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Systems of Systems
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Abstract—Autonomous vehicles (AVs) generate a massive
amount of multi-modal data that once collected and processed
through Machine Learning algorithms, enable AI-based services
at the Edge. In fact, not all these data contain valuable, and
informative content but only a subset of the relative attributes
should be exploited at the Edge. Therefore, enabling AVs to
locally extract such a subset is of utmost importance to limit
computation and communication workloads. Achieving a consis-
tent subset of data in a distributed manner imposes the AVs
to cooperate in finding an agreement on what attributes should
be sent to the Edge. In this work, we address such a problem
by proposing a federated feature selection algorithm where
all the AVs collaborate to filter out, iteratively, the redundant
or irrelevant attributes in a distributed manner, without any
exchange of raw data. This solution builds on two components: a
Mutual-Information-based feature selection algorithm run by the
AVs and a novel aggregation function based on the Bayes theorem
executed on the Edge. Our federated feature selection algorithm
provably converges to a solution in a finite number of steps.
Such an algorithm has been tested on two reference datasets:
MAV with images and inertial measurements of a monitored
vehicle, WESAD with a collection of samples from biophysical
sensors to monitor a relative passenger. The numerical results
show that the fleet finds a consensus with both the datasets on
the minimum achievable subset of features, i.e., 24 out of 2166
(99%) in MAV and 4 out of 8 (50%) in WESAD, preserving the
informative content of data.

Index Terms—Internet of Things, Autonomous System, Human
State Monitoring, Feature Selection, Machine Learning, Feder-
ated Learning, Artificial Intelligence.

I. INTRODUCTION

AUTOMATION enables a Cyber Physical System of Sys-
tems (CPSoS) to run with a minimum human assistance

and evolves into autonomy when the human is taken out of
the sensing, decision, and actuation loop. Automation can be
used to operate a CPSoS comprising complex, dynamic, virtual
and physical resources, such as telecommunication networks,
computing units, software, sensors, and machines [1]. Humans
can interact with an autonomous system either as passive
end-users (such as passengers in autonomous transportation
system) or rather as active co-operators in a mutual empow-
erment relationship towards a shared goal. Such cooperative,
connected, and autonomous systems have the potential to be
a game-changer in multiple domains if they will be capable
of positively exploiting such an inescapable human factor.
The increasing development of semi-Autonomous Driving
Systems (ADSs) poses the challenge of taking the end-user,
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in the middle of the evolution process toward fully ADSs.
Aside from vehicle control, a CPSoS needs to monitor the
comfort/discomfort of the passenger, as well, to improve its
well-being and to acknowledges the degree of safety and
satisfaction perceived about the ADS. Artificial Intelligence
(AI) is a fundamental technology for deploying the future
CPSoS for ADSs [2]. The stringent computational and memory
requirements for Machine Learning (ML) algorithms will
impose a significant rethinking of the underlying computing
and communication system and will have to fit the constraints
of the onboard units. Information extraction should follow
as much as possible optimal criteria, cooperating with the
inherently distributed nature of the automotive scenario.

Moreover, local processing of information can also be an
advantage in specific scenarios with intermittent connectivity
or when data privacy is a key issue [3]. Hence, reducing the
transfer time needed of either raw data or the relative features
is of the utmost importance in determining the performance
of computation offloading. Intuitively, traditional data com-
pression techniques [4] could reduce such a delay component,
but will also degrade the relative classification performance
[5], prolonging the training phases as well as degrading the
inference performance.

Conversely, when information extraction algorithms pro-
duce massive streams of features, selecting the most relevant
ones to feed a ML model becomes very convenient, both
in terms of compression and accuracy preservation. Such an
operation is known as Feature Selection (FS) [6] and allows
for achieving simpler and, therefore, more efficient ML-based
models [7].

This work focuses on feature selection efficiency within a
fleet of Autonomous Vehicles (AVs), which collect, through
their sensors, multi-modal raw measurements to be pre-
processed and delivered to feed a remote edge server for
inference tasks. Such a procedure can introduce information
redundancy, which leads to a waste of computing and com-
munication resources. The AV ensemble aims at limiting the
transmission to the top relevant features only. However, just
a subset of the top ones can be extracted from each local
data collection in a distributed manner w.r.t. the whole set
achievable from the union of the local datasets but in a
centralized manner. In fact, the former case may lead to an
inconsistent model w.r.t. to the latter. Therefore, the AVs, shall
participate to a collaborative FS process, in order to exploit
the whole information in a federated manner. We tackle this
problem, by proposing, for the first time, a Federated-Feature
Selection (FFS) algorithm, exploiting a distributed computing
paradigm applied to AVs. In FFS all AVs collaborate to come
up with the minimal set of features selected from their local

ar
X

iv
:2

10
9.

11
32

3v
2 

 [
cs

.L
G

] 
 2

 M
ay

 2
02

2



IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. , NO. , MONTH YEAR 2

Fig. 1: Feature selection and aggregation components of the
proposed FFS system.

datasets.
The proposed FFS system is made up of two components

provided in Figure 1:

• a local FS process runs on each AV and aims at generating
a local distribution probability that ranks the information
associated to a given feature, according to the Mutual
Information (MI) metric [8], [9], which is solved in this
work by using the Cross-Entropy (CE), a suited method
[10] to run in a distributed manner.

• An aggregation algorithm executed on the Edge Server
(ES) that combines the local estimates received from the
AVs. The aggregation algorithm is based on a Bayesian
approach to merge the local information into a global one.

The messages delivered by AVs contain probability vectors
where each element is the probability to select that feature.
The ES returns the ”federated” probability vector which is
derived by the aggregation of the vectors received by the
AVs, as detailed in the following, to replace each of the
local ones. Note that, the proposed approach does not need
to share any local raw data but only the estimates of the local
most informative features. Moreover, it guarantees that all the
AVs reach a consensus on the subset of the most informative
features, after a finite number of communication rounds, i.e.,
the messages exchanged between the AVs and the ES.

As we show in the paper, the proposed algorithm (i)
significantly limits the control messages exchanged during the
FFS process and (ii) provably let the AVs converge to a subset
of top features, which effectively reduce the information stored
and transmitted by the AVs. Specifically, numerical results
show that, on reference benchmarks, our solution limits data
processing and transmission, by removing up the to 99% of
redundant features from the selected datasets, without loss of
accuracy on the learning model.

Summarising, the novel contributions of this paper are:

• A novel FFS algorithm based on the MI CE (client-side)
on the AV and a Bayesian aggregation approach on the
ES.

• The theoretical proof that such an algorithm converges to
a stable solution in a fixed number of iterations.

• An extensive numerical evaluation tested on two real-
world datasets that shows the efficiency of our solution.

The paper is organized as follows: related works are pre-
sented in Section II; the reference scenario and the system
assumptions are presented in Section III; the theoretical back-
ground underlying the proposed feature selection approach is
presented in Section IV; the federated version of the feature
selection algorithm in presented in Section V; Section VI
presents the experimental results of a study case with two
real world datasets, belonging to different application domains;
conclusions in Section VII.

