Loc,Act, C,Trans,Loc0, Inv,AP, L, ϕ, γ) is a featured timed game
(FTG) where

• ϕ is a feature model over a finite set F of features; and
• γ : (Trans ∪ (Loc → CC(C))) → B(F) is a total function associating feature

expressions to transitions and invariants.

As for FTS, the function γ associates a feature expression χ to some transition t =
(�, g, α, R, �′) such that γ (t) = χ encodes the set of products able to execute t . We may

also write t as �
[χ]g,α,R−−−−−→ �′ and omit g and/orR when immaterial. The function γ moreover

associates a feature expression χ to a location invariant Inv(�) = g, for some � ∈ Loc,
such that γ (g) = χ , which we may also write as [χ]g, encodes the set of products with the
invariant g in location �. Note that [�] stands for a feature expression that is always satisfied
(by any product).

Example 2 In Fig. 2(left), an FTG ftg of a product line of vending machines is depicted.
The feature model is s ∨ t , with features s for soda and t for tea. From the initial state s0, the
insertion of a euro coin (e), which is always possible (the feature expression is always true)
and which results in the clock being (re)set to zero, leads to state s1. This is a controllable
(input) action. A vending machine can remain in this state for at most 5 time units. Vending
machines with feature s can deliver a soda bottle () before 2 time units have passed. Vend-
ing machines with feature t can deliver a cup of tea () after at least 2 time units have passed
(producing tea takes more time). Note that in the presence of both features, after precisely
2 time units have passed, a choice occurs. Both (output) actions are uncontrollable.

FTG model real-time behaviour of a product line. Moreover, from an FTG we can derive
TGmodelling behaviour of specific products. This is achieved by projection of an FTG onto

Fig. 2 FTG model of a product line of vending machines (left) and TG models of two of its products (right)
reproduced from Fig. 1

 160 Page 8 of 55 Empir Software Eng (2022) 27:160

a product p obtained in much the same way as an LTS is obtained from an FTS (Classen
et al. 2013): all transitions and invariants unavailable in product p are removed.

Definition 5 (FTG projections) The projection of an FTG ftg = (Loc,Act, C,Trans,Loc0,
Inv,AP, L, ϕ, γ) onto a valid product p ∈ [[ϕ]]FM is the TG ftg|p = (Loc,Act, C,Trans′,
Loc0, Inv′,AP, L) where

Trans′ = { t = (�, g, α, R, �′) | t ∈ Trans ∧ p |= γ (t) }; and

Inv′(�) = Inv(�)|p, ∀� ∈ Loc and the projection of an invariant g

onto a product p is recursively defined as

g|p =
⎧
⎨

⎩

(g1)|p ∧ (g2)|p if g = g1 ∧ g2
g′ if (g = [χ]g′) ∧ p ∈ [[χ]]
� if (g = [χ]g′) ∧ p �∈ [[χ]]

Example 3 In Fig. 2(right), products ftg|{s} and ftg|{t} of the FTG ftg are depicted. The TG
ftg|{s} in Fig. 2(bottom-right) is a model of the vending machine that can only deliver soda
bottles, whereas the TG ftg|{t} in Fig. 2(top-right) is a model of the vending machine that
can only deliver tea. Product ftg|{s,t} is not shown.

The semantics of an FTG model of a product line is defined as a function that associates
every valid product with the semantics of its projection.

Definition 6 (FTG semantics) The semantics of an FTG ftg = (Loc,Act, C, Trans,Loc0,
Inv,AP, L, ϕ, γ) is defined as the function [[ftg]]FTG such that

∀p ∈ [[ϕ]]FM • [[ftg]]FTG(p) = [[ftg|p]]TG
3.3 FeaturedMutant Model

The idea underlying model-based mutation testing is to guide the test-case generation by
mutants, which are typically obtained through random mutations of the original model.
Organising the mutants as a product line of mutations, a family of variations of the system
under test (SUT), coined the featured mutant model (FMM) in Devroey et al. (2016), enables
the efficient generation, configuration, and execution of mutants. Each feature in the FMM
corresponds to a single application of one mutant operator on the original model.

Like Devroey et al. (2016), we use a selection of the operators proposed by Fabbri et al.
(1999), based on Chow (1978) and Weyuker et al. (1994), to generate mutants from a TS:

TMI Transition MIssing operator removes a transition;
TAD Transition ADd operator adds a transition between two states;
SMI State MIssing operator removes a state (other than the initial state) and all its

incoming/outgoing transitions.

Additionally, we introduce the following operators specific to timed models, which
change the constant in clock constraints, which we recall to be either a transition guard or a
location invariant:

CXL Constant eXchange L operator increases the constant of a clock constraint;
CXS Constant eXchange S operator decreases the constant of a clock constraint;
CCN Clock Constraint Negation operator negates a clock constraint.

Empir Software Eng (2022) 27:160 Page 9 of 55 160

The CCN operator is inspired by the μng operator from Aichernig et al. (2013), where
only clock constraints appearing as transition guards are negated.

Each operator can be used to generate mutants using either the enumerative approach or
the FMM approach. In the enumerative approach, each mutation transforms an FTG model
ftg, representing the SUT behaviour, into a mutant ftgm.

Example 4 The FTG in Fig. 3(right) has been obtained from the FTG in Fig. 3(left) by
applying the mutation operators TMI, CXL, and CXS. The transition labelled with a soda
bottle was removed (TMI). Moreover, constant 2 in the clock constraint that acts as transition
guard was increased to 4 to model that producing a tea takes more time (CXL). Instead,
constant 5 in the clock constraint that acts as location invariant was decreased to 4 to model
that the vending machine takes less time to produce a drink (CXS). Thus, the transition
from s1 to s0 that models the delivery of a cup of tea now occurs (instantaneously) precisely
when x = 4. The feature model was not changed.

In the FMM approach, each mutation operator is added as a feature to the existing feature
model. When considering first-order mutation (only one mutation can be applied to the
original system), the features/mutations are mutually exclusive. For higher order mutations,
disjunction is used instead.

Example 5 Adding the TMI, CXL, and CXS operators to the FTG in Fig. 4(left), results in
the FTG ftgfmm depicted in Fig. 4(right) with feature model ϕfmm depicted in Fig. 5. We now
explain this.

To begin with, the TMI operator removes the transition of the base
model in the following way:

1. The feature expression ¬tmi is added to the feature expression of t1, resulting in tran-

sition , meaning that this transition may be fired only if the tmi
mutation is deactivated (and if s is true);

2. The feature tmi is added to the feature model ϕfmm representing the application of the
mutation operator (cf. Figure 5).

Moreover, the CXL operator increases the constant 2 to 4 in the clock constraint that acts

as guard on the transition of the base model, in the following way:

Fig. 3 FTG (right) resulting from the application of mutation operators TMI, CXL, and CXS to the FTG (left)
reproduced from Fig. 2(left)

 160 Page 10 of 55 Empir Software Eng (2022) 27:160

Fig. 4 FTG ftgfmm (right) resulting from the addition of the mutation operators TMI, CXL, and CXS to the
FTG (left) reproduced from Fig. 2(left); its associated feature model is depicted in Fig. 5

1. The feature expression ¬cxl is added to the feature expression of t2, resulting in tran-

sition , meaning that this transition may be fired only if the cxl
mutation is deactivated (and if t is true);

2. The transition is added, meaning that this transition with feature
expression t ∧ cxl and clock constraint x ≥ 4 may be fired only if the cxl mutation is
activated (and if t is true);

3. The feature cxl is added to the feature model ϕfmm representing the application of the
mutation operator (cf. Figure 5).

Finally, the CXS operator decreases the constant 5 to 4 in the featured clock constraint
[�]x ≤ 5, which acts as invariant of the state s1 of the base model, in the following way:

1. The feature expression ¬cxs is added to the featured clock constraint of state s1, mean-
ing that the updated featured clock constraint [¬cxs]x ≤ 5 acts as invariant x ≤ 5 of s1
only if the cxs mutation is deactivated;

2. The feature expression cxs is added to the featured clock constraint of state s1, meaning
that the updated featured clock constraint [cxs]x ≤ 4 acts as invariant x ≤ 4 of s1 only
if the cxs mutation is activated;

3. The feature cxs is added to the feature model ϕfmm representing the application of the
mutation operator (cf. Figure 5).

Fig. 5 Feature model ϕfmm of the FTG ftgfmm depicted in Fig. 4(right)

Empir Software Eng (2022) 27:160 Page 11 of 55 160

Hence, mutation operators are added to the FMM under construction.

4 ClassifyingMutations

Our main theoretical contribution is a classification of mutations to identify those that are
effective (i.e., can be used to generate test cases). Our key idea from Basile et al. (2020a)
is that, by construction, some mutations produce mutants that have the same (or a subset
of the) behaviour of the SUT. Discarding them will speed-up the mutation testing process,
as we would avoid fruitless attempts to generate test cases. Thus, we aim to characterise
these mutations by formally proving under which conditions (i.e., mutation operator and the
elements of the model to which it is applied) the produced mutant is subsumed by the SUT.

Recall that a test case generated from a mutant provides a sequence of inputs that makes
the mutant behave differently than the SUT (in terms of accepted inputs, produced outputs,
or execution time). Thus, the goal of the test case is to distinguish whether the system on
which it is executed is the original one or the mutant. For a mutant to remain “live” (as it is
named in the jargon), there must be no test case that can distinguish it from the SUT. This
is equivalent to proving that the mutant is a refinement of the SUT (Larsen et al. 2017).
Refinement checking is solved as a two-player timed game, where one player (playing the
“whenever” transitions of the forthcoming Definition 7) wins if the mutant is not a refine-
ment of the system (the mutant is killed) and the other player (playing the “then” transitions
of Definition 7) wins if the mutant is a refinement (the mutant is alive). If the mutant is not
a refinement, then the counterexample represents the test case that distinguishes the mutant
from the SUT.

In what follows, we consider the mutation operators mentioned in Section 3.3 and state
under which conditions their application results in a refinement of the original model.
First-order mutations were shown to offer a higher fault-revealing ability (Papadakis and
Malevris 2010). Our theoretical results hold for first-order and also higher order mutations.
As such, when proving refinement relations, we consider the general case where mutations
are applied to mutants of the SUT (either subsumed or not). Similarly, our work generalises
to the case where the original model represents the behaviour of not only one system, but of
a whole product line of systems. Thus, our theoretical developments are defined over FTG
rather than single TG. To summarise, all results described hereafter apply to (1) any-order
mutations and (2) families of systems.

4.1 SubsumedMutants

To begin with, we formalise the notion of refinement between TG, adapted from David et al.
(2010a) and Larsen et al. (2017). In Larsen et al. (2017), real-time systems are modelled as
timed I/O automata, in which input actions are defined controllable and output actions are
defined uncontrollable. The main idea is to perform a refinement check between the mutant
and the system model, using Ecdar (David et al. 2010b), which is a tool built on top of
Uppaal TIGA (Behrmann et al. 2007) that implements the timed interface theory from David
et al. (2010a). Basically, a refinement model (i.e., a live mutant) must be able to mimic all
controllable transitions of the original system model, while the original model must be able
to mimic all uncontrollable transitions of the refinement. In our case, controllable transitions
correspond to inputs (since a live mutant must accept all inputs that the original system
accepts), whereas uncontrollable transitions correspond to outputs and delays (since a live
mutant should not exhibit any behaviour that does not belong to the system). Note that this

 160 Page 12 of 55 Empir Software Eng (2022) 27:160

is the opposite of the standard notion of modal refinement, where the inputs are seen as sent
by an uncontrolled environment (Larsen et al. 2007). In other words, here the viewpoint is
switched to the environment (David et al. 2010a; Larsen et al. 2017).

Definition 7 (Refinement) A TG tg1 = (Loc1,Act1, C1,Trans1, �01, Inv1, AP1, L1) is a
refinement of a TG tg2 = (Loc2,Act2, C2,Trans2, �02, Inv2,AP2, L2), denoted as tg1 �
tg2, if there exists a binary relation R ⊆ (Loc1,Val(C1)) × (Loc2,Val(C2)) that contains
s = ((�01, v01), (�02, v02)) and is such that for each pair of locations and clocks values
((�1, v1), (�2, v2)) ∈ R, it holds:

– whenever (�2, v2)
α−→ (�′

2, v2) for some �′
2 and α ∈ Actc2, then (�1, v1)

α−→(�′
1, v1) for

some �′
1, α ∈ Actc1 and ((�1, v1), (�

′
2, v2)) ∈ R

– whenever (�1, v1)
α−→(�′

1, v1) for some �′
1 and α ∈ Actu1, then (�2, v2)

α−→(�′
2, v2) for

some �′
2, α ∈ Actu2 and ((�′

1, v1), (�
′
2, v2)) ∈ R

– whenever (�1, v1)
δ−→(�1, v

′
1) for some v′

1 and δ ∈ R≥0, then (�2, v2)
δ−→(�2, v

′
2) for some

v′
2 and ((�1, v

′
1), (�2, v

′
2)) ∈ R

We now provide a definition of subsumed mutant, where Opfmm is the set of mutations.
Basically, after applying an additional mutation the resulting mutant is a refinement of the
former one on which the additional mutation was not applied.

Definition 8 (Subsumed mutant) Let ftg be an FTG and let [[ϕ]] be the set of mutants with
m, m′ ∈ [[ϕ]]. We say that m differs from m′ by op iff m = m′ ∪ op for some op ∈
Opfmm. Moreover, we say that m is subsumed by m′ iff ftg|m � ftg|m′ , and we say that it is
non-subsumed otherwise.

