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Abstract—Automatic traffic classification is increasingly im-
portant in networking due to the current trend of encrypting
transport information (e.g., behind HTTP encrypted tunnels)
which prevent intermediate nodes to access end-to-end transport
headers. This paper proposes an architecture for supporting
Quality of Service (QoS) in hybrid terrestrial and SATCOM
networks based on automated traffic classification. Traffic profiles
are constructed by machine-learning (ML) algorithms using the
series of packet sizes and arrival times of QUIC connections.
Thus, the proposed QoS method does not require explicit setup
of a path (i.e. it provides soft QoS), but employs agents within
the network to verify that flows conform to a given traffic profile.
Results over a range of ML models encourage integrating ML
technology in SATCOM equipment. The availability of higher
computation power at low-cost creates the fertile ground for
implementation of these techniques.

I. INTRODUCTION

The recently standardised QUIC protocol (Quick UDP In-
ternet Connections) is set to replace the traditional HTTP-
over-TCP web architecture [1]. QUIC introduces a single
connection to multiplex data streams carrying different parts of
a web page (a multi-streaming protocol). This provides great
flexibility to mitigate the problems of head-of-line blocking
and bidirectional transmission present in previous versions
of HTTP [2]. In addition, QUIC encrypts both the trans-
port and the user application headers preventing intermediate
nodes from accessing transport information. While encryption
provides strong guarantees of end-to-end security and con-
fidentiality, systematic encryption of end-to-end information
limits drastically network management functions and leads
to performance degradation in contexts, such as the satellite
network, in which QUIC may not be optimised for [3], [4].

Several authors have highlighted the drawbacks of encrypt-
ing transport headers in satellite networking [5], [6]. Access to
transport information allows header compression/suppression
when capacity is scarce, allows to adapt the protocol behaviour
to the characteristics of the satellite link (eg. HTTP acceler-
ation, split-connections, etc.), and to implement multi-class
per-hop behaviour in absence of other IP signalling. To avert
losing these benefits when QUIC or other HTTP tunnels will
be prevalent, a solution is urgently needed.

This paper proposes an architecture for supporting Quality
of Service (QoS) in hybrid terrestrial and non-terrestrial net-
works [7], [8] based on automated traffic classification. Traffic
profiles are constructed by machine-learning (ML) algorithms

using the series of packet sizes and arrival times in QUIC
connections.

A QoS architecture for satellite networks [9], [10] based on
ML was first proposed in [11]. The paper featured methods of
feature selection, training of classifiers, and integration with
the satellite resource management. Their results show that high
accuracy can be achieved with a wide variety of classifiers
and for a large range of traffic classes. However, feature
extraction and training was still performed using transport
header information (eg. the TCP port) and training samples
were taken from traces over the satellite link.

When using QUIC, no transport information is available to
identify a connection (even the initial connection ID might be
rotated as a result of a negotiation within the encrypted HTTP
tunnel). This makes hard for Internet routers to track through
deep packet inspection [12].

Our paper shows that a high degree of accuracy can be
achieved also when the transport header’s information is not
accessible from the classifier and the training is not done in
satellite conditions (eg. with large delay or delay variance).
This is good news because opens the possibility of training
ML models on terrestrial networks or in laboratory conditions
and then exporting the models in SATCOM equipment. Also,
our results anticipate the use of satellite-connected nodes in
collaborative learning environments or federated learning.

This paper also suggests a practical implementation of the
QoS architecture using a Provisioning Domain (PvD) [13],
which is a recent IETF standard for distribution of network
configuration in trusted domains. A PvD-enabled router can
include PvD containers in IPv6 router advertisements (RAs).
In this paper we argue that PvD containers can be used to
include QoS information to associate IPv6 address prefixes
to certain categories of traffic. Using PvD is advantageous
because does not require explicit setup of a path (ie. it provides
soft QoS). Rather it employs agents within the network to
verify that flows conform to a given traffic profile.

The rest of the paper is organized as follows. In Section
II the related works are presented. Section IV discusses
the general motivation of machine learning approach in the
satellite context. Section III provide details on the set up of
the test-bed. The performance evaluation is shown in Section
V. Conclusions and recommendations are reported in Section
VII.
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II. RELATED WORK

The literature on Internet traffic classification using machine
learning is vast (see [14] for a recent survey on ML analysis
of traffic). The proliferation of encrypted traffic in recent
years resulted in an increasing use of flow-based methods
that rely on the analysis of statistical or time series features
using ML. These include Naive Bayes (NB), Support Vector
Machine (SVM), Random Forest (RF), and K-Nearest Neigh-
bours (KNN) [11], [15]–[17]. More recently, approaches based
on deep learning and deep neural networks have appeared to
classify encrypted traffic [18], [19].

