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Abstract

Behavioral variant frontotemporal dementia (bvFTD) is a neurodegenerative syndrome whose clinical diagnosis re-
mains a challenging task especially in the early stage of the disease. Currently, the presence of frontal and anterior
temporal lobe atrophies on magnetic resonance imaging (MRI) is part of the diagnostic criteria for bvFTD. However,
MRI data processing is usually dependent on the acquisition device and mostly require human-assisted crafting of feature
extraction. Following the impressive improvements of deep architectures, in this study we report on bvFTD identifica-
tion using various classes of artificial neural networks, and present the results we achieved on classification accuracy and
obliviousness on acquisition devices using extensive hyperparameter search. In particular, we will demonstrate the sta-
bility and generalization of different deep networks based on the attention mechanism, where data intra-mixing confers
models the ability to identify the disorder even on MRI data in inter-device settings, i.e., on data produced by different
acquisition devices and without model fine tuning, as shown from the very encouraging performance evaluations that
dramatically reach and overcome the 90% value on the AuROC and balanced accuracy metrics.

Keywords: Medical Imaging, Behavioral Variant Frontotemporal Dementia, bvFTD, Machine Learning, Deep
Learning, Neural Networks, Classification, Logistic Regression, Multi-Layer Perceptron, 3D Convolution, Transformer

1. Introduction

Frontotemporal lobar degeneration is the second most
frequent cause of early onset dementia [1]. Behavioral vari-
ant of frontotemporal dementia (bvFTD) represents the
most frequent phenotype [2, 3] and is associated with pro-
gressive behavioral impairment and changes in personality
[4]. In the past years, evidences of frontotemporal atrophy
on Magnetic Resonance Imaging (MRI) have been pro-
posed as a useful biomarker to improve the specificity of
bvFTD diagnosis, often difficult due to the clinical over-
lap with other neurodegenerative conditions and/or psy-
chiatric disorders.
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Several machine learning techniques have been applied
to distinguish bvFTD from healthy controls (HC) using
MRI-based features to define new imaging biomarkers in
diagnostic criteria. Although these investigations showed
moderate or high accuracy in the identification of bvFTD
patients, however, most of these studies were conducted in
small samples [5] and only one work considered an inde-
pendent validation cohort [6], limiting the generalizability
of the results. Moreover, the input features used in the
classification models are often obtained by non-trivial im-
ages analyses making difficult to translate the results into
clinical practice.

Deep learning overcomes some limitations about the
preprocessing steps deeling with raw or semi-raw data and
enable to explore the complexity of sample as much as pos-
sible. Recent findings suggest that the problem of differ-
ential diagnosis in the field of neurodegenerative disease
[7, 8, 9] can be solved using deep network architectures
thanks to its capability to explore MRI features in terms
of major depth, width and inter-layer connections of the
networks, extracting hierarchical features that represent
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different levels of abstraction in a data-driven manner.
In this work, we study the potentiality of different pre-

processing pipelines and deep network architectures for
bvFTD identification. By analyzing the input 3D image
only, we show that deep networks, especially the kind that
intra-mix image features, offer significant outcomes and in-
sights to bvFTD identification, providing a methodology
able to reach and overcome the 90% value in both Au-
ROC and balanced accuracy in inter-device generalization
settings, i.e., on data produced by different acquisition de-
vices and without model fine tuning.

In summary, our contributions are:

• the analysis of volume cropping, voxel normalization,
and per-ROI processing on the performance of ma-
chine learning pipelines,

• the comparison of several deep learning models, from
simple baselines to modern attention-based and data
intra-mixing architectures, for classification fromMR
imaging, and

• the inspection of generalization capabilities and con-
vergence stability among different runs and hyperpa-
rameter setups using datasets coming from multiple
acquisition scanners.

We start by introducing previous works in Section 2,
then we overview the schema of deep networks we used in
Section 3. In Section 4 the datasets are presented, while
in Section 5 we show our approach to the problem and
discuss our experiments in Section 6. Results are reported
in Section 7, and conclude in Section 8 with an insight on
future directions.