II. RELATED WORKS

A. Feature Selection

Many FS procedures have been proposed in the literature.
In [6], [11], [12] authors provide a comprehensive overview
of the existing methods. Additionally, they consider the most
important application domains and review comparative studies
on feature selection therein, in order to investigate, which
methods outperform for specific tasks. Authors highlight that
FS is based on the identification of the relevance and re-
dundancy provided by the features with respect to a class
attribute function. The main approaches of FS fall into three
categories: filtering, wrapping, and embedded methods. This
categorisation is based on the interaction between the selected
features and the learning model adopted to take a decision.
The output of the wrapping and embedded methods is tightly
connected to the learning model that uses the selection.
Therefore, with these methods FS and model training cannot
be uncoupled. Conversely, filtering methods are suitable for
being used regardless the presence of a learning model to train.

As shown in [6], [11], [12], most of the well-known filtering
algorithms use information-based metrics for FS, and can deal
with samples of variable lengths, as presented in [13], [14].
A suitable information-based metric for the FS is the MI. MI
has gained increasing popularity in data mining, for its ease to
use, effectiveness, and strong theoretical foundation. mRMR
[15] and HJMI [16] are some of the most used methods that
exploit MI. These approaches rank the features according to
the maximization of the MI and let the user to select a desired
subset k. Differently, the proposed algorithm automatically
select a minimal subset of relevant features, also capturing the
mutual dependencies. Note that the formulation of the under-
lying optimization problem is NP-Hard [8], [9], i.e., MI-based
feature selection problem involves the integer programming
or, in some cases, the quadratic integer programming. In [17]–
[19] authors show how to adopt the CE approach to address
such native computational complex problems, for different
application scenarios. Beyond MI, other filtering methods
can use different metrics, such as in [20] where the authors
evaluate the variance of all the features to measure the impact
that each of them has on the learning process. This method
relies on the concept that the features with zero variance add
no information, by considering the relation between the target
variable and feature vectors.

To the best of our knowledge, all these algorithms are
designed for being executed in a centralised setting, i.e., under
the assumption that the whole dataset is available to the
learning agent.
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B. Distributed Learning
Distributed learning is considered from several perspectives

in the literature. A very consistent body of work deals with
distributed learning based on the Federated Learning (FL)
framework. FL is a distributed learning framework initially
proposed by Google, where a large number of mobile or edge
devices participate in a collective and distributed training of a
shared model. [21], [22]. FL is an iterative procedure spanning
over several communication rounds until the convergence is
reached. Based on this paradigm, several modifications have
been proposed concerning (i) new distributed optimisation
algorithms [23]–[26], and (ii) privacy-preserving methods for
FL [27], [28]. Alternatively, other approaches do not rely on a
centralised coordinating server. In [29], [30], authors propose
a distributed and decentralised learning approach based on
Hypothesis Transfer Learning. Similarly to the FL framework,
authors assume that several devices hold a portion of a
dataset to be analysed by some distributed machine learning
algorithms. The aim of [29], [30] is to provide a learning
procedure able to train, in a decentralised way, an accurate
model while limiting the network traffic generated by the
learning process. The vast majority of the distributed learning
solutions, presented in the literature, focus on the model’s
training, giving the feature engineering phase for granted. Until
now, the idea of performing FS, directly, on edge devices
remains unexplored.

In the literature only few approaches cope with FS in
distributed settings. In [31], authors present a distributed
algorithm for FS based on the Intermediate Representation,
which aims at preserving the privacy of data, allowing the
node to exchange each other the data they hold. Therefore,
in this method FS is performed under the assumption that all
data are available to the FS algorithm. Moreover, the method
presented by the author depends from the specific learning
model that uses the selected features.

In [32], the authors propose an information-theoretic FFS
approach called Fed-FiS. Fed-FiS estimates feature-feature
mutual information and feature-class mutual information to
generate a local feature subset in each user device. Then
a central server ranks each feature and generates a global
dominant feature subset using a classification approach. This
approach has some commonalities with ours, such as the
adopted metric (MI) and the federated settings. However,
differently from [32] (i) we provide directly the minimum
set of relevant features instead of a ranking, (ii) we propose
an aggregation based on Bayes’ theorem that does not rely
on any Machine Learning scheme to finalise the selection
(i.e., no regression or classification methods are adopted in
our solution), resulting in a computationally more suitable
approach for vehicular scenarios.

In light of this and to the best of our knowledge, this is
the first paper that proposes a federated mechanism of feature
selection explicitly designed to meet the requirements of the
CPSoS context.

III. SYSTEM ASSUMPTIONS

In this section, we describe the reference scenario and
the system assumptions considered in this paper. As shown

in Figure 2, we consider a set of AVs, implementing an
ADS each, collecting data generated by the sensors integrated
in a CPSoS and that collaborates with the others ADSs to
learn a minimal, and most informative set of features from
their local datasets. To this end, the AVs execute an in-
network data filtering process through our FFS approach to
reach a consensus in identifying the most informative feature
subset. Finally, the globally shared feature set is used like
a compression scheme before transmitting it to an ES. Note
that, in this system the AVs are only responsible for finding
the best compression scheme applicable to the their local data
in a collaborative way, based only on the control information
they exchange with the ES. Moreover, the ES has a three-fold
role: i) it acts as central coordinating entity in the FFS process
whose purpose is to aggregate the partial control information
sent by the AVs; ii) it acts as final collector for the compressed
data, once the FFS is completed and, iii) runs the AI services
to extract knowledge from data but that is used only for
performance evaluation in this paper. We target two different
user cases to validate the performance of the proposed FFS
method. The former refers to the localization of an AV in
the environment based on images and inertial measurements,
and the latter regards the physiological-state monitoring of a
passenger in the automotive domain. We define two different
sub-systems part of the same CPSoS: the ADS of above, and
an Human State Monitoring System (HSMS) to learn the feel-
ing perceived from a passenger relatively to the ADS driving
style. Therefore, we assume each AV to be equipped with a
camera to capture images from the surrounding environment
aside some inertial sensors for the former learning task, and
a set of body sensors, such as, Electrocardiography (ECG),
Electrodermal Activity (EDA), Electromyography (EMG), and
Respiration (RSP) for the latter.

Each AV is able to locally synchronize the multi-sensory
data such that, for each image, it is possible to associate the
corresponding inertial measurements leading to an enhanced
Raw Input Datum (eRID). Note that for the scope of this paper
it is not important the specific semantic of the labelling, but
it is enough to assume a labelling process on the collected
data. The AVs are also equipped with a relatively small edge
computing unit (e.g., a RaspeberryPi or, at most, an Nvidia
Jetson Nano) able to cache data and execute the FS task, before
transmitting the features. Additionally, the AVs are endowed
with a radio communication interface to communicate toward
the ES. It must be noted that the task is not collecting images
of the environment, or physiological parameters of the user
but, conversely, retrieving the information associated to those
images or to those physiological sensors, e,g., the position of
the AV with respect to the surrounding or the user mood. In
particular, the latter is labelled according to the classification
scale provided by questionnaires like PANAS, SSSQ or SAM
[33], which associates numerical labels to the physiological
states.

