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Abstract—Automatic traffic classification is becoming more
and more critical in traffic engineering due to the current trend of
encrypting transport information (e.g., behind HTTP encrypted
tunnels), which prevents intermediate nodes from accessing end-
to-end packet headers. However, such information is crucial
for traffic shaping, network slicing, and Quality of Service
management and for preventing network intrusion or anomalies
detection. This paper proposes a federated learning architecture
for supporting traffic engineering based on automated traffic
clustering and classification. However, this is done in an un-
supervised and cooperative manner, such that federated nodes
participate in increasing the global knowledge of the network
thus enhancing the accuracy in either the prevention of anomalies
and intrusions or the set up of new traffic sources and the relative
services.

I. INTRODUCTION

Traffic characterization depends on the information ob-
servable from the probed client-server data streams. The
availability of such information depends on the employed
communication protocols and the modality used to archive the
communications [1]. Also, data processing techniques play a
role in information extraction. When traffic is composed of
non-encrypted data flows, it is usually possible to perform a
complete analysis. In such a scenario, the packet content can
be inspected by accessing the packet header and the payload.
In this case, applications, protocols and other information
related to the generation of data flows are identifiable, meaning
that we can separate the flows concerning the couples of client-
server exchanging them.

Access to transport protocol information allows header com-
pression/suppression when capacity is scarce, adapt the proto-
col behaviour to the characteristics of the network bottlenecks
(e.g. HTTP acceleration and split-connections), and implement
multi-class per-hop behaviour in the absence of another IP
signalling. A solution is urgently needed to avoid losing these
benefits when encrypting transport headers [2] or other HTTP
tunnels are prevalent. Traditional methods of traffic analysis
was based on Deep Packet Inspection (DPI) [3]. The term DPI
refers to a set of analysis tools to extract information from the
headers and payload and classify the flows. However, with
the increasing number of new applications, which no longer
have fixed port numbers that can be queried but adopt random
port strategies, the accuracy of DPI are gradually declining.
Nevertheless, since the advent of the encrypted transport

headers, as in QUIC [4], the range of applicability of DPI has
been progressively fading out, paving the way for new from
blind data extraction. Among other classification methods,
Machine Learning (ML) is gaining popularity as a substitute
to DPI due to its performance and ease of implementation.

Machine Learning (ML) can be broadly described as the
study of algorithms able to identify patterns in data traces
without human intervention. The two main features of ML
are the ability to improve model estimation through experience
(for which a substantial amount of relevant data need to be fed
to the algorithm) and the ability to describe a vast number of
models, including numerical and categorical data.
We divide the set of ML methods into three families:

Supervised learning refers to a category of algorithms that
determine an empirical input-output mapping based on
a series of input-output samples. Supervised learning
requires a labelled training dataset consisting of pairs
of input vectors (called features) and their associated
output (called labels), generated by the process under
consideration.

Unsupervised learning mainly deals with unlabelled data. An
unsupervised learning algorithm aims to discover patterns
providing a compact representation of the data space.
The most common family of unsupervised learning is
clustering. Clustering methods include algorithms that
divide the dataset into groups based on a similarity
criterion derived from a chosen metric.

Semi-supervised learning. As the name suggests, this class
is an intermediate step between supervised and unsuper-
vised learning, which combines a small amount of la-
belled data with many unlabelled data during the training.

The purpose of Semi-supervised methods is to reduce
the cost associated with the acquisition of labelled data by
substituting it with unlabelled data (relatively less expensive).
The goal is to acquire knowledge on the missing labels by
evaluating the similarity of unlabelled data to labelled one.
To do so, often semi-supervised methods define tasks of data
inspection or optimized manual labelling of the unlabelled data
to provide adequate information. Even if the semi-supervised
techniques can reduce the computational costs of the learning,
the effort for data labelling for the starting training phase
can still be heavy, so the semi-supervised techniques can be



combined with learning protocols and data processing methods
to improve the learning performance in terms of computational
and communication loads.