2. Related Work

Machine learning techniques based on morphometric
analysis have been widely used in order to find diagnostic
biomarkers for bvFTD showing great potential as demon-
strated by several recent scientific developments [5, 10, 11].
In particular, Moller et al. [6] and Mayer et al. [12] ap-
plied support vector machine (SVM) classification to pre-
dict diagnosis of bvFTD with high accuracy, respectively
85% in a whole brain setting on a separate test set for the
first paper and of up to 84.6% in a ROI approach focus-
ing on frontotemporal, insular regions, and basal ganglia
in comparison with the whole brain approach. Bachli et
al. [13] used a logistic regression classifier based on mul-
timodal features such as cognitive scores (executive func-
tions and cognitive screening) and brain atrophy measures
(VBM from fronto-temporo-insular regions in bvFTD) to
identify the most relevant characteristics in predicting the
incidence of bvFTD respect to normal subjects. Testing
the algorithm on different cohorts, they achieved an accu-
racy of up to 90%. A multimodal computational approach
was also used by Donnelly-Kehoe et al. [14] to identify

patients with bvFTD by analyzing sMRI and resting-state
functional connectivity from 44 patients with bvFTD and
60 healthy controls (across three imaging centers with dif-
ferent acquisition protocols). The approach used by the
authors achieved classification accuracy of 91% across all
centers by exploiting site normalization, native space fea-
ture extraction, and a random forest classifier.

Despite the optimal results obtained with classical ma-
chine learning model, the existing techniques of differen-
tial diagnosis of bvFTD rely on some manual preprocess-
ing of data like features extraction and selection expert-
dependent. In the recent years some researchers have
tried new implementations with deep learning approach
that allows to overcome these problems in the differen-
tial diagnosis of neurodegenerative diseases [15, 16, 17, 18,
19]. Specifically, Gong et al. [20] used a lightweight fully
convolutional neural network architecture to predict age
from brain MRI scans in the Predictive Analytic Chal-
lenge (PAC) 2019. The dataset consisted of label-known
training/validation datasets (2,638 subjects in total) and a
“true” test set of 660 subjects whose labels were unknown
to the competition participants. Spasov et al. [7] pre-
sented a novel deep learning architecture aiming at identi-
fying mild cognitive impairment (MCI) patients who have
a high likelihood of developing AD within 3 years. In
this work, the developed deep learning procedures com-
bined structural MRI, demographic, neuropsychological,
and APOe4 genetic data as input measures. The convo-
lutional neural network (CNN) employed fewer parame-
ters than other deep learning architectures which signifi-
cantly limited data-overfitting (550,000 network parame-
ters, which is orders of magnitude lower than other net-
work designs). Basaia et al. [8] presented a CNN with
similar aim using combination of two database (an inter-
national database (ADNI) and your institutional set) to
validate the results. Their approach provided a powerful
tool for the automatic individual patient diagnosis along
the AD continuum. Deep learning techniques have been
also applied by Hu et al. [9] to solve the differential diag-
nosis problem of FTD and AD. In this study, the authors
trained a deep neural network directly using raw T1 images
(from two publicly available databases, i.e., the ADNI and
the NIFD) to classify FTD, AD and corresponding NCs
(normal controls), yielding an accuracy of 91.83% based
on the most common T1-weighted sequence.

The work we present here offers very encouraging out-
comes on the subject of bvFTD identification, with results
that reach and dramatically overcome the 91.0% value of
AuROC and balanced accuracy in inter-device generaliza-
tion settings, that is, on data produced by different acqui-
sition devices and without any fine-tuned training of the
proposed models.
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3. Classification and Deep Network Architectures

The problem of identifying the presence of bvFTD dis-
ease from a set of MR images is what is called a classifica-
tion task. In Computer Science, the topic of classification
consists in assigning a certain label to a particular input
instance. Due to its complexity, this task is one of the most
studied problems to which artificial intelligence research,
and in particular the machine learning branch, have been
involved since its beginning. Although lot of working solu-
tions that rely on human-crafted features extracted from
input data have been proposed (e.g., support vector ma-
chines [21, 22] or random forests [23]), we decide to focus
our study on the de-facto superior performance hereby
shown by deep artificial neural networks [24], exploiting
their ability to learn more accurate representations from
raw data.

