
KAFKAFED: Two-Tier Federated Learning
Communication Architecture for Internet of Vehicles

Saira Bano∗,†, Nicola Tonellotto∗ Pietro Cassarà†, Alberto Gotta†
∗Department of Information Engineering, University of Pisa, Pisa, Italy

†Information Science and Technology Institute "A. Faedo", National Research Council, Pisa, Italy
saira.bano@phd.unipi.it, nicola.tonellotto@unipi.it

pietro.cassara@isti.cnr.it, alberto.gotta@isti.cnr.it

Abstract: In the current era of the Internet of Vehicles
(IoV), vehicle to vehicle data sharing can provide customized
applications for Connected and Autonomous Vehicles (CAVs).
The advancement of Deep Learning (DL) methodologies is one
of the key driving forces for CAVs, allowing elaborating a
massive amount of data by the resource-constrained onboard
devices. In a traditional centralized DL approach, vehicle data
are transmitted to the cloud for the training of models. This
approach leads to significant communication overhead, high de-
lays, and data privacy concerns. Conversely, Federated Learning
(FL) performs the training using the local models in a distributed
fashion and mitigates the data privacy risks by sharing only the
model parameters with the server, optimizing the FL to be used
with resources-constrained devices. In this paper, we propose
the design of a scalable communication infrastructure to support
the FL procedure based on Information-Centric Networking
(ICN) using Apache Kafka, called KAFKAFED. The ICN-based
infrastructure allows to overcome the shortcomings of current
client-server architectures for FL, in which routing is content-
based or name-based to achieve efficient data retrieval for
mobile nodes. In ICN, data are stored at intermediate nodes to
provide efficient and reliable data delivery. A proof of concept
of the KAFKAFED communication architecture is developed
and tested in an emulated environment. The performance of
the proposed framework compared to the client server-based
FL architecture, i.e., FLOWER showed a boost of almost 40%
with just 32 clients in addition to several other advantages of
scalability, reliability, and security

Index Terms—Federated Learning, Apache Kafka, Connected
and autonomous vehicles, Publish/Subscribe model

I. INTRODUCTION

In recent years, the exponential growth of the Internet of
Things (IoT) data is being fueled by the rapid adoption of
connected devices that are nearly more than 7 billion in the
world [1]. Such connected devices include Connected and
Autonomous Vehicles (CAVs). For vast numbers of CAVs
estimated to be deployed during the next few years, it is vital to
consider their behavior, influence on people, and consequences,
both based on their own experiences and other customers [2].
These CAVs are aimed to provide many kinds of user applica-
tions, including infotainment, safety, traffic flow optimization,
and overall efficient use of transportation infrastructure. The

This research was supported by TEACHING project funded by the EU
Horizon 2020 research and innovation programme under GA n. 871385

performance of most CAVs applications relies heavily on AI-
based solutions, especially DL algorithms. Since these applica-
tions require advanced sensing and computing capabilities, so in
order to provide DL functionalities for these CAVs, which have
constrained computational resources, we need to address new
research challenges [1], [3]. The most easy way of using IoT
data for model training in DL applications consists of sending
all the data to a centralized entity, as in the classic cloud-centric
approach, and utilize it to produce inference models. However,
from the perspective of privacy rights of users, this strategy is
unfeasible, because it exposes the local information of the users.
Furthermore, transferring big amount of data towards the cloud
imposes a burden for both the network and for the on-board
devices, particularly in unstructured data applications, such as
video analytics [4]. Moreover, this conventional approach causes
unacceptable latency in CAV time-sensitive applications. To
guarantee user’s privacy and to keep the data on user’s device,
a decentralized approach for training AI models is proposed by
McMahan in 2016, called Federated Learning (FL) [5].