In order to lighten both computational and communication
costs due to the semi-supervised techniques, it is possible to
use methods of dimensional reduction and federated learning
protocols. In the first case, a feature selection can be adopted
to reduce computational and communication costs compared
to the elaboration of the native dataset; the feature selection
can also reduce the overfitting problem. In the second case,
the federation allocates part of the computational operations
on the end devices, thus reducing the computational load for a
central server and the number of control messages exchanged.

In this paper, we provide the following contributions:
• a regression algorithm based on Neural Network suitable

for working on constrained devices in a semi-supervised
fashions;

• a federated version of the regression algorithm;
• a federated dimensionality reduction procedure based on

an information-based feature selection;
• a comparison with some state-of-art feature selection

procedures;
• a numerical analysis of the performance obtained by

using both centralized and federated versions of the re-
gression algorithm, also considering the feature selection
procedure.

The rest of the paper is organized as follows. In Section
II, the related works are presented. Section III presents the
general methodology and a description of the scenario. The
performance evaluation is shown in Section IV. Conclusions
in Section V.

II. RELATED WORK

Internet traffic classification using supervised, unsupervised,
and semi-supervised learning has been widely investigated in
literature [1] and several solutions applied to computer vision
and time series analysis have been studied in application to
traffic monitoring and analysis. What differs in applying such
methods to the traffic analysis is how to extract the features
xi, i.e., the variables that allow outputting the classification y.
We can divide the contributions into three classes: Statistics-
based methods, Correlation-based methods, and Fingerprint-
based methods.

1) Statistics-based methods: they are based on the repre-
sentation of traffic flows through statistical flow level features,
which aim at capturing the characterizing patterns of a traffic
flow. These features are, for instance, statistical metrics related
to the number of packets transmitted, the number of bytes
transmitted, the packet inter arrival time, and the packet size of
a flow. In [5], 23 metrics (maximum length (bytes), minimum,
mean, median, standard deviation and cumulative length, then
inter arrival time (ms), etc.) are applied over five objects (total
packets, forward and backward packets, handshake and data
transfer packets). In [6], the statistical features are extracted
from a vector of packet lengths, taking into account three
packet series: incoming, outgoing and bidirectional flows

packets. A pool of 9 classifiers is combined to form the
MCS architecture. In [7], features are: protocol, source port
number, destination port number (that are referred to as classic
features), maximum, minimum, mean and variance of the
packet size (referred to as statistical features).

2) Correlation-based methods: they are characterized by
including knowledge on the correlation among flows, to help
perform the classification task. These methods are often based
on the so-called Bag-of-Flows (BoF), which are entities that
group correlated flows. Correlation among flows is evaluated
in literature according to a set of heuristics. A typical example
is the 3-tuple identifier, which groups the flows over a link
based on the destination IP address, the destination port,
and the transport protocol. In [8] a self-learning classifier
called SLIC (Self Learning Intelligent Classifier), capable
of performing continuous model updates, is proposed. The
SLIC scheme consists of two main components: a classifier
based on k-Nearest Neighbours (k-NN) and a decision-maker.
The classification method is based on the pre-processing
of network traffic into BoF, based on the 3-tuple heuristic.
Two semi-supervised methods are proposed in [9], [10], to
classify the traffic with respect to the communication protocols
employed. The role of the previously seen BoF is carried by
the equivalence set constraints in [9], [10] that are built using
the 3-tuple heuristic and indicate that a set of flows are likely
to share the same application layer protocol and hence have
to be classified equally.

3) Fingerprint-based methods: they are based on extracting
a fingerprint, i.e., a vector or function, possibly a prob-
ability density function, capable of summarizing the main
characteristics that are common to a specific traffic class.
Fingerprinting requires a significant amount of data per class to
be identified. In [11] traffic fingerprinting is used to classify
IP flows produced by network applications exchanging data
through TCP connections such as HTTP, SMTP, SSH, etc.., by
looking at client-server or server-client flows. After observing
several flows from the same protocol, the gathered statistical
information is used to build protocol fingerprints which are
used to classify an unknown flow. A vector of Probability
Density Functions (PDF) is estimated from a training set of
flows generated by the same known protocol, to build the
protocol fingerprints. In [12] a method to represent communi-
cation patterns in a compact way is proposed. Communications
are abstractly considered like sets of messages exchanged,
represented as vectors in a multidimensional space. Each set
of messages is treated as a set of observations of a random
variable with an unknown probability distribution. The joint
distribution of features that describe a flow is represented as
a single vector of fixed dimension, that is, the fingerprint.