In general, the proposed methods follow the standard
binary classification pipeline : first the data is prepro-
cessed (e.g., ad-hoc and statistical normalization), then
feed to a specific classifier (in our case, a neural network),
from whose output the final data label is extracted (e.g., by
thresholding). In our scenario, we consider three-dimensional
input images representing the patient’s head volume, each
regularly structured as a 3D grid of volume elements, or
voxels, as an analogy to pixels in 2D images.

As shown in Section 6.1, we take into account several
architectures, from simple regressors to more complex so-
lutions like convolutional or attention-based networks, as
introduced hereafter.

Logistic Regressor. As baseline, we consider binary logis-
tic regression directly from voxels in which we model the
following relation:

p(y = bvFTD|X) = LinReg(X,Θ) = σ

(∑
v∈Vol

wvxv + b

)
,

(1)
where {xv}v∈Vol = X ∈ RD×H×W is the input volume,
Θ = {wv, b} are the model parameters, and σ is the sig-
moid function. In the neural network framework, this
model can be seen as a single-neuron, single-layer network
(e.g., perceptron) with sigmoid activation operating on the
array of the flattened volume voxels.

Multi-Layer Perceptron (MLP). Multi-layer networks are
the foundation of deep representation learning, as building
a hierarchy of representations improves the ability to ex-
press and learn high-level patterns in data [25, 26]. Multi-
Layer Perceptron (MLP) models consist of multiple layers
of perceptrons interleaved with non-linear activations; the
last layer can be adapted to produce the desired output —

p(y = bvFTD|X) in our scenario. Formally,

p(y = bvFTD|X) = MLP(X,Θ) = σ(wo · h(L) + bo) (2)

h(i) = σ(W (i)h(i−1) + b(i)) , i ∈ [1, L]
(3)

h(0) = X , (4)

where L is the network depth i.e. number of layers, Θ =
{Wi,bi,wL, bL} are the model parameters, hi is the out-
put of the i-th layer, σ is a non-linear function applied
element-wise, and X is the input.

3D Convolutional Network. Convolutional networks are
multi-layer deep networks particularly suitable for mod-
elling spatial local properties in data. Indeed, they shine
in recognition tasks with grid-structured data like images,
audio, video, and also volumetric data [27]. For volumetric
data, networks comprise 3D convolutions — an operation
we can summarize as a sliding-window dot product be-
tween a small k×k×k cubic kernel and the input volume.
Each 3D convolution applies multiple kernels and thus pro-
duces a multi-channel volume collecting the results for each
kernel and for each kernel position in the input space. A
3D convolutional network is defined as a cascade of 3D
convolution layers interleaved with non-linear activation
functions. Formally,

p(y = bvFTD|X) = ConvNet3D(X,Θ) = σ(wo ·H(L) + bo)
(5)

H(i) = σ(Conv3D(H(i−1), θ(i))) , i ∈ [1, L]
(6)

H(0) = X , (7)

whereX is the input volume, θ(i) are the weights of the i-th
convolutional layer, H(i) is the i-th intermediate volume,
and wo, bo are the weights of the final linear layer.

Vision Transformer. As occur in natural language pro-
cessing (NLP), identifying dependencies among words in
a phrase is a key requirement for understanding the un-
derlying semantic. To this end, researchers tried to ex-
press this interconnection by introducing the concept of
recurrent processing within neural architectures, especially
for sequence analysis with Recurrent Neural Networks [28]
and Long short-term memory [29]. However, passing state
between successive computation blocks amplified the gra-
dient vanishing issue, thus reducing dependency propa-
gation. To solve this problem, the attention mechanism
was introduced in the form of an encoder-decoder network
called Transformer [30]. In the encoder part, the idea is to
enrich every item (e.g., words or tokens) of the input se-
quence with information coming from all other items. This
context augmentation is provided by a sequential group of
encoding blocks. More in detail, every input n-dimensional
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token ti will first produce query, key, and value vectors
with learned linear operations:

X =

t1...
tk

 , Q = XWQ, K = XWK , V = XWV .

