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Federated Feature Selection for Cyber-Physical
Systems of Systems

Pietro Cassará , Alberto Gotta , Member, IEEE, and Lorenzo Valerio

Abstract—Autonomous vehicles (AVs) generate a massive
amount of multi-modal data that once collected and processed
through Machine Learning algorithms, enable AI-based services at
the Edge. In fact, only a subset of the collected data present infor-
mative attributes to be exploited at the Edge. Therefore, extracting
such a subset is of utmost importance to limit computation and com-
munication workloads. Doing that in a distributed manner imposes
the AVs to cooperate in finding an agreement on which attributes
should be sent to the Edge. In this work, we address such a problem
by proposing a federated feature selection (FFS) algorithm where
the AVs collaborate to filter out, iteratively, the less relevant at-
tributes in a distributed manner, without any exchange of raw data,
thought two different components: a Mutual-Information-based
feature selection algorithm run by the AVs and a novel aggregation
function based on the Bayes theorem executed on the Edge. The
FFS algorithm has been tested on two reference datasets: MAV
with images and inertial measurements of a monitored vehicle,
WESAD with a collection of samples from biophysical sensors to
monitor a relative passenger. The numerical results show that the
AVs converge to a minimum achievable subset of features with both
the datasets, i.e., 24 out of 2166 (99%) in MAV and 4 out of 8
(50%) in WESAD, respectively, preserving the informative content
of data.

Index Terms—Artificial intelligence, autonomous system,
feature selection, federated learning, human state monitoring,
Internet of things, machine learning.

I. INTRODUCTION

AUTOMATION enables a Cyber Physical System of Sys-
tems (CPSoS) to run with a minimum human assistance

and evolves into autonomy when the human is taken out of the
sensing, decision, and actuation loop. Automation can be used
to operate a CPSoS comprising complex, dynamic, virtual and
physical resources, such as telecommunication networks, com-
puting units, software, sensors, and machines [1]. Humans can
interact with an autonomous system either as passive end-users
(such as passengers in autonomous transportation system) or
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rather as active co-operators in a mutual empowerment relation-
ship towards a shared goal. Such cooperative, connected, and
autonomous systems have the potential to be a game-changer in
multiple domains if they will be capable of positively exploiting
such an inescapable human factor. The increasing development
of semi-Autonomous Driving Systems (ADSs) poses the chal-
lenge of taking the end-user, in the middle of the evolution
process toward fully ADSs. Aside from vehicle control, a CPSoS
needs to monitor the comfort/discomfort of the passenger, as
well, to improve its well-being and to acknowledges the degree
of safety and satisfaction perceived about the ADS. Artificial
Intelligence (AI) is a fundamental technology for deploying the
future CPSoS for ADSs [2]. The stringent computational and
memory requirements for Machine Learning (ML) algorithms
will impose a significant rethinking of the underlying computing
and communication system and will have to fit the constraints of
the onboard units. Information extraction should follow as much
as possible optimal criteria, cooperating with the inherently
distributed nature of the automotive scenario.

Moreover, local processing of information can also be an
advantage in specific scenarios with intermittent connectivity
or when data privacy is a key issue [3]. Hence, reducing the
transfer time needed of either raw data or the relative features
is of the utmost importance in determining the performance of
computation offloading. Intuitively, traditional data compression
techniques [4] could reduce such a delay component, but will
also degrade the relative classification performance [5], pro-
longing the training phases as well as degrading the inference
performance.

Conversely, when information extraction algorithms produce
massive streams of features, selecting the most relevant ones to
feed a ML model becomes very convenient, both in terms of
compression and accuracy preservation. Such an operation is
known as Feature Selection (FS) [6] and allows for achieving
simpler and, therefore, more efficient ML-based models [7].

This work focuses on feature selection efficiency within a
fleet of Autonomous Vehicles (AVs), which collect, through
their sensors, multi-modal raw measurements. Collected data
need to be pre-processed and delivered to feed a remote edge
server for inference tasks. Such a procedure can introduce in-
formation redundancy, which leads to a waste of computing and
communication resources. The AV ensemble aims at limiting
the transmission to the top relevant features only. However, just
a subset of the top-features can be extracted from each local
data collection w.r.t. the whole top-set extracted from the union
of all the local datasets but in a centralized manner. In fact,
the former case may lead to an inconsistent model w.r.t. to the
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Fig. 1. Feature selection and aggregation components of the proposed FFS
system.

latter. Therefore, the AVs, shall participate to a collaborative FS
process, in order to exploit the whole information in a federated
manner. We tackle this problem, by proposing, for the first
time, a Federated-Feature Selection (FFS) algorithm, exploiting
a distributed computing paradigm applied to AVs. In FFS all
AVs collaborate to come up with the minimal set of features
selected from their local datasets.

The proposed FFS system is made up of two components
provided in Fig. 1:
� a local FS process runs on each AV and aims at generating

a local distribution probability that ranks the information
associated to a given feature, according to the Mutual
Information (MI) metric [8], [9], which is solved by using
the Cross-Entropy (CE) [10].

� An aggregation algorithm executed on the Edge Server
(ES) that combines the local estimates received from the
AVs. The aggregation algorithm is based on a Bayesian
approach to merge the local information into a global
one.

The messages delivered by AVs contain probability vectors
where each element is the probability to select that feature. The
ES returns the “federated” probability vector which is derived
by the aggregation of the vectors received by the AVs, as detailed
in the following, to replace each of the local ones. Note that, the
proposed approach does not need to share any local raw data
but only the estimates of the local most informative features.
Moreover, it guarantees that all the AVs reach a consensus on
the subset of the most informative features, after a finite number
of communication rounds, i.e., the messages exchanged between
the AVs and the ES.

As we show in the paper, the proposed algorithm (i) signif-
icantly limits the control messages exchanged during the FFS
process and (ii) provably let the AVs converge to a subset of top
features, which effectively reduce the information stored and
transmitted by the AVs. Specifically, numerical results show that,
on reference benchmarks, our solution limits data processing
and transmission, by removing up the to 99% of redundant
features from the selected datasets, without loss of accuracy on
the learning model.

Summarising, the novel contributions of this paper are:
� A novel FFS algorithm based on the MI CE (client-side)

on the AV and a Bayesian aggregation approach on the ES.

� The theoretical proof that such an algorithm converges to
a stable solution in a fixed number of iterations.

� An extensive numerical evaluation tested on two real-world
datasets that shows the efficiency of our solution.

The paper is organized as follows: related works are presented
in Section II; the reference scenario and the system assumptions
are presented in Section III; the theoretical background underly-
ing the proposed feature selection approach is presented in Sec-
tion IV; the federated version of the feature selection algorithm
in presented in Section V; Section VI presents the experimental
results of a study case with two real world datasets, belonging
to different application domains; conclusions in Section VII.