Most of the methods in literature, however, collect features
from TCP and TLS headers (eg. the TCP port), while in
QUIC transport header fields are encrypted or obfuscated. A
few recent papers, however, attempt to classify directly QUIC
traffic.

Reference [20] echoes previous authors in saying that the
most burdensome task in building an ML model for traffic
classification is data labelling, which requires human inter-
vention, whereas capture of large traces is readily available.
Their approach is to use a semi-supervised method, where
only a subset of flows need to be labelled to enable accurate
predictions. This approach was fine tuned in [12] where a
deep convolutional generative adversarial network (DGCAN)
was used in to classify QUIC connections. Their approach
provides an accuracy of 89% when only 10% of the dataset
was labelled.

In [21] authors investigate a convolutional neural network
(CNN) classifier to analyse LAN traffic. The classifier is able
to detect several QUIC services including Google Hangout™,
File transfer, YouTube™and Google Play Music™with good
accuracy. While the initial analysis considers 1400 features,
it is shown that through a method of features reduction, the
significant set can be reduced to only three features.

In [22] traffic analysis is used to show that QUIC is prone
to website fingerprinting attacks. To build the model, an
adversary can use both the vector of the number of packets
for each direction and flow level statistical features including
the number, size and inter-arrival time of packets. Five ML
models (Random Forest, Extra Trees, K-Nearest Neighbours,
Naive Bayes and SVM) are compared.

Some authors [23] have successfully used ML to generate
accurate user-perceived QoE (Quality of Experience) metrics
for video services transported by QUIC. The accuracy of
these results is an indication that ML is an adequate tool to
categorise QUIC traffic.

III. A SOFT QOS ARCHITECTURE

In order to exploit the advantages of ML-based classifi-
cation, we propose an architecture for soft coordination of
end-hosts and network nodes based on Provisioning Domains
(PvDs) [13]. End-hosts are informed about the availability of
network access through Router Advertisements (RA) propa-
gated by the local IPv6 router. RAs contain a list of network
addresses that can be associated with network paths beyond the
local gateway. An end-host uses one of the network addresses

to forward traffic to the destination. Since the advertised ad-
dresses can be associated to descriptors of path characteristics,
the end-host is made aware of the network configuration and
can decide to forward traffic that matches the services offered
by the network using a set of transport parameters suited for
that path.

As the network nodes receive traffic from a certain address,
they enforce the required treatment, but, at same time, verify
that the traffic profile used by the source is consistent with
the QoS definition of the path. Passive traffic analysis and
identification is used to verify that the traffic generated by end-
hosts effectively matches the expected set of characteristics.
For instance, if a path is expected to carry progressive video
streaming with a given average bitrate (e.g. DASH), the
gateway should verify that the pattern of traffic resemble video
streaming and the bitrate matches the expect one for that
network.

A similar concept of soft QoS is used in DiffServ. In a
DiffServ domain, edge routers are informed that the network
supports a number of traffic classes. Edge routers initialise
the DSCP (DiffServ Code Point) in the IP header before
forwarding packets in the domain. The DSCP initialisation is
based on a set of rules based on the IP and transport headers.
Once that the packets are DSCP labelled, the internal routers
use the DSCP information to enforce QoS treatments (Per Hop
Behaviours). If traffic in a class exceeds the traffic envelope
associated to that class, packets can be dropped or remarked
(usually at the domain boundary in the policy enforcement
function). In any case, no explicit negotiation is foreseen
between end-hosts and network nodes.

The first difference between DiffServ and the present
proposal is that DiffServ uses traffic classes identified by
DSCPs while our architecture considers “paths” identified
by IP addresses (and more precisely network identifiers) to
which QoS descriptors are associated. The second difference
is that, whereas there is a finite set of standard DSCPs, our
architecture can associate a range of properties with paths on a
much broader set using IPv6. Associating IP prefixes with QoS
classes is particularly appealing when the lower layers support
virtual circuits or networks. In this case, we can identify a
mapping between a L2 network and an L3 traffic class. The
great flexibility of IPv6 can be exploited to define networks
with equivalent QoS characteristics.

This proposal employs more accurate techniques than classi-
cal token-bucket filters to characterise the traffic. For example,
progressive video streaming over satellite is difficult to char-
acterise by means of a “sustainable bit rate” due to the high
burstiness. Albeit a rate-limited application, progressive video-
streaming cannot be easily compared to broadcasting with
constant committed information rate, which causes problems
with bandwidth allocations. In addition, as the encrypted
transport connections, such as QUIC, become more common,
the efficacy of deep-packet inspection (DPI) is diminished as
intermediaries miss critical information (such as well-known
port numbers) to determine traffic classes.
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Fig. 1: Data collection testbed.