Then, the attention matrix is calculated as

Attention(Q,K, V ) = softmax

(
QKT

√
n

)
V ,

where the softmax output represents the scaled score ma-
trix of all possible token pairs. By translating from NLP to
image processing, Dosovitskiy et al. [31] extrapolated the
encoder part and designed the Vision Transformer (ViT),
an architecture that reinterprets the concept of image to-
kens [32] by translating it on a sequence of embedded im-
age patches obtained by partitioning the image into a uni-
form grid of rectangular pixel cells, which are then used to
feed the network. Given the generalization introduced by
patches, this procedure can naturally be extended to any
number of input dimensions (i.e., 3 in our context).

MLP-Mixer. Starting from the idea of patches introduced
with ViT, theMLP-Mixer architecture [33] begins with to-
kens partitioned from the input, and conveys them on a set
of cascaded layers that, basically, intermix the data as it
occurs in cross attention modules. Differently from convo-
lutional and attention mechanisms, the MLP-Mixer uses
only multi-layer perceptrons layers to operate on tokens
directly and across them. In particular, each layer is com-
posed of two MLPs, where the first processes each token
independently, and the second intermixes previous output
in a linear operation. Amongst them, layer normalization
and residual skips keep controlling the gradient flow:

U∗,i = X∗,i +W2σ(W1LayerNorm(X)∗,i), for i = 1...C

Yj,∗ = Uj,∗ +W4σ(W3LayerNorm(X)j,∗), for j = 1...S

where S is the number of the partitioning patches of the
input image, and C is their channel dimensionality af-
ter token projection. The complexity of the network is
linear with the number of input patches, as opposed to
the quadratic complexity of the transformer architecture.
This network typology proved to be surprisingly efficient
in both quality, touching the state of the art generated
by convolutional and attention models, and quantity, by
generating a significative speed-up in throughput.

gMLP. By following the observation that a static
parametrization introduced by an MLP can represent ar-
bitrary functions, the gMLP architecture [34] simplifies
the complex structure of a transformer by replacing the
attention mechanism with a linear operation on a spatial
input projection. The model structure is similar to the
vision transformer and the MLP-Mixer, that is, a series of
identical (but with independent weights) encoder blocks

enclosed by an input tokenization and an output classifier.
Each encoding block is composed as

Z = σ(XU), Z̃ = s(Z), Y = Z̃V ,

where X ∈ Rn×d is the input, σ is an activation function,
and s is the spatial gating unit, defined as

s(Z) = Z1 ⊙ (WZ2 + b)

with ⊙ indicating element-wise multiplication, and Z1, Z2

represent two independent partition of Z along the channel
dimension.

3.1. A note on Data Intra-Mixing

In general, we can classify logistic regressor, MLP, and
3D convolution networks as whole-data models, that is,
architectures where data is computed as a single lump in
the processing pipeline. On contrast, Visual Transformer,
MLP-Mixer, and gMLP partition data (spatially and/or
per-channel) in so called patches. By putting patches
in relation to each other (e.g., the attention mechanism
[30]), Dosovitskiy et al. [31] demonstrated that the model
can achieve state-of-the-art performances in classification
tasks. We call this kind of interleaving as data intra-
mixing, as referred to internal correlation of single data
parts.

4. Multiple Source Datasets

One of the main goal of our research was to identify
a deep learning model that was robust enough to identify
bvFTD from data coming from different acquisition de-
vices, so we focused our gathering of exemplars to two sep-
arate patient databases, each working with different MR
scanners.