Example 6 Consider the FTG ftgfmm of Example 5, reproduced in Fig. 6(left), and its
mutants m1 = {s, tmit1} and m′

1 = {s}, depicted in Figs. 6(top-right) and 6(bottom-right),

respectively, i.e., with .
In this case, m1 differs from m′

1 by tmit1 . Moreover, let tg1 = ftgfmm|m1 and tg2 =
ftgfmm|m′

1
. It holds that tg1 � tg2, i.e., tg1 is subsumed by tg2. Indeed, for all values v of

x in the interval [0, 5], the three points of Definition 7 hold for ((s1tg1 , vtg1), (s1tg2 , vtg2)),
and there is no configuration (s1, v) with v > 5 because it would violate the invariant of s1.

We only consider deterministic TG, as usual (Larsen et al. 2017; Aichernig et al. 2015;
Aichernig et al. 2013). The following proposition identifies conditions under which a mutant
is subsumed.

Proposition 1 (Basile et al. 2020a) Let ftg be an FTG, let [[ϕ]] be the set of mutants with
m, m′ ∈ [[ϕ]], and let m differ from m′ by op. Then m is a subsumed mutant of m′ iff op
has introduced either less uncontrollable or more controllable behaviour (or trivially if the
behaviour is unchanged).

In the remainder of this section, we present several results for identifying mutations that
generate subsumed mutants by construction. Proof (sketches) can be found in Basile et al.
(2020a). We start with those operations that were proposed by Fabbri et al. (1999), followed
by the novel ones introduced in this paper.

Empir Software Eng (2022) 27:160 Page 13 of 55 160

Fig. 6 FTG ftgfmm (left) reproduced from Fig. 4 (right) and its mutants ftgfmm|m1 (top-right) and ftgfmm|m′
1

=
ftg|m′

1
(bottom-right) reproduced from Fig. 2(bottom-right)

TMI mutation The TMI mutation is used to remove a transition from the system. The
following lemma shows that removing an uncontrollable transition from a mutant, by
construction the resulting mutant is subsumed by the original one.

Lemma 1 (TMI Subsumed) Let ftg be an FTG and let [[ϕ]] be the set of mutants with
m, m′ ∈ [[ϕ]] and m = {tmit } ∪ m′ for some t ∈ Transftg|m′ with action in Act

u. Then ftg|m is
subsumed by ftg|m′ .

Example 7 We illustrate the usefulness of this result. Recall that test-case generation is more
effective if the number of subsumed mutants is minimised. Continuing the previous exam-
ple, since t1 is an uncontrollable transition, Lemma 1 implies that ftgfmm|m1 is subsumed by
ftgfmm|m′

1
, i.e., this is not a good candidate mutation for the configuration m′

1.

TADmutation The TADmutation is used to add a transition to the system. The next lemma
shows that by adding a controllable transition to a mutant, the obtained mutant is subsumed
by the original one.

Lemma 2 (TAD Subsumed) Let ftg be an FTG and [[ϕ]] be the set of mutants with m, m′ ∈
[[ϕ]] and m = {tadt } ∪ m′ for some t with action in Actc. Then ftg|m is subsumed by ftg|m′ .

SMImutation The state missing SMI mutation removes a location from the system (not
the initial location however). This is equivalent to making the location unreachable, i.e.,
removing all its incoming transitions. Hence, the results on TMI can be applied. The
following lemma shows when this mutation produces a subsumed mutant.

Lemma 3 (SMI Subsumed) Let ftg be an FTG and let [[ϕ]] be the set of mutants with
m, m′ ∈ [[ϕ]] and m = {smi�} ∪ m′ for some � ∈ Locftg|m′ . Then ftg|m is subsumed by ftg|m′
if there exists no transition t with target location � and action α ∈ Actc.

We continue with the mutation operators that were firstly introduced in Basile et al. (2020a).

CXLmutation We first turn our attention to the mutation CXL, that increases the constant
of a clock constraint. The next lemma shows when the mutation operator CXL applied on a
transition produces a mutant that is subsumed.

 160 Page 14 of 55 Empir Software Eng (2022) 27:160

Lemma 4 (CXL Subsumed Transitions) Let ftg be an FTG and let [[ϕ]] be the set of mutants
with m,m′ ∈ [[ϕ]] and m = {cxlt } ∪ m′ for some t ∈ Transftg|m′ with source � and either
(i) action in Actc and guard g = x ≤ k or (ii) action in Actu, guard g == k and Inv(�) =
x ≤ k or (iii) action in Actu and guard g = x ≥ k. Then ftg|m is subsumed by ftg|m′ .

Example 8 Recall from Example 5 the mutation operator CXL applied to the FTG ftgfmm
that is reproduced in Fig. 7(left), and now consider its mutants m1 = {t, cxlt2 , cxss1}
and m′

1 = {t, cxss1}, depicted in Figs. 7(top-right) and 7(bottom-right), respectively, i.e.,

with . Since t2 is an uncontrollable transition, Lemma 4(iii) implies
that ftgfmm|m1 is subsumed by ftgfmm|m′

1
, i.e., this is not a good candidate mutation for the

configuration m′
1.

Finally, the next lemma identifies the conditions under which applying CXL on an
invariant yields a subsumed mutant.

Lemma 5 (CXL Subsumed Invariants) Let ftg be an FTG and let [[ϕ]] be the set of mutants
with m, m′ ∈ [[ϕ]] and m = {cxl�} ∪ m′ for some location � ∈ Locftg|m′ with Inv(�) = x ≥ k

and for all valuations v of clock x such that k < v ≤ k′ for k′ mutation, (�, v) can only
be reached through a transition with action in Actu and target �. Then ftg|m is subsumed by
ftg|m′ .

Example 9 Consider Fig. 8, assume that tg1 = f tg|m and tg2 = f tg|m′ , for some f tg and
m = {cxls1} ∪ m′, where cxl increases by one unit the clock constraint of location s1. By
Lemma 5, it holds that tg1 is subsumed by tg2.

CXSmutation We now turn our attention to the mutation CXS that decreases the constant
of a clock constraint. The next lemma shows that the mutation operator CXS applied to a
guard of the form x ≤ k of an uncontrollable transition or to a guard of the form x ≥ k of a
controllable transition produces a mutant that is subsumed.

Fig. 7 FTG ftgfmm (left) reproduced from Fig. 4 (right) and its mutants ftgfmm|m1 (top-right) and ftgfmm|m′
1

(bottom-right)

Empir Software Eng (2022) 27:160 Page 15 of 55 160

Fig. 8 Four TG used in Examples 9 and 10: tg1 (top-left), tg2 (top-right), tg3 (bottom-left), and tg4 (bottom-
right)

Lemma 6 (CXS Subsumed Transitions) Let ftg be an FTG and let [[ϕ]] be the set of mutants
with m, m′ ∈ [[ϕ]] and m = {cxst }∪m′ for some t ∈ Transftg|m′ with either (i) action in Act

u

and guard g = x ≤ k; or (ii) action in Actc and guard g = x ≥ k. Then ftg|m is subsumed
by ftg|m′ .

Finally, the next lemma identifies the conditions under which the application of CXS on
an invariant yields a subsumed mutant.

Lemma 7 (CXS Subsumed Invariants) Let ftg be an FTG and let [[ϕ]] be the set of mutants
with m, m′ ∈ [[ϕ]] and m = {cxs�} ∪ m′ for some location � ∈ Locftg|m′ and either
(i) Inv(�) = x ≤ k and for all valuations v of clock x such that k′ ≤ v < k for k′ muta-
tion, (�, v) can only be reached through a transition with action in Actu and target � or
(ii) Inv(l) = x ≥ k and for all valuations v of clock x such that k′ ≤ v < k for k′ mutation,
(�, v) can only be reached through a transition with action in Actc and target �. Then ftg|m
is subsumed by ftg|m′ .

Example 10 Consider again Fig. 8, now assuming that tg3 = f tg|m′ and tg4 = f tg|m, for
some f tg and m = {cxss1} ∪ m′, where cxs decreases by one unit the constant of the clock
constraint of location s1. By Lemma 7, it holds that tg3 is subsumed by tg4.

4.2 Auxiliary Results on Non-subsumedMutants

Although our focus is on detecting subsumed mutants, the developed theory is also helpful
in spotting when a specific mutation yields by construction a non-subsumed mutant. The
following auxiliary results target non-subsumed mutants and complement the results stated
so far (from Basile et al. 2020a). At this point, it is important to note that the experiments
in Section 5 will only exploit results on subsumed mutants to discard ineffective mutations.
However, the auxiliary results presented in this section could be exploited to perform a dif-
ferent evaluation: instead of discarding subsumed mutants, only generate (statically known)
non-subsumed ones. This evaluation is harder, because only in specific cases it is possible
to statically detect when a mutation is non-redundant. This is left for future work. A TG is

 160 Page 16 of 55 Empir Software Eng (2022) 27:160

said to be non-redundant if every location � is reachable in at least one trace, it is not time-
locked (i.e., delay is possible), and every transition is executable in at least one trace. For
the non-subsumed lemmata, we will only consider non-redundant TG. Indeed, mutating a
redundant element may produce a subsumed mutant. Note that redundant specifications are
ill-defined and should be amended prior to any application, be it testing, model checking or
any other.

We introduce the auxiliary definition of non-redundancy preserving mutation. This will
be useful for the forthcoming results about non-redundant higher order mutations, whose
hypothesis is that the mutated mutant is non-redundant.

Proof (sketches) of the results already reported earlier can be found in Basile et al.
(2020a).

Definition 9 (Non-redundancy preserving mutation) Let ftg be an FTG and let [[ϕ]] be the
set of mutants with m, m′ ∈ [[ϕ]] and with m that differs from m′ by the application of some
mutation op ∈ Opfmm. Then, m is a non-redundancy preserving mutation of m′ iff ftg|m′ is
non-redundant implies ftg|m is non-redundant.

Below follow two generic results on non-redundancy preserving on location or transi-
tion for any mutation. Note that the results below are operating at the syntactic level (i.e.,
statically). This means that the information on the specific values of clocks is missing. This
information is only known at the semantics level (i.e., during the execution), where states
are pairs of locations and clock evaluations. However, under specific hypothesis, it is possi-
ble to infer (statically) the values of clocks. Intuitively, if all clocks are reset when entering
a location, the clocks evaluation when entering the location is statically known to be zero,
and it is possible to predict whether guards and invariants will be satisfied. This allows to
provide a result on non-redundancy preserving of a generic mutation involving a location
that can be checked statically.

Proposition 2 (Non-redundancy preserving mutation on location) Let ftg be an FTG and
let [[ϕ]] be the set of mutants with m, m′ ∈ [[ϕ]], and with m that differs from m′ by the
application of some mutation op ∈ Opfmm mutating a location �, with invariant Inv(�).

If there exists a transition t ′ = (�t ′ , gt ′ , αt ′ , Rt ′ , �), for some �t ′ , gt ′ , αt ′ , Rt ′ and with
Rt ′ = C, such that v0 |= Inv(�), and for all transitions t̂ with source �, it holds that
Inv(�)∧gt̂ �|= false andRt̂ = C, then ftg|m′ is non-redundant implies ftg|m is non-redundant.

Proof (sketch) By assumption t ′ is non-redundant, so � is reachable through t ′. By assump-
tion, when reaching � through t ′, Inv(�) is satisfied. Moreover, all guards of outgoing
transitions of � at some point are satisfied by hypothesis. By the fact that all variables are
reset in each transition, it holds that the behaviour of the underlying transition system is
unchanged, thus ftg|m is non-redundant.

We also provide a result on non-redundancy preserving of a generic mutation involving
a transition that can be checked statically.

Proposition 3 (Non-redundancy preserving mutation on transition) Let ftg be an FTG and
let [[ϕ]] be the set of mutants with m, m′ ∈ [[ϕ]], and with m that differs from m′ by the
application of some mutation op ∈ Opfmm mutating a transition t = (�, gt , αt , Rt , �

′
t) for

some �, gt , αt , Rt , �′
t such that Rt = C. If Inv(�)∧gt �|= false, then ftg|m′ is non-redundant

implies ftg|m is non-redundant.

Empir Software Eng (2022) 27:160 Page 17 of 55 160

Proof (sketch) By assumption � is reachable, and at some point transition t can be fired. By
the fact that all variables are reset in t , it holds that the behaviour of the underlying transition
system is unchanged, thus ftg|m is non-redundant.

TMI mutation In case the location target of the removed transition is target of another
transition, the mutation is non redundancy-preserving. This result (and the others) builds on
the hypothesis of non-redundancy.

Proposition 4 (Non redundancy-preserving TMI mutation) Let ftg be an FTG and let [[ϕ]]
be the set of mutants with m, m′ ∈ [[ϕ]] and with m = {tmit } ∪ m′ for some t ∈ Transftg|m′
and let t ′ ∈ Transftg|m such that t �= t ′ and t, t ′ have the same target location. Then, ftg|m′
is non-redundant implies ftg|m is non-redundant.

Proof Since � is reachable by a transition t ′ �= t and by the fact that the projection removes
all syntactically redundant elements, it follows that � and t ′ are non-redundant and thus ftg|m
is non-redundant.

The following lemma shows that the application of a mutation TMI on a transition t

(tmit in the following) of a mutant m′, i.e., removing such a transition from m′, produces
by construction a mutant m that is non-subsumed by m′, in case t is controllable.