IV. METHODOLOGY

To determine the resilience of ML models to operating in a
satellite environment, we considered a testbed for collection of
two kinds of QUIC encapsulated streaming: YouTube™ using
progressive streaming over HTTP and Google Meet™ real-
time video-conferencing using MPEG-4. The two classes of
traffic were chosen not to be easily classified using determinis-
tic features, such as the average packet size or the connection
length, and therefore allow us to evaluate classifiers’ ability to
detect patterns in traffic.

The flows were streamed from Google servers to a local
computer equipped with Wireshark 3.5, able to decrypt QUIC
traces. The two streams had comparable average bitrates
(about 1.2 Mb/s). A network emulator (Netem) was placed
between the server and the client to change the delay, the link
capacity and the delay variation. This was used to simulate
three network scenarios: A geostationary satellite with around
250 ms propagation delay in both directions, a Low-Earth-
Orbit (LEO) satellite with 50 ms constant delay and 50 ms
random uniform delay, and a terrestrial network without delay.

The datasets for classification were prepared by extracting
from the pcap-ng traces IP throughput samples every 100 ms.
Contiguous sequences of 50 or 100 samples were used as
sample patterns for the ML classification. This allowed to
evaluate the performance with observation periods of 5 or 10
seconds. All the ML implementations were taken from the
Python library Scikit-Learn vers. 0.24 [24]

Before training the ML models, the inputs were normalised
dividing each sample by the difference between the minimum
and maximum of the samples sequences (label ”minmax” in
graphs) or by using a standard normalisation (”stdnorm”). The
accuracy score was chosen as metric for comparison since
class datasets (video-conferencing and progressive streaming)
were roughly balanced. In a binary classification, considering a
class as the positive and the other as the negative, the accuracy
can be written as:

accuracy =
TP + TN

TN + TP + FP + FN
(1)

where TP and FP are the number of correct and incorrect
classifications of the positive class, and TN and FN are the
correct and incorrect classifications of the negative class.

Performance evaluation was carried using the classical
Monte Carlo cross-validation method [25]. A single step in
this method consists in randomly splitting the dataset into a
training and a validation set (in our paper we used a proportion

Fig. 2: Accuracy of ML models with different parameters for fine-tuning
without delay, with delay, and delay jitter

of 5 to 1). Then, the training set is used to fit the ML model and
the validation set to calculate a sample of accuracy score. This
step is repeated multiple times (200 in our setup) to estimate
the distribution of accuracy scores.

A. Preliminary Tests

An initial analysis was carried out to confirm that ML
models are valid tools for traffic classification. Fig. 2 shows
the box-plot of the accuracy score for different ML models
with associated hyper-parameters in the three scenarios (re-
spectively without delay, delay, and delay jitter). In particular,
we considered the Support Vector Classifier (SVC), the Ran-
dom Forest classifier (RF), multi-layer Neural Network (NN),
and K-Nearest Neighbours (KNN) (definitions can be found
in [14]).

The selected hyper-parameters control the computational
complexity of the algorithms. More specifically, we varied the
number of layers and nodes for each layer in NN (each of the



Fig. 3: Accuracy of ML models with different parameters: training without
delay and testing with delay (250ms)

arguments in NN(·) is the size of a hidden layer), the depth
of the trees (param. n) and the number of leaves (param. m)
in RF, and the number of neighbours in KNN.

Fig. 2 shows that opportunely tuning the hyper-parameters,
the accuracy scores can be made very high (>97%) in all
scenarios. This is not surprising as reflects previous analy-
sis [11] that shows good performance as long as the model
is not under-fitting. On the other hand, as complexity is in-
creased, cross-validation usually exhibits incrementally higher
performance [14], but these might be due to the model over-
fitting rather than learning the data. The next section shows
how the results can generalise when the models are trained
and tested in different conditions.

V. PERFORMANCE GENERALISATION

In order to generalise the results we consider in Fig. 3 the
case where the ML algorithms were trained without satellite
delay but tested with delay. Both graphs refer to a link capacity
of 5 Mb/s. The top graph considers the case where the dataset
is normalised using minmax, while the bottom refers to a
standard normalisation.