Participants. Data used in the preparation of this study
were obtained from two different MRI datasets: the Fron-
totemporal Lobar Degeneration Neuroimaging Initiative
(FTLDNI) database (for up-to-date information on par-
ticipation and protocol, please visit [35]), and the Cen-
ter for Neurodegenerative Diseases and the Aging Brain
(CMND) database from the Department of Clinical Re-
search in Neurology - University of Study ”Aldo Moro”
- Bari at Pia Foundation of Cult and Religion ”Card.
G.Panico”.
The goals of the FTLDNI, funded through the National In-
stitute of Aging, are to identify neuroimaging modalities
and methods of analysis for tracking frontotemporal lo-
bar degeneration (FTLD) and to assess the value of imag-
ing versus other biomarkers in diagnostic roles. From this
database we included 110 healthy controls (HC) and 50
bvFTD patients who had a valid structural T1-weighted
MR images collected only at University of California, San
Francisco (UCSF), the largest recruiting center, in order to
avoid potential bias derived from different imaging proto-
col. MR images were acquired on a 3T Siemens Trio Tim

4



FTLDNI CMND

Train Test Train Test

N° HC 60 50 13 11
bvFTD 30 20 16 14

Age (Years)
HC 62.4±7.7 63.2±7.1 63.21±5.91

bvFTD 61.3±7.5 61.3±6.8 68.23±7.65

Sex (% Female)
HC 0.7 0.4 0.6
bvFTD 0.7 0.6 0.6

Table 1: Datasets and splits. We used the balanced average metric
to counter the imbalanced ratio of ill and healty patients. Statistical
information is extracted from patients data at the source level.

system equipped with a 12-channel head coil at the UCSF
Neuroscience Imaging Center, including whole-brain three-
dimensional T1 MPRAGE (TR/TE = 2,300/2.9 ms, ma-
trix = 240 × 256 × 160, isotropic voxels = 1 mm, slice
thickness = 1 mm).
The second cohort was recruited between 2017 and 2019
at the CMND center. The dataset included 29 patients
with bvFTD, diagnosed according to Rasckoscky [4] and
24 control subjects with valid MR images acquired on a
3T scanner (Philips Ingenia 3T) in the sagittal plane using
a Fast-Field Echo (FFE) T1-weighted sequence. The FFE
parameters were empirically optimized for gray-white con-
trast, with repetition time = 8.2 ms, echo time = 3.8 ms,
flip angle = 8°, resolution = 256 × 256, slices = 200 and
thickness = 1 mm.
The datasets have been stratifiedly splitted into subsets
for training and test. Demographic information was re-
ported in (Table 1). Before final training, we tuned model
hyperparameters with a 5-fold evaluation process.

5. Method

Prior to classification, the structural MR imaging
data were preprocessed with default settings of the
CAT12 toolbox (Structural Brain Mapping Group,
Jena University Hospital, Jena, Germany), including
corrections for bias-field inhomogeneities, segmentation
into gray matter (GM), white matter, and cerebrospinal
fluid, followed by spatial normalization to the DARTEL
template in MNI space (voxel size: 1.5 mm x 1.5 mm x
1.5 mm). Normalized images were modulated to guar-
antee that relative volumes were preserved following the
spatial normalization procedure. Next, for Voxel-Based-
Morphometry (VBM) purpose, the preprocessed GM data
were smoothed with an 8mm full-width-half-maximum
(FWHM) isotropic Gaussian kernel. An optimal gray
matter mask was also generated from all smoothed images
using the SPM12 Masking toolbox and the Luo–Nichols
anti-mode method of automatic thresholding [36].
The 3D T1-weighted image for each subject were also
segmented using the ROI analysis tool of CAT12 to
extract regional masks, and a frontotemporal mask was
created merging 60 Region-Of-Interest (ROI) from the

Volume

Model Input

(a) Whole-brain

Volume

Mask & Crop

Model Input

(b) Frontotemporal mask

Volume

Mask & Crop
…

…
lAntOrbGyrTha

…

Model Input

(c) ROIs

Figure 1: Preprocessing Pipelines. In (a) the whole volume is taken
as input. In (b) and (c) regions are defined with fixed 3D binary
masks: region volumes are cropped to their 3D bounding boxes,
and the voxels outside the masked region(s) are cropped or set to
zero. We name these three configurations as None, FT, and ROI,
respectively.