Lemma 8 (TMI Non-subsumed) Let ftg be an FTG and let [[ϕ]] be the set of mutants with
m, m′ ∈ [[ϕ]] and m = {tmit } ∪ m′ for some t ∈ Transftg|m′ with action in Act

c. Then ftg|m is
non-subsumed by ftg|m′ .

Example 11 We illustrate the usefulness of this result by means of an example. Consider the
FTG ftg′

fmm, depicted in Fig. 9(left), and its mutants m2 = {tmit2} and m′
2 = ∅, depicted in

Figs. 9(middle) and 9(right), respectively, i.e., t2 = s0
e,x:=0−−−−→ s1. Since t2 is a controllable

transition, Lemma 8 implies that ftg′
fmm|m2 is non-subsumed by ftg′

fmm|m′
2
, i.e., this is a good

candidate mutation for the configuration m′
2.

TADmutation The non-redundancy condition for transition adding mutation is trivial.

Proposition 5 (Non redundancy-preserving TAD mutation) Let ftg be an FTG and let [[ϕ]]
be the set of mutants with m, m′ ∈ [[ϕ]] and with m = {tadt } ∪ m′ for some t non-redundant
in ftg|m Then, ftg|m′ is non-redundant implies ftg|m is non-redundant.

Fig. 9 FTG ftg′
fmm (left) and its mutants ftg′

fmm|m2 (middle) and ftg′
fmm|m′

2
= ftgfmm|m1 (right) reproduced

from Fig. 6(top-right)

 160 Page 18 of 55 Empir Software Eng (2022) 27:160

Proof Trivially, by non-redundancy of t .

We note that a non-redundant transition to add could simply have a guard trivially true
and an empty set of reset clocks (this will not be the case for the experiments in Section 5).
Under the (assumed) hypothesis that the added transition is executable in at least one trace,
such a mutation produces a non-subsumed mutant if an uncontrollable transition is added
and a subsumed mutant if a controllable transition is added.

The next lemma shows that the application of a mutation TAD on a transition t (tadt in
the following) of a mutant m′, i.e., adding such a transition to m′, produces by construction
a mutant m that is non-subsumed by m′, in case t is uncontrollable. Note that the added
transition is non-redundant in the mutant.

Lemma 9 (TAD Non-subsumed) Let ftg be an FTG and let [[ϕ]] be the set of mutants with
m, m′ ∈ [[ϕ]] andm = {tadt }∪m′ for some t with action in Actu. Then ftg|m is non-subsumed
by ftg|m′ .

SMI mutation The next lemma is about non-redundancy preserving state-missing muta-
tion. Basically, the hypothesis of this lemma checks that no redundant locations are created
by the mutation.

Proposition 6 (Non redundancy-preserving SMI mutation) Let ftg be an FTG and let [[ϕ]]
be the set of mutants with m,m′ ∈ [[ϕ]] and with m = {smi�} ∪ m′ for some � ∈ Locftg|m′
where ∀�′ �= � such that �′ is target of t and � is source of t , ∃t ′ ∈ Transftg|m with target �′
and source �′′ �= �, �′. Then, ftg|m′ is non-redundant implies ftg|m is non-redundant.

Proof The condition ∀�′ �= � such that �′ is target of t and � is source of t , ∃t ′ ∈ Transftg|m
with target �′ and source �′′ �= �, �′ ensures that the removal of such transitions t do not
cause any redundant location, using the same argument used in Proposition 4.

CXLmutation The condition for non-redundancy preserving CXL mutation is based on a
relaxation of the clock constraint.

Proposition 7 (Non redundancy-preserving CXL mutation) Let ftg be an FTG and let [[ϕ]]
be the set of mutants with m,m′ ∈ [[ϕ]] and with m = {cxlx} ∪m′ for some x ∈ Transftg|m′ ∪
Locftg|m′ with clock constraint x ≤ k. Then, ftg|m′ is non-redundant implies ftg|m is non-
redundant.

Proof This mutation introduces a relaxation of the clock constraint of transition t . As such,
the previous behaviour is still available and by the hypothesis of non-redundancy of ftg|m′ it
follows that ftg|m is non-redundant.

Let c be a clock and let k be some constant. Then such a mutation does not generate a
subsumed mutant when applied to a guard of the form x ≤ k of an uncontrollable transition
or to a guard of the form x ≥ k of a controllable transition, under conditions discussed in
the next lemma.

Lemma 10 (CXL Non-subsumed Transitions) Let ftg be an FTG and let [[ϕ]] be the set of
mutants with m,m′ ∈ [[ϕ]] and m = {cxlt } ∪ m′ for some t ∈ Transftg|m′ with source � and

Empir Software Eng (2022) 27:160 Page 19 of 55 160

either (i) action α ∈ Actu, guard g = x ≤ k and there exists a valuation of clock k < v ≤ k′
for k′ mutation such that (�, v)

α−→ftg|m or (ii) action α ∈ Actc, guard g = x ≥ k and there

exists a valuation of clock k ≤ v < k′ for k′ mutation such that (�, v)
α−→ftg|m′ . Then ftg|m is

non-subsumed by ftg|m′ .

The next lemma provides the conditions under which the application of the mutation
operator CXL on an invariant of a location � (written as cxl�), yields a non-subsumed mutant.

Lemma 11 (CXL Non-subsumed Invariants) Let ftg be an FTG and let [[ϕ]] be the set of
mutants with m, m′ ∈ [[ϕ]] and m = {cxl�} ∪ m′ for some location � ∈ Locftg|m′ and either
(i) Inv(�) = x ≥ k and there exists a valuation v of clock x such that k < v ≤ k′ for
k′ mutation such that (�, v) is reached through a transition with action in Actc and target �
or (ii) Inv(�) = x ≤ k. Then ftg|m is non-subsumed by ftg|m′ .

CXSmutation Also the condition for non-redundancy preserving CXS mutation is based
on a relaxation of the clock constraint.

Proposition 8 (Non redundancy-preserving CXS mutation) Let ftg be an FTG and let [[ϕ]]
be the set of mutants with m, m′ ∈ [[ϕ]] and with m = {cxsx}∪m′ for some x ∈ Transftg|m′ ∪
Locftg|m′ with clock constraint x ≥ k. Then, ftg|m′ is non-redundant implies ftg|m is non-
redundant.

Proof This mutation introduces a relaxation of the clock constraint. Thus, the previous
behaviour is still available and by the hypothesis of non-redundancy of ftg|m′ it follows that
ftg|m is non-redundant.

Again, let c be a clock and let k be some constant. Then such a mutation produces a non-
subsumed mutant when applied to a guard of the form x ≤ k of a controllable transition or
to a guard of the form x ≥ k of an uncontrollable transition, as the next lemma shows.

Lemma 12 (CXS Non-subsumed Transitions) Let ftg be an FTG and let [[ϕ]] be the set of
mutants with m,m′ ∈ [[ϕ]] and m = {cxst } ∪ m′ for some t ∈ Transftg|m′ with source � and
either (i) action in Actc, g = x ≤ k and there exists a clock valuation k′ < v ≤ k with k′
mutation such that (�, v)

α−→ftg|m′ or (ii) action in Actu, g = x ≥ k and there exists a clock

valuation k′ ≤ v < k with k′ mutation such that (�, v)
α−→ftg|m . Then ftg|m is non-subsumed

by ftg|m′ .

The next lemma provides the conditions under which the application of the mutation
operator CXS on an invariant of a location � (written as cxs�) produces a non-subsumed
mutant.

Lemma 13 (CXS Non-subsumed Invariants) Let ftg be an FTG and let [[ϕ]] be the set of
mutants with m, m′ ∈ [[ϕ]] and m = {cxs�} ∪ m′ for some location � ∈ Locftg|m′ and either
(i) Inv(�) = x ≥ k and there exists a valuation v of clock x such that k′ ≤ v < k for
k′ mutation such that (�, v) is reached through a transition with action in Actu and target �
or (ii) Inv(�) = x ≤ k and there exists a valuation v of clock x such that k′ ≤ v < k for

 160 Page 20 of 55 Empir Software Eng (2022) 27:160

k′ mutation such that (�, v) is reached through a transition with action in Actc and target �.
Then ftg|m is non-subsumed by ftg|m′ .

Example 12 Recall from Example 5 the mutation operator CXS applied to the FTG ftgfmm
reproduced in Fig. 10(left), and consider its mutants m1 = {t, cxss1} and m′

1 = {t}, depicted
in Figs. 10(top-right) and 10(bottom-right), respectively. Since the clock constraint x ≤ 5

acting as an invariant of s1 is reached through the controllable transition s0
e, x:=0−−−−→ s1,

Lemma 13(ii) implies that ftgfmm|m1 is non-subsumed by ftgfmm|m′
1
, i.e., this is a good

candidate mutation for the configuration m′
1.

CCNmutation We turn our attention to the CCN operator that negates a clock constraint of a
transition. For this mutation, no non-redundancy preserving properties have been identified.
Indeed, the negation of a clock constraint requires to explore the zone graph to check if the
corresponding transition is non-redundant, as well as other locations and transitions only
reachable by that transition. For all non-redundant TG, this mutation always generates a
non-subsumed mutant.

Lemma 14 (CCN Non-subsumed) Let ftg be an FTG and let [[ϕ]] be the set of mutants with
m, m′ ∈ [[ϕ]] and m = {ccnt } ∪ m′ for some t ∈ Transftg|m′ . Then ftg|m is non-subsumed by
ftg|m′ .

4.3 ClassifyingMutations

The following main theorem sums up all the results presented in this section. The spe-
cific additional conditions that need to hold for each mutation operator can be found in the
corresponding lemmata.

Theorem 1 (Classifying mutations) Let ftg be an FTG and let [[ϕ]] be the set of mutants
with m, m′ ∈ [[ϕ]] and with m that differs from m′ by the application of some mutation
op ∈ Opfmm. Table 1 summarises when ftg|m is (non-)subsumed by ftg|m′ based on the
applied mutation.

Fig. 10 FTG ftgfmm (left) reproduced from Fig. 4 (right) and its mutants ftgfmm|m1 (top-right) and ftgfmm|m′
1

(bottom-right) reproduced from Fig. 2(top-right)

Empir Software Eng (2022) 27:160 Page 21 of 55 160

Table 1 Subsumption relation for mutation operators, where ✗ stands for subsumed and ✓ for non-subsumed,
while their subscripts x refer to the corresponding Lemmata x for the specific additional conditions that must
hold for each mutation operator

Proof The proof is obtained by cases, applying the lemmata discussed so far.

4.4 Generating Effective Mutations

Based on our results for detecting subsumed mutants (i.e., Lemmata 1–7), we provide guide-
lines for generating effective FMM and their corresponding FTG. The FTG in Fig. 3 (right)
is an example of a “bad” model. This is because two out of three mutants of the model are
subsumed, and a subsumed mutant cannot be used to generate effective test cases (Larsen
et al. 2017). Hence, while building the FMM and the corresponding FTG (cf. Section 3.3),
ideally one wants to minimise the number of subsumed mutants, thus maximising the effec-
tiveness of the test-case generation phase. To do so, we select from Table 1 those results for
detecting subsumed mutants that are applicable by only checking the syntax of the original
model, rather than those based on the semantics.

Note that in Basile et al. (2020a), we reported two more commandments. The seventh
commandment in Basile et al. (2020a) was distilled from the current Lemma 11, and it is
a condition ensuring that the generated mutant is non-subsumed. As stated in Section 4.2,
Lemma 11 also requires the original model to be non-redundant. This was the first com-
mandment in (Basile et al. 2020a), in fact a pre-requisite on the used models. Since our
focus is on subsumption detection and to improve the separation of concerns, all results
about non-subsumed detection have now been rendered as auxiliary and are thus no longer
part of the guidelines (and neither is the non-redundant requirement).

 160 Page 22 of 55 Empir Software Eng (2022) 27:160

Finally, we note that such guidelines could be implemented directly as constraints in
the feature model of the FMM (cf. Figure 5), such that subsumed mutants are prevented
from being generated. In the next section, we provide an empirical evaluation of the results
presented in this section, i.e., certain subsets of mutations are guaranteed to produce mutants
that are a refinement of the SUT and thus there is no need to use them.

5 Evaluation

To further validate our theoretical results and their benefits, we conduct a completely
automatised empirical evaluation based on a proof-of-concept tool we developed, extending
the preliminary experiments performed in Basile et al. (2020a).

5.1 Research Questions andMethodology

The objective of our empirical evaluation is to identify the mutation operators and the
conditions under which a non-effective (i.e., subsumed) mutant is generated. We already
addressed this by formally proving that mutants resulting from specific operators are sub-
sumed under specific conditions, as reported in Theorem 1 and Table 1. To raise confidence
in our results, we confront our theory with a practical implementation. Thus, we ask:

RQ1: Are our guidelines sound, i.e., are all mutants rejected by the guidelines indeed
subsumed mutants?

Our next question concerns the benefits of avoiding the generation of mutants that are
subsumed by construction. In practice, the saved computation time is dependent on the
concrete test-case generation and execution platform. Instead, we measure these benefits in

Empir Software Eng (2022) 27:160 Page 23 of 55 160

a relative way, as the percentage of subsumed mutants that our guidelines can detect. Thus,
we ask:

RQ2: How complete are our guidelines in detecting subsumed mutants?

To answer these questions, we apply the mutation operators to a given original model
to produce first-order mutants. To produce second-order mutants we apply second muta-
tions on first-order mutants. Then, we check whether those mutants violate guidelines
and whether they are subsumed by the original system model, using the refinement check
implemented in the Uppaal or Ecdar tools (David et al. 2010b).