IV. FEATURE SELECTION

In this section, we provide the theoretical background of the
MI-based FS algorithm and the relative implementation based
on the CE method.
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Fig. 2: System architecture. Data sources characterize two
different Cyber Physical Systems (CPSs): the former that
monitors the user through wearable sensors, the latter relative
to the ADS.

A. Background feature selection based on Mutual Information

To make the paper self-contained, we report in this Section
the necessary theoretical background needed to get an intuition
about the internal details of the CE-based FS method presented
in Section IV-B.

First, let us define the FS problem as follows:

Definition (FS Problem). Given the input data matrix X
composed by n samples of m features (X ∈ Rn×m), and the
target attributes’ (or labels) vector y ∈ Rn, the FS problem is
to find a k-dimensional subset U ⊆ X with k ≤ m, by which
we can characterize y.

The method we adopt in the paper performs the FS mea-
suring, through the Mutual Information metric, the amount of
information that a subset of features (or attributes) U expresses
with respect to a specific target label y.

Formally, the MI between random variables can be defined
as [34], [35]:

I(U;y) = H(y)−H(y|U), (1)

where U = {x1 · · ·xk | k ≤ m} ⊆ X, and H(y|U) is the
conditional entropy which measures the amount of information
needed to describe y, conditioned by the information carried
by U. Hence, I(U;y) represents the dependence between
U and y, i.e., the greater the value of I, the greater the
information carried by U on y. We recall that the MI between
two random variables A and B is strictly related to the entropy
H(·), which defines the amount of information held by the
variables, i.e., the entropy of a random variable A (i.e., H(A))
and its probability are inversely proportional: the greater the
entropy of a random variable A, the greater its unpredictability
and vice-versa. Hence, we can assert that the entropy measures
the diversity of A in terms of the uncertainty of its outcomes.

In MI-based FS the features to be selected are those that
maximise Equation (1). These features are typically referred
as Essential Attributes (EA). By solving the following opti-

mization problem we would obtain the optimal global solution
to the FS problem defined in IV-A:

argmax
U

I(U;y) (2)

U = {x1 · · ·xk | k ≤ m} ⊆ X

Note that the problem (2) belongs to the class of Integer
Programming (IP) optimization problems and finding its op-
timal solution is NP-hard [36], i.e., the optimal solution U
would be found among all combinations of feature indices of
the native set X.

The problem (2) becomes computationally tractable if ap-
proached through an iterative algorithm which selects and adds
to the subset U one feature at a time. Therefore, instead of
solving 2, we address the problem defined in (3):

arg max
xj∈X\U

I(xj ;y|U), (3)

U = {x1 · · ·xk−1 | k ≤ m} ⊆ X.

For the sake of clarity, we provide an intuitive example based
on the relation between MI and the entropy. Considering
Figure 3, the circles are the entropy of the random variables
A,B,U,y, and the grey regions are the information carried
by the variable A (or B) on y. The dashed area shows
the information redundancy of the variable A (or B) given
the already selected variables in Uj−1. In this example, the
variable A should be added to the set U since it is more
informative than B on y , i.e., its grey area is larger than B’s,
and it is less redundant than B w.r.t. to Uj−1.

Fig. 3: Example of the relationship between Mutual Informa-
tion and Entropy

The main drawback of this approach is that it might end up
with a sub-optimal solution because, by selecting the features
one by one, the algorithm makes the implicit assumption that
they are independent, which might not hold true. Theoretical
foundations for the incremental version of the FS algorithms
has been proven by the authors in [34], [35]. It is worth
mentioning that a connected issue with problem (3) regards
the efficient evaluation of the MI, which might become pro-
hibitive even for datasets with a small number of samples.
We overcome this problem by adopting the MIToolbox [37],
a state-of-the-art tool for numerical optimization.
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B. CE-based feature selection algorithm

In this section, we describe the CE-based algorithm that
finds, in a finite number of steps, a solution that well approxi-
mates the one found by solving problem (2), while making
negligible the assumption of independence among features
introduced in problem (3). In other words, with CE-based FS,
instead of selecting one EA at a time, we select a set of EAs
jointly.

The CE-based algorithm is based on the following intuition:
if the set U contains only EAs, then I(U;y) → H(y),
which implies that H(y|U) → 0 [34], [35]. Note that
with our approach, we avoid the greedy research of the
set U among all the possible

(
m
k

)
solutions which realizes

H(y|U) → 0 . Instead, we adopt the stochastic approach.
Precisely, we associate each i-th feature with a random vari-
able zi ∼ Bernoulli(pi). The CE-based algorithm identifies
which variables zi, i = 1, · · · ,m must have pi → 1, so that
the objective function O(U(z)) = H(y|U) gets close to 0.
This is called Associated Stochastic Problem (ASP) [10]. In
this way, we get the optimal distribution of the binary vector
z through which we identify the features to be selected, i.e.
the i-th feature is selected if pi → 1. It is worth noting that
searching for the solution of the optimization problem through
the definition of the ASP has the advantage of addressing the
native problem in (2) as a convex problem.1

We formulate the ASP as a minimization problem, as shown
in Eq. 5. In the following we present the essential steps
that brings to its formulation. Briefly, we need to find the
probability distribution g(z,p) of the values in z equal to 1
that solves the equation:

Pr(O(U(z)) ≤ γ) =
∑
{z}

I(O(U(z)) ≤ γ) g(z,p) (4)

where I(·) is the indicator function of the event O(U(z)) ≤
γ, and γ is the minimum value for our objective function.
Precisely, γ at step t is calculated as the percentile 1 − β of
the objective function calculated by using the samples drawn
from the distribution g(z,p) at step t. Note that, the authors in
[10] recommend to set β in the range 0.9−0.95. The indicator
function is equal to 1 for all the possible configurations in z
that verify the event O(U(z)) ≤ γ, and 0 otherwise.

We estimate g(z,p) through the Likelihood Ratio (LR)
estimator with reference parameter p. Precisely, we apply
the LR theory of estimation [10] to define the following
optimization problem and to obtain the optimal value p∗ for
the distribution.

p∗ = argmin
p

1

S

S∑
j=1

I(O(U(zj)) ≤ γ) ln(g(zj ,p)) (5)

where Z = {z1, · · · , zS} is a set of possible samples drawn
from the distribution g(z,p).