Since we have used a homogeneous set of features, we
expected the type of normalisation to play a minor role.
Instead, while the performance is only slightly reduced with
respect to Fig. 2 with minmax, the accuracy drops drastically
with Random Forest when we preprocess the data using
stdnorm. This suggests that tree-based methods could over-
fit the data when using throughput samples as inputs.

A similar result is also obtained when the algorithm are
trained without delay and tested in the LEO scenario. In
addition to the one displayed, we tested several other ML
configurations, observing only marginal improvement when
the complexity is further increased, but poor performance of

Fig. 4: Accuracy of ML models training with delay at 5 Mb/s and testing
with bandwidth reduction (2 Mb/s)

RF. It is also worth noting that extending the observation
period from 5 to 10 seconds yields limited benefits.

An even starker picture appears when the satellite capacity
undergoes a significant reduction. In Fig. 4, we train the ML
algorithms with satellite delay and a link capacity of 5 Mb/s
but we test them at 2 Mb/s. While the reduction was not
such to trigger changes in transmission quality of YouTube
flows, packets timings of the congestion responsive flows were
significantly changed as each of the chunks took longer to
clear. As a consequence, the shape of the throughput profile
is considerably distorted in progressive streaming but a only
milder distortion is present in videoconf.

The top graph referring to minmax, the drop in performance
is significant across all tested configurations. For stdnorm in-
stead, neural networks and SVC models are still able to detect
the two classes of traffic, while RF and KNN performance
collapse.

VI. FEATURE SELECTION DISCUSSION

The previous analysis considered the performance of the
ML algorithms as well as their generation with a generic set of
features. This section analyses a potentially more descriptive
set of features and their evaluation. In particular, we used
the MATLAB library MIToolbox to calculate the mutual
information and conditional entropy to estimate the minimum
set of features that prevent the model from over-fitting.

The mutual information I(X,Y ) [26], [27] between two
random variables X and Y measures the amount of infor-
mation that the two variable shares. This means that I(X,Y )
measures how much knowledge from one variable can be used
to reduce the error in predicting the other variable. Conversely,
the conditional entropy H(X|Y ) [26], [27] measures the
amount of information needed to describe the value of the
random variable X knowing the value of the random variable



TABLE I: Extracted Features Set
Feature Description Weight Rank

1) NUDP
Average number UDP packets

sent within the window of flow 0.0534 5)

2) TW
Interval time in sec. of the

window of flow 0.0044 10)

3) Ln∗
25−th

Percentile 25-th of the UDP
packet length distribution 0.088 4)

4) Ln∗
50−th

Percentile 50-th of the UDP
packet length distribution 0.2392 2)

5) Ln75−th
Percentile 75-th of the UDP

packet length distribution 0.0027 11)

6) Ln90−th
Percentile 90-th of the UDP

packet length distribution 0.0016 12)

7) ∆T25−th
Percentile 25-th in sec. of the

UDP interarrival time distribution 0.0324 6)

8) ∆T50−th
Percentile 50-th in sec. of the

UDP interarrival time distribution 0.0196 7)

9) ∆T75−th
Percentile 75-th in sec. of the

UDP interarrival time distribution 0.0072 9)

10) ∆T90−th
Percentile 90-th in sec. of the

UDP interarrival time distribution 0.0119 8)

11) N∗
C2S

Number of UDP packets sent
from the client toward the server 0.3944 1)

12) N∗
S2C

Number of UDP packets sent
from the server toward the client 0.1452 3)

Y . The mutual information is a symmetric function, the
conditional entropy is not.

The set of features extracted from the time series of data
traffic is shown in Table I for our classification model. These
features, as well as the classifiers, have been proposed as the
most relevant in [11], [14], [28]–[30]. The features in the table
signed with ”∗” belong to the essential set of features, that is,
the subset that provides an accuracy for the classifiers greater
than 95%.

To evaluate how much through the selected features set
we can predict the behaviour of the class label, we evaluate
the mutual information I(Cl, Fs) between the class label
and the features set, and as a counter check the conditional
entropy H(Cl|Fs) between the class label and the feature
set as inspired in [?], [31]. In order to identify which of
the features are essential for estimating class label values, we
performed a feature analysis using the Minimum Redundancy
Maximum Relevance (mRMR) method. The mRMR method
selects features that are mutually distant from each other
while still exhibiting a high correlation to the class label. The
metrics adopted to measure the correlation between selected
features and class labels can be metrics such as mutual
information as in our case or functions that measure the
statistical dependency. The output of the mRMR method is
the subset of i features, where i is an input of the method,
sorted following a rank of weights depending on the adopted
metrics to measure the correlation between the class label and
features. The weights are normalized so that the sum is one.