II. RELATED WORKS

A. Feature Selection

Many FS procedures have been proposed in the literature.
In [6], [11], [12] authors provide a comprehensive overview
of the existing methods. Additionally, they consider the most
important application domains and review comparative stud-
ies on feature selection therein, in order to investigate, which
methods outperform for specific tasks. Authors highlight that FS
is based on the identification of the relevance and redundancy
provided by the features with respect to a class attribute function.
The main approaches of FS fall into three categories: filtering,
wrapping, and embedded methods. This categorisation is based
on the interaction between the selected features and the learning
model adopted to take a decision. The output of the wrapping
and embedded methods is tightly connected to the learning
model that uses the selection. Therefore, with these methods FS
and model training cannot be uncoupled. Conversely, filtering
methods are suitable for being used regardless the presence of a
learning model to train.

As shown in [6], [11], [12], most of the well-known filtering
algorithms use information-based metrics for FS, and can deal
with samples of variable lengths, as presented in [13], [14]. A
suitable information-based metric for the FS is the MI. MI has
gained increasing popularity in data mining, for its ease to use,
effectiveness, and strong theoretical foundation. mRMR [15]
and HJMI [16] are some of the most used methods that exploit
MI. These approaches rank the features according to the max-
imization of the MI and let the user to select a desired subset
k. Differently, the proposed algorithm automatically select a
minimal subset of relevant features, also capturing the mutual
dependencies. Note that the formulation of the underlying op-
timization problem is NP-Hard [8], [9], i.e., MI-based feature
selection problem involves the integer programming or, in some
cases, the quadratic integer programming. In [17]–[19] authors
show how to adopt the CE approach to address such native
computational complex problems, for different application sce-
narios. Beyond MI, other filtering methods can use different
metrics, such as in [20] where the authors evaluate the variance
of all the features to measure the impact that each of them has on
the learning process. This method relies on the concept that the
features with zero variance add no information, by considering
the relation between the target variable and feature vectors.
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To the best of our knowledge, all these algorithms are designed
for being executed in a centralised setting, i.e., under the assump-
tion that the whole dataset is available to the learning agent.

B. Distributed Learning

Distributed learning is considered from several perspectives
in the literature. A very consistent body of work deals with
distributed learning based on the Federated Learning (FL)
framework. FL is a distributed learning framework initially
proposed by Google, where a large number of mobile or edge
devices participate in a collective and distributed training of a
shared model. [21], [22]. FL is an iterative procedure spanning
over several communication rounds until the convergence is
reached. Based on this paradigm, several modifications have
been proposed concerning (i) new distributed optimisation al-
gorithms [23]–[26], and (ii) privacy-preserving methods for
FL [27], [28]. Alternatively, other approaches do not rely on
a centralised coordinating server. In [29], [30], authors pro-
pose a distributed and decentralised learning approach based on
Hypothesis Transfer Learning. Similarly to the FL framework,
authors assume that several devices hold a portion of a dataset to
be analysed by some distributed machine learning algorithms.
The aim of [29], [30] is to provide a learning procedure able to
train, in a decentralised way, an accurate model while limiting
the network traffic generated by the learning process. The vast
majority of the distributed learning solutions, presented in the
literature, focus on the model’s training, giving the feature
engineering phase for granted. Until now, the idea of performing
FS, directly, on edge devices remains unexplored.

In the literature only few approaches cope with FS in
distributed settings. In [31], authors present a distributed
algorithm for FS based on the Intermediate Representation,
which aims at preserving the privacy of data, allowing the node
to exchange each other the data they hold. Therefore, in this
method FS is performed under the assumption that all data are
available to the FS algorithm. Moreover, the method presented
by the author depends from the specific learning model that
uses the selected features.

In [32], the authors propose an information-theoretic FFS ap-
proach called Fed-FiS. Fed-FiS estimates feature-feature mutual
information and feature-class mutual information to generate a
local feature subset in each user device. Then a central server
ranks each feature and generates a global dominant feature
subset using a classification approach. This approach has some
commonalities with ours, such as the adopted metric (MI) and
the federated settings. However, differently from [32] (i) we
provide directly the minimum set of relevant features instead
of a ranking, (ii) we propose an aggregation based on Bayes’
theorem that does not rely on any Machine Learning scheme to
finalise the selection (i.e., no regression or classification methods
are adopted in our solution), resulting in a computationally more
suitable approach for vehicular scenarios.

In light of this and to the best of our knowledge, this is
the first paper that proposes a federated mechanism of feature
selection explicitly designed to meet the requirements of the
CPSoS context.

Fig. 2. System architecture. Data sources characterize two different Cyber
Physical Systems (CPSs): the former that monitors the user through wearable
sensors, the latter relative to the ADS.

III. SYSTEM ASSUMPTIONS

In this section, we describe the reference scenario and the
system assumptions considered in this paper. As shown in Fig. 2,
we consider a set of AVs, implementing an ADS each, collecting
data generated by the sensors integrated in a CPSoS and that
collaborates with the others ADSs to learn a minimal, and most
informative set of features from their local datasets. To this end,
the AVs execute an in-network data filtering process through
our FFS approach to reach a consensus in identifying the most
informative feature subset. Finally, the globally shared feature
set is used like a compression scheme before transmitting it to
an ES. Note that, in this system the AVs are only responsible
for finding the best compression scheme applicable to the their
local data in a collaborative way, based only on the control
information they exchange with the ES. Moreover, the ES has
a three-fold role: i) it acts as central coordinating entity in the
FFS process whose purpose is to aggregate the partial control
information sent by the AVs; ii) it acts as final collector for
the compressed data, once the FFS is completed and, iii) runs
the AI services to extract knowledge from data but that is used
only for performance evaluation in this paper. We target two
different user cases to validate the performance of the proposed
FFS method. The former refers to the localization of an AV in the
environment based on images and inertial measurements, and the
latter regards the physiological-state monitoring of a passenger
in the automotive domain. We define two different sub-systems
part of the same CPSoS: the ADS of above, and an Human State
Monitoring System (HSMS) to learn the feeling perceived from
a passenger relatively to the ADS driving style. Therefore, we
assume each AV to be equipped with a camera to capture images
from the surrounding environment aside some inertial sensors
for the former learning task, and a set of body sensors, such
as, Electrocardiography (ECG), Electrodermal Activity (EDA),
Electromyography (EMG), and Respiration (RSP) for the latter.