As stated above zj = [z1j · · · zmj ] is a vector of independent
Bernoulli random variables where zij takes value equal to
1 with probability pi and 0 with probability 1 − pi. Hence,
g(zj ,p) can be written as:

1More details are in Section 4 of [10].

g(zj ,p) =

m∏
i=1

p
zij
i (1− pi)(1−zij) ; zij ∈ {0, 1} (6)

Given that the objective function of problem (5) is concave2,
we can solve it in closed form by imposing:

∂

∂pi

1

S

S∑
j=1

I(O(U(zj)) ≤ γ) ln(g(zj ,p)) = 0,

leading to:

pi =

∑S
j=1 I(O(U(zj)) ≤ γ)zij∑S
j=1 I(O(U(zj)) ≤ γ)

i = 1 · · ·m; (7)

In the CE-base algorithm the result in the equation (7) is
used for updating the distribution p as follows:

pi = (1− α)pi + α

∑S
j=1 I(O(U(zj)) ≤ γ)zij∑S
j=1 I(O(U(zj)) ≤ γ)

. (8)

The mathematical analysis about the choice of the parameter α
is provided in the Appendix-A of this work. Further indications
on the choice of α can be found in [10], [38], [39]. The
derivation of equations (5-7), as well as, the optimality of
g(zj ,p) are proven in [10].

The solution of the problem defined in (5) is achieved
through Algorithm 1: it starts with an initial guess of pG; S
Bernoulli random samples of size m each (line 4) are drawn at
each step t. For each sample zs, the values of the conditional
entropy (line 7) are computed on the dataset where the only
active features are those corresponding to the elements equal
to one (line 6) in zs. The subset selection is shown in the
procedure GETSUBSET(X, z) (lines 15-26). Then we compute
p(Zt) (lines 9-10) as in Eq. (7) and finally we update the
current estimate of the probability vector p (line 11) as in Eq.
(8).

V. FEDERATED FEATURE SELECTION

In this section we present how we exploit the CE-based
FS algorithm presented in Section IV and summarised in
Algorithm 1 to design our FFS algorithm FFS, described
in Algorithms 2 and 3. They cover, respectively, the two
functional blocks of FFS, i.e., Algorithm 2 is executed by the
ES to coordinate the distributed FS and Algorithm 3 runs on
the clients. The FFS is an iterative procedure. At the beginning,
the ES sends to the clients involved in the process a vector
pG ∈ Rm where each element represents the probability that
each feature has to be selected according to its importance
(lines 8-10 of Alg.2). Each element of pG is initialized to 0.5,
i.e., this is a common choice when using the CE algorithm.
The vector pG represents a piece of global information that
the ES shares with the client nodes. Each client l uses pG to
initialize its local copy of the probability vector, i.e., pl ← pG
and runs the local FS procedure based on its local data (lines

2The logarithm is a concave function, the indicator function is 0 or 1 so
the weighted sum of concave functions gives still a concave function.
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Algorithm 1 CE-based algorithm for FS

1: procedure CE(X,y,p, T,S)
2: for all t = 1, . . . , T do
3: Zt ←GENRNDSAMPLE(S,p) . Z ∈ {0, 1}S×m
4: u← {}
5: for all zs ∈ Zt do . zs ∈ {0, 1}1×m
6: U← GETSUBSET(X,zs)
7: u← u ∪H(y|U)
8: end for
9: γ ← COMPUTEPERCENTILE(u, 1− β)

10: p(Zt)←COMPUTENEWPROB(u, γ, α) . Eq. (7)
11: p← (1− α)p+ αp(Zt) . Eq. (8)
12: end for
13: return p
14: end procedure
15: procedure GETSUBSET(X,z)
16: U← {}
17: for all x ∈ X do
18: u← {}
19: for all j = 1, . . . ,m do
20: if zj == 1 then
21: u← u ∪ xj
22: end if
23: end for
24: U← U ∪ u
25: end for
26: end procedure

2-3 of Alg. 3). At the end of the local FS, the l-th client sends
to the ES the locally updated probability vector plnew

and a
control information regarding the cardinality of its local data
nl whose purpose will become clear in the following. The
ES computes the new global probability vector (line 13 of
Alg. 2) by aggregating the ones received from the clients as
expressed in Equation (9) and discussed later on. The updated
vector pG is transmitted to the nodes that run Algorithm 3 by
updating the local probability vector with the new global one.
This procedure iterates until the distribution global probability
vector converges to a stable one. In FFS we check convergence
by comparing the distribution of the current global probability
vector pG to the previous one pGold

using the Kolmogov-
Smirnov statistical test for two one-dimensional samples (KS-
test). The procedure stops when (i) the p-value of the KS-test is
greater than a fixed threshold3 τ1 = 0.995 and, (ii) its variation
from the previous one is less than τ2 = 10−6 (line 7 of Alg.
2).

The core point of Algorithm 2 regards the aggregation step
(line 13 of Alg. 2) where the ES merges the local probability
vectors into the global one which, in our solution, is defined
as a weighted average. The main idea is to merge the local
probability vectors by a weighted average where the weights
(computed as in Eq. (10)) serve the twofold purpose of (i)
considering more (or less) those vectors that are computed
from larger local datasets and (ii) defining a common support

3We empirically observed that the closer τ1 to one, the more accurate the
solution.

among all the probability vectors. This second aspect is quite
crucial for the consistency of the computation in Eq. (9).

Formally, we assume that each node acquires a number of
i.i.d. records nl to perform the FS, and that the nodes share
the same set of features X. The global probability pG used
for the FS can be written as follows:

pG =
∑
l

plωl, (9)

where pl is the solution of problem (5) at node l obtained by
using Algorithm 1, and ωl weights pl w.r.t. the other nodes,
whose formal definition is:

ωl =
nl∑
l

nl
. (10)

As anticipated, according to equation (10), we weight the
probability vector pl of node l proportionally to the size of its
local dataset compared to the whole amount of data present
in the system. In this way, we can contrast situations where
local datasets are heterogeneous w.r.t. the size.

In FFS, the updating scheme can be, at least in principle,
both synchronous and asynchronous, provided that the set of
nodes involved in the process does not change over time.4

Precisely, we assume a system where the ES after having sent
the updated global probability vector, expects the nodes to
receive their local updates within a fixed time slot, after which,
it begins the aggregation step using only the information
received. Therefore, the number of updates used to compute
the new global probability vector might change because a
subset of nodes could not communicate their updates within
the deadline set by the ES. Regardless of the number of nodes
that contributed to the aggregation step during one round of
communication, the ES broadcasts the new global probability
vector pG to all nodes in the system. In this way, all nodes
start the new round of local computation from the same
starting point, and, consequently, we dramatically limit the
potentially detrimental effects deriving from the aggregation
of outdated local probability vectors. Moreover, as proved
by the convergence analysis provided in Appendix-A and
Appendix-B, independently from the updating scheme, FFS
converges in a finite number of steps to the very same solution
as running the CE in centralised settings i.e., with complete
access to the entire dataset.

It’s worth noting that our solution is able to cope with
feature redundancy in federated settings. Precisely, this repre-
sents an issue that might prevent the possibility of performing
the FS in federated settings. In fact, running a standalone FS
algorithm on different local datasets where there is redundancy
between features, different FSs might occur but with an
equivalent information content across all the AVs. This aspect
makes all the local selections completely useless regarding
the communication efficiency, due to the consequent lack of
agreement on the FS between the AVs. Conversely, since in
FFS the AVs share at each communication round their local

4Note that this condition does not imply that all nodes must be active during
the entire process. In fact, as we will show in Section VI our system is robust
to the presence of churning nodes.
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information, they may come up with a final agreement on
the FS. Summarising, even if there is redundancy between
features, the final selection is consistent among all the AVs
and, according to results presented in Section VI, it is also
accurate if compared to the centralized FS (i.e., when all the
local raw data are transferred onto the ES).