Given the small number of features, we crosschecked the
results achieved by the mRMR method with the results ob-
tained through an analysis of the variation of both the mutual
information I(Cl, Fs) and the conditional entropy H(Cl|Fs)
on all possible subsets of features calculated over the set of
features shown in Table I. The features in the table generate

a total number of just 207 subsets containing 12 features.
The last two columns in Table I show the nor-

malized weight and the ranking, respectively, evalu-
ated through the analysis described above for the fea-
tures in the table. The results are analyzed assuming
the features clustered in the following sets time-based
{TW ; ∆T25−th; ∆T50−th; ∆T75−th; ∆T90−th}, packet-based
{NUDP ;Ln25−th;Ln50−th;Ln75−th;Ln90−th}, and flow-
based {NC2S ;NS2C}. We face the numerical analysis aimed
at showing how the clustered features belonging to the es-
sential set affect the classifiers’ performance. Precisely, we
computed the possible subsets with i essential features, and
we removed them from the initial set. Hence, we calculate the
percentage of the loss of accuracy for each classifier due to
the deletion of the features. The analysis results are shown
in Table II. Numerical results show that filtering flow-based
features impact much more than other features on degrading
the classifier performance. This means that flow-based features
have higher correlation with the class label, instead packet-
based are weakly correlated and finally the time-based appear
to be poorly correlated. The high correlation between the class
label and the flow-based features is due to the more unique
values these features have for the given class label than the
other features. Precisely, classifier performance worsens when
both the flow-based features are deleted, instead when just
one of them is deleted the packet-based features are able to
compensate this lack of information.

The results in Table II also show that the classifiers based on
SVM, RF and KNN can cope with features elimination better
than the NN classifier. On the other hand, the latter performs
better than the other classifiers when all flow-based features
are removed. So we can assert that the classifier NN better
exploits the correlation that the other essential features have
with the class label. For all the tested classifiers, the tuning of
the parameters has been achieved through optimized automatic
procedures to guarantee a fair comparison.

Some final considerations must be made about the reasons
leading to the accuracy degradation of the classifiers. From the
simulations carried out, we have noticed that for the classifiers
based on RF, KNN, and NN, when we filter the essential
features, increase both the FPs and the FNs, for the SVC
classifier, instead increase only the FPs. We obtain better
performance for the RF and KNN classifiers because the sum
of their FPs and FNs is lesser than the number of FP or the
sum FPs, FNs for the SVC and NN classifier, respectively.
Nevertheless, in the case of the NN classifier, this sum is
almost constant during the deleting of the features. Hence,
the NN classifier is more resilient to the lack of information
than to the other classifiers, which confirms what discussed
previously.

VII. CONCLUSION

We proposed a QoS architecture where end-hosts connected
to the satellite network forward traffic over available paths and
internal nodes verify that traffic is conforming to the charac-
teristic of the path. Our goal is not to determine the exact



TABLE II: Percentage Decrease in Accuracy vs. Filtered Essential Features
Deleted Features ∆SVC(%) ∆RF(%) ∆KNN(%) ∆NN(%)

{NC2S} 0.03 0 0 15
{Ln50−th} 0 0 0 0.5
{NS2C} 0.03 0 0 15
{Ln25−th} 0 0 0 0.5
{NC2S , Ln50−th} 0.04 0 0 15
{NC2S , NS2C} 71 75 72 15
{NC2S , Ln25−th} 0.03 0 0 15
{Ln50−th, NS2C} 0.03 0 0 15
{Ln50−th, Ln25−th} 0 0 0 0
{NS2C , Ln25−th} 0.04 0 0 15
{NC2S , Ln50−th, NS2C} 73 70 72 15
{NC2S , Ln50−th, Ln25−th} 0.04 0 0 15
{NC2S , NS2C , Ln25−th} 66 69 83 15
{Ln50−th, NS2C , Ln25−th} 0.04 0 0 15
{NC2S , Ln50−th, NS2C , Ln25−th} 84 87 84 60

application originating the traffic (i.e. an exact fingerprinting),
but rather to categorise the traffic into classes (e.g. real-time,
quasi real-time, and delay tolerant) that can receive similar
QoS treatment. For example, if the flow is characterised by
small packets at regular intervals, it could be identified as a
real-time flow (such as audio or gaming) and should receive
a specific low-latency treatment.

The results show that several ML learning algorithms can
generalise performance to the satellite network even if they
were trained in non-satellite conditions. The results can be
further strengthen by selecting a more descriptive set of
features using information metrics. All this analysis is an
encouraging to integrate ML classification within SATCOM
technology.
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