Each AV is able to locally synchronize the multi-sensory data
such that, for each image, it is possible to associate the cor-
responding inertial measurements leading to an enhanced Raw
Input Datum (eRID). Note that for the scope of this paper it is not
important the specific semantic of the labelling, but it is enough
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to assume a labelling process on the collected data. The AVs are
also equipped with a relatively small edge computing unit (e.g.,
a RaspeberryPi or, at most, an Nvidia Jetson Nano) able to cache
data and execute the FS task, before transmitting the features.
Additionally, the AVs are endowed with a radio communication
interface to communicate toward the ES. It must be noted that the
task is not collecting images of the environment, or physiological
parameters of the user but, conversely, retrieving the information
associated to those images or to those physiological sensors,
e,g., the position of the AV with respect to the surrounding or
the user mood. In particular, the latter is labelled according to
the classification scale provided by questionnaires like PANAS,
SSSQ or SAM [33], which associates numerical labels to the
physiological states.

IV. FEATURE SELECTION

In this section, we provide the theoretical background of the
MI-based FS algorithm and the relative implementation based
on the CE method.

A. Background Feature Selection Based on Mutual
Information

To make the paper self-contained, we report in this Section
the necessary theoretical background needed to get an intuition
about the internal details of the CE-based FS method presented
in Section IV-B.

First, let us define the FS problem as follows:
Definition (FS Problem): Given the input data matrix X

composed by n samples of m features (X ∈ Rn×m), and the
target attributes’ (or labels) vector y ∈ Rn, the FS problem is to
find a k-dimensional subset U ⊆ X with k ≤ m, by which we
can characterize y.

The method we adopt in the paper performs the FS measuring,
through the Mutual Information metric, the amount of informa-
tion that a subset of features (or attributes) U expresses with
respect to a specific target label y.

Formally, the MI between random variables can be defined
as [34], [35]:

I(U;y) = H(y)−H(y|U), (1)

where U = {x1 · · ·xk | k ≤ m} ⊆ X, and H(y|U) is the con-
ditional entropy which measures the amount of information
needed to describe y, conditioned by the information carried by
U. Hence, I(U;y) represents the dependence betweenU andy,
i.e., the greater the value of I, the greater the information carried
by U on y. We recall that the MI between two random variables
A andB is strictly related to the entropyH(·), which defines the
amount of information held by the variables, i.e., the entropy of a
random variable A (i.e., H(A)) and its probability are inversely
proportional: the greater the entropy of a random variable A,
the greater its unpredictability and vice-versa. Hence, we can
assert that the entropy measures the diversity of A in terms of
the uncertainty of its outcomes.

In MI-based FS the features to be selected are those that
maximise (1). These features are typically referred as Essential
Attributes (EAs). By solving the following optimization problem

Fig. 3. Example of the relationship between Mutual Information and Entropy.

we would obtain the optimal global solution to the FS problem
defined in IV-A:

argmax
U

I(U;y)

U = {x1 · · ·xk | k ≤ m} ⊆ X (2)

Note that the problem (2) belongs to the class of Integer
Programming (IP) optimization problems and finding its optimal
solution is NP-hard [36], i.e., the optimal solution U would be
found among all combinations of feature indices of the native
set X.

The problem (2) becomes computationally tractable if ap-
proached through an iterative algorithm which selects and adds
to the subset U one feature at a time. Therefore, instead of
solving 2, we address the problem defined in (3):

arg max
xj∈X\U

I(xj ;y|U),

U = {x1 · · ·xk−1 | k ≤ m} ⊆ X. (3)

For the sake of clarity, we provide an intuitive example based on
the relation between MI and the entropy. Considering Fig. 3, the
circles are the entropy of the random variables A,B,U,y, and
the grey regions are the information carried by the variable A
(or B) on y. The dashed area shows the information redundancy
of the variable A (or B) given the already selected variables in
Uj−1. In this example, the variable A should be added to the set
U since it is more informative than B on y, i.e., its grey area is
larger than B’s, and it is less redundant than B w.r.t. to Uj−1.

The main drawback of this approach is that it might end up
with a sub-optimal solution because, by selecting the features
one by one, the algorithm makes the implicit assumption that
they are independent, which might not hold true. Theoretical
foundations for the incremental version of the FS algorithms has
been proven by the authors in [34], [35]. It is worth mentioning
that a connected issue with problem (3) regards the efficient
evaluation of the MI, which might become prohibitive even for
datasets with a small number of samples. We overcome this
problem by adopting the MIToolbox [37], a state-of-the-art tool
for numerical optimization.

B. CE-Based Feature Selection Algorithm

In this section, we describe the CE-based algorithm that finds,
in a finite number of steps, a solution that well approximates
the one found by solving problem (2), while making negligible
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the assumption of independence among features introduced in
problem (3). In other words, with CE-based FS, instead of
selecting one EAs at a time, we select a set of EAss jointly.

The CE-based algorithm is based on the following intuition:
if the set U contains only EAss, then I(U;y)→ H(y), which
implies that H(y|U)→ 0 [34], [35]. Note that with our ap-
proach, we avoid the greedy research of the set U among all the
possible

(
m
k

)
solutions which realizes H(y|U)→ 0. Instead,

we adopt the stochastic approach. Precisely, we associate each
i-th feature with a random variable zi ∼ Bernoulli(pi). The
CE-based algorithm identifies which variables zi, i = 1, . . . ,m
must have pi → 1, so that the objective function O(U(z)) =
H(y|U) gets close to 0. This is called Associated Stochastic
Problem (ASP) [10]. In this way, we get the optimal distribution
of the binary vector z through which we identify the features
to be selected, i.e. the i-th feature is selected if pi → 1. It is
worth noting that searching for the solution of the optimization
problem through the definition of the ASP has the advantage of
addressing the native problem in (2) as a convex problem.1

We formulate the ASP as a minimization problem, as shown
in (5). In the following we present the essential steps that
brings to its formulation. Briefly, we need to find the probability
distribution g(z,p) of the values in z equal to 1 that solves the
equation:

Pr(O(U(z)) ≤ γ) =
∑
{z}
I(O(U(z)) ≤ γ) g(z,p) (4)

where I(·) is the indicator function of the event O(U(z)) ≤ γ,
and γ is the minimum value for our objective function. Precisely,
γ at step t is calculated as the percentile 1− β of the objective
function calculated by using the samples drawn from the distri-
bution g(z,p) at step t. Note that, the authors in [10] recommend
to set β in the range 0.9− 0.95. The indicator function is equal
to 1 for all the possible configurations in z that verify the event
O(U(z)) ≤ γ, and 0 otherwise.

We estimate g(z,p) through the Likelihood Ratio (LR) esti-
mator with reference parameter p. Precisely, we apply the LR
theory of estimation [10] to define the following optimization
problem and to obtain the optimal value p∗ for the distribution.

p∗ = argmin
p

1
S

S∑
j=1

I(O(U(zj)) ≤ γ) ln(g(zj ,p)) (5)

whereZ = {z1, . . . , zS} is a set of possible samples drawn from
the distribution g(z,p).