Algorithm 2 Server side FFS algorithm

1: procedure SERVER-NODE
2: v ← 0 . p-value of Kolmogorov-Smirnov test
3: τ1 ← .995
4: τ2 ← 10−6 . Thresholds to check convergence
5: pG ← {1/2 | ∀ pi i = 1, . . . ,m}
6: do
7: for all l ∈ L do
8: SENDTOCLIENT(l,pG)
9: end for

10: RECEIVEFROMCLIENTS(plnew
, nl)

11: pGold
← pG

12: pG ← UPDATEGLOBALPROBABILITY() . Eq. (9)
13: vold ← v
14: v ←KOLMOGOROVSMIRNOVTEST(pG,pGold

)
15: while v ≥ τ1 ∧ |v − vold| ≤ τ2 . repeat until

convergence is met
16: end procedure

Algorithm 3 Client side Federated Feature Selection algorithm

1: procedure CLIENT-NODE
2: pl ← RECEIVEFROMSERVER(pG)
3: plnew

← CE(Xl,yl,pl,T,S) . Algorithm 1
4: SENDTOSERVER(plnew

, nl)
5: end procedure

VI. NUMERICAL EVALUATION

In this section, we present the numerical results of our
compression method based on the FFS algorithm presented
in Section V. Before going through the results, we introduce
the datasets, the simulation settings, the methodology, and the
metrics used to evaluate our solution’s performance.

A. Dataset description and simulation settings

We based the performance evaluation of FFS on two
datasets, each one mapping one of the two use cases described
in Section III. The first one called MAV5 is a publicly available
dataset containing both 64×64 images and 6 Inertial Measure-
ment Units (IMUs) collected by a AV during a mission in a
controlled environment. The second dataset called WEarable
Stress and Affect Detection (WESAD) is a collection of data
sampled from heterogeneous biophysical sensors: ECG, EDA,
EMG, Temperature, Respiration and Inertial Measurements on
the three axes.

5dataset available at: https://tinyurl.com/mavmr01

a) MAV dataset: both images and inertial measurements
are synchronised to obtain a set of eRIDs. We pre-process
the raw images to extract more informative features as it is
customary in the computer vision domain. Feature extraction
eases the training of a machine learning model and, performs
a preliminary step of data compression. In fact, a raw image is
made of 4102 floats (64×64 pixels + 6 IMU readings) while,
after the feature extraction, it shrinks down to a vector of
size 2166 floats. In our settings, we extract the Histogram
of Oriented Gradient (HOG) features6, and we assume that
the feature extraction is accomplished directly on the AV,
which might be possible if equipped with a board of the kind
discussed in [40]. Note that the original dataset is unlabeled.
Therefore we labelled it in a way compatible with the original
context of positioning. To this end, we associated with each
eRID a label corresponding to the corresponding voxel.7 Table
I shows the structure of an eRID for the MAV; the first 2160
feature are HOG while the last 6 are IMUs, i.e., acceleration
(ACC) and angular velocity (AV). The whole dataset contains

TABLE I: Structure of a MAV eRID

0 1 2 ... 2158 ...

HOG #

2160 2161 2162 2163 2164 2165

ACCx ACCy ACCz AVx AVy AVz

2911 labelled records. To simulate the federated data collec-
tion, we split it into 10 disjoint partitions of size 291 records
such that each partition is i.i.d. w.r.t. the entire dataset. Each
subset represents a AV. The data collection is slotted; hence,
the AVs draw with replacement a random sample from their
local dataset for each time slot. This sample is used to perform
the local computation of the distributed algorithm followed
by a communication round for synchronising the AVs on the
local FS. Each random draw’s size is accumulated to trace the
cache necessary for storing data until the completion of the
distributed FS.

b) WESAD dataset: it provides data in terms of features
and labels already useful to perform the detection of stress
and affection state of human subjects. The dataset contains
readings from two devices, i.e., Respiban and Empatica E4,
positioned i) on the chest and ii) on the wrist of human
subjects. Each device is equipped with multiple sensors moni-
toring several physiological parameters. Since the two devices
have different operating settings, we focused on the Respiban,
whose collection rate is homogeneous for all its sensors. The
dataset contains readings collected from 17 human subjects,
which perform a predetermined protocol to induce the body
in one of the following states: 0-baseline, 1-amusement, 2-
stress, 3-meditation, 4-recovery. The data collected for each
subject amounts to ∼3.6M records, equivalent to ∼220 MB.
A complete description of the dataset is provided in [33].
Table II shows the structure of an eRID for the WESAD.
Due to the huge size of the dataset we used the data from

6HOG is a standard feature extraction methodology used in computer vision
and image processing to create an image descriptor that captures the spatial
relations between different portions of it [40].

7A voxel represents a value on a regular grid in three-dimensional space.
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TABLE II: Structure of a WESAD eRID

0 1 2 3 4 5 6 7

ACCx ACCy ACCz ECG EMG EDA TEMP. RSP

5 out of 17 subjects, corresponding to ∼1.1 GB. The data is
already partitioned according the subject ID, thus we keep the
original partitions. In our simulated scenario, each partition
corresponds to an edge device holding the data of only one
subject, i.e., no artificial data re-distribution is performed. As
for the previous scenario, each device executes FFS using only
its own data.

We evaluate the performance of our methodology according
to two metrics:
• accuracy: to assess the quality of the distributed FS
• network overhead (NOH ): to evaluate the impact in terms

of network traffic generated by our methodology
Our target is to compress the data to be transmitted, without
significantly degrading its informative content.

Accuracy metric: The quality assessment is a two-stage
procedure. First, we set the baseline validating the quality of
the features selected by CE executed in a centralised setting,
i.e., we train a classifier using the set of selected features (CE-
CFS) on the entire dataset, and we compare its prediction
performance with that of a second classifier trained on the
whole set of features (NO-FS). If the CE-CFS performance on
a smaller group of features is comparable or equivalent with
the one identified by NO-FS, we consider the FS valid. To
strengthen this initial evaluation, we compare the centralised
results of CE-CFS with other three reference FS algorithms:
mRMR [15], HJMI [16] and ANOVA [20]. As we will show
in the following, for all these benchmarks we have to specify
the size k of the features selection. Since we are interested in
assessing the quality of the FS and for the sake of fairness, we
set k equal to the size of the FS obtained by CE-CFS (which
finds such a number in a completely autonomous way).

Then, we repeat the same procedure training another clas-
sifier on the subset of features obtained from our FFS and we
compare its performance with all the centralised methods. We
split the dataset in train (80%) and test set (20%). The train
set is used for both FS and model training, while the test is
used for performance evaluation only. The accuracy is defined
as the average of correctly classified records

A =
1

N

N∑
i=1

I(ŷi = yi), (11)

where N is the size of the test set, I is the indicator function,
ŷi and yi are the i-th predicted and true label, respectively.
For the sake of statistical significance, the training is repeated
ten times, changing the initialisation of the classifier and the
composition of training and test set. The reported results are
average values accompanied by confidence intervals at 95%.