In FL, interested clients collaboratively train a model on their
local information and exchange their model parameters with the
central server to generate a global model shared among all the
involved entities [6]. However, to simulate the concept of FL in
real-world scenarios is challenging for researchers because they
lack the necessary resources to train their federated models on
millions of real-world devices, except for a few who work for
companies like Google and Facebook. Nevertheless, since the
concept has been introduced, there has been a few open-access
FL frameworks developed that emulate a federated environment,
such as TensorFlow Federated (TFF) 1 introduced by Google,
LEAF [7], and FedEval [8]. TFF provide a framework to
implement decentralized training, LEAF offers datasets for FL
applications, and FedEval provides customized strategy options
for communication protocols and aggregation methods for FL.
Other frameworks include FedML [9], which provides support
for real-world IoT devices by using FedML-Mobile and FedML-
IoT, PySyft [10], that offers the so-called remote workers
for federated setting with PyTorch compatibility, FATE 2 by
WeBank, to ensure secure aggregation in FL, and FLOWER [11],
for mobile and edge devices to simulate FL in a scalable manner.

The frameworks discussed above are based on the client-
server communication (network-centric) paradigm for updates

1https://www.tensorflow.org/federated
2https://fate.fedai.org/



between local nodes and the data-fusion server. In this network-
centric architecture, mobile users can suffer from disconnec-
tions resulting in data unavailability when outside the server’s
reach. Solutions like in-network caching (essential to make data
available) are missing in naive network-centric communication.
Information-Centric Networking (ICN) is a novel paradigm,
where connectivity may well be intermittent, and data becomes
independent from location, application, and means of transporta-
tion, enabling in-network caching and replication. The expected
benefits are improved efficiency, better scalability concerning
information/bandwidth demand, and better robustness in chal-
lenging communication scenarios.

Current literature [12], [13] argues that ICN seems to replace
classical network-centric communication, but we foresee it as
an overlay network running on top of a network-centric based
model as the actual content delivery still requires the TCP/IP
interface for communication.

In this paper, we propose a novel efficient communica-
tion framework called KAFKAFED for FL applications train-
ing, based on an information-centric architecture, such as the
publish/subscribe implemented in Apache Kafka [14]. Apache
Kafka aims to provide high scalability, high data availability, and
low latency for mobile nodes. In addition, the paper considers
the usefulness of FL over the edge computing network for
effective learning by the exchange of model updates between in-
termediate storage nodes, called Kafka brokers, on the edge, and
the vehicles. Thus, low latency in vehicular learning applications
can also be achieved. This paper details the development of a
complete FL framework using Kafka. Our developed framework
is also compared to FLOWER [11], a network-centric FL frame-
work based on Remote Procedure Control (gRPC) protocol for
communication. Finally, we evaluate when our information-
centric architecture outperforms the network-centric paradigm
by considering different vehicular communication scenarios.

The remainder of the paper is organized as follows. Section
2 provides a brief review of the recent advances in FL com-
munication and Apache Kafka. Section 3 presents our proposed
methodology. We evaluate the proposed framework in differ-
ent communication scenarios to understand its performance in
Section 4, and finally, Section 5 draws our conclusion.

II. RELATED WORK

As far as this work focuses on the communication paradigm
of FL, we cover the literature review related to FL and commu-
nication perspectives. Regarding the latter, we are providing the
background and related work of the Apache Kafka publish/sub-
scribe paradigm.

A. Federated Learning

FL consists of two main components: a server that determines
the structure of model updates and clients that train the model
on locally accessible data. The global model is then computed
by the server using the parameters provided by all the clients.
There are two key factors to consider when deploying the FL
in real-world scenarios: computational cost and communication
costs. In this paper, we are analyzing the communication costs
of FL based on the Pub/Sub mode of communication. To date,
several studies have investigated the communication costs for

FL. In [15], the authors proposed an adapting FedAvg scheme
by using Adam optimization and compression schemes for
communication efficient FedAvg (CE-FedAvg) to reduce the
number of rounds needed for global model convergence at the
cloud and show more robustness to aggressive communication
reduction. In [16], FL framework using quorum blockchain
technology and Apache Kafka has been developed for the
secure communication of model. In [17], authors presented
the Federated Learning with Quantization (FLQ) framework,
to reduce the exchange of data between the cloud and edge
and in the opposite direction for efficient communication. Chen
et al. [18] offer a communication-efficient FL technique based
on a layer-wise asynchronous updating strategy that takes into
account both client and server operations for reducing overall
communication cost. The main intention of KAFKAFED is to
provide a communication efficient framework that can also be
beneficial for the users that are not static.