As stated above zj = [z1j · · · zmj ] is a vector of independent
Bernoulli random variables where zij takes value equal to 1 with
probability pi and 0 with probability 1− pi. Hence, g(zj ,p) can
be written as:

g(zj ,p) =
m∏
i=1

p
zij
i (1− pi)

(1−zij) ; zij ∈ {0, 1} (6)

1More details are in Section 4 of [10].

Given that the objective function of problem (5) is concave,2

we can solve it in closed form by imposing:

∂

∂pi

1
S

S∑
j=1

I(O(U(zj)) ≤ γ) ln(g(zj ,p)) = 0,

leading to:

pi =

∑S
j=1 I(O(U(zj)) ≤ γ)zij∑S
j=1 I(O(U(zj)) ≤ γ)

i = 1 · · ·m; (7)

In the CE-base algorithm the result in the (7) is used for
updating the distribution p as follows:

pi = (1− α)pi + α

∑S
j=1 I(O(U(zj)) ≤ γ)zij∑S
j=1 I(O(U(zj)) ≤ γ)

. (8)

The mathematical analysis about the choice of the parameterα is
provided in the AppendixVII-A of this work. Further indications
on the choice ofα can be found in [10], [38], [39]. The derivation
of equations (5-7), as well as, the optimality of g(zj ,p) are
proven in [10].

The solution of the problem defined in (5) is achieved through
Algorithm 1: it starts with an initial guess of pG; S Bernoulli
random samples of size m each (line 4) are drawn at each step
t. For each sample zs, the values of the conditional entropy
(line 7) are computed on the dataset where the only active
features are those corresponding to the elements equal to one
(line 6) in zs. The subset selection is shown in the procedure
GETSUBSET(X, z) (lines 15-26). Then we compute p(Zt) (lines
9-10) as in (7) and finally we update the current estimate of the
probability vector p (line 11) as in (8).

V. FEDERATED FEATURE SELECTION

In this section we present how we exploit the CE-based FS
algorithm presented in Section IV and summarised in Algorithm
1 to design our FFS algorithm FFS, described in Algorithms 2
and 3. They cover, respectively, the two functional blocks of
FFS, i.e., Algorithm 2 is executed by the ES to coordinate the
distributed FS and Algorithm 3 runs on the clients. The FFS
is an iterative procedure. At the beginning, the ES sends to
the clients involved in the process a vector pG ∈ Rm where
each element represents the probability that each feature has to
be selected according to its importance (lines 8-10 of Alg.2).
Each element of pG is initialized to 0.5, i.e., this is a common
choice when using the CE algorithm. The vector pG represents
a piece of global information that the ES shares with the client
nodes. Each client l uses pG to initialize its local copy of the
probability vector, i.e.,pl ← pG and runs the local FS procedure
based on its local data (lines 2-3 of Algorithm 3). At the end of
the local FS, the l-th client sends to the ES the locally updated
probability vector plnew

and a control information regarding the
cardinality of its local data nl whose purpose will become clear
in the following. The ES computes the new global probability
vector (line 13 of Algorithm 2) by aggregating the ones received

2The logarithm is a concave function, the indicator function is 0 or 1 so the
weighted sum of concave functions gives still a concave function.
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Algorithm 1: CE-based Algorithm for FS.
1: procedureCEX,y,p, T,S
2: for all t = 1, . . . , T do
3: Zt ← GENRNDSAMPLE (S,p) � Z ∈ {0, 1}S×m
4: u← {}
5: for all zs ∈ Zt do �zs ∈ {0, 1}1×m

6: U← GETSUBSET(X, zs)
7: u← u ∪H(y|U)
8: end for
9: γ ← COMPUTEPERCENTILE(u, 1− β)

10: p(Zt)← COMPUTENEWPROB(u, γ, α) �(7)
11: p← (1− α)p+ αp(Zt) �(8)
12: end for
13: return p
14: end procedure
15: proceduregetSubsetX, z
16: U← {}
17: for all x ∈ X do
18: u← {}
19: for all j = 1, . . . ,m do
20: if zj == 1 then
21: u← u ∪ xj

22: end if
23: end for
24: U← U ∪ u
25: end for
26: end procedure

from the clients as expressed in (9) and discussed later on.
The updated vector pG is transmitted to the nodes that run
Algorithm 3 by updating the local probability vector with the
new global one. This procedure iterates until the distribution
global probability vector converges to a stable one. In FFS we
check convergence by comparing the distribution of the current
global probability vector pG to the previous one pGold

using
the Kolmogov-Smirnov statistical test for two one-dimensional
samples (KS-test). The procedure stops when (i) the p-value of
the KS-test is greater than a fixed threshold3 τ1 = 0.995 and, (ii)
its variation from the previous one is less than τ2 = 10−6 (line
7 of Algorithm 2).

The core point of Algorithm 2 regards the aggregation step
(line 13 of Algorithm 2) where the ES merges the local prob-
ability vectors into the global one which, in our solution, is
defined as a weighted average. The main idea is to merge
the local probability vectors by a weighted average where the
weights (computed as in (10)) serve the twofold purpose of (i)
considering more (or less) those vectors that are computed from
larger local datasets and (ii) defining a common support among
all the probability vectors. This second aspect is quite crucial
for the consistency of the computation in (9).

Formally, we assume that each node acquires a number of
i.i.d. records nl to perform the FS, and that the nodes share the

3We empirically observed that the closer τ1 to one, the more accurate the
solution.

same set of features X. The global probability pG used for the
FS can be written as follows:

pG =
∑
l

plωl, (9)

where pl is the solution of problem (5) at node l obtained by
using Algorithm 1, and ωl weights pl w.r.t. the other nodes,
whose formal definition is:

ωl =
nl∑
l
nl

. (10)

As anticipated, according to (10), we weight the probability
vector pl of node l proportionally to the size of its local dataset
compared to the whole amount of data present in the system.
In this way, we can contrast situations where local datasets are
heterogeneous w.r.t. the size.

In FFS, the updating scheme can be, at least in principle, both
synchronous and asynchronous, provided that the set of nodes
involved in the process does not change over time.4 Precisely,
we assume a system where the ES after having sent the updated
global probability vector, expects the nodes to receive their
local updates within a fixed time slot, after which, it begins the
aggregation step using only the information received. Therefore,
the number of updates used to compute the new global prob-
ability vector might change because a subset of nodes could
not communicate their updates within the deadline set by the
ES. Regardless of the number of nodes that contributed to the
aggregation step during one round of communication, the ES
broadcasts the new global probability vector pG to all nodes in
the system. In this way, all nodes start the new round of local
computation from the same starting point, and, consequently,
we dramatically limit the potentially detrimental effects deriv-
ing from the aggregation of outdated local probability vectors.
Moreover, as proved by the convergence analysis provided in
AppendixVII-A and AppendixVII-B, independently from the
updating scheme, FFS converges in a finite number of steps to
the very same solution as running the CE in centralised settings
i.e., with complete access to the entire dataset.