Network Overhead: we measure the network traffic gen-
erated by our solution as follows. On the one hand, we
compute the network overhead generated by the FFS network
defined as:

NOH = R ∗ L ∗ 2 ∗ (z + 1 + b) (12)

where R is the number of communication rounds before all the
L AVs involved in the distributed FS converge to a solution,
z+1 is the number of nonzero floating point numbers belong-
ing to the probability vector pl in (9) exchanged between the
AVs during each round plus the weight ωl in (10). The symbol
b is the size of the bit map used to reconstruct the position
of the non-zero elements exchanged between the AVs and the
edge server. On the other hand, we compute the compression
obtained through the FS as:

C = |F |/|D| (13)

where F ⊆ D is the selected set, and D is the entire set of
features.

B. Settings the baseline: FS in centralised settings

The following results regard the first stage of the validation,
i.e., the accuracy of a classier trained using only the subset of
features identified by the CE algorithm w.r.t the performance
obtained by a classifier trained on the entire dataset. For this
stage of validation, we train a Neural Network (NN). For MAV
the NN is a multi-layer perceptron with two hidden layers of
300 and 100 neurons each. For WESAD, we used a deep
NN with four hidden layers of 300,100,64,32 neurons each.
The input layer’s size depends on the number of features
selected, while the size output layer is 37 and 5 for MAV
and WESAD, respectively. The activation function is “ReLU”8

and the optimizer is “Adam”9 for both the models. These
are very common settings which typically provides good
performance [41].

TABLE III: Comparison between NO-FS and CE-CFS on
MAV and WESAD dataset.

Dataset Method Size FS C Accuracy
(# record) (#) (%) (%)

MAV

NO-FS 2911 2166 (All) - 97.5±0.4
CE 2911 18 99 96.7±0.5
MRMR 2911 k=18 99 95.0±0.5
ANOVA 2911 k=18 99 95.0±0.4
HJMI 2911 k=18 99 96.3±0.7

WESAD

NO-FS 15∗106 8 (All) - 94.3±0.7
CE 15∗106 4 50 94.6±0.8
MRMR 15∗106 k=4 50 94.3±0.8
ANOVA 15∗106 k=4 50 94.5±0.5
HJMI 15∗106 k=4 50 90.2±1.6

Results in Table III show that CE algorithm executed on
both datasets in centralised settings can autonomously identify
a minimal set of features (i.e., 18 for MAV and 4 for WESAD)
with the very same informative content of the whole feature
set. The accuracy obtained by both the NN models trained
on the CE’s FS is statistically equivalent to the one obtained
on the whole set of features, inducing a quite impressive
compression rate (C): up to 99% and 50% of network traffic

8REctified Linear Unit
9Stochastic Gradient Descent with ADAptive Momentum
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Fig. 4: Centralised FS probability for HOG and IMU. The selected features are those with probability greater than 0.99 (above
threshold).
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Fig. 5: FFS probability for HOG and IMU. The selected features are those with probability greater than 0.99 (above threshold).

for MAV and WESAD, respectively. As a further confirmation
of the CE results, we perform the FS using other three
reference benchmarks, i.e., MRMR, ANOVA, HJMI. Note that
all these approaches select a subset of features with the very
same informative content of CE. However, we point out that
for all of them we have to decide beforehand the number of
features to be selected. This represent a major shortcoming
that, instead, CE-based methods overcome by design, since
the number of features to be selected is a byproduct of the
CE algorithm. Finally, these results assess the suitability of
the CE algorithm on both datasets, thus we can use them as a
benchmark for the evaluation of our distributed FFS method.

C. Evaluation of Federated Feature Selection

We focus now on the analysis of our FFS method. We
compare its performance to those obtained by CE executed
in centralised settings (CE-CFS). We recall that, in federated
(distributed) settings, each AV can process only the data it
locally collects.

First we assess the performance of FFS in a static distributed
scenario where the AVs have collected all the data and, before
sending them to the ES, they perform the distributed FS in
order to transmit only the very necessary information.

Table IV reveals that for MAV dataset, FFS finds a set
of features that, although slightly larger than that found by
CE-CFS (24 instead of 18), it has the very same informative

TABLE IV: Comparison between CE-CFS and FFS on MAV
and WESAD.

Dataset Method Size FS C Accuracy
(# obs.) (#) (%) (%±C.I.)

MAV
CE-CFS 2911 18 99 96.7±0.5
FFS 291 24 99 96.7±0.4

WESAD
CE-CFS 15M 4 50 94.6±0.8
FFS 3M 4 50 94.6±0.8

content, i.e., the accuracy of the NN model trained on both
subsets of features are statistically equivalent. As we can
see, the results also hold for the WESAD dataset. Precisely,
FFS selects the same number of features identified by CE-
CFS. Specifically, FFS and CE-CFS select the same set, i.e.,
the features with indexes [1,2,5,6], explaining why the NN
achieves the same prediction accuracy. We motivate such an
exact correspondence between FFS and CE-CFS selection
considering that the small size of the complete feature set
of WESAD might prevent a high number of feature subset
with equivalent informative content. Such an assumption also
holds for the MAV dataset. In fact, as we can see in Figures 5a,
4b FFS and CE-CFS select the same subset of IMU features.
Conversely, when the set of features is more redundant, as
it is for the HOGs, there might exist several subsets holding
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the same informative content. The comparison in Figures 5a
and 4a confirms such a claim because the two feature sets
are overlapping but not equal, yet the overall accuracy is
comparable.
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Fig. 6: FFS process on MAV dataset.

This result provides a preliminary insight regarding the
effectiveness of the Bayesian aggregation used to merge the
information extracted by the AVs from their local datasets.
Precisely, Figure 6 shows the number of selected features at
each communication round for the MAV case. As we can see,
in the beginning, the cardinality of FS remains almost constant.
In this phase, due to the partitioning of data in separated
datasets, the CE algorithm has not yet enough knowledge to
identify the most informative features. However, the number
of features added to the selection starts increasing following
an almost-linear trend in a few communication rounds (16).
The process ends after 44 rounds, i.e. when the distribution of
probabilities indicating the most informative features becomes
stable.