In the last years, the proliferation of encrypted traffic is
leading to an increment of flow-based methods that rely on the
analysis of statistical or time-series features using ML. These
include Naive Bayes (NB), Support Vector Machine (SVM),
Random Forest (RF), and K-Nearest Neighbours (KNN) [2],
[13]–[15]. Reference [16] states that the most burdensome
task in building an ML model for traffic classification is data



labelling, which requires human intervention, whereas capture
of large traces is readily available. Their approach is to use a
semi-supervised method, where only a subset of flows needs
to be labelled to enable accurate predictions. This approach
was fine-tuned in [17] where a deep convolutional generative
adversarial network (DGCAN) was used to classify encrypted
connections. Their approach provided an accuracy of 89%
when only 10% of the dataset was labelled.

In [18], the classifier is able to detect several classes of
services with encrypted traffic with good accuracy. While
the initial analysis considers 1400 features, it is shown that
through a method of features reduction, the significant set can
be reduced to only three features.

III. PROBLEM DEFINITION AND METHODOLOGY

The problem we have faced in this paper concerns estimat-
ing the percentage of traffic due to either a given protocol or
a class of application within a data stream containing many
types of data flows. Since the output of our traffic analysis is
a variable with real value and no in a categorical set, i.e. an
integer set. Hence, we considered the regression techniques in
[19] applied to a scenario of Edge Computing, where the end
devices are resource-constrained.

The reference scenario implies that the information to train
the regression models is distributed over a set of end devices,
which utilize this information to perform a local training
of the regression model on the local dataset, i.e., on the
traffic captured by each one. Then, a centralized Edge Server
performs the merging of the knowledge derived by each end
device. To this aim, we have developed a regression algorithm
based on a Neural Network (NN) with a single hidden layer,
using the Adam optimizer, and its federated version. We also
combine the regression algorithm with a feature selection
technique that can be used still in a federated manner. Then, we
have analyzed the accuracy of the federated regression model
compared to the centralized one and how the feature selection
affects the computational and communication loads during
model training, and its accuracy. In the following sections we
provide more details about developed procedures.

A. Regression-based Algorithm

The regression algorithm developed in this paper is based on
a Neural Network (NN) with a single hidden layer, using the
ADAM optimizer [20]. The ADAM optimization algorithm is
a more efficient version of the well-known Stochastic Gradi-
ent Descent procedure to update network weights iteratively
through training data.

ADAM algorithm is suitable for addressing non-convex
optimization problems even when running on constrained
devices. The main advantages in using this algorithm lie in: it
is straightforward to implement, it is computationally efficient,
it can work online, it requires little memory requirements, it
is suitable for non-stationary objective functions, even when
their gradient is very noisy or sparse. Differently from the
Stochastic Gradient Descent, the ADAM algorithm computes
individual adaptive learning rates for different parameters from

the estimates of first and second moments of the gradients. The
algorithm maintains a learning rate for each network weight,
which is separately adapted as learning unfolds. Precisely,
instead of adapting the parameter learning rates based on
the average first moment, Adam also uses the average of
the second moments of the gradients. The average used by
the algorithm is the exponential moving average of both the
gradient and the squared gradient, with the parameters that
control the decay rate of the average adapted step by step.
Note that, ADAM algorithm combines the advantages of both
algorithms, the Adaptive Gradient Algorithm (AdaGrad) and
the Root Mean Square Propagation (RMSProp). The former
allows to maintain a per-parameter learning rate improving
the performance on problems with sparse gradients, and the
last one still maintains per-parameter learning rates that in this
algorithm are adapted using the average of current magnitudes
of the gradients for the weight.
The developed federated procedure to estimate the percentage
of traffic due to either a given protocol or a class of application
within a data stream containing many types of data flows,
through the resolution of a regression problem, is discussed in
the following.