Neuromorphometrics atlas (supplementary table SX) [37].

As stated before, our goal is to harness deep learning
to build a predictor for bvFTD starting from voxel data
coming from MRI. Given an input volume X, we model
the probability of this volume belonging to the positive
(bvFTD) group:

p(y = bvFTD|X) = f(X,Θ) , (8)

where f is learnable model parametrized by Θ.

We investigated several variations of the preprocessing
pipeline depicted in Figure 1. We use two different prepro-
cessed brain images as input for our models: normalized
gray matter volumes (named wm), and modulated normal-
ized gray matter volumes (named mwp). For each input
volume, we explore three different setting for the defini-
tion of the voxels involved in the classification task: (i)
whole-brain analysis in which all voxels in the gray matter
volumes are considered as input to the network, (ii) a cus-
tomised voxel-based analysis in which voxels belonging to
the brain regions commonly affected in bvFTD are used as
input to the network (named frontotemporal mask), and
(iii) ROI analysis (see Table 2) in which each brain region
associated with bvFTD neurodegeneration is considered as
an independent input to the network. When ROI analysis
is used, we modified our model such that the final predic-
tion was obtained by fusing the information coming from
each of the 60 regions independently processed. Formally,

p(y = bvFTD|X) = σ
(
wo

[
f (1)(X(1))|...|f (n)(X(n))

]
+ bo

)
,

(9)
where f (i)(X(i)) is the output of the subnetwork applied to
the i-th volume region, [·|·] indicates concatenation, and
{wo,bo} are the parameters of a linear projection that
fuses the subnetwork’s outputs.
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Region vol. shape Region vol. shape

Whole Brain 121 × 145 × 121 Frontotemporal 97 × 96 × 92

Frontal Left (FL) Frontal Right (FR)

lAntOrbGy 14 × 21 × 16 rAntOrbGy 14 × 21 × 16

lCbr+Mot 14 × 30 × 32 rCbr+Mot 15 × 29 × 35

lCenOpe 25 × 24 × 22 rCenOpe 25 × 21 × 22

lFroOpe 22 × 18 × 20 rFroOpe 21 × 18 × 18

lFroPo 24 × 9 × 34 rFroPo 25 × 10 × 33

lInfFroGy 23 × 19 × 23 rInfFroGy 23 × 17 × 27

lInfFroOrbGy 22 × 21 × 19 rInfFroOrbGy 22 × 18 × 18

lMedFroCbr 12 × 28 × 12 rMedFroCbr 10 × 27 × 12

lMedOrbGy 17 × 39 × 19 rMedOrbGy 18 × 39 × 20

lMedPrcGy 17 × 17 × 31 rMedPrcGy 16 × 16 × 31

lMidFroGy 27 × 50 × 56 rMidFroGy 26 × 49 × 54

lParOpe 29 × 17 × 13 rParOpe 24 × 16 × 16

lPosOrbGy 19 × 20 × 19 rPosOrbGy 18 × 19 × 19

lPrcGy 44 × 34 × 56 rPrcGy 44 × 34 × 55

lRecGy 10 × 29 × 15 rRecGy 10 × 29 × 16

lSCA 10 × 11 × 19 rSCA 10 × 12 × 19

lSupFroGy 21 × 56 × 63 rSupFroGy 22 × 56 × 61

lSupMedFroGy 12 × 29 × 47 rSupMedFroGy 14 × 31 × 50

Subcortical Left (SL) Subcortical Right (SR)

lCau 8 × 28 × 21 rCau 9 × 28 × 20

lPut 13 × 23 × 16 rPut 13 × 23 × 16

lTha 16 × 23 × 17 rTha 16 × 22 × 16

Temporal Left (TL) Temporal Right (TR)

lAntIns 16 × 30 × 28 rAntIns 16 × 28 × 27

lFusGy 27 × 41 × 34 rFusGy 21 × 41 × 35

lInfTemGy 33 × 50 × 36 rInfTemGy 34 × 49 × 38

lPla 22 × 24 × 23 rPla 17 × 22 × 22

lPosIns 12 × 23 × 28 rPosIns 12 × 23 × 29

lSupTemGy 24 × 44 × 33 rSupTemGy 25 × 42 × 32

lTem 24 × 21 × 15 rTem 20 × 21 × 20

lTemPo 33 × 20 × 35 rTemPo 33 × 18 × 36

lTemTraGy 20 × 17 × 12 rTemTraGy 19 × 17 × 13

Table 2: Region definitions. Regions in the first line (Whole Brain

and Frontotemporal) concern single-input processing, while the fol-
lowing lines describe regions used in per-ROI processing approaches.