B. Apache Kafka

Apache Kafka is an open-source distributed messaging frame-
work used to process data streams [14]. In Apache Kafka
producers (vehicles in our case) produce the messages and store
them over the broker in the form of topics, while consumers who
subscribe to these topics can consume these messages from the
broker. Every topic can have many partitions that are copied
across the Kafka brokers to provide fault tolerance capabili-
ties of the Kafka cluster. Kafka consumers read messages in
the same order to which they are appended to partitions, as
messages are written to partitions in an append-only method.
Another design choice that makes Kafka very scalable and
suitable for distributed systems, is that it can exploit multiple
brokers instances. To simplify the coordination of the instances,
Kafka employs ZooKeeper in order to (i) detect the addition
and the removal of both brokers and consumers, (ii) maintain
the relationship among brokers and consumers, (iii) trigger a re-
balancing of the workloads when either brokers or consumers
are added or removed. In contrast to Kafka, there are also
some information-centric communication models available such
as RabbitMQ, ActiveMQ, and MQTT [14]. However, Kafka
outperforms in terms of messages sent per second by both data
producers and consumers, [19]. As a result, Kafka appears to be
a better fit for CAVs applications that require high throughput.

There is a relatively small amount of literature that exists for
deep learning applications with ICN and then Kafka. Authors in
[20] developed an efficient and low-latency distributed message
delivery system for Connected Vehicle (CV) applications that
enables a data-focused view of the entire CV ecosystem. Instead
of doing a training on static data, researchers in [21] proposed
the scheme of training and inference of machine learning models
on continuous data streams using Apache Kafka. Feraudo et
al. [22] suggested an asynchronous participation mechanism for
IoT devices in FL model training based on a publish/subscribe
architecture, in which each participant publishes its intention to
participate in the round for FL model training. In [23], authors
proposed an edge-enabled cloud-assisted system for distributed
intelligence covering advanced ML algorithms by collecting
all the data at the edge over the brokers using Apache Kafka
and updating the global model using reinforcement learning.



In contrast to earlier findings, this is the first study in which
Apache Kafka has been integrated into the FL for the exchange
of model updates between clients and the FL server.

1) Comparison studies of Pub/Sub with Request-Response:
There are few studies available in which researchers compare
network-centric (request-response) models with information-
centric (pub/sub) models. In [24], authors compute the cost
model of pub/sub with the polling and client-server architecture
and claimed that publish/subscribe system is well suited for a
distributed real-time system. In [25], authors compare pub/sub
with request-response model based on different parameters such
as mobility support, adaptability, timeliness, and efficiency.
They also proposed a communication model based on the
integration of both systems. Eugster et al. provide a comparison
between the traditional request-response scheme with pub/sub
scheme based on decoupling in three different dimensions i.e
space, time, and synchronization [26].

III. PROPOSED METHODOLOGY

In this paper, we propose a communication framework for
improving the efficiency of an FL-based procedure for con-
nected autonomous vehicles, assuming that some components
in the infrastructure can be resource constrained. In traditional
communication, a high level of accuracy can be achieved by
transferring all the data from the vehicles to the central server in
the cloud or to the Road Side Unit (RSU). This approach is not
feasible in dynamic vehicular communication because it requires
a large amount of bandwidth. The target of our optimization is
to reduce this communication overhead. This optimization can
be achieved by designing an FL-based procedure that involves
the optimized transmission of the local model parameters. Note
that the FL solutions described in Section I are based on a client-
server based communication paradigm; instead, in the literature,
such as in [27], it is shown that information-centric networking
based on the publish/subscribe paradigm performs better than
the previous one in terms of communication overhead.

In this work, we present a novel framework KAFKAFED
for FL based on information-centric architecture by using the
Pub/Sub mode of communication provided by Apache Kafka.
In KAFKAFED, the interaction between vehicles and the central
server (Cloud or RSU) for model updates is achieved via
Kafka brokers forming a two-hop communication infrastructure.
In this communication scenario, the central server is devoted
to aggregate the models received from the vehicles. Figure
1 depicts the overall structure of KAFKAFED and shows the
interaction between FL server and vehicular clients using Kafka
broker.

In this work, we assume that Kafka broker runs on the edge,
the FL server is running on the cloud, and each vehicle trains its
model locally. The core of our system is the Kafka broker, which
stores the models’ parameters coming from the clients and acts
as an "orchestrator" between the FL server and the vehicles.
The configuration service for Kafka is achieved using the
tool ZooKeeper, which is a centralized service for maintaining
configuration information, providing distributed synchronization
naming and group services; Kafka broker and Zookeeper are
setups on the same node of the adopted communication infras-
tructure.

Figure 1: Overview Of Proposed Framework

On the Kafka broker, we defined the "topics" that are the
logical channels separating messages coming from the uplink
and downlink flows. These messages are the model updates to
and from the server and clients in the FL process. The topic
name is the key value used by the client for subscribing to
the broker for receiving and transmitting data in Kafka. We
have used a total of 2 topics clients_data and averaged_result.
Topic clients_data is used to receive the model updates from
the clients in the uplink direction and on averaged_result, the
server publishes its global model update. We also applied gzip
compression over both topics so that we can compress model
updates shared between vehicles and server.

In the federation process, each vehicle trains its local model
for several epochs and acts as a producer to send its local model
parameters at a given data rate towards the broker. The server
aggregates the data by fetching the model updates of all the
clients from topic clients_data. The whole model update for
each client is divided into small batches of data sizes equal to
10 KB before sending to the broker. Each message packet within
each batch contain information about the source of origin, i.e.
each client id so that we can retrieve the messages of each
client at the server for the aggregation of the model. The model
updates are divided into small batches because DL algorithms
consist of millions of parameters, and it is not feasible to send all
the parameters in a single batch. After dividing the model into
batches, Kafka producer API pushes these messages over the
broker (edge) and append them within the specified topic. The
FL server runs the Kafka consumer API and fetches the model
updates of all the clients for averaging. After averaging, the FL
server also divides the averaged model into batches of 10 KB
and sends it back to the clients by publishing over the broker
on the topic averaged_result. Each client reads the averaged



Figure 2: KAFKAFED for one round of FL Figure 3: FLOWER for one round of FL

model parameters from the averaged_result topic and evaluates
this averaged model, thus completing one round of FL. Once
obtained the desired global model, the server optimizes resource
utilization by suspending the global model updating.

IV. METHODOLOGY VALIDATION

A. Experimental Environment

We setup an experimental environment to validate the sug-
gested approach and its hypothesis in reaching a comparable
performance as the client-centric based communication in the
federated network. For the experimentation, we employ a three-
layer neural network for MNIST classification, with the first
two layers having 200 neurons and the third layer having 10
neurons. In order to make a fair comparison between both
architectures, we use the same parameters. For example size
of the training data, batch size, learning rate and the number of
epochs are 5000, 128, 0.001 and 5 respectively. For testing the
two frameworks, we consider different numbers of clients: 2, 4,
8, 16, 24, and 32 clients each using 5000 images local training
subset from MNIST dataset.

1) KAFKAFED: In our experiments, the Kafka system is
based on the latest version 3.0.0, orchestrated by Zookeeper
3.6.3, and both are running on a Jetson Xavier NX edge device
on which the FL server is also running. This edge device has
64 GB of memory, on which the Debian operating system is
installed. For emulation, we established a Kafka cluster with
only one broker. We used two PCs on which we run FL clients.
We considered one PC as a dense server on which we run a
large number of clients, while for calculating values of one
complete round of FL we used one client as a probe. In general,
each system has a Debian distribution installed with Python 3.8
and all supporting libraries such as Kafka Python, PyTorch, and
others.

2) FLOWER: The configuration setup described above is
also used to emulate the framework discussed in this section.
We wrapped the same model and parameters within FLOWER
architecture and change the Strategy of FLOWER server so that
before a training cycle of FL can begin, a minimum number of
clients must be connected to the server. We use four different
machines to divide the load among them in such a way that

the training time of each client would remain the same, as
the training time of each client is dependent on the device’s
capabilities as well as the number of clients running on each
processor. The FLOWER server is running on the Nvidia Jetson
Xavier NX device. Figure 3 depicts the implementation process
of FLOWER architecture.

3) Dataset Distribution: During the federated procedure,
clients train local models on heterogeneous datasets. Indeed, the
datasets may be distributed differently among clients, which can
have an impact on the training duration and accuracy of trained
models. It is necessary while comparing different techniques
for a federated solution that the training time for each client in
both scenarios should be the same. For this reason, we assigned
the same size of subset 5000 samples to each client. We use
the MNIST dataset 3, which is a collection of 70k handwritten
digits and formed images of size 28x28.

B. Results

During experimentation, we studied the time for one complete
round of FL in two different considered scenarios by changing
the number of clients, as depicted in Table II and III. The two
scenarios that we considered for the vehicular use case are as
follows:

• IEEE 802.11p for vehicular communication with a band-
width of 27 MB/s and 50 ms delay in sending each packet

• 5G for an automotive use case with a bandwidth of 100
MB/s and 1 ms of delays

We emulated the above-mentioned scenarios, using a
NetEm [28] tool over Ethernet, a functionality provided
by LINUX traffic control to introduce packet delays, jitters,
losses, and bandwidth throttling. All the experiments are
repeated five times. In real-world scenarios, clients have
heterogeneity in the network speed as they are distributed in
different regions. However, for the sake of experimentation, we
are considering the fixed upload speed.

1) Comparing KAFKAFED and FLOWER: We compare our
information-centric framework KAFKAFED with the network-
centric based architecture FLOWER. A schematic comparison

3http://yann.lecun.com/exdb/mnist/



Table I: Comparison of KAFKAFED and FLOWER

Comparison KAFKAFED FLOWER

Heterogeneous clients Decoupling of clients and server via broker provides
support for heterogeneous clients

FLOWER server is unaware of the nature of con-
nected clients so provides support for heterogeneous
clients

Scalability We scaled and tested this framework upto 32 clients We simulate it upto 32 clients, with FLOWER clients
running on 4 different machines

ML framework agnostic Users can leverage their FL tasks by using any
Machine Learning framework

Same applies to FLOWER

Language agnostic Kafka provides support for Python, Java, C# and
C/C++ clients

In addtition to the mentioned languages for Kafka it
also provides the support for iOS

Compression Kafka provides gzip, snappy and LZ4 compression Not available

of both frameworks is depicted in Table I for the considered
properties. We are achieving the same features as FLOWER, with
the added benefit of applying compression over Kafka topics to
exchange fewer data between clients and brokers. The use of
KAFKAFED as an information-centric communication paradigm
for FL could help to improve data retrieval efficiency in vehicle
scenarios.

2) Performance evaluation for IEEE 802.11p use-case: In
this scenario, we assume that each vehicle has On-Board Units
with IEEE 802.11p omnidirectional antennas of fixed range
communicating with a broker over the edge. Each vehicle
can subscribe to the role of both producer and consumer
while sending model parameters and reading the model updates
from the broker respectively. To simulate this behavior we are
using the NetEm tool for setting required upload speed and
delay as described earlier. The results for both frameworks
are shown in Table II. These results show that with the small
number of vehicular clients FLOWER is performing better while
KAFKAFED time is doubled. However as we increase the
number of participating vehicles, we achieved better time for
one round of FL in KAFKAFED. While in FLOWER with the
increasing number of clients, the time increases. This can be
the consequence of the flash crowd situation in which a large
number of clients increases the traffic load on a particular server.
Contrary to that in the information-centric paradigm decoupling
of FL clients with the server helps to minimize the flash crowd.

Table II: For 802.11p use-case, time (seconds) per round of FL
with varied numbers of clients

No. of KAFKAFED FLOWER

Clients Min Max Avg Min Max Avg

2 20.01 21.06 20.42 10.01 11.08 10.54
4 20.38 21.47 20.92 12.74 15.70 14.51
8 22.14 23.01 22.45 19.07 19.50 19.24

16 23.90 24.20 24.02 24.06 25.15 24.60
24 25.19 25.23 25.27 33.23 34.00 33.70
32 26.82 27.13 26.93 43.01 44.01 43.50

3) Performance evaluation for 5G use-case: According to
a recent 5G Automotive Association white paper, 5G aims to
provide a high data rate (100 MB/s) for vehicular connections
with high reliability and low latency (1 ms) features. We have
analyzed the values for one round of FL using 5G for both
used frameworks. With respect to IEEE 802.11p, we can see a
significant improvement in a time for one round as shown in

Table III. This behavior is because in 802.11p we have a large
value of packet delays. However, the general trend for the two
frameworks is the same as we see earlier in 802.11p, that is,
for a small number of participating devices FLOWER performs
better and for a large number of clients, KAFKAFED achieves
better performance as compared to FLOWER.

Table III: For 5G use-case, time (seconds) per round of FL
with varied numbers of clients

No. of KAFKAFED FLOWER

Clients Min Max Avg Min Max Avg

2 14.98 16.58 16.42 10.83 11.21 11.01
4 16.09 17.02 16.56 14.22 15.01 14.90
8 17.67 18.20 18.00 16.55 17.24 17.30

16 20.01 21.55 20.70 21.06 22.46 22.40
24 23.64 24.04 23.99 27.01 30.40 28.70
32 24.97 25.60 25.48 41.00 42.01 41.78

With the proposed framework, the performance of the
KAFKAFED FL server with a various number of clients is shown
in Table IV for both 802.11p and 5G. As described earlier in
Section IV and shown in Figure 2, FL server in KAFKAFED is
responsible to fetch the data from clients_data topic, doing the
average of all the client parameters, and writing back the result
to the averaged_result topic. Consequently, as the number of
clients increases, it has to fetch more data from the topic. That
is why the time of server increases with the number of clients.

Table IV: FL server duration for both considered technologies
in KAFKAFED

No. of KAFKAFED FLOWER

Clients Min Max Avg Min Max Avg

2 3.45 5.21 4.62 3.69 3.77 3.72
4 4.50 5.55 5.02 3.93 4.60 4.26
8 5.45 5.62 5.50 4.96 5.02 4.98

16 6.98 7.20 7.03 7.22 7.60 7.23
24 8.30 8.53 8.40 8.28 8.94 8.83
32 10.18 10.27 10.22 10.01 10.64 10.50

The above discussed experimental results show that the
performance of the proposed model is better in the network
with respect to FLOWER. It is also evident from the results
that KAFKAFED is more scalable as it shows the linear trend
by increasing the number of clients. Furthermore, the proposed
architecture allows the vehicles to remain connected to the
broker even when there is disconnection with the server, because



the connecting time with the broker over the edge is less than
the connecting time with the cloud.

V. CONCLUSION AND FUTURE WORK

In this paper, we have presented a novel communication-
efficient framework called KAFKAFED for federated learning
based on the Pub/Sub model that can be used on Internet of Ve-
hicle applications. This framework is based on an information-
centric mode of communication for FL. The publish/subscribe
paradigm facilitates flexible and dynamic vehicular network
services by providing loosely coupled and scalable communica-
tion. While in a network-centric paradigm the server may even
become a bottleneck when there are a large number of clients.
The paper has highlighted most of the design challenges and
provided an overview of the implementation. We evaluate the
proposed scheme by comparing it with the existing baselines
network-centric model i.e. FLOWER. Simulation results validate
that the proposed framework can achieve better results for FL
as compared to network-centric-based architectures. The major
benefits of this framework for FL are scalability, decoupling
in time (client and server do not need to be active at the
same time), decoupling in space, data reliability, and data
availability as Kafka is highly available in nature because of
its distributed platform. In information-centric architecture, a
server serves a few brokers that in return serve a large number of
vehicles within the vicinity of the particular edge thus reducing
the flash crowd situation over the FL server. As a result,
the publish/subscribe paradigm may be the most promising
communication model for FL. In the future, we will improve the
proposed scheme and analyze its performance in real-world FL
applications and datasets for vehicular situations. Furthermore,
we will also consider the use of a large Kafka collection of
brokers on the edge.

REFERENCES

[1] W. Y. B. Lim, N. C. Luong, D. T. Hoang, Y. Jiao, Y.-C. Liang, Q. Yang,
D. Niyato, and C. Miao, “Federated learning in mobile edge networks:
A comprehensive survey,” IEEE Communications Surveys & Tutorials,
vol. 22, no. 3, pp. 2031–2063, 2020.

[2] C. E. Andrade, S. D. Byers, V. Gopalakrishnan, E. Halepovic, D. J. Poole,
L. K. Tran, and C. T. Volinsky, “Connected cars in cellular network: a
measurement study,” in Proceedings of the 2017 Internet Measurement
Conference, 2017, pp. 235–241.

[3] D. Bacciu, S. Akarmazyan, E. Armengaud, M. Bacco, G. Bravos,
C. Calandra, E. Carlini, A. Carta, P. Cassarà, M. Coppola et al.,
“Teaching-trustworthy autonomous cyber-physical applications through
human-centred intelligence,” in 2021 IEEE International Conference on
Omni-Layer Intelligent Systems (COINS). IEEE, 2021, pp. 1–6.

[4] H. Li, K. Ota, and M. Dong, “Learning iot in edge: Deep learning for the
internet of things with edge computing,” IEEE network, vol. 32, no. 1, pp.
96–101, 2018.

[5] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Artificial Intelligence and Statistics. PMLR, 2017, pp. 1273–
1282.

[6] P. Cassarà, A. Gotta, and L. Valerio, “Federated feature selection for cyber-
physical systems of systems,” arXiv preprint arXiv:2109.11323, 2021.

[7] S. Caldas, S. M. K. Duddu, P. Wu, T. Li, J. Konečný, H. B. McMahan,
V. Smith, and A. Talwalkar, “Leaf: A benchmark for federated settings,”
2019.

[8] D. Chai, L. Wang, K. Chen, and Q. Yang, “Fedeval: A benchmark
system with a comprehensive evaluation model for federated
learning,” CoRR, vol. abs/2011.09655, 2020. [Online]. Available:
https://arxiv.org/abs/2011.09655

[9] C. He, S. Li, J. So, X. Zeng, M. Zhang, H. Wang, X. Wang, P. Vepakomma,
A. Singh, H. Qiu, X. Zhu, J. Wang, L. Shen, P. Zhao, Y. Kang, Y. Liu,
R. Raskar, Q. Yang, M. Annavaram, and S. Avestimehr, “Fedml: A
research library and benchmark for federated machine learning,” 2020.

[10] T. Ryffel, A. Trask, M. Dahl, B. Wagner, J. Mancuso, D. Rueckert, and
J. Passerat-Palmbach, “A generic framework for privacy preserving deep
learning,” 2018.

[11] D. J. Beutel, T. Topal, A. Mathur, X. Qiu, T. Parcollet, P. P. B. de Gus-
mão, and N. D. Lane, “Flower: A friendly federated learning research
framework,” 2021.

[12] S. Arshad, M. A. Azam, M. H. Rehmani, and J. Loo, “Recent advances
in information-centric networking-based internet of things (icn-iot),” IEEE
Internet of Things Journal, vol. 6, no. 2, pp. 2128–2158, 2018.

[13] G. Xylomenos, C. N. Ververidis, V. A. Siris, N. Fotiou, C. Tsilopoulos,
X. Vasilakos, K. V. Katsaros, and G. C. Polyzos, “A survey of information-
centric networking research,” IEEE communications surveys & tutorials,
vol. 16, no. 2, pp. 1024–1049, 2013.

[14] J. Kreps, N. Narkhede, J. Rao et al., “Kafka: A distributed messaging
system for log processing,” in Proceedings of the NetDB, vol. 11, 2011,
pp. 1–7.

[15] J. Mills, J. Hu, and G. Min, “Communication-efficient federated learning
for wireless edge intelligence in iot,” IEEE Internet of Things Journal,
vol. 7, no. 7, pp. 5986–5994, 2019.

[16] M. R. Behera, R. Otter, S. Shetty et al., “Federated learning using
distributed messaging with entitlements for anonymous computation and
secure delivery of model,” 2020.

[17] N. Tonellotto, A. Gotta, F. M. Nardini, D. Gadler, and F. Silvestri, “Neural
network quantization in federated learning at the edge,” Information
Sciences, 2021.

[18] Y. Chen, X. Sun, and Y. Jin, “Communication-efficient federated deep
learning with layerwise asynchronous model update and temporally
weighted aggregation,” IEEE transactions on neural networks and learn-
ing systems, vol. 31, no. 10, pp. 4229–4238, 2019.

[19] P. Dobbelaere and K. S. Esmaili, “Kafka versus rabbitmq: A comparative
study of two industry reference publish/subscribe implementations: Indus-
try paper,” in Proceedings of the 11th ACM international conference on
distributed and event-based systems, 2017, pp. 227–238.

[20] Y. Du, M. Chowdhury, M. Rahman, K. Dey, A. Apon, A. Luckow, and
L. B. Ngo, “A distributed message delivery infrastructure for connected
vehicle technology applications,” IEEE Transactions on Intelligent Trans-
portation Systems, vol. 19, no. 3, pp. 787–801, 2017.

[21] C. Martín, P. Langendoerfer, P. S. Zarrin, M. Díaz, and B. Rubio, “Kafka-
ml: connecting the data stream with ml/ai frameworks,” arXiv preprint
arXiv:2006.04105, 2020.

[22] A. Feraudo, P. Yadav, V. Safronov, D. A. Popescu, R. Mortier, S. Wang,
P. Bellavista, and J. Crowcroft, “Colearn: Enabling federated learning in
mud-compliant iot edge networks,” in Proceedings of the Third ACM
International Workshop on Edge Systems, Analytics and Networking, 2020,
pp. 25–30.

[23] P. Bellavista, R. Della Penna, L. Foschini, and D. Scotece, “Machine
learning for predictive diagnostics at the edge: an iiot practical example,”
in ICC 2020-2020 IEEE International Conference on Communications
(ICC). IEEE, 2020, pp. 1–7.

[24] S. Oh, J.-H. Kim, and G. Fox, “Real-time performance analysis for
publish/subscribe systems,” Future Generation Computer Systems, vol. 26,
no. 3, pp. 318–323, 2010.

[25] C. Rodríguez-Domínguez, K. Benghazi, M. Noguera, J. L. Garrido, M. L.
Rodríguez, and T. Ruiz-López, “A communication model to integrate
the request-response and the publish-subscribe paradigms into ubiquitous
systems,” Sensors, vol. 12, no. 6, pp. 7648–7668, 2012.

[26] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec, “The many
faces of publish/subscribe,” ACM computing surveys (CSUR), vol. 35,
no. 2, pp. 114–131, 2003.

[27] J. Dizdarević, F. Carpio, A. Jukan, and X. Masip-Bruin, “A survey of
communication protocols for internet of things and related challenges of
fog and cloud computing integration,” ACM Computing Surveys (CSUR),
vol. 51, no. 6, pp. 1–29, 2019.

[28] S. Hemminger et al., “Network emulation with netem,” in Linux conf au,
vol. 5. Citeseer, 2005, p. 2005.