Step0 The Edge Server performs the supervised learning of
the regression model (hard-labelling), using a pre-elaborated
dataset, then this model (global model) is propagated toward
the end devices;
Step1 Each end device acquires local data and performs
data labelling (soft-labelling), exploiting the global model;
Step2 Each end device uses its soft labels to perform
the feature selection, then the scheme of feature selection is
transmitted toward the Edge Server;
Step3 The Edge Server federates the feature selection
schemes and propagates back to the end devices the federated
feature selection scheme;
Step4 Each end device trains its local regression models
using the restricted set of features evaluated through the
federated scheme. The restricted trained regression model is
transmitted toward the Edge Server;
Step5 The Edge Server averages the received restricted
regression models and merges this averaged model with the
global regression model available until that time, the Edge
Server propagate the new global regression model toward the
end devices.

Hence, a new round of local learning of the regression model
and a new local feature selection can be achieved starting from
the Step1. The following section explains the procedure to
achieve the feature selection and federation of the selection
schemes available at the end devices.

B. Feature Selection Algorithm

The Feature Selection (FS) algorithm used in this paper has
been derived in both its centralised and federated versions from
[21], and it can be formally stated as follows:

Definition (FS Problem). Given the input data matrix X
composed by n samples of m features (X ∈ Rn×m), and



the target attributes’ (or labels) vector y ∈ Rn, the feature
selection problem is to find a k-dimensional subset K ⊆ X
with k ≤ m, by which we can characterize y.

The algorithm used in this work is based on the measure
of Mutual Information (MI) that measures the amount of
information obtained about the class attribute through the set
of selected features. The MI is related to the entropy H(·) that
measures the uncertain of a random variable, as shown in the
following equation [22], [23].

I(U;y) = H(y)−H(y|U), (1)

In the previous equation U = {x1 · · ·xk | k ≤ m} ⊆ X is
the subset of selected features, and H(y|U) is the conditional
entropy that measures the amount of information needed to
describe y, conditioned by the information carried by U. In
brief, the I(U;y) represents the dependence between U and
y, i.e., the greatest is the value I, the greatest is the information
carried by U on y. The features selected in U called Essential
Attributes (EAs), provide the maximum value for the equation
(1).

In [22], [23] authors prove that the solution for the faced
feature selection problem can be found solving the optimiza-
tion problem in the equation (2),

argmax
U

I(U;y) (2)

U = {x1 · · ·xk | k ≤ m} ⊆ X

assuming the features independent among them, authors also
provide the incremental version of the previous algorithm,
shown in the equation (3).

arg max
xj∈X\U

I(xj ;y|U), (3)

U = {x1 · · ·xk−1 | k ≤ m} ⊆ X.

With the Cross-Entropy-based [24] feature selection algorithm
used in this paper, we provide the solution for the algorithm
in equation (2), making negligible the assumption of the
independence among the features. This means that, instead of
selecting one EA at a time, we can select a set of EAs jointly.
The solution provided by the Cross-Entropy-based algorithm
is the distribution probability p = [p1, · · · pm] of selecting
features in U to get the maximum for the problem in the
equation (2).

The Federated Feature Selection (FFS) procedure adopted
in this paper exploits the Bayesian’s theorem to merge the
local distribution probability p into the global one. Formally,
we assume that each node acquires a number of i.i.d. records
nl to address the optimization problem (2), and that the nodes
share the same set of features X. The global probability pG

used for the FS can be written as follows:

pG =
∑
l

plql, (4)

where p(l) is the probability distribution of selecting the
features at the node l, and q(l) is the weight of this distri-
bution probability. As shown in equation (5),the weight is

proportionally to the size of its local dataset compared to the
whole amount of data present in the system. In this way, we
can contrast situations where local datasets are heterogeneous
w.r.t. the size.

ql =
nl∑
l

nl
(5)

In the next section we provide the perform analysis of the
procedure discussed in this section.