TABLE V: Performance of FFS varying the data processed
during a communication round

Dataset Size FS Accuracy Rc C NOH Cache
(# obs) (#) (%±C.I.) (#) (%) (MB) (MB)

MAV

291 24 96.7±0.4 44 99 16 217
203 26 96.5±0.3 37 99 13 128
145 34 97.0±0.3 55 98 20 134
87 59 97.2±0.3 43 97 15 63
29 41 97.2±0.4 53 98 19 26

WESAD
3·106 4 93.6±0.8 11 50 0.009 2·103

1·106 5 93.8±0.5 10 38 0.008 1·103

Our method’s capability to converge quickly to the final and
most informative set of features directly affects the amount of
network traffic generated upon the completion of the FFS. To
confirm such a claim, we performed a set of simulation in
which we run FFS varying the size of the local dataset avail-
able at the edge device. In this way, we want to analyse our
method’s robustness when each edge device can access only a
limited amount of data. In Table V we report the size of data
used for each update (Size), the number of selected features
(FS), the accuracy, the number of communication rounds upon

convergence (Rc), the compression obtainable with FFS (C),
the network overhead generated by FFS (NOH ), and the size
of the cache needed to collect the data before starting the
data transmission. Overall, we observe that, for both datasets,
decreasing the size of data processed at each round does
not affect significantly the number of communication rounds
needed by FFS to converge to a solution, which results in
limiting the network overhead generated during the process.
Specifically, considering a dynamic data collection process as
in the MAV-related use case, we see that the network overhead
is always i) less than the storage needed to cache the data
before starting the transmission and ii) negligible considering
the compression achieved (i.e., up to 99%). Interestingly, the
same holds also for the WESAD scenario. In this case, the
network overhead can be considered negligible w.r.t. the size of
the data processed (< 1MB) if compared with the compression
rate achieved by FFS (up to 50%).

TABLE VI: Performance of FFS varying the percentage non-
faulty AVs per communication round

Dataset ρ FS Accuracy Rc C

(#) (%±C.I.) (#) (%)

MAV
0.2 48 97.0±0.4 37 98
0.3 80 97.2±0.3 35 96

WESAD
0.2 4 94.5±0.4 9 50
0.3 3 67.4±0.4 7 63

TABLE VII: Local FS from competitors approaches

Dataset Method Local FS intersection
(%)

MAV (k=18)
MRMR 0
ANOVA 0
HJMI 0

WESAD (k=4)
MRMR 100
ANOVA 100
HJMI 100

In Table VII we show how the benchmark methods MRMR,
ANOVA and HJMI behave when run in isolation on local
dataset. Each method has been configured to select the optimal
number of features found in a centralised setting. This is
clearly an unrealistic situation that we use to demonstrate
the limitations coming from running a non-FFS algorithm in
federated settings (i.e., on partial datasets). Precisely, taking
into account the MAV dataset, all the algorithms run in
isolation on each AV, find a different subset of features (i.e.,
null pairwise intersection). No agreement between AVs on
the subset of features means that all the local data must
be transmitted to the ES, causing a non negligible waste of
network resources. We motivate this behaviour with the fact
that the original subset of features is redundant, as in MAV,
running the FS in isolation on portions of data is not a winning
strategy. Conversely, when the original subset of features is
less noisy, as in WESAD, it is more likely that all the AVs find,
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completely by chance, the same subset of features, i.e., without
a way to coordinate the features selection in a consistent and
provable way, there are no guarantees for the AVs to identify
a consistent and shared subset of features.

Finally we analyse the FFS performance in presence of
faulty nodes, i.e., a node experiencing issues in transmitting
successfully its updates to the ES. Note that, the causes
preventing the updates’ transmission might relate to either
communication-related (i.e, a noisy channel) or the presence
of a power-saving policy regulating the duty cycle of AVs
switching off the network interface for a time corresponding
to a communication round. The aim is assessing the robustness
of FFS when few nodes cannot contribute to the distributed
learning at each communication round. To this end, we simu-
late a scenario where, at each communication round, a random
number of AVs fail to communicate their updates to the ES.
We model the fault of a AV performing a random draw from
a Bernoulli distributed random variable, with parameter ρ.
At the beginning of the simulation we set ρ and, for each
communication round and for each node, we perform a random
draw, where 0 means faulty and 1 means non-faulty. This
means that the updates of a faulty AV are not considered
for the execution of Algorithm 2. We consider a fault rate
ρ equal to 0.2 and 0.3, meaning that at each round there are,
on average, 2 and 3 faulty AVs out of 10, respectively. Such
values can be reasonably assumed as upper bounds to evaluate
the performance of the system. Higher rates would reveal that
the scenario is not reasonably set up to run with any sort of
reliability.

In Table VI we report the performance of FFS, for both
datasets. For the MAV dataset, although FFS selects 2× and
3.3× more features than the case when all the AVs contribute
to the process (see TableIV), the compression rate deteriorates
by 1% and 3%, respectively. The quality of the selection is
confirmed by the accuracy that is statistically equivalent to the
case without faulty AVs. Regarding WESAD, we notice that
for ρ = 0.2 FFS performance is equivalent to the case with all
non-faulty AVs. Conversely, for ρ = 0.3 FFS selects a smaller
(i.e., 3 instead of 4) and less informative subset of features,
as confirmed by the accuracy degradation. The reason is that
the information collected by ES at each round is not enough
to select, globally, the most informative features. A final
comment is about the network overhead, which can be further
reduced, limiting the number of contributing AVs during a
communication round. In fact, Table VI suggests that there is
a trade-off between accuracy, compression rate, and number of
contributing AVs through which we might optimise both the
compression and the resources spent to find it. Moreover, there
is a limit below which saving resources becomes detrimental
to the learning process. However, understanding the nature of
such a trade-off is left to future works.

VII. CONCLUSION AND FUTURE DIRECTIONS

The increasing development of ADSs can leverage AI to
abstract both services and applications from the details of fast-
flowing low-level data, such as sensor feeds. According to the
Edge computing paradigm, a cyber physical system, namely

AV, is deputed in collecting data from sensors and perform a
lightweight round of computation, by extracting features from
raw data and selecting those that maximise the knowledge on
the learning task. Since the data gathering process is performed
locally by each AV, the selected features might represent a
partial subset of those that characterize the phenomenon and
might be inconsistent to learn the model of the underlying pro-
cess. We tackle this problem, by proposing a novel Federated
Feature Selection (FFS) algorithm, exploiting a distributed
computing paradigm applied to AVs. In FFS, AVs collaborate
to iteratively come up with the minimal set of features selected
from their local datasets, to be used as a compression schema
for transmitting their data to the Edge Server. Feature selection
is done by leveraging on the Mutual Information metric and
the solution of the optimization problem is achieved through
Cross-entropy method. The aggregation algorithm of the FFS
solution is based on a Bayesian approach through which
we merge the control information sent by the AVs to the
ES. To test the proposed FFS algorithm we presented two
different learning tasks, by using real-world datasets: MAV
and WESAD. The former was suitable to test FFS with images
and inertial measurements, which characterize the position
of an AV in the environment. The latter was suitable to
characterize time series produced by human state monitoring
systems, like ECG, EDA, EMG, etc. The results show that
our FFS algorithm identifies a minimal subset of informative
features without sharing any raw data between AVs in the
process. FFS is robust to feature redundancy, i.e., in presence
of high rates of redundant features, all the AVs can reach a
consensus on the FS achieving a compression rate up to 90x
on the selected datasets. Finally, the quality of the feature
selection is maintained, i.e., a learning model trained on the
selected features is as accurate as a model trained on the whole
feature set. Concluding, the proposed framework is general
and modular, i.e., it can be applied to every incremental
FS algorithm that associates a probability to each feature.
We plan to investigate how to turn it into a framework to
include more FS algorithms. Moreover, our solution is built
on few simplifying assumptions: local datasets are iid and
data are labelled. Therefore, for the future we plan to extend
it to include non-iid data in possibly unsupervised or semi-
supervised scenarios.
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APPENDICES

A. Proof of convergence of the federated method
In this section, we analyze the probability that the distri-

bution p converges toward the optimal solution p∗, when the
Algorithm 1 is applied in a centralized way. Then, we extend
this result for the proposed federated algorithm.