It’s worth noting that our solution is able to cope with feature
redundancy in federated settings. Precisely, this represents an
issue that might prevent the possibility of performing the FS in
federated settings. In fact, running a standalone FS algorithm
on different local datasets where there is redundancy between
features, different FSs might occur but with an equivalent in-
formation content across all the AVs. This aspect makes all the
local selections completely useless regarding the communica-
tion efficiency, due to the consequent lack of agreement on the
FS between the AVs. Conversely, since in FFS the AVs share
at each communication round their local information, they may
come up with a final agreement on the FS. Summarising, even
if there is redundancy between features, the final selection is
consistent among all the AVs and, according to results presented
in Section VI, it is also accurate if compared to the centralized
FS (i.e., when all the local raw data are transferred onto the ES).

4Note that this condition does not imply that all nodes must be active during
the entire process. In fact, as we will show in Section VI our system is robust to
the presence of churning nodes.
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Algorithm 2: Server Side FFS Algorithm.
1: procedureServer-Node
2: v ← 0 �p-value of Kolmogorov-Smirnov test
3: τ1 ← .995
4: τ2 ← 10−6 �Thresholds to check convergence
5: pG ← {1/2 | ∀ pi i = 1, . . . ,m}
6: do
7: for all l ∈ L do
8: SENDTOCLIENT(l,pG)
9: end for

10: RECEIVEFROMCLIENTS(plnew
, nl)

11: pGold
← pG

12: pG ←
UPDATEGLOBALPROBABILITY() �(9)

13: vold ← v
14: v ← KOLMOGOROVSMIRNOVTEST (pG,pGold

)
15: while v ≥ τ1 ∧ |v − vold| ≤ τ2 �repeat until

convergence is met
16: end procedure

Algorithm 3: Client side Federated Feature Selection algo-
rithm.

1: procedureClient-Node
2: pl ← RECEIVEFROMSERVER(pG)
3: plnew

← CE(Xl,yl,pl,T,S) �Algorithm 1
4: SENDTOSERVER(plnew

, nl)
5: end procedure

VI. NUMERICAL EVALUATION

In this section, we present the numerical results of our
compression method based on the FFS algorithm presented
in Section V. Before going through the results, we introduce
the datasets, the simulation settings, the methodology, and the
metrics used to evaluate our solution’s performance.

A. Dataset Description and Simulation Settings

We based the performance evaluation of FFS on two datasets,
each one mapping one of the two use cases described in Sec-
tion III. The first one called MAV5 is a publicly available dataset
containing both 64×64 images and 6 Inertial Measurement Units
(IMUs) collected by a AV during a mission in a controlled
environment. The second dataset called WEarable Stress and
Affect Detection (WESAD) is a collection of data sampled from
heterogeneous biophysical sensors: ECG, EDA, EMG, Temper-
ature, Respiration and Inertial Measurements on the three axes.

a) MAV dataset: both images and inertial measurements are
synchronised to obtain a set of eRIDs. We pre-process the raw
images to extract more informative features as it is customary in
the computer vision domain. Feature extraction eases the train-
ing of a machine learning model and, performs a preliminary
step of data compression. In fact, a raw image is made of 4102
floats (64×64 pixels + 6 IMU readings) while, after the feature

5dataset. [Online]. Available: https://tinyurl.com/mavmr01

TABLE I
STRUCTURE OF A MAV ERID

TABLE II
STRUCTURE OF A WESAD ERID

extraction, it shrinks down to a vector of size 2166 floats. In
our settings, we extract the Histogram of Oriented Gradient
(HOG) features,6 and we assume that the feature extraction is
accomplished directly on the AV, which might be possible if
equipped with a board of the kind discussed in [40]. Note that
the original dataset is unlabeled. Therefore we labelled it in a
way compatible with the original context of positioning. To this
end, we associated with each eRID a label corresponding to the
corresponding voxel.7 Table I shows the structure of an eRID
for the MAV; the first 2160 feature are HOG while the last 6 are
IMUs, i.e., acceleration (ACC) and angular velocity (AV). The
whole dataset contains 2911 labelled records. To simulate the
federated data collection, we split it into 10 disjoint partitions
of size 291 records such that each partition is i.i.d. w.r.t. the
entire dataset. Each subset represents a AV. The data collection is
slotted; hence, the AVs draw with replacement a random sample
from their local dataset for each time slot. This sample is used
to perform the local computation of the distributed algorithm
followed by a communication round for synchronising the AVs
on the local FS. Each random draw’s size is accumulated to trace
the cache necessary for storing data until the completion of the
distributed FS.

b) WESAD dataset it provides data in terms of features and
labels already useful to perform the detection of stress and
affection state of human subjects. The dataset contains readings
from two devices, i.e., Respiban and Empatica E4, positioned
i) on the chest and ii) on the wrist of human subjects. Each
device is equipped with multiple sensors monitoring several
physiological parameters. Since the two devices have different
operating settings, we focused on the Respiban, whose collection
rate is homogeneous for all its sensors. The dataset contains
readings collected from 17 human subjects, which perform a
predetermined protocol to induce the body in one of the follow-
ing states: 0-baseline, 1-amusement, 2-stress, 3-meditation, 4-
recovery. The data collected for each subject amounts to∼3.6 M
records, equivalent to ∼220 MB. A complete description of the
dataset is provided in [33]. Table II shows the structure of an
eRID for the WESAD.Due to the huge size of the dataset we used
the data from 5 out of 17 subjects, corresponding to ∼1.1 GB.

6HOG is a standard feature extraction methodology used in computer vision
and image processing to create an image descriptor that captures the spatial
relations between different portions of it [40].

7A voxel represents a value on a regular grid in three-dimensional space.

https://tinyurl.com/mavmr01
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The data is already partitioned according the subject ID, thus
we keep the original partitions. In our simulated scenario, each
partition corresponds to an edge device holding the data of only
one subject, i.e., no artificial data re-distribution is performed.
As for the previous scenario, each device executes FFS using
only its own data.