IV. NUMERICAL ANALYSIS

The dataset used to analyze the performance of the devel-
oped semi-supervised procedure is the QUIC Dataset [25].
The dataset contains flow packets based on QUIC and non-
QUIC traffic, the latter generated from five Google services:
Google Drive, Google Docs, Google Music, Google Search
and Youtube. Authors have used several configuration systems
for generating and acquiring data based on operating systems
such as Windows 7, 8, 10, Ubuntu 16.4. Authors also de-
veloped several scripts using Selenium WebDriver and AutoIt
tools to mimic human behaviour when capturing data. This
approach allowed them to capture a dataset with more than
20 ·106 records without significant human effort. The data are
recorded in many directories, one for each service, containing
many files deriving from different days of acquisition. The
records in the file contain three fields: Unix timestamp, the
acquisition time of the record measured from the first one
acquired and the packet length.

We developed Python-based scripts to merge all the files
synchronizing them using the Unix timestamps. Hence, we
obtained a single file containing all the acquired records for
QUIC and non-QUIC traffic for the five classes of service.
We also developed Python-based scripts to perform the feature
extraction, which provides the following features: number of
QUIC packets within a sampling window, 25-th, 50-th, 75-
th and 90-th percentiles of inter-arrival time of packets, 25-
th, 50-th, 75-th and 90-th percentile of packet sizes. The
sampling window chosen to evaluate the statistics stated above
is set to 1 second. For each record of extracted features,
we have evaluated two kinds of class labels: the first one
called Class Label QUIC is the percentage of QUIC based
traffic within the considered sampling window, the second one
called Class Label Service is the percentage of traffic due to a
class service within the considered sampling window. We have
partitioned the dataset of extracted features into two sets: the
first containing the 20% of the samples used to perform the
supervised training of the regression model as stated in the
Step0 of the procedure. The second contains the 80% of the
samples that have been distributed over a set of 10 end devices
to perform the local unsupervised training of the regression
model as stated in the procedure from Step1 to Step5.

We have analyzed the performance of the proposed Cross-
Entropy-based (CE) feature selection algorithm over the fea-
tures extracted from the QUIC Dataset. We compared CE’s
performance in detecting the quota of QUIC traffic over non



QUIC traffic in a sample of traffic dump to those obtained us-
ing other information-based feature selection algorithms such
as mRMR [26], CMIM [27], and DSR [28], which provide
the solution for the optimization problem in equation (3). We
have also compared the Cross-Entropy-based algorithm with
the Analysis of Variance technique. This technique, known
as ANOVA [29], determines the variance of all the features
and divide them into systematic and random factors, where
random factors have no impact on the learning as the variance
of these features are zero. The higher the F-score, the higher
the variance between the means of the two populations. We
assume that features with zero variance add no information
by considering the relation between the target variable and
feature vectors. In our case, ANOVA is employed to compare
the means of the features and determine a set of features that
efficiently contribute to the traffic classification.

Table I shows the results of the feature selection scheme
obtained with the methods discussed above. Most feature

Features Selection Scheme
Feature CE ANOVA CMIM DISR mRMR

1) N 0 0 0 1 1
2) ∆T25−th 0 1 0 0 1
3) ∆T50−th 1 0 1 1 0
4) ∆T75−th 0 1 0 0 0
5) ∆T90−th 0 0 0 0 0
6) Ln25−th 1 0 1 0 0
7) Ln50−th 1 1 1 1 1
8) Ln75−th 1 1 1 1 1
9) Ln90−th 1 1 1 1 1

TABLE I: Extracted Features Set

selection methods provide a ranking of the analyzed features.
Instead, our method provides automatically the minimal set
of features, which is 5 in this case, guaranteeing the best
estimation for the regression model. For this reason, to obtain
the minimum set of features by the other methods, we select
the first five features of ranking provided by them. Another
advantage provided by the Cross-Entropy-based algorithm is
that we can implement a federated version of it. Instead of
the others methods, the federated version does not exist to
the best of our knowledge. Table II shows the comparison
among the performance obtained with the regression model
for identifying the percentage of QUIC traffic in the received
flow adopting the subsets of features selected with the various
methods discussed previously. The Cross-Entropy and CMIM
algorithms allow a performance degradation in the regression
model’s performance of just under 1% w.r.t. no feature se-
lection; instead, we obtain a degradation close to 5% with
the ANOVA, and close to 10% with both DSR and mRMR,
compared to the performance obtained with the whole set of
features. Note that while achieving the same performance with
Cross-Entropy-based and CMIM algorithms, the former allows
automatic calculation of the minimum number of features and
can also be implemented in a federated version. In Table (III),
we provide the performance analysis in terms of control traffic
(mesured in MBs), when both FS and the regression model
are federated. Precisely we compare the performance of the