The convergence analysis is based on the results in [38],
[39]: following that notation, we introduce some prelimi-
nary definitions. In the CE, the candidate solutions Zt =
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{z1 · · · zS} generated at iteration t are iid with distribution
g(z,pt−1).

We define Zt := {zj,τ 6= z∗ j = 1 · · ·S, τ = 1 · · · t} ⊆ Zt
as the subset of Zt of the samples generated up to t that do
not provide the optimal solution z∗. The probability Pr(Zt)
that the optimal solution is not available until t can be found
as in the following:

Pr(Zt) = Pr(Z1)

t∏
τ=2

Pr(Zτ |Zτ−1) =

Pr(Z1)

t∏
τ=2

(Pr(zτ 6= z∗|Zτ−1))S (14)

The equation (14) comes from the statistical independence
of S identically distributed samples generated by the algorithm
at iteration t. The upper bound for the probability Pr(zτ 6=
z∗|Zτ−1) that the optimal solution was unavailable until τ is
derived in [38], [39] as:

Pr(zτ 6= z∗|Zτ−1) ≤ 1− Pr(z1 = z∗)

τ−1∏
i=1

(1− αi)m (15)

where

Pr(z1 = z∗) =
m∏
i=1

(
pi(zi = 0)I(z∗i = 1) +

(
1− pi(zi = 0)

)
I(z∗i = 0)

)
(16)

Note that due to the definition of Z1 its probability is
Pr(Z1) = 1− Pr(z1 = z∗).

Combining equations (15) and (16), equation (14) becomes:

Pr(zt 6= z∗) ≤(
1−

m∏
i=1

(
pi(zi = 0)I(z∗i = 1)+

(
1−pi(zi = 0)

)
I(z∗i = 0)

))
·

t∏
τ=2

(
1−

m∏
i=1

(
pi(zi = 0)I(z∗i = 1)+

+
(
1− pi(zi = 0)

)
I(z∗i = 0)

) τ−1∏
j=1

(1− αj)m
)S

(17)

The right side of the equation (17) is close to 0 for t→∞,

if
∞∑
τ=1

τ−1∏
j=1

(1−αj)m →∞, i.e., the sequence of the parameters

αj are generated by the function 1
j·m , as proven by authors

in [42] (section 3.7). Note that, equation (17) can be used
to determine numerically a combination of parameter values
that yields a desired minimum probability of generating the
optimal solution within a time t.

Therefore, Algorithm (1) definitely provides the optimal
solution when applied in a centralized way. We extend this
result for the federated approach as follows. The AVs draw
distinct samples z1 · · · zS independently from an identical
distribution, as stated in the section V. This means that the
node l finds an optimal solution for its z1 · · · zS that differs for
that obtained by the centralized algorithm. Hence, combining

the local distributions into the global one as in equation (9), we
need to prove that the local node can receive from the server
a federated solution that is close to the solution provided by
the centralized scenario, for t→∞.

Defining the Hamming’s distance L(z∗, zτ ) between the
sample zτ at the time τ and the optimal solution z∗, the
set Z̃t := {zi,τ | L(z∗, zi,τ ) = ml} contains the samples
generated up to time t that differs for ml entries from the
optimal solution z∗.

As in (14), we can calculate the probability Pr(Z̃t) as
follows:

Pr(Z̃t) = Pr(Z̃1)

t∏
τ=2

Pr(Z̃τ |Z̃τ−1) (18)

Exploiting again the results in [38], [39], and the statis-
tical independence of the S identically distributed samples
generated by the algorithm at a given iteration, the following
equation holds for the conditional probability for the given
node l:

Pr(Z̃τ |Z̃τ−1) =
[(m
ml

)
Pr(z1 = z∗1)·

τ−1∏
i=1

(1− αi,l)m−ml ·
(
1− Pr(z1 = z∗1)

τ−1∏
i=1

(1− αi,l)ml
)]S

(19)

Note that, the result provided in equation (18) refers to the l-
th node. Hence, the global solution is obtained as the weighted
average over all the local probabilities Pr(Z̃l,t) as:

PrG(Z̃t) =
L∑
l=1

Pr(Z̃l,t)ωl (20)

where ωl are computed as in equation (10).
The probability in (20) is close to 0, for t → ∞, if
∞∑
τ=1

τ−1∏
i=1

(1 − αi,l)ml → ∞ ∀ l = 1, . . . , L. Note that, if the

sum of products of (1 − αi,l)ml is close to ∞ also the sum
of products of (1 − αi,l)m−ml is close to ∞. The sequences
of the αi,l parameters guarantee the convergence also in this
case. Indeed, the parameters are generated locally by the node,
using the function 1

m·t .

B. Analysis of the global probability computational effort
In this section, we analyze the probability distribution of

the number of iterations t needed to evaluate the global
probability in (9). We address this issue by exploiting the
result in (20), which describes the probability that the global
solution obtained at the iteration t differs by ml entries from
the optimal one. Hence, the probability that the global solution
is reached within t can be written as follows:

PrG(zt = z∗) = 1−
m∑

ml=1

PrG(Z̃t) (21)
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We can exploit the following inequality (1 − α)m ≤
e−αm | 0 ≤ α ≤ 1, m ≥ 0 to find the upper bound shown in
the following:

PrG(zt = z∗) ≤

1−
m∑

ml=1

L∑
l=1

Pr(Z̃1)

t∏
τ=2

[(
m

ml

)
Pr(z1 = z∗1)(

exp

(
−
τ−1∑
i=1

αi,l(m−ml)

)
−

Pr(z1 = z∗1) exp

(
−
τ−1∑
i=1

αi,l m

))]S
ω(l) (22)

The difference between exponentials in equation (22) goes
to zero faster than the binomial coefficient goes to infinity, as
m increases, if the coefficient α satisfies the conditions verified
in the previous appendix. Thus equation (22) can be used to
evaluate the probability distribution of the number of iterations
t = 1, 2 . . . ,∞ required to converge to the optimal global
solution. The numerical analysis shows an average value of
13 iterations to converge by using the parameters presented in
the section VI, which is affordable for many edge devices like
Nvidia Jetson Nano or RaspberryPi.
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[19] F. Guarino, P. Cassarà, S. Longo, M. Cellura, and E. Ferro, “Load match
optimisation of a residential building case study: A cross-entropy based
electricity storage sizing algorithm,” Elsevier Journal of Applied Energy,
vol. 154, pp. 380–391, 2015.

[20] R. M. Heiberger and E. Neuwirth, “One-way anova,” in R through excel.
Springer, 2009, pp. 165–191.
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