We evaluate the performance of our methodology according
to two metrics:
� accuracy: to assess the quality of the distributed FS
� network overhead (NOH ): to evaluate the impact in terms

of network traffic generated by our methodology
Our target is to compress the data to be transmitted, without

significantly degrading its informative content.
Accuracy metric: The quality assessment is a two-stage pro-

cedure. First, we set the baseline validating the quality of the
features selected by CE executed in a centralised setting, i.e.,
we train a classifier using the set of selected features (CE-CFS)
on the entire dataset, and we compare its prediction performance
with that of a second classifier trained on the whole set of features
(NO-FS). If the CE-CFS performance on a smaller group of
features is comparable or equivalent with the one identified
by NO-FS, we consider the FS valid. To strengthen this initial
evaluation, we compare the centralised results of CE-CFS with
other three reference FS algorithms: mRMR [15], HJMI [16]
and ANOVA [20]. As we will show in the following, for all
these benchmarks we have to specify the size k of the features
selection. Since we are interested in assessing the quality of the
FS and for the sake of fairness, we set k equal to the size of
the FS obtained by CE-CFS (which finds such a number in a
completely autonomous way).

Then, we repeat the same procedure training another classifier
on the subset of features obtained from our FFS and we compare
its performance with all the centralised methods. We split the
dataset in train (80%) and test set (20%). The train set is used
for both FS and model training, while the test is used for
performance evaluation only. The accuracy is defined as the
average of correctly classified records

A =
1
N

N∑
i=1

I(ŷi = yi), (11)

where N is the size of the test set, I is the indicator function, ŷi
and yi are the i-th predicted and true label, respectively. For the
sake of statistical significance, the training is repeated ten times,
changing the initialisation of the classifier and the composition
of training and test set. The reported results are average values
accompanied by confidence intervals at 95%.

Network Overhead: we measure the network traffic gener-
ated by our solution as follows. On the one hand, we compute
the network overhead generated by the FFS network defined as:

NOH = R ∗ L ∗ 2 ∗ (z + 1 + b) (12)

whereR is the number of communication rounds before all theL
AVs involved in the distributed FS converge to a solution, z + 1
is the number of nonzero floating point numbers belonging to the
probability vector pl in (9) exchanged between the AVs during
each round plus the weight ωl in (10). The symbol b is the size

TABLE III
COMPARISON BETWEEN NO-FS AND CE-CFS ON MAV AND WESAD

DATASET

of the bit map used to reconstruct the position of the non-zero
elements exchanged between the AVs and the edge server. On
the other hand, we compute the compression obtained through
the FS as:

C = |F |/|D| (13)

where F ⊆ D is the selected set, and D is the entire set of
features.

B. Settings the Baseline: FS in Centralised Settings

The following results regard the first stage of the validation,
i.e., the accuracy of a classier trained using only the subset of
features identified by the CE algorithm w.r.t the performance
obtained by a classifier trained on the entire dataset. For this stage
of validation, we train a Neural Network (NN). For MAV the NN
is a multi-layer perceptron with two hidden layers of 300 and
100 neurons each. For WESAD, we used a deep NN with four
hidden layers of 300,100,64,32 neurons each. The input layer’s
size depends on the number of features selected, while the size
output layer is 37 and 5 for MAV and WESAD, respectively. The
activation function is “ReLU”8 and the optimizer is “Adam”9

for both the models. These are very common settings which
typically provides good performance [41].

Results in Table III show that CE algorithm executed on
both datasets in centralised settings can autonomously identify a
minimal set of features (i.e., 18 for MAV and 4 for WESAD) with
the very same informative content of the whole feature set. The
accuracy obtained by both the NN models trained on the CE’s
FS is statistically equivalent to the one obtained on the whole set
of features, inducing a quite impressive compression rate (C):
up to 99% and 50% of network traffic for MAV and WESAD,
respectively. As a further confirmation of the CE results, we
perform the FS using other three reference benchmarks, i.e.,
MRMR, ANOVA, HJMI. Note that all these approaches select a
subset of features with the very same informative content of

8REctified Linear Unit
9Stochastic Gradient Descent with ADAptive Momentum
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Fig. 4. Centralised FS probability for HOG and IMU. The selected features are those with probability greater than 0.99 (above threshold). (a) C-HOG. (b) C-IMU.

TABLE IV
COMPARISON BETWEEN CE-CFS AND FFS ON MAV AND WESAD

CE. However, we point out that for all of them we have to
decide beforehand the number of features to be selected. This
represent a major shortcoming that, instead, CE-based methods
overcome by design, since the number of features to be selected
is a byproduct of the CE algorithm. Finally, these results assess
the suitability of the CE algorithm on both datasets, thus we can
use them as a benchmark for the evaluation of our distributed
FFS method.

C. Evaluation of Federated Feature Selection

We focus now on the analysis of our FFS method. We compare
its performance to those obtained by CE executed in centralised
settings (CE-CFS). We recall that, in federated (distributed)
settings, each AV can process only the data it locally collects.

First we assess the performance of FFS in a static distributed
scenario where the AVs have collected all the data and, before
sending them to the ES, they perform the distributed FS in order
to transmit only the very necessary information.

Table IV reveals that for MAV dataset, FFS finds a set of
features that, although slightly larger than that found by CE-CFS
(24 instead of 18), it has the very same informative content,
i.e., the accuracy of the NN model trained on both subsets of
features are statistically equivalent. As we can see, the results
also hold for the WESAD dataset. Precisely, FFS selects the
same number of features identified by CE-CFS. Specifically,
FFS and CE-CFS select the same set, i.e., the features with
indexes [1,2,5,6], explaining why the NN achieves the same
prediction accuracy. We motivate such an exact correspondence
between FFS and CE-CFS selection considering that the small

size of the complete feature set of WESAD might prevent a high
number of feature subset with equivalent informative content.
Such an assumption also holds for the MAV dataset. In fact,
as we can see in Figs. 4(b), Fig. 5(a) FFS and CE-CFS select
the same subset of IMU features. Conversely, when the set of
features is more redundant, as it is for the HOGs, there might
exist several subsets holding the same informative content. The
comparison in Figs. 5(a) and 4(a) confirms such a claim because
the two feature sets are overlapping but not equal, yet the overall
accuracy is comparable.

This result provides a preliminary insight regarding the ef-
fectiveness of the Bayesian aggregation used to merge the
information extracted by the AVs from their local datasets.
Precisely, Fig. 6 shows the number of selected features at each
communication round for the MAV case. As we can see, in the
beginning, the cardinality of FS remains almost constant. In this
phase, due to the partitioning of data in separated datasets, the
CE algorithm has not yet enough knowledge to identify the most
informative features. However, the number of features added to
the selection starts increasing following an almost-linear trend
in a few communication rounds (16). The process ends after 44
rounds, i.e. when the distribution of probabilities indicating the
most informative features becomes stable.