6. Experiments

As preliminary step, we assessed fronto-temporal brain
atrophy of bvFTD respect to HC with a VBM analysis
on smoothed GM images(see Supplementary Figure). We
used different network architectures, from the simplest to
more complex and modern ones, and conducted several
experiments based on different settings mostly related to
extensive hyperparameter search for model configurations
and data preprocessing, as described in the following.

6.1. Network Types

We investigated the six architectures introduced in Sec-
tion 3, namely Logistic Regressors, MultiLayer Percep-
trons, 3D Convolutional Networks, Visual Transformer,
MLP-Mixer, and gMLP. In the following, we describe the

implementation details of each tested architecture, as sum-
marized in Figure 2.

Logistic Regression. This model is composed by a single
linear projection from the voxel values to the logit (log-
odds of the input belonging to the positive group).

In the ROI configuration, each region undergoes a sepa-
rate linear projection with one output. The 60 outputs are
concatenated and projected by an additional linear layer
with sigmoid activation to obtain the final score.

Multi-Layer Perceptron. For MLPs, we adopt two hidden
layers (L = 2 in Eq. 2) with ReLU activations and with
100 and 50 output neurons respectively. The network pro-
cesses the flattened array of voxels and produces the score
using a single-output layer with sigmoid activation.

In the configuration using ROIs, we instead set the
number of intermediate outputs of hidden layers to 100 and
10, thus obtaining a 600-dimensional final representation
(10 × 60 ROIs) after concatenation. A final linear layer
with sigmoid activation produces the final score from this
concatenated representation.

3D Convolutional Network. We build the model with 3
convolutional layers (L = 3 in Eq. 5) with number of ker-
nels 16, 64, and 256, respectively. All kernels are 3× 3× 3
with stride of 1×1×1. To lower the memory footprint, we
first downsample the input volume using a 2×2×2 average
pooling operation. After each convolutional layer, the out-
put is downsampled using a 3D max-pool operation that
reduces its spatial extents, and then the ReLU activation
is applied element-wise. The last output is mean-pooled
over the three spatial dimensions, obtaining a single vec-
tor representation of the input volume with a number of
dimensions equals to the number of kernels of the last con-
volution output. Finally, a linear layer with sigmoid ac-
tivation produces p(y = bvFTD|X). During training, we
apply 3D spatial dropout to the output of the last convo-
lutional layers with a probability of 0.5; this randomly set
to zero the entire volume related to each kernel in the layer
and helps avoiding kernel co-adaptation and overfitting.

The ROI configuration differs as follows. No initial
input downsample is performed, and max pooling is ap-
plied only once after the first convolutional layer, as ROI
volumes are smaller and can be processed without down-
sampling. We set the number of kernels in convolutional
layers to 32, 64, and 10, respectively, to obtain a 600-
dimensional final representation after concatenation as in
the MLP model.

ViT, MLP-Mixer, gMLP. Similarly to the Vision Trans-
former, we exploited the same patch-based tokenization
to build a general n-dimensional classifier to be applied
on our three-dimensional MRI input. In our implementa-
tions of ViT, MLP-Mixer, and gMLP architectures, each
module begins with a tokenizer part, where we used a
volumetric patch of size 163, each linearly embedded in
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Figure 2: Architectures of the evaluated networks. Starting from the simple Logistic Regressor (a), we explored various neural models,
considering the Multi-Layer Perceptron (b), 3D Convolution (c), and the more recent Visual Transformer (d), MLP-