5.2 Implementation

A proof-of-concept software has been implemented to perform the evaluation. The develop-
ment of this software has been made necessary due to the high number of mutants to check
for each case study. Indeed, in Basile et al. (2020a) the experiments were only considering
first-order mutations of a single case study and were only partially automatised, requiring
manual intervention to collect the data, parse the logs, and to produce the output tables. As
a side-product, the software can be used as a tool to automatically check the guidelines on
given mutants of Uppaal/Ecdar models, as well as for mutant generation with the mutation
operators discussed in Section 3.3.

It is important to state at this point that the organisation of TG into the framework of FTG
and FMM has been used to obtain a clean formalisation of the theoretical results discussed
in Section 4. However, the guidelines for detecting subsumed mutants are independent from
the way in which mutants are generated, i.e., they are not constrained to use FMM or FTG.

The experiments protocol is modular and has been divided into two main activities,
depicted in Fig. 11, which led to the (parallel) production of two applications called App-
Mutant (developed by the third, fourth, and first authors) and AppEcdar (developed by the
first author).

The experiment protocol is organised into a control part and an experimental part. The
control part uses the run-time refinement checking offered by Uppaal (originally introduced

Fig. 11 Experiments mind mapping

 160 Page 24 of 55 Empir Software Eng (2022) 27:160

in Ecdar) to check, for each mutant, whether or not it is a refinement. The experimental
part statically analyses the mutants to check if they are violating the guidelines presented in
this paper.

We note that whilst the theory presented in Section 4 only distinguishes between sub-
sumed and non-subsumed mutants, the refinement checking performed by Uppaal may also
return inconsistent as output. An inconsistent model is such that it cannot be refined to
one satisfying two additional requirements, called output urgency and independent progress
(cf. David et al. 2015, Def. 4). Output urgency states that an automaton cannot delay an
enabled output. Independent progress is not satisfied by an automaton if it cannot internally
(i.e., by only delaying or firing uncontrollable (output) actions) prevent an invariant from
being violated in a location, against all possible inputs that may or may not arrive from the
environment.

When answering a refinement query Sm <= S, Uppaal firstly refines Sm to be con-
sistent. This means that the uncontrollable behaviour of Sm violating the requirements of
consistency is pruned before performing the refinement checking (after pruning, the model
can still be inconsistent because the controllable (input) behaviour is not pruned). Since, as
for a subsumed mutant, an inconsistent model is not usable, we consider both subsumed
and inconsistent mutants as “bad” mutants. More specifically, an inconsistent model is sub-
sumed by any other model (similarly to how from false premises any conclusion can be
reached), thus an inconsistent model is also a subsumed model.

As we will see in Section 5.4, this additional pruning operation of Uppaal that introduces
further redundant mutated behaviour may cause subsumed or inconsistent mutants to be
undetected by the commandments (for which this behaviour is not considered redundant).

Initially, the original models have been collected with only few adjustments (cf.
Section 5.3) to make them consistent and usable by Uppaal. Indeed, we assume the compe-
tent programmer hypothesis (DeMillo et al. 1978) (i.e., developers produce initial models
close to being correct). Thus, we assume that developers make only small mistakes (e.g., we
will only mutate the clock constants by one time unit, see below). These simple mistakes
(simulated by small mutations) can be put in cascade or coupled to form other emergent
faults using higher-order mutants, according to the coupling effect (DeMillo et al. 1978).

The first activity is the generation of mutants which uses these original models to gener-
ate their mutants, in particular first-order and second-order (i.e., two mutations are applied)
mutants. Each mutant operator is systematically applied to each relevant element (location
or transition) of each model. The second-order mutants generation can be performed exhaus-
tively or on a sample of each mutation (≤10%, see below). Sampling can be useful when
the number of second-order mutants is huge, due to a combinatorial explosion. We gener-
ated all mutants for all case studies, and sampling had been used earlier to quickly validate
the code and models. Moreover, the first activity also performs the experimental part on the
generated mutants: for each mutant it is checked whether or not it violates some guideline.

AppMutant is the software that has been developed (in Java) to perform both the genera-
tion of mutants and the guidelines checking. The class diagrams of AppMutant are displayed
in Fig. 12.

Each mutation is represented as a class instantiating the interface Mutation, offering
facilities to compute the number of possible applications of the mutation to a specific model,
as well as applying the mutation to a model (given as a parameter). Which of the identified
possible mutants is to be generated (and stored) is a second parameter to the method apply.
The guideline checking is also performed in the method apply: a Boolean flag is returned
by this method with value true in case the generated mutant is violating a guideline, and
value false otherwise.

Empir Software Eng (2022) 27:160 Page 25 of 55 160

Fig. 12 Class diagrams of AppMutant (for readability, dependencies are not drawn as arrows)

 160 Page 26 of 55 Empir Software Eng (2022) 27:160

For example, the abstract class ConstraintSmallerMutation implements
Mutation and represents the mutation operator CXS. Two implementations of this
abstract class are available, depending on whether the mutation is applied to a transi-
tion or to a location. In both cases, a method reduceBound is available to reduce
the constant of the clock constraint. In the performed experiments, the bound is always
reduced (resp., incremented) by one unit in CXS (resp., CXL). Note that CCN is
only applied to transitions. The results presented in Section 4 are applicable to con-
straints with no conjunctions nor disjunctions. Accordingly, only these constraints can be
mutated by the mutation operators. The TAD mutation operator is implemented by the
abstract class TransitionAddedMutation. This abstract class is implemented by
TransitionAddedControllable and TransitionAddedUncontrollable.
The implementation of this mutation operator simply clones a transition (the first one
encountered in the model), then changes the cloned transition source and target states and
its action, and adds it to the model. In particular, a unique dummy action is used to avoid
non-determinism.

The Mutator class is used to apply a Mutation to a Model. The class Model offers
facilities to manage a Uppaal model (stored in .xml format). AppMutant is the executable
class. It features methods for running first-order and second-order experiments.

Sampling is implemented in the runTwoMutationsSampling utility method.
More in detail, this method takes as parameters the two mutation operators to
apply, and the original model is retrieved with the method original. The method
getPossibleMutations of the retrieved model returns the number of possible muta-
tions that can be applied to that model for a given mutation operator (as parameter). By
calling this method for the two mutation operators and multiplying the returned values (say,
n1 and n2) the total number of possible mutations to apply is computed. The sampled num-
ber of mutants to generate is computed as max(n1×n2

10 , 1000). For each mutant, the selected
mutations to apply are chosen uniformly in the interval [0, n1] for the first mutation and
[0, n2] for the second mutation.

The executable AppMutant has options for generating either first-order or second-order
mutants, with or without sampling. The outputs of the execution are the created mutants
(stored as Uppaal models) and a comma separated values file containing for each mutation
operator the number of violations. Moreover, for each mutation a file listing the mutants
that are violating guidelines is provided. Each generated model comes equipped with two
or three automata: the original model (Spec), the first-order mutant (Spec mutant), and
the second-order mutant (Spec mutant mutant).

After computing both mutants and the violations log, the second activity is carried out
using the AppEcdar application. AppEcdar has two concerns: execute for each mutant model
the refinement checking and parse the logs.

During the refinement checking the queries evaluated by Uppaal are as follows (for first-
and second-order mutants, respectively):

refinement : Spec mutant <= Spec

refinement : Spec mutant mutant <= Spec

The evaluations of these queries for each mutant model produce logs that are grouped by
their mutation operators and stored.

Concerning log parsing, the logs of violations and refinement checking are processed to
provide as output the LATEX tables showed in this paper. Moreover, for validation purposes,

Empir Software Eng (2022) 27:160 Page 27 of 55 160

Fig. 13 Class diagrams of AppEcdar (for readability, dependencies are not drawn as arrows)

a text file (called false negatives) is used to store all mutants violating a guideline
whose refinement checking output is non-subsumed. The class diagrams of AppEcdar are
displayed in Fig. 13. The two main concerns of this activity are separated into two classes
extending the Consumer functional interface of Java. The RefinementChecker class
overrides the method apply(Integer) of Consumer<Integer> to execute the
refinement checking, where the parameter indicates whether first-order or second-order
mutants are processed. This class basically launches the verifytga Uppaal process, and
can be executed on either Windows, Linux or Mac OS X. Similarly, LogParser extends
the same interface and is used to perform the parsing: the mutants and violations logs pars-
ing are decomposed into two separate methods. The class AppEcdar is the executable class.
It offers options to select which case study to analyse, whether to perform refinement check-
ing (indicating whether for first or second order), and whether to perform logs parsing
(indicating whether for first or second order).

To enable the replication of our experiments, the source code, models, binaries and a
video tutorial are publicly available.1 Note that, for refinement checking, a distribution of
Ecdar or Uppaal TIGA is required.2 The experiments have been executed on a Windows
machine with Java version 9.0.4 and a LinuxMachine with OpenJDK 1.8, both using Uppaal
TIGA 4.1.4 (rev. 5535), March 2014 academic version.

1Available at https://doi.org/10.5281/zenodo.5749732. The sources are also available at https://bitbucket.org/
davidebasile84/timed mutation/src/master/
2Available at https://uppaal.org/downloads/other/

https://doi.org/10.5281/zenodo.5749732
https://bitbucket.org/davidebasile84/timed_mutation/src/master/
https://bitbucket.org/davidebasile84/timed_mutation/src/master/
https://uppaal.org/downloads/other/

 160 Page 28 of 55 Empir Software Eng (2022) 27:160

5.3 Subject Systems

In this section, we describe the six case studies we analysed and provide references to the lit-
erature. While some case studies (i.e., the Car Alarm System) were already provided as TG
in the literature, others required minor adaptations to be usable by Uppaal. Examples of such
minor adaptations are: declarations of inputs as controllable and outputs as uncontrollable,
and declaration of internal transitions as uncontrollable.

We also faced three issues. The first is that some case studies were parametric, whilst
Uppaal TIGA cannot process parametric timed automata (i.e, it is not possible to have a
transition using variables in the guard and channel synchronisation). Parametric constraints
may also be mutually exclusive such that each set-up of parameters makes some transitions
redundant. We solved this by instantiating each parameter to a specific value, taken from
the literature when possible, and removing redundant behaviour.

The second issue is that Uppaal TIGA and timed interfaces do not support shared memory,
i.e., no global variables are allowed in refinement checking. Since we analysed automata in
isolation, all variables were made local.

The third issue is that Uppaal TIGA requires that each model is consistent (cf. Section 5).
In some of the case studies the automata had originally been designed to be consistent when
composed with the other automata of the same case study (with specific parameter assign-
ments), but not for any possible environment, as instead is required by the consistency
checking of Uppaal TIGA. We solved this third issue by fixing the automata not satisfy-
ing these properties for the specific set-up of parameters. Indeed, performing refinement
checking of inconsistent models would be useless.

We specify below the changes we applied to the models in order to deal with these three
issues. We evaluated the guidelines on six case studies retrieved from the literature that are
detailed next.

5.3.1 CAS

The Car Alarm System (CAS) automaton we used in Basile et al. (2020a) stems from
Ford’s automotive demonstrator in the MOGENTES project, and is depicted in Fig. 14 (for
readability, we omitted the sink state with incoming transitions from all states receiving
unexpected inputs). The original model accounts six automata that are composed syn-
chronously. We applied the mutations on the main automaton of the model, called system.
This automaton has already been used for experiments in Aichernig et al. (2015), Larsen
et al. (2017), and Aichernig et al. (2013). The system model allows as inputs the unlock-
ing, locking, closing, and opening of a car’s door. The outputs are the signals for arming,
unarming, and turning the sound and flash alarms on and off. We mainly used the adaption
of the automaton to Uppaal in Larsen et al. (2017), in which all input transitions are marked
as controllable and all output transitions as uncontrollable.

5.3.2 Coffee

The coffee machine (COFFEE) model stems from an introduction to parametric timed
automata (André et al. 2019), for didactic purposes. The model is composed of only one
automaton, depicted in Fig. 15, and allows a user to press a button for coffee and possibly
add sugar, upon which a cup of coffee is prepared and eventually delivered.

Empir Software Eng (2022) 27:160 Page 29 of 55 160

Fig. 14 The CAS automaton from Larsen et al. (2017) (for readability, the sink state is not depicted)

5.3.3 Accel

This is another parametric timed automata model from the automotive domain, stemming
from Waga et al. (2017) and André et al. (2018), where it was presented as generated from
a Simulink model of a scenario of monitoring the gear change of an automatic transmis-
sion system (Hoxha et al. 2015). The automaton that has been used for the experiments is
depicted in Fig. 16. It has been slightly modified from its original version. In particular, we
abstracted away the clock variable xabs. It models a basic automatic transmission require-
ment from Hoxha et al. (2015) (through a pattern that matches a part of a timed word that
violates it): when shifting into any gear, there should be no shift from that gear to any other
gear within a given time threshold.

5.3.4 Hotel

This is a timed service contract automata model from Basile et al. (2020c), depicted in
Fig. 17. It models a hotel booking system that offers different types of rooms, requests
payment either in cash or by card (of different duration) from clients, and possibly emits a
receipt.

 160 Page 30 of 55 Empir Software Eng (2022) 27:160

Fig. 15 The COFFEE automaton from André et al. (2019)

5.3.5 WFAS

The Wireless Fire Alarm System (WFAS) model is a parametric timed automaton model
from Benes et al. (2015). It stems from Feo-Arenis et al. (2014), where it was presented as
a formalisation of the requirements specified by a company specialised in radio technology,
with the aim of verifying that the WFAS design passes the conformance tests put forward by
European standards. It models two wireless sensors communicating with an alarm controller
over a communication channel. The controller synchronises the two sensors and uses a
clock x.

As for ACCEL, the automaton that has been used for the experiments, depicted in
Fig. 18, has been slightly modified from its original version. We retrieved the values of the

Fig. 16 The adapted ACCEL automaton of the parametric timed pattern matching benchmark from Waga
et al. (2017) and André et al. (2018)

Empir Software Eng (2022) 27:160 Page 31 of 55 160

Fig. 17 The HOTEL automaton from Basile et al. (2020c)

parameters from Benes et al. (2015). We abstracted away the clock variable y from the clock
invariant and removed redundant transitions.

We added two additional uncontrollable transitions from states cont 1 and cont 3 to
the timeout state to satisfy independent progress and make the model consistent.

5.3.6 Mutex

This a parametric timed automaton model fromHune et al. (2001) of Fischer’s mutual exclu-
sion protocol (Lamport 1987) (cf. Ter Beek and Kleijn 2012 for an untimed token-based
solution). Its purpose is to guarantee mutually exclusive access to a critical section among
competing processes. Also this automaton, depicted in Fig. 19, has been slightly modified.
The original model used a global variable lock shared with the other (replicated) automata.
We pruned two transitions that were never enabled (and redundant) since this automaton is
analysed in isolation.

Fig. 18 The WFAS automaton adapted from Benes et al. (2015)

 160 Page 32 of 55 Empir Software Eng (2022) 27:160

Fig. 19 The MUTEX automaton adapted from Hune et al. (2001)

5.4 Validation Results

Here we interpret the results of our experiments for RQ1 and RQ2 for all the case stud-
ies. We applied all mutation operators discussed in the paper, namely TMI, TAD, SMI,
CXL, CXS, and CCN. Mutations are applied singularly for first-order mutants or in pairs
for second-order mutants. For each case study, we provide a table for first-order mutations
and a table for second-order mutations (for reasons of readability, the latter are reported in
Appendix A). Each table reports the total number of mutants, that of non-subsumed mutants,
of subsumed mutants, of inconsistent mutants, and of mutants violating the guidelines, as
well as—in the last column—the ratio of mutants that are statically detected to be subsumed
by our guidelines, computed as follows:

(models) violating (guidelines)

subsumed + inconsistent (models)

5.4.1 First Order

We start by discussing the results for first-order experiments. Firstly, no false negatives
are detected: none of the mutants violating guidelines is non-subsumed, thus validating the
theoretical results presented in the initial part of Section 4 (i.e., Lemmata 1–7).

CAS Table 2 contains the results for first-order mutants. We note that we refined the mutant
generation phase, to reduce the number of inconsistent mutants generated. Thus, the results
in Table 2 are not based on the same mutants as those in Basile et al. (2020a). A total of
721 first-order mutants were generated. A total of 77% of the first-order subsumed mutants
and inconsistent mutants generated for this case study are detected by both Uppaal and the
guidelines.

As showed in Fig. 14, many locations of this automaton have upper-bound invariants
(i.e., ≤) and only one outgoing transition. This means that whenever one of these tran-
sitions is removed, the mutant may become inconsistent. For example, from the initial
location openUnlocked, the sequence close? lock? of inputs leads to the location
closedLocked. A mutation that removes the only uncontrollable outgoing transition of
closedLocked produces an inconsistent mutant. Indeed, if no input arrives the system
can only delay for a finite amount of time before the invariant c ≤ 20 is violated. This is
the case for TMI and SMI mutations, the two mutation operators that remove transitions.

We also note two locations with invariant e ≤ 300 and incoming uncontrollable tran-
sition with guard e = 300. In this case, increasing the constant of the clock guard or

Empir Software Eng (2022) 27:160 Page 33 of 55 160

Table 2 CAS first-order mutants results

operator

measure

mutants non-subsumed subsumed inconsistent
violating
guidelines

violating
subsumed +
inconsistent

88 71 6 11 17 100%

578 197 381 0 289 76%

16 7 0 9 8 89%

20 8 9 3 6 50%

13 6 3 4 6 86%

6 6 0 0 0 -

totals 721 295 399 27 326 77%

decreasing the constant of the clock invariant makes the uncontrollable transition redun-
dant. This in turn makes the source state of the (only outgoing uncontrollable) redundant
transition not satisfying the independent progress property: the corresponding mutant is
inconsistent. This is the case for mutations CXL and CXS. Moreover, the worst performance
of the guidelines are for mutation CXL. This is due to the fact that enlarging a clock con-
straint constant in this specific automaton is likely to make an element redundant (as in the
previous example), and thus make the corresponding mutant subsumed, even if no guideline
is violated. Since the original model is consistent, TMI applied to a controllable transition
(and thus not violating a guideline) never produces a redundant element. Indeed, in this
automaton, 100% of subsumed or inconsistent mutants produced with TMI are detected to
be violating a guideline.

COFFEE Table 3 contains the results for first-order mutants. A total of 55 first-order mutants
were generated. A total of 91% of the first-order subsumedmutants and inconsistent mutants
generated for this case study could have been avoided, because they are statically detected
to be violating the guidelines.

This automaton shows the best performances of the guidelines when compared to the
other case studies. Indeed, 100% of subsumed or inconsistent mutants for mutation opera-
tors TMI, SMI, and CXS are violating guidelines, whilst TAD has also a higher percentage of
mutants detected by the guidelines. Operator CXL has six subsumed mutants, of which four
are detected by the guidelines. These two subsumed mutants not detected by the guidelines
result from the application of CXL to either location add sugar or preparing coffee
(cf. Figure 15). In both cases, the constant is incremented by one.

We note that both models (original and mutant) can reach a configuration where � =
add sugar and y = 5. From this configuration, if the mutant delays by one time unit then
the original model cannot also delay. According to Definition 7 this proves that the mutant is
not a refinement. However, in Uppaal this additional delay of the mutant is not allowed. The
reason is that the reached configuration (� = add sugar and y = 6) is “bad”: it violates
the independent progress property (neither delays nor uncontrollable moves are allowed),
which is required by Uppaal to hold for the mutant. Such transitions leading to “bad” con-
figurations are pruned by Uppaal before performing the refinement checking (David et al.
2015). Accordingly, Uppaal detects this mutant to be subsumed. Basically, the increment
of the constant adds redundant uncontrollable behaviour that does not modify the original
specification.

 160 Page 34 of 55 Empir Software Eng (2022) 27:160

Table 3 COFFEE first-order mutants results

operator

measure
mutants non-subsumed subsumed inconsistent

violating
guidelines

violating
subsumed +
inconsistent

6 0 6 0 6 100%

32 15 17 0 16 94%

3 0 3 0 3 100%

6 3 3 0 3 100%

7 1 6 0 4 67%

1 1 0 0 0 -

totals 55 20 35 0 32 91%

The same reasoning applies to the case where CXL is applied to the location
preparing coffee. On the converse, this is not the case when applying CXL to the
location cdone: the added uncontrollable behaviour is not redundant because of a fur-
ther outgoing uncontrollable transition. Indeed, this mutant is detected by Uppaal to be
non-subsumed.

ACCEL Table 4 contains the results for first-order mutants. A total of 451 first-order mutants
were generated. A total of 86% of the first-order subsumedmutants and inconsistent mutants
generated for this case study are statically detected by the guidelines. In this case, the
percentage of detected mutants is 100% for the mutation operators TMI, SMI, CXS, and
CXL.

The only inconsistent mutant is generated by TAD when adding a controllable transi-
tion from the initial state pre s0 to state s end. Indeed, the system cannot block inputs,
and from the target state s end no delay is allowed (the location is urgent) and no outgo-
ing uncontrollable transition is present. This makes the mutant inconsistent (and correctly
spotted as violating the second commandment). We note that the ACCEL model has no
invariant on locations, and thus all locations are satisfying independent progress (except for
the urgent one).

There are 16% TAD mutants detected by Uppaal as subsumed but not detected by the
guidelines. These added uncontrollable transitions have no guard but only a dummy output.

Table 4 ACCEL first-order mutants results

operator

measure

mutants non-subsumed subsumed inconsistent
violating
guidelines

violating
subsumed +
inconsistent

33 0 33 0 33 100%

392 158 233 1 196 84%

13 0 13 0 13 100%

3 1 2 0 2 100%

5 2 3 0 3 100%

5 4 1 0 0 0%

totals 451 165 285 1 247 86%

Empir Software Eng (2022) 27:160 Page 35 of 55 160

For example, the mutation adding an additional uncontrollable transition from the initial
state to itself is detected as being subsumed, although it is not according to Definition 7.
Since all locations are reachable, satisfy independent progress, and no constraints on loca-
tions are present, we argue that these 16% TAD subsumed mutants may be false positives
(although we have no details on the internal implementation of Uppaal). However, due the
high number of such subsumedmutants (i.e., 233), it is not possible to manually inspect each
one of them. Notwithstanding false positives (which deteriorate the percentage of subsumed
mutants detected by the guidelines), the guidelines in this case study are still efficient, by
statically detecting 86% of the subsumed mutants.

Finally, in this case study we also note the presence of a subsumed mutant for the muta-
tion operator CCN. This mutation is negating the clock guard of the transition with source
s soon end and target s end. This would apparently be a counterexample to Lemma 14.
However, this is not the case because the generated mutant is redundant, thus violating the
hypothesis of Section 4.2. Indeed, this specific mutation is not preserving non-redundancy
of the mutant. This is because the negated clock guard x ≤ 0 can never be enabled, since
the target state is only reached when x > 25. This last example emphasises the hardness
of statically detecting non-redundancy preserving mutations.

HOTEL Table 5 contains the results for first-order mutants. A total of 39 first-order mutants
were generated.

A total of 51% of the first-order subsumed mutants and inconsistent mutants generated
for this case study are statically detected by the guidelines, this being the worst perfor-
mances when compared to the other case studies. This is because Hotel represents a “bad”
model for the guidelines. We remark that the guidelines do not consider additional con-
straints imposed by Uppaal on the mutants, causing the increment of redundancy in the
mutants. Indeed, since location qH1 (cf. Figure 17) does not satisfy independent progress,
Uppaal prunes the only two outgoing transitions from the initial state, prior to start refine-
ment checking. Thus, all elements (apart from the initial location) are redundant in the
model when checking for refinement. Indeed, all mutants generated by TMI, SMI, CXL,
CXS, and CCN are mutating redundant elements and thus are all subsumed.

For example, the four subsumed mutants of CCN (negating the 4 clock guards) are all
cases of mutations adding redundant uncontrollable behaviour. Now consider the mutation
negating the guards of the transition with source state qH0 and target state qH1. By Def-
inition 7, from the initial configuration (qH0,y = 0) the mutant could fire this mutated
uncontrollable transition (and indeed this mutation is not violating any guideline). However,

Table 5 HOTEL first-order mutants results

operator

measure

mutants non-subsumed subsumed inconsistent
violating
guidelines

violating
subsumed +
inconsistent

5 0 5 0 3 60%

18 4 13 1 9 64%

2 0 2 0 1 50%

5 0 5 0 2 40%

5 0 5 0 3 60%

4 0 4 0 0 0%

totals 39 4 34 1 18 51%

 160 Page 36 of 55 Empir Software Eng (2022) 27:160

since the reached location qH1 does not satisfy independent progress, this uncontrollable
behaviour is pruned by Uppaal prior to the refinement checking (i.e., the added behaviour
is redundant). Therefore, the mutant is detected as subsumed.

The only mutant detected as inconsistent by Uppaal is a TAD mutation adding a control-
lable transition (qH0,y ≥ 4,dummy?,y = 0,qH1). Indeed, as previously stated, location
qH1 does not satisfy independent progress, and the system cannot prevent to reach this
“bad” location due to the presence of the added dummy input transition. Note that this
mutant is also violating a guideline: if this mutant were not inconsistent, it would anyway
be subsumed.

Finally, concerning TAD applied to uncontrollable transitions, there are four non-
subsumed mutants and five subsumed mutants (not detected by the guidelines). The four
non-subsumed mutants are obtained by adding transitions from location qH1 to either of the
locations of the model (3 in total). These mutants are non-subsumed because the mutations
make location qH1 satisfy independent progress (and thus non-redundant). The last case is
adding a transition from the initial state to qH2. This transition is not redundant because it
does not involve state qH2, and the corresponding mutant is non-subsumed.

WFAS Table 6 contains the results for first-order mutants. A total of 121 first-order mutants
were generated. A total of 74% of the first-order subsumedmutants and inconsistent mutants
generated for this case study are detected by the guidelines.

Mutation TMI produces four inconsistent mutants that are all detected by the guide-
lines. Indeed, removing one of such four uncontrollable transitions makes the source state
inconsistent (i.e., not satisfying independent progress).

One application of SMI to the state timeout causes the violation of the third com-
mandment. The corresponding mutant is inconsistent. Its mutation operator corresponds to
removing two uncontrollable transitions (similar to TMI). Removing state cont 3 (and all
its incident transitions) makes state cont 2 not satisfying independent progress, and thus
inconsistent. Since cont 3 has one incoming controllable transition, it does not violate
the third commandment. The application of SMI to locations fail, cont 4, and cont 2
produces non-subsumed mutants.

Mutation TAD adds 36 controllable transitions (producing 36 mutants), all detected as
violating guidelines and all subsumed. Of the 36 uncontrollable transitions added, 26 pro-
duce non-subsumed mutants, while ten produce subsumed mutants (not detected by the
guidelines). These ten subsumed mutants all have an additional uncontrollable transition

Table 6 WFAS first-order mutants results

operator

measure

mutants non-subsumed subsumed inconsistent
violating
guidelines

violating
subsumed +
inconsistent

14 10 0 4 4 100%

72 26 46 0 36 78%

5 3 0 2 1 50%

12 8 0 4 0 0%

12 2 6 4 8 80%

6 6 0 0 0 -

totals 121 55 52 14 49 74%

Empir Software Eng (2022) 27:160 Page 37 of 55 160

with guard x ≥ 2 and a dummy output. Two with source cont 1 and target cont 1
(resp., cont 3) and two with source timeout and target fail (resp., timeout) are not
redundant, and their target state is not violating independent progress. These four mutants
are false positives. The remaining added transitions are one with source cont 2 and tar-
get cont 2, two with source cont 3 and target cont 1 (resp., cont 3), one with source
cont 4 and target cont 4, two with source fail and target fail (resp., timeout).
From these source states the added transitions are never enabled, and thus redundant.

The application of CXS to any clock guard produces a non-subsumed mutants (for a total
of 8 mutants), whereas its application to a clock invariant produces an inconsistent mutant.
Of these four inconsistent mutants none is detected to be violating a guideline. Indeed, these
are all cases of mutations that deactivate an uncontrollable transition, and similar to TMI
this in turns causes the mutated state to not satisfy independent progress.

There are only two non-subsumed CXL mutants, namely the mutations applied to either
location cont 1 or cont 3. For example, the mutation on cont 1 allows to delay by
three time units before firing the transition to timeout. This behaviour is not allowed in
the original model and thus according to Definition 7 the mutant is non-subsumed. The
same happens with the mutation on cont 3. The other two applications of CXL to loca-
tions cont 2 and cont 4 are subsumed and are not detected by the guidelines. This is
because Uppaal prunes the transitions delaying of one further time unit in both locations
prior to refinement, since this (uncontrollable) behaviour leads to a configuration not satis-
fying independent progress. The application of CXL to transitions produces four inconsistent
and four subsumed mutants. These are all detected to be violating the third command-
ment and point (i) of the fifth commandment. The four inconsistent mutants are mutating
the guards of uncontrollable transitions, making them redundant and the source location
violating independent progress.

Finally, all CCN mutations are producing non-subsumed mutants. We conclude that this
case study is susceptible to violate independent progress when mutated, this being the main
reason for the alternating performances of the mutation operators, whereas for TAD this is
due to the possibility of adding redundant uncontrollable transitions.

MUTEX Table 7 contains the results for first-order mutants. A total of 47 first-order mutants
were generated. A total of 73% of the first-order subsumedmutants and inconsistent mutants
generated for this case study are detected to be violating some guideline.

In this case study, mutation operators TMI, SMI, CXL, and CXS detect 100% of sub-
sumed or inconsistent mutants. The only CCN mutant is non-subsumed. Mutation TAD
applied to controllable transitions produces 16 mutants, of which two are inconsistent and
the others are subsumed. All 16 mutants are violating the second commandment. One of the
two inconsistent mutants is generated by adding a controllable transition from start 1 to
tryenter 1. In this case, the target state does not satisfy independent progress, because
the only outgoing uncontrollable transition becomes disabled. The other inconsistent mutant
is similar, in this case however the source state of the added transition is set 1.

Finally, the only subsumed mutants not detected by the guidelines are due to mutation
TAD applied to uncontrollable transitions. This produces six non-subsumed mutants and ten
subsumed mutants that are not detected by the guidelines. This is because the ten subsumed
mutants are adding uncontrollable transitions whose guard is never enabled (due to the
implementation of the TAD operator), and are thus redundant. Hence, in this specific case
study the ten subsumed mutants are missed by the guidelines because of the way the TAD
operator is implemented, i.e., the chosen guard for the added transition may render the new
transition redundant.

 160 Page 38 of 55 Empir Software Eng (2022) 27:160

Table 7 MUTEX first-order mutants results

operator

measure

mutants non-subsumed subsumed inconsistent
violating
guidelines

violating
subsumed +
inconsistent

4 0 1 3 4 100%

32 6 24 2 16 62%

3 0 0 3 3 100%

3 0 0 3 3 100%

4 3 0 1 1 100%

1 1 0 0 0 -

totals 47 10 25 12 27 73%

5.4.2 Second Order

We now interpret the outcomes of the second-order experiments. Due to the high number of
mutants (hundreds of thousands), it is not feasible to manually inspect each of the generated
mutants (as we did for the first-order mutants). However, since second-order mutants are
generated by mutating first-order mutants, the insights on the first-order experiments can be
extended to the case of second-order mutants. The results of the second-order experiments
for the six case studies are reported in Tables 8, 9, 10, 11, 12 and 13 and summarised in
Fig. 22.

We observe a deterioration in the percentage of subsumed/inconsistent mutants detected
by the guidelines. The average deterioration is≈ 25%, with a minimum of 15% deterioration
for ACCEL and a maximum of 34% for WFAS. By looking at the first-order experiments,
this variation can be explained by the fact that ACCEL’s undetected subsumed mutants are
false positives, and none of them is violating independent progress. The converse happens
for WFAS, whose mutants are highly susceptible to violate independent progress, and this
is amplified in the second-order experiments.

We note that in the second-order experiments it is required that both mutations are vio-
lating the guidelines. If only one mutation is violating a guideline but the other is not,
then the corresponding second-order mutant is detected as not violating the guidelines.
Indeed, although the second mutation is relative to the corresponding first-order mutant
(i.e., second-order mutants are obtained by performing an additional mutation on first-order
mutants), the “bad” mutants are those that are refinements of the original model, and not of
their relative first-order mutant. Indeed, we are interested in detecting all mutants (no matter
of what order) that are subsumed by the original model.

More in detail, given a model Spec, a first-order mutant Spec mutant, and a second-
order mutant Spec mutant mutant, AppEcdar checks whether Spec mutant mutant
<= Spec. If the first mutation on the original model violates any guideline, by the
theoretical results presented in Section 4, it holds that Spec mutant <= Spec. If
also the second mutation of the first-order mutant violates any guideline, we know that
Spec mutant mutant <= Spec mutant. At this point, by the transitivity of <=, it is
possible to conclude that Spec mutant mutant <= Spec. However, if one of the two
violations is not violating any guideline, this conclusion cannot be reached. This also entails
that first-order subsumed mutants cannot be discarded when performing second-order muta-
tions, since otherwise it would not be possible to conclude that Spec mutant mutant
<= Spec using the theoretical results of Section 4.

Empir Software Eng (2022) 27:160 Page 39 of 55 160

One of the causes of this deterioration of the guidelines’ performances in the second-
order mutants is the conjunction of two violation requirements.

Consider the models in Fig. 20. The first-order mutant MUTANTtad introduces control-
lable behaviour (with TAD, by adding a controllable transition), thus being subsumed by
the original model SUT and violating the second commandment. Another first-order mutant
MUTANTcxs, mutated with CXS, is subsumed by SUT due to the ninth commandment.
Even though the two mutations are separately producing first-order mutants that are sub-
sumed and separately violating guidelines, the application of CXS to MUTANTtad produces
a mutant MUTANTtadcxs that is not violating the guidelines, even if MUTANTtadcxs
<= SUT.

Indeed, applying the CXS mutation to MUTANTtad reduces the added controllable
behaviour (i.e., it restricts the clock invariant target of the added transition), and thus
MUTANTtadcxs �≤ MUTANTtad. Correspondingly, the second mutation is not violating
any guideline and the experiments cannot conclude that the second-order mutant is violat-
ing the guidelines. However, since this reduced controllable behaviour was not present in
SUT, it holds that MUTANTtadcxs <= SUT.

Finally, whilst applying a mutation on the original model is less prone to mutate a redun-
dant element, this is not the case for second-order mutants. Indeed, if one mutation produces
redundant behaviour (possibly also due to independent progress), then applying the second
mutation on one such redundant element could produce a subsumed mutant not detected
by our guidelines. Also, in case of an inconsistent first-order mutant, it is unlikely that the
second mutation will fix the inconsistency.

We note that the presented theoretical results only account for a single mutation of a
model (being it the original model or a mutant), and the second-order results are obtained by
transitivity of <=. Further results about applying more than one single mutation on a model
could help to improve the performances of higher-order mutants (e.g., syntactic conditions
under which second-order mutants are subsumed by the SUT). However, such results are
hard to obtain due to the possible presence of redundant behaviour and interactions between

Fig. 20 An example showing a subsumed second-order mutant not detected by the guidelines using Uppaal
TIGA

 160 Page 40 of 55 Empir Software Eng (2022) 27:160

mutations. For example, it is not always true that if two mutations produce two separate
subsumed first-order mutants, then their composition produces a second-order subsumed
mutant (as occurs in Fig. 20).

To show this, consider Fig. 21. This example shows that the two first-order mutants
MUTANT1 (applying CXS on a transition) and MUTANT2 (applying CXL on a location) are
both subsumed by the original model SUT, because they are mutating redundant elements.
However, the application of the two mutations (no matter in what order) produces a second-
order mutant that is not subsumed by the SUT. This is because an interaction occurs between
the two mutations, causing the redundant (uncontrollable) behaviour of the original model
to become non-redundant and the second-order mutant to be non-subsumed.

Regardless of the obstacles when applying the guidelines to higher-order mutants, in our
experiments we were able to statically detect 71% of the subsumed/inconsistent second-
order mutants for the ACCEL case study, and 65% for the COFFEE case study.

5.5 Final Considerations

The experiments confirm that all mutants violating the guidelines were subsumed or incon-
sistent, as expected, thus providing further confidence in our results and an answer to RQ1.
This has been theoretically proved in Section 4, and the correctness of the proofs was con-
firmed during the experiments. Indeed, AppEcdar performed a false negative checking, to
check for the presence of non-subsumed mutants violating the guidelines. No such mutants
have been identified in any of the case studies. The correctness of the theoretical results can
also be observed by the fact that, for each case study, the number of mutants violating the
guidelines is never greater than the number of mutants that are either subsumed or inconsis-
tent. We remark that all subsumed and inconsistent mutants that are violating the guidelines
are those that would not be generated if one were to apply the guidelines presented in
Section 4.4.

Fig. 21 An example, using Uppaal TIGA, showing two subsumed first-order mutants whose composition of
mutations is not subsumed

Empir Software Eng (2022) 27:160 Page 41 of 55 160

To answer RQ2, we report a histogram summarising the outcome of the experiments in
Fig. 22. The results confirm the gain of our approach: more than half of all subsumed first-
order mutants are detected by our guidelines for each case study, detecting 91%, 86%, and
77% subsumed mutants for, respectively, the COFFEE, ACCEL, and CAS case studies. As
discussed in Section 5.4.2, this holds also for second-order mutants. Indeed, the guidelines
were capable of detecting more than half of the second-order subsumed or inconsistent
mutants for the case studies COFFEE, ACCEL, and CAS, and fewer for the remaining three
case studies.

We also report a histogram in Fig. 23 showing what is the likelihood of generating a sub-
sumed mutant when applying random mutations, with or without using the guidelines, for
both first-order and second-order experiments. We assume that all mutations have the same
probability of being applied. For each case study, the probability of generating a subsumed
mutant is computed as

1 − non-subsumed mutants

total mutants − mutants violating guidelines

(the parameter of mutants violating guidelines is equal to zero when gener-
ating mutants without using the guidelines). Notably, the guidelines can drastically diminish
the probability of generating subsumed mutants in some case study. The histogram shows
how this probability gets lower when applying two mutations (independently of the usage
of the guidelines). Indeed, by augmenting the number of mutations, it is less likely that
they will have no effect on the mutated model. We note that HOTEL has the highest prob-
ability of generating subsumed mutants. This also explains the worst performances of the
guidelines for this particular case study.

Several directions of improvement of the static analysis performed by the guidelines
are possible. Different implementations of the mutation operators can be investigated. For
example, our implementation of the TAD mutation operator adds uncontrollable transition
that may be guarded. This is likely to introduce subsumed mutants not detected by our

Fig. 22 Percentage of subsumed mutants that are detected by the guidelines

 160 Page 42 of 55 Empir Software Eng (2022) 27:160

Fig. 23 The probability of randomly generating a subsumed mutant (with or without using the guidelines),
assuming that mutants are distributed uniformly

guidelines when such guards are never satisfied. By changing the implementation of TAD
such that no guarded transition is added, the generated mutants are less likely to be sub-
sumed. We note that TAD mutation is responsible for many undetected subsumed mutants
in all the analysed case studies.

Parametric timed games (Luthmann et al. 2019; Luthmann et al. 2017) can be investi-
gated to perform exhaustive experiments for the mutations CXL and CXS for all possible
constant value updates. In the presented experiments, CXL and CXS updated the constants
of clock constraints by increasing or decreasing by one unit.

More research is needed for the static detection of redundant elements (e.g., dangling
locations). Our experiments have exploited the refinement checking provided by Uppaal,
which however performs a pre-processing step to prune uncontrollable behaviour not
consistent. For experiments performed with Uppaal, syntactically detecting locations not
satisfying independent progress is possible. For example, if a location has a clock invariant
of the form x ≤ k and no outgoing uncontrollable transition, then this location is not sat-
isfying independent progress. This is the case for location qH1 of the HOTEL case study,
which is indeed generating the worst performances for our guidelines. We argue that by stat-
ically pre-processing models similar to the HOTEL model to remove such “bad” locations,
the performances can be improved.

In Fig. 21, an example of two mutations producing subsumed mutants whose composi-
tion is producing a non-subsumed mutant is displayed. However, these two mutations are
not violating the guidelines. Indeed, the set of mutants violating the guidelines is a strict
subset of the subsumed mutants. Further research is needed to prove or disprove whether
the composition of two mutations violating guidelines always yields a subsumed mutant.

Finally, we note that the variation of percentages of detected mutants in each case study

Empir Software Eng (2022) 27:160 Page 43 of 55 160

also depends on the number of controllable and uncontrollable transitions, as well as the
presence of different types of constraints, which are specific to each case study.

5.6 Threats to Validity

Our empirical results essentially rely on the refinement relation as implemented in
Uppaal/Ecdar. Should this implementation deviate (even slightly) from the definition we
employ (itself based on the paper introducing Ecdar (David et al. 2010b)), we might witness
the occurrence of false positives (mutants erroneously labelled as subsumed). To mitigate
this risk, we conducted a non-exhaustive manual analysis of the sampled mutants.

Nevertheless, we did not remove these few false positives, which would actually improve
our results since it would increase the percentage of subsumed mutants detected by our
guidelines.

6 Conclusion and FutureWork

We presented a methodology for discarding ineffective mutations for testing real-time sys-
tems. An effective mutant can be used to generate test cases that distinguish the mutant from
the original system model. The framework of TG and Ecdar refinement checking of Larsen
et al. (2017) was adopted, and mutants were organised as a product line of mutations using
the approach of Devroey et al. (2016). Our guidelines to the construction of such a featured
mutant model can be encoded as constraints in the feature model, to guarantee that effec-
tive mutants will be generated. Our experiments confirmed the soundness of our approach
and demonstrated that our actionable guidelines can significantly reduce the number of
subsumed mutants.

In future work, we plan to exploit the auxiliary results from Section 4.2 to perform a dif-
ferent evaluation than the one presented in this paper, viz., instead of discarding subsumed
mutants, only generate (statically known) non-subsumed ones. As mentioned before, this
evaluation is harder because only in specific cases it is possible to detect whether a mutation
is non-redundant.

In the future, we also plan to investigate a family-based technique for checking refine-
ments all-at-once directly on the FTG, in order to take further advantage of the product-line
approach and of our technique for building effective featured mutant models. This would
allow the generation of the smallest set of test cases that can distinguish all killable mutants.
One way to do so is to design a feature-aware extension of the refinement checking proce-
dure of David et al. (2010a, 2010b). By associating a feature to each mutant (Devroey et al.
2016), one could then collect the feature expressions identifying all mutants for which the
refinement holds, and those for which it does not, in a single play. This problem was studied
in the non-timed case (Cordy et al. 2012a), but it remains unaddressed for real-time sys-
tems. The addition of time makes this problem challenging, as there is no known efficient
way to encode time and variability in a single data structure (Cordy et al. 2012b).

Our work also provides the foundations to evaluate real-time test cases. To this aim, one
could apply the approach of Devroey et al. (2016) on a featured timed model to identify
which mutants are killed. Again, this would require data structures combining time with
variability.

 160 Page 44 of 55 Empir Software Eng (2022) 27:160

Appendix A: Results for Second-Order Mutations

Table 8 CAS second-order mutants results

Empir Software Eng (2022) 27:160 Page 45 of 55 160

Table 9 COFFEE second-order mutants results

 160 Page 46 of 55 Empir Software Eng (2022) 27:160

Table 10 ACCEL second-order mutants results

Empir Software Eng (2022) 27:160 Page 47 of 55 160

Table 11 HOTEL second-order mutants results

 160 Page 48 of 55 Empir Software Eng (2022) 27:160

Table 12 WFAS second-order mutants results

Empir Software Eng (2022) 27:160 Page 49 of 55 160

Table 13 MUTEX second-order mutants results

 160 Page 50 of 55 Empir Software Eng (2022) 27:160

Acknowledgements We thank the anonymous reviewers for useful comments and suggestions that helped
us to improve the presentation. Davide Basile and Maurice H. ter Beek acknowledge funding from the
national MIUR-PRIN 2020TL3X8X project T-LADIES (Typeful Language Adaptation for Dynamic, Inter-
acting and Evolving Systems). Maxime Cordy and Sami Lazreg are supported by FNR Luxembourg (grant
INTER/FNRS/20/15077233/Scaling Up Variability/Cordy).

Declarations

Conflict of Interests The authors have no conflict of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Aichernig BK, Brandl H, Jöbstl E, Krenn W, Schlick R, Tiran S (2015) Killing strategies for model-based
mutation testing. Softw Test Verif Reliab 25(8):716–748. https://doi.org/10.1002/stvr.1522

Aichernig BK, Lorber F, Nickovic D (2013) Time for mutants: Model-based mutation testing with timed
automata. In: Veanes M, Viganò L (eds) Proceedings of the 7th international conference on tests and
proofs (TAP’13), LNCS, vol 7942. Springer, pp 20–38. https://doi.org/10.1007/978-3-642-38916-0 2

Alur R, Dill DL (1994) A theory of timed automata. Theoret Comput Sci 126(2):183–235. https://doi.org/10.
1016/0304-3975(94)90010-8

André É, Hasuo I, Waga M (2018) Offline timed pattern matching under uncertainty. In: Proceedings of
the 23rd international conference on engineering of complex computer systems (ICECCS’18). IEEE, pp
10–20. https://doi.org/10.1109/ICECCS2018.2018.00010

André É, Knapik M, Lime D, Penczek W, Petrucci L (2019) Parametric verification: an introduction. In:
Koutny M, Pomello L, Kristensen LM (eds) Transactions on petri nets and other models of concurrency
XIV, LNCS, vol 11790. Springer, pp 64–100. https://doi.org/10.1007/978-3-662-60651-3 3

Andrews JH, Briand LC, Labiche Y, Namin AS (2006) Using mutation analysis for assessing and comparing
testing coverage criteria. IEEE Trans Softw Eng 32(8):608–624. https://doi.org/10.1109/TSE.2006.83

Asarin E, Maler O, Pnueli A, Sifakis J (1998) Controller synthesis for timed automata. IFAC Proc
31(18):447–452. https://doi.org/10.1016/S1474-6670(17)42032-5. Proceedings of the 5th IFAC confer-
ence on system structure and control (SSC’98)

Baker R, Habli I (2013) An empirical evaluation of mutation testing for improving the test quality of safety-
critical software. IEEE Trans Softw Eng 39(6):787–805. https://doi.org/10.1109/TSE.2012.56

Basile D, ter Beek MH, Cordy M, Legay A (2020a) Tackling the equivalent mutant problem in real-time
systems: The 12 commandments of model-based mutation testing. In: Proceedings of the 24th ACM
conference on systems and software product lines (SPLC’20). ACM, pp 252–262. https://doi.org/10.
1145/3382025.3414966

Basile D, ter Beek MH, Degano P, Legay A, Ferrari GL, Gnesi S, Di Giandomenico F (2020b) Controller
synthesis of service contracts with variability. Sci Comput Program, 187. https://doi.org/10.1016/j.scico.
2019.102344

Basile D, ter Beek MH, Legay A (2020c) Timed service contract automata. Innovations Syst Softw Eng (16),
199–214. https://doi.org/10.1007/s11334-019-00353-3

Behrmann G, Cougnard A, David A, Fleury E, Larsen KG, Lime D (2007) UPPAAL-Tiga: time for playing
games! In: Damm W, Hermanns H (eds) Proceedings of the 19th international conference on computer
aided verification (CAV’07), LNCS, vol 4590. Springer, pp 121–125. https://doi.org/10.1007/978-3-
540-73368-3 14

Benes N, Bezdek P, Larsen KG, Srba J (2015) Language emptiness of continuous-time parametric timed
automata. In: Halldórsson MM, Iwama K, Kobayashi N, Speckmann B (eds) Proceedings of the 42nd

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1002/stvr.1522
https://doi.org/10.1007/978-3-642-38916-0_2
https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1109/ICECCS2018.2018.00010
https://doi.org/10.1007/978-3-662-60651-3_3
https://doi.org/10.1109/TSE.2006.83
https://doi.org/10.1016/S1474-6670(17)42032-5
https://doi.org/10.1109/TSE.2012.56
https://doi.org/10.1145/3382025.3414966
https://doi.org/10.1145/3382025.3414966
https://doi.org/10.1016/j.scico.2019.102344
https://doi.org/10.1016/j.scico.2019.102344
https://doi.org/10.1007/s11334-019-00353-3
https://doi.org/10.1007/978-3-540-73368-3_14
https://doi.org/10.1007/978-3-540-73368-3_14

Empir Software Eng (2022) 27:160 Page 51 of 55 160

international colloquium on automata, languages, and programming (ICALP’15), LNCS, vol 9135.
Springer, pp 69–81. https://doi.org/10.1007/978-3-662-47666-6 6

Brillout A, He N, Mazzucchi M, Kroening D, Purandare M, Rümmer P, Weissenbacher G (2009) Mutation-
based test case generation for Simulink models. In: De Boer FS, BonsangueMM, Hallerstede S, Leuschel
M (eds) Proceedings of the 8th international symposium on formal methods for components and objects
(FMCO’09), LNCS, vol 6286. Springer, pp 208–227. https://doi.org/10.1007/978-3-642-17071-3 11

Chow TS (1978) Testing software design modeled by finite-state machines. IEEE Trans Softw Eng SE-
4(3):178–187. https://doi.org/10.1109/TSE.1978.231496

Classen A, Cordy M, Schobbens P, Heymans P, Legay A, Raskin J (2013) Featured transition systems:
Foundations for verifying variability-intensive systems and their application to LTL model checking.
IEEE Trans Softw Eng 39(8):1069–1089. https://doi.org/10.1109/TSE.2012.86

Cordy M, Classen A, Perrouin G, Schobbens P, Heymans P, Legay A (2012a) Simulation-based abstrac-
tions for software product-line model checking. In: Proceedings of the 34th international conference on
software engineering (ICSE’12). IEEE, pp 672–682. https://doi.org/10.1109/ICSE.2012.6227150

Cordy M, Schobbens P, Heymans P, Legay A (2012b) Behavioural modelling and verification of real-
time software product lines. In: Proceedings of the 16th international software product line conference
(SPLC’12). ACM, pp 66–75. https://doi.org/10.1145/2362536.2362549

CordyM, Legay A, Schobbens P, Traonouez L (2013) A framework for the rigorous design of highly adaptive
timed systems. In: Proceedings of the 1st FME workshop on formal methods in software engineering
(FormaliSE’13). IEEE, pp 64–70. https://doi.org/10.1109/FormaliSE.2013.6612279

David A, Larsen KG, Legay A, Nyman U, Traonouez L, Wa̧sowski A (2015) Real-time specifications. Int J
Softw Tools Technol Transf 17(1):17–45. https://doi.org/10.1007/s10009-013-0286-x

David A, Larsen KG, Legay A, Nyman U, Wa̧sowski A. (2010a) Timed I/O automata: a complete specifica-
tion theory for real-time systems. In: Proceedings of the 13th international conference on hybrid systems:
computation and control (HSCC’10). ACM, pp 91–100. https://doi.org/10.1145/1755952.1755967

David A, Larsen KG, Legay A, Nyman U, Wa̧sowski A (2010b) ECDAR: an environment for compositional
design and analysis of real time systems. In: Bouajjani A, Chin WN (eds) Proceedings of the 8th interna-
tional symposium on automated technology for verification and analysis (ATVA’10), LNCS, vol 6252.
Springer, pp 365–370. https://doi.org/10.1007/978-3-642-15643-4 29

DeMillo R, Lipton R, Sayward F (1978) Hints on test data selection: Help for the practicing programmer.
IEEE Comp 11(4):34–41. https://doi.org/10.1109/C-M.1978.218136

Devroey X, Perrouin G, Papadakis M, Legay A, Schobbens P, Heymans P (2016) Featured model-
based mutation analysis. In: Proceedings of the 38th international conference on software engineering
(ICSE’16). ACM, pp 655–666. https://doi.org/10.1145/2884781.2884821

Fabbri S, Maldonado JC, Sugeta T, Masiero PC (1999) Mutation testing applied to validate specifica-
tions based on statecharts. In: Proceedings of the 10th international symposium on software reliability
engineering (ISSRE’99). IEEE, pp 210–219. https://doi.org/10.1109/ISSRE.1999.809326

Feo-Arenis S, Westphal B, Dietsch D, Muñiz M, Andisha AS (2014) The wireless fire alarm system: ensur-
ing conformance to industrial standards through formal verification. In: Jones C, Pihlajasaari P, Sun
J (eds) Proceedings of the 19th international symposium on formal methods (FM’14), LNCS, vol 8442.
Springer, pp 658–672. https://doi.org/10.1007/978-3-319-06410-9 44

Hoxha B, Abbas H, Fainekos G (2015) Benchmarks for temporal logic requirements for automotive systems.
In: Frehse G, Althoff M (eds) Proceedings of the 1st and 2nd international workshop on applied verifica-
tion for continuous and hybrid systems (ARCH’14-’15), EPiC Series in Computing, vol 34. EasyChair,
pp 25–30. https://doi.org/10.29007/xwrs

Hune T, Romijn J, StoelingaM, Vaandrager FW (2001) Linear parametric model checking of timed automata.
Tech. Rep. CSI-R0102, University of Nijmegen. http://hdl.handle.net/2066/18941

Jia Y, Harman M (2011) An analysis and survey of the development of mutation testing. IEEE Trans Softw
Eng 37(5):649–678. https://doi.org/10.1109/TSE.2010.62

Lamport L (1987) A fast mutual exclusion algorithm. ACM Trans Comput Syst 5(1):1–11. https://doi.org/
10.1145/7351.7352

Larsen KG, Lorber F, Nielsen B, Nyman U (2017) Mutation-based test-case generation with Ecdar. In:
Proceedings of the 10th IEEE international conference on software testing, verification and validation
workshops (ICSTW’17). IEEE, pp 319–328. https://doi.org/10.1109/ICSTW.2017.60

Larsen KG, Nyman U, Wa̧sowski A (2007) Modal I/O automata for interface and product line theories. In:
De Nicola R (ed) Proceedings of the 16th european symposium on programming (ESOP’07), LNCS,
vol 4421. Springer, pp 64–79. https://doi.org/10.1007/978-3-540-71316-6 6

Lee J, Kang S, Jung P (2020) Test coverage criteria for software product line testing: Systematic literature
review. Inf Softw Technol, 122. https://doi.org/10.1016/j.infsof.2020.106272

https://doi.org/10.1007/978-3-662-47666-6_6
https://doi.org/10.1007/978-3-642-17071-3_11
https://doi.org/10.1109/TSE.1978.231496
https://doi.org/10.1109/TSE.2012.86
https://doi.org/10.1109/ICSE.2012.6227150
https://doi.org/10.1145/2362536.2362549
https://doi.org/10.1109/FormaliSE.2013.6612279
https://doi.org/10.1007/s10009-013-0286-x
https://doi.org/10.1145/1755952.1755967
https://doi.org/10.1007/978-3-642-15643-4_29
https://doi.org/10.1109/C-M.1978.218136
https://doi.org/10.1145/2884781.2884821
https://doi.org/10.1109/ISSRE.1999.809326
https://doi.org/10.1007/978-3-319-06410-9_44
https://doi.org/10.29007/xwrs
http://hdl.handle.net/2066/18941
https://doi.org/10.1109/TSE.2010.62
https://doi.org/10.1145/7351.7352
https://doi.org/10.1145/7351.7352
https://doi.org/10.1109/ICSTW.2017.60
https://doi.org/10.1007/978-3-540-71316-6_6
https://doi.org/10.1016/j.infsof.2020.106272

 160 Page 52 of 55 Empir Software Eng (2022) 27:160

Luthmann L, Gerecht T, Lochau M (2019) Sampling strategies for product lines with unbounded parametric
real-time constraints. Int J Softw Tools Technol Transf 21(6):613–633. https://doi.org/10.1007/s10009-
019-00532-4

Luthmann L, Stephan A, Bürdek J, Lochau M (2017) Modeling and testing product lines with unbounded
parametric real-time constraints. In: Proceedings of the 21st international systems and software product
lines conference (SPLC’17). ACM, pp 104–113. https://doi.org/10.1145/3106195.3106204

Madeyski L, Orzeszyna W, Torkar R, Józala M (2014) Overcoming the equivalent mutant problem: a sys-
tematic literature review and a comparative experiment of second order mutation. IEEE Trans Softw Eng
40(1):23–42. https://doi.org/10.1109/TSE.2013.44

Masri W, Zaraket F (2016) Coverage-based software testing: Beyond basic test requirements. In: Memon
AM (ed) Advances in computers, vol 103, chap 4. Elsevier, pp 79–142. https://doi.org/10.1016/bs.adcom.
2016.04.003

Offutt J (2011) A mutation carol: past, present and future. Inf Softw Technol 53(10):1098–1107. https://doi.
org/10.1016/j.infsof.2011.03.007

Papadakis M, Malevris N (2010) An empirical evaluation of the first and second order mutation testing strate-
gies. In: Proceedings of the 3rd international conference on software testing, verification and validation
workshops (ICSTW’10), pp 90–99. https://doi.org/10.1109/ICSTW.2010.50

Petrovic G, Ivankovic M, Fraser G, Just R (2021) Does mutation testing improve testing practices? In:
43rd IEEE/ACM international conference on software engineering (ICSE’21). IEEE, pp 910–921.
https://doi.org/10.1109/ICSE43902.2021.00087

Ter Beek, Cledou G, Hennicker R, Proença J (2021) Featured team automata. In: Huisman M, Pasareanu
CS, Zhan N (eds) Proceedings of the 24th international symposium on formal methods (FM’21), LNCS,
vol 13047. Springer, pp 483–502. https://doi.org/10.1007/978-3-030-90870-6 26

Ter BeekMH, Kleijn J (2012) Vector team automata. Theor Comput Sci 429:21–29. https://doi.org/10.1016/j.
tcs.2011.12.020

Ter Beek MH, van Loo S, De Vink EP, Willemse TA (2020) Family-based SPL model checking using parity
games with variability. In: Wehrheim H, Cabot J (eds) Proceedings of the 23rd international conference
on fundamental approaches to software engineering (FASE’20), LNCS, vol 12076. Springer, pp 245–
265. https://doi.org/10.1007/978-3-030-45234-6 12

Ter Beek MH, Fantechi A, Gnesi S, Mazzanti F (2016) Modelling and analysing variability in product
families: Model checking of modal transition systems with variability constraints. J Log Algebr Meth
Program 85(2):287–315. https://doi.org/10.1016/j.jlamp.2015.11.006

Utting M, Pretschner A, Legeard B (2012) A taxonomy of model-based testing approaches. Softw Test Verif
Reliab 22(5):297–312. https://doi.org/10.1002/stvr.456

Waga M, Hasuo I, Suenaga K (2017) Efficient online timed pattern matching by automata-based skip-
ping. In: Abate A, Geeraerts G (eds) Proceedings of the 15th international conference on formal
modeling and analysis of timed systems (FORMATS’17), LNCS, vol 10419. Springer, pp 224–243.
https://doi.org/10.1007/978-3-319-65765-3 13

Weyuker E, Goradia T, Singh A (1994) Automatically generating test data from a Boolean specification.
IEEE Trans Softw Eng 20(5):353–363. https://doi.org/10.1109/32.286420

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

https://doi.org/10.1007/s10009-019-00532-4
https://doi.org/10.1007/s10009-019-00532-4
https://doi.org/10.1145/3106195.3106204
https://doi.org/10.1109/TSE.2013.44
https://doi.org/10.1016/bs.adcom.2016.04.003
https://doi.org/10.1016/bs.adcom.2016.04.003
https://doi.org/10.1016/j.infsof.2011.03.007
https://doi.org/10.1016/j.infsof.2011.03.007
https://doi.org/10.1109/ICSTW.2010.50
https://doi.org/10.1109/ICSE43902.2021.00087
https://doi.org/10.1007/978-3-030-90870-6_26
https://doi.org/10.1016/j.tcs.2011.12.020
https://doi.org/10.1016/j.tcs.2011.12.020
https://doi.org/10.1007/978-3-030-45234-6_12
https://doi.org/10.1016/j.jlamp.2015.11.006
https://doi.org/10.1002/stvr.456
https://doi.org/10.1007/978-3-319-65765-3_13
https://doi.org/10.1109/32.286420

Empir Software Eng (2022) 27:160 Page 53 of 55 160

Davide Basile is a permanent researcher at ISTI-CNR (Pisa, Italy) and a member of the Formal Methods and
Tools lab. He obtained his Ph.D. in Computer Science at the University of Pisa (Italy). He has authored more
than 40 papers in the field of formal methods, software engineering and dependable computing. His research
focuses on developing both novel formalisms for emerging computational paradigms and supporting tools,
exploring formal verification techniques and applying state-of-the-art formal methods and tools to the design
of real-world systems and emerging technologies. He has been part of the organization of workshops and
conferences (incl., FORTE, COORDINATION, VaMoS), he has been a PC member of various conferences
(incl. SPLC, IFM, FMICS, COORDINATION) and he is a regular reviewer for various journals (incl. TSE,
TOSEM, TITS, TOCL, STVR, FAOC, JSS, STTT, SCICO).

Maurice H. ter Beek is senior researcher at ISTI–CNR (Pisa, Italy) and head of the Formal Methods and
Tools lab. He obtained his Ph.D. at Leiden University (The Netherlands). He has authored over 150 peer-
reviewed papers, edited over 30 proceedings and special issues of journals, and serves on the editorial boards
of the journals Formal Aspects of Computing: Applicable Formal Methods, International Journal on Software
Tools for Technology Transfer, Journal of Logical and Algebraic Methods in Programming, PeerJ Computer
Science, Science of Computer Programming, and ERCIM News. He works on formal methods and model-
checking tools for the specification and verification of safety-critical software systems, focusing in particular
on applications in service computing, software product line engineering and railway systems. He is member
of the Steering Committees of the FMICS, SPLC and VaMoS conference series, and regular PC member of
the COORDINATION, FM, FMICS, FormaliSE, SEFM, SPLC and VaMoS conference series, among others.

 160 Page 54 of 55 Empir Software Eng (2022) 27:160

Sami Lazreg is a research associate at the Interdisciplinary Centre for Security, Reliability and Trust research
lab, University of Luxembourg. He obtained his Ph.D. at University Cote d’Azur, Sophia Antipolis, France, in
collaboration with Visteon Electronics, a world class leader in automotive systems. His main topics are model
based design and design space exploration of embedded systems. He works on variability modelling and
variability-aware simulation and model-checking methods to model, verify and optimize embedded software
and system product lines.

Maxime Cordy is a Research Scientist at the Interdisciplinary Center for Security, Reliability and Trust
(SnT), University of Luxembourg, in the domain of Software Engineering (SE), with a focus on software ver-
ification and testing, security and quality of machine learning, and data-intensive systems. He has published
70+ peer-review papers in these areas. He is one of the four permanent scientists of the SnT’s SerVal group
(SEcurity, Reasoning and VALidation). His research is inspired from and applies to several industry partners
(BGL BNP-Paribas, Lombard Int’l, CREOS, Enovos, etc.). He is deeply engaged in making Society benefit
from results and technologies produced by research through the founding of spin-off companies and the lead-
ership of private-public partnership projects at SnT. He is steering committee member and former PC chair
of the VAMOS conference and MaLTeSQuE workshop. He co-organized several SE workshops (MASES
’18, MALTESQUE ’19 ’22, BENEVOL ’20). He was co-chair of ICSME ’21 NIER track. He has worked as
a program committee member for various tracks of SE and AI conferences incl. IJCAI, ESEC/FSE, PLDI,
ISSTA, CAISE, SAC, SPLC. He is distinguished reviewer board member of TOSEM and regular reviewer
for other journals (incl. TSE, TOSEM, STVR, FAOC, JSS, STTT).

Empir Software Eng (2022) 27:160 Page 55 of 55 160

Axel Legay is Professor at UC Louvain. He also used to work at Inria as team leader in cyber security. He
received his Ph.D. in Computer Science from the University of Lige, Belgium. His main research interests
are in formal verification, testing, and cyber security. He is a founder and major contributor of statistical
model checking (a statistical variant of model checking effectively used in industry), proveline (product lines
analysis), and malware analysis. He wrote more than 300 publications and he is a referee for top journals and
conferences in those areas. He wrote several open source tools, and he has been institution PI for more than
30 projects.

Affiliations

Davide Basile1 ·Maurice H. ter Beek1 · Sami Lazreg2 ·Maxime Cordy2 ·Axel Legay3

Maurice H. ter Beek
maurice.terbeek@isti.cnr.it

Sami Lazreg
sami.lazreg@uni.lu

Maxime Cordy
maxime.cordy@uni.lu

Axel Legay
axel.legay@uclouvain.be

1 ISTI–CNR, Via G. Moruzzi 1, 56124 Pisa, Italy
2 SnT, University of Luxembourg, Esch-sur-Alzette, Luxembourg
3 Université Catholique de Louvain, Ottignies-Louvain-la-Neuve, Belgium

http://orcid.org/0000-0002-7196-6609
mailto: maurice.terbeek@isti.cnr.it
mailto: sami.lazreg@uni.lu
mailto: maxime.cordy@uni.lu
mailto: axel.legay@uclouvain.be

	Static detection of equivalent mutants in real-time model-based mutation testing
	Abstract
	Introduction*-.1pt
	Outline

	Related Work
	Background
	Timed Games
	Featured Timed Games
	Featured Mutant Model

	Classifying Mutations
	Subsumed Mutants
	TMI mutation
	TAD mutation
	SMI mutation
	CXL mutation
	CXS mutation

	Auxiliary Results on Non-subsumed Mutants
	TMI mutation
	TAD mutation
	SMI mutation
	CXL mutation
	CXS mutation
	CCN mutation

	Classifying Mutations
	Generating Effective Mutations

	Evaluation
	Research Questions and Methodology
	Implementation
	Subject Systems
	CAS
	Coffee
	Accel
	Hotel
	WFAS
	Mutex

	Validation Results
	First Order
	CAS
	COFFEE
	ACCEL
	HOTEL
	WFAS
	MUTEX

	Second Order

	Final Considerations
	Threats to Validity

	Conclusion and Future Work
	Appendix A A: Results for Second-Order Mutations
	References
	Affiliations