Our method’s capability to converge quickly to the final and
most informative set of features directly affects the amount of
network traffic generated upon the completion of the FFS. To
confirm such a claim, we performed a set of simulation in which
we run FFS varying the size of the local dataset available at
the edge device. In this way, we want to analyse our method’s
robustness when each edge device can access only a limited
amount of data. In Table V we report the size of data used for each
update (Size), the number of selected features (FS), the accuracy,
the number of communication rounds upon convergence (Rc),
the compression obtainable with FFS (C), the network overhead
generated by FFS (NOH ), and the size of the cache needed to
collect the data before starting the data transmission. Overall,
we observe that, for both datasets, decreasing the size of data
processed at each round does not affect significantly the number
of communication rounds needed by FFS to converge to a
solution, which results in limiting the network overhead
generated during the process. Specifically, considering a
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Fig. 5. FFS probability for HOG and IMU. The selected features are those with probability greater than 0.99 (above threshold). (a) F-HOG. (b) F-IMU.

Fig. 6. FFS process on MAV dataset.

TABLE V
PERFORMANCE OF FFS VARYING THE DATA PROCESSED DURING A

COMMUNICATION ROUND

dynamic data collection process as in the MAV-related use case,
we see that the network overhead is always i) less than the
storage needed to cache the data before starting the transmission
and ii) negligible considering the compression achieved (i.e.,
up to 99%). Interestingly, the same holds also for the WESAD
scenario. In this case, the network overhead can be considered
negligible w.r.t. the size of the data processed (< 1MB) if
compared with the compression rate achieved by FFS (up to
50%).

In Table VII we show how the benchmark methods MRMR,
ANOVA and HJMI behave when run in isolation on local dataset.

TABLE VI
PERFORMANCE OF FFS VARYING THE PERCENTAGE NON-FAULTY AVS PER

COMMUNICATION ROUND

TABLE VII
LOCAL FS FROM COMPETITORS APPROACHES

Each method has been configured to select the optimal number
of features found in a centralised setting. This is clearly an
unrealistic situation that we use to demonstrate the limitations
coming from running a non-FFS algorithm in federated settings
(i.e., on partial datasets). Precisely, taking into account the MAV
dataset, all the algorithms run in isolation on each AV, find
a different subset of features (i.e., null pairwise intersection).
No agreement between AVs on the subset of features means
that all the local data must be transmitted to the ES, causing
a non negligible waste of network resources. We motivate this
behaviour with the fact that the original subset of features is
redundant, as in MAV, running the FS in isolation on portions
of data is not a winning strategy. Conversely, when the original
subset of features is less noisy, as in WESAD, it is more likely
that all the AVs find, completely by chance, the same subset of
features, i.e., without a way to coordinate the features selection
in a consistent and provable way, there are no guarantees for the
AVs to identify a consistent and shared subset of features.
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Finally we analyse the FFS performance in presence of faulty
nodes, i.e., a node experiencing issues in transmitting success-
fully its updates to the ES. Note that, the causes preventing
the updates’ transmission might relate to either communication-
related (i.e, a noisy channel) or the presence of a power-saving
policy regulating the duty cycle of AVs switching off the network
interface for a time corresponding to a communication round.
The aim is assessing the robustness of FFS when few nodes
cannot contribute to the distributed learning at each commu-
nication round. To this end, we simulate a scenario where, at
each communication round, a random number of AVs fail to
communicate their updates to the ES. We model the fault of a AV
performing a random draw from a Bernoulli distributed random
variable, with parameter ρ. At the beginning of the simulation
we set ρ and, for each communication round and for each node,
we perform a random draw, where 0 means faulty and 1 means
non-faulty. This means that the updates of a faulty AV are not
considered for the execution of Algorithm 2. We consider a fault
rate ρ equal to 0.2 and 0.3, meaning that at each round there are,
on average, 2 and 3 faulty AVs out of 10, respectively. Such
values can be reasonably assumed as upper bounds to evaluate
the performance of the system. Higher rates would reveal that
the scenario is not reasonably set up to run with any sort of
reliability.

In Table VI we report the performance of FFS, for both
datasets. For the MAV dataset, although FFS selects 2× and
3.3×more features than the case when all the AVs contribute to
the process (see Table IV), the compression rate deteriorates
by 1% and 3%, respectively. The quality of the selection is
confirmed by the accuracy that is statistically equivalent to the
case without faulty AVs. Regarding WESAD, we notice that
for ρ = 0.2 FFS performance is equivalent to the case with all
non-faulty AVs. Conversely, for ρ = 0.3 FFS selects a smaller
(i.e., 3 instead of 4) and less informative subset of features, as
confirmed by the accuracy degradation. The reason is that the
information collected by ES at each round is not enough to select,
globally, the most informative features. A final comment is about
the network overhead, which can be further reduced, limiting
the number of contributing AVs during a communication round.
In fact, Table VI suggests that there is a trade-off between
accuracy, compression rate, and number of contributing AVs
through which we might optimise both the compression and the
resources spent to find it. Moreover, there is a limit below which
saving resources becomes detrimental to the learning process.
However, understanding the nature of such a trade-off is left to
future works.

VII. CONCLUSION AND FUTURE DIRECTIONS

The increasing development of ADSs can leverage AI to
abstract both services and applications from the details of
fast-flowing low-level data, such as sensor feeds. According to
the Edge computing paradigm, a cyber physical system, namely
AV, is deputed in collecting data from sensors and perform a
lightweight round of computation, by extracting features from
raw data and selecting those that maximise the knowledge on

the learning task. Since the data gathering process is performed
locally by each AV, the selected features might represent a partial
subset of those that characterize the phenomenon and might be
inconsistent to learn the model of the underlying process. We
tackle this problem, by proposing a novel Federated Feature
Selection (FFS) algorithm, exploiting a distributed computing
paradigm applied to AVs. In FFS, AVs collaborate to iteratively
come up with the minimal set of features selected from their local
datasets, to be used as a compression schema for transmitting
their data to the Edge Server. Feature selection is done by
leveraging on the Mutual Information metric and the solution
of the optimization problem is achieved through Cross-entropy
method. The aggregation algorithm of the FFS solution is based
on a Bayesian approach through which we merge the control
information sent by the AVs to the ES. To test the proposed
FFS algorithm we presented two different learning tasks, by
using real-world datasets: MAV and WESAD. The former was
suitable to test FFS with images and inertial measurements,
which characterize the position of an AV in the environment.
The latter was suitable to characterize time series produced by
human state monitoring systems, like ECG, EDA, EMG, etc. The
results show that our FFS algorithm identifies a minimal subset
of informative features without sharing any raw data between
AVs in the process. FFS is robust to feature redundancy, i.e.,
in presence of high rates of redundant features, all the AVs
can reach a consensus on the FS achieving a compression rate
up to 90x on the selected datasets. Finally, the quality of the
feature selection is maintained, i.e., a learning model trained
on the selected features is as accurate as a model trained on
the whole feature set. Concluding, the proposed framework is
general and modular, i.e., it can be applied to every incremental
FS algorithm that associates a probability to each feature. We
plan to investigate how to turn it into a framework to include
more FS algorithms. Moreover, our solution is built on few
simplifying assumptions: local datasets are iid and data are
labelled. Therefore, for the future we plan to extend it to in-
clude non-iid data in possibly unsupervised or semi-supervised
scenarios.

APPENDIX

A. Proof of Convergence of the Federated Method

In this section, we analyze the probability that the distribution
p converges toward the optimal solutionp∗, when the Algorithm
1 is applied in a centralized way. Then, we extend this result for
the proposed federated algorithm.

The convergence analysis is based on the results in [38],
[39]: following that notation, we introduce some pre-
liminary definitions. In the CE, the candidate solutions
Zt = {z1 · · · zS} generated at iteration t are iid with
distribution g(z,pt−1).

We define Zt := {zj,τ 
= z∗ j = 1 · · ·S, τ = 1 · · · t} ⊆ Zt

as the subset of Zt of the samples generated up to t that do
not provide the optimal solution z∗. The probability Pr(Zt) that
the optimal solution is not available until t can be found as in
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the following:

Pr(Zt) = Pr(Z1)

t∏
τ=2

Pr(Zτ |Zτ−1)

= Pr(Z1)

t∏
τ=2

(Pr(zτ 
= z∗|Zτ−1))
S (14)

The (14) comes from the statistical independence of S identi-
cally distributed samples generated by the algorithm at iteration
t. The upper bound for the probability Pr(zτ 
= z∗|Zτ−1) that
the optimal solution was unavailable until τ is derived in [38],
[39] as:

Pr(zτ 
= z∗|Zτ−1) ≤ 1− Pr(z1 = z∗)
τ−1∏
i=1

(1− αi)
m (15)

where

Pr(z1 = z∗) =
m∏
i=1

(pi(zi = 0)I(z∗i = 1)

+ (1− pi(zi = 0)) I(z∗i = 0)) (16)

Note that due to the definition of Z1 its probability is Pr(Z1) =
1− Pr(z1 = z∗).

Combining equations (15) and (16), (14) becomes:

Pr(zt 
= z∗) ≤
(

1−
m∏
i=1

(pi(zi = 0)I(z∗i = 1)

+ (1− pi(zi = 0)) I(z∗i = 0))) ·
t∏

τ=2

×
(

1−
m∏
i=1

(pi(zi = 0)I(z∗i = 1)(1− pi

+ (zi = 0))I(z∗i = 0))
τ−1∏
j=1

(1− αj)
m

⎞
⎠

S

(17)

The right side of the (17) is close to 0 for t→∞, if∑∞
τ=1

∏τ−1

j=1
(1− αj)

m →∞, i.e., the sequence of the param-

eters αj are generated by the function 1
j·m , as proven by authors

in [42] (section 3.7). Note that, (17) can be used to determine
numerically a combination of parameter values that yields a
desired minimum probability of generating the optimal solution
within a time t.

Therefore, Algorithm (1) definitely provides the optimal so-
lution when applied in a centralized way. We extend this result
for the federated approach as follows. The AVs draw distinct
samples z1 · · · zS independently from an identical distribution,
as stated in the section V. This means that the node l finds an
optimal solution for its z1 · · · zS that differs for that obtained
by the centralized algorithm. Hence, combining the local distri-
butions into the global one as in (9), we need to prove that the
local node can receive from the server a federated solution that

is close to the solution provided by the centralized scenario, for
t→∞.

Defining the Hamming’s distance L(z∗, zτ ) between the
sample zτ at the time τ and the optimal solution z∗, the set
Z̃t := {zi,τ | L(z∗, zi,τ ) = ml} contains the samples gener-
ated up to time t that differs for ml entries from the optimal
solution z∗.

As in (14), we can calculate the probability Pr(Z̃t) as
follows:

Pr(Z̃t) = Pr(Z̃1)

t∏
τ=2

Pr(Z̃τ |Z̃τ−1) (18)

Exploiting again the results in [38], [39], and the statis-
tical independence of the S identically distributed samples
generated by the algorithm at a given iteration, the following
equation holds for the conditional probability for the given
node l:

Pr(Z̃τ |Z̃τ−1) =

[(
m

ml

)
Pr(z1 = z∗1) ·

τ−1∏
i=1

(1− αi,l)
m−ml ·

×
(

1− Pr(z1 = z∗1)
τ−1∏
i=1

(1− αi,l)
ml

)]S

(19)

Note that, the result provided in (18) refers to the l-th node.
Hence, the global solution is obtained as the weighted average
over all the local probabilities Pr(Z̃l,t) as:

PrG(Z̃t) =

L∑
l=1

Pr(Z̃l,t)ωl (20)

where ωl are computed as in (10).
The probability in (20) is close to 0, for t→∞, if∑∞
τ=1

∏τ−1

i=1
(1− αi,l)

ml →∞ ∀ l = 1, . . . , L. Note that, if

the sum of products of (1− αi,l)
ml is close to∞ also the sum

of products of (1− αi,l)
m−ml is close to∞. The sequences of

the αi,l parameters guarantee the convergence also in this case.
Indeed, the parameters are generated locally by the node, using
the function 1

m·t .

B. Analysis of the Global Probability Computational Effort

In this section, we analyze the probability distribution of the
number of iterations tneeded to evaluate the global probability in
(9). We address this issue by exploiting the result in (20), which
describes the probability that the global solution obtained at the
iteration t differs by ml entries from the optimal one. Hence,
the probability that the global solution is reached within t can
be written as follows:

PrG(zt = z∗) = 1−
m∑

ml=1

PrG(Z̃t) (21)

We can exploit the following inequality (1− α)m ≤
e−αm | 0 ≤ α ≤ 1, m ≥ 0 to find the upper bound shown in
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the following:

PrG(zt = z∗) ≤ 1

−
m∑

ml=1

L∑
l=1

Pr(Z̃1)

t∏
τ=2

[(
m

ml

)
Pr(z1 = z∗1)

×
(
exp

(
−

τ−1∑
i=1

αi,l(m−ml)

)
− Pr

× (z1 = z∗1) exp

(
−

τ−1∑
i=1

αi,l m

))]S
ω(l)

(22)

The difference between exponentials in (22) goes to zero
faster than the binomial coefficient goes to infinity, as m in-
creases, if the coefficientα satisfies the conditions verified in the
previous appendix. Thus (22) can be used to evaluate the prob-
ability distribution of the number of iterations t = 1, 2 . . . ,∞
required to converge to the optimal global solution. The numer-
ical analysis shows an average value of 13 iterations to converge
by using the parameters presented in the section VI, which is
affordable for many edge devices like Nvidia Jetson Nano or
RaspberryPi.
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