Method RMSE Selected Feat.
#

No Feature selection – 0.0121 9 (All)

Centralised FS

CE 0.0122 5
ANOVA 0.0127 top 5
CMIM 0.0123 top 5
DSR 0.0133 top 5
mRMR 0.0133 top 5

TABLE II: Supervised Feature selection. Performance of
regression model trained using the features selected by each

method.

procedure used to train the regression model, when this is
achieved without using model federation and feature selection
or Centralized Regression (CR), using the federation of the
models or Federated Regression (FR), and using the federation
of the models trained over the selected set of features or Re-
stricted Federated Regression (RFR). The values in the column

Procedure Avrg. Traffic Conv. Rounds RMSE
(Fed./F.S.) (Fed./F.S)

CR 5.8 - 0.0122
FR 0.44/- 8/- 0.0152
RFR 0.315/0.108 10/12 0.0219

TABLE III: Performance comparison among the regression
procedures: centralized, federated and restricted federated.

Avrg. Traffic show the volume of control traffic, generated
by all the nodes during the learning procedure to train the
regression model. The Centralized Regression generates the
highest load because in each learning round all the nodes
use a regression model estimate using a Neural Network
with input layer based on all the available data records.
The Federated Regression involve lighter regression models
than the previous one because the input layer of the Neural
Network is based on a smaller dataset, that is, the dataset
available at the node. In this case, all the control traffic is due
to the federated procedure. Finally, the Restricted Federated
Regression procedure generates the minimum control traffic,
since it uses the local dataset containing only the records of
the selected features. Note that in this last case, 0.108 MB of
the 0.315 MB control traffic are due to the federated feature
selection procedure that involves data exchanging between the
Edge Server and end devices.

The values in the column Conv. Rounds show the number of
communication rounds required by the federated procedure to
merge the local models into the global one. We assume that the
convergence for the global model is reached when the differ-
ence between the weights of two consecutive learning rounds
is in average lesser than 1%. For the Restricted Federated
Regression procedure the average number of communication
rounds required to converge is also shown during a learning
round.

Finally, the values in the column RMSE show the values of
the RMSE evaluated between the ground truth and the trained
regression model trained using the procedures discussed until



now. Obviously the minimum RMSE is obtained when using
the Centralized Regression because we use whole dataset to
fed the Neural Network. Reducing the amount of information
used as input in the Neural Network the RMSE increase. Note
that, the RMSE’s degradation is less fast than the growth of
the control traffic, for example the RMSE of the Restricted
Federated Regression is ∼ 1.8× the RMSE of the Central-
ized Regression, but the control traffic of the Centralized
Regression is more than 50× that of the Restricted Federated
Regression control traffic.

V. CONCLUSION

In this paper, we have developed a procedure to capture the
quote of QUIC traffic within a data flow using a regression
model trained with a semi-supervised technique. We have also
tested the effect of the federation of the regression models
trained locally by a set of nodes. Finally, we have jointly
adopted a novel feature selection technique with the federation
to reduce communication and computational cost. Based on
the Cross-Entropy method, the feature selection algorithm
maximizes the mutual information of the selected features and
class attributes, i.e., the quote of QUIC traffic. The proposed
Cross-Entropy algorithm was utilized and compared in a
centralized manner and a federated distributed one. Selected
features provide the same performance of the whole set
with a negligible RMSE error while outperforming the other
baselines of the 5-10% in the centralized/supervised approach.
In addition, Cross-Entropy was also tested in a federated
manner and with a semi-supervised approach with local soft
labelling. Such a distributed approach has significantly reduced
the traffic overhead required to train the regression model, but
at the expense of a higher RMSE, higher than the centralized
baseline, but preserving the number of communication rounds
needed to federate the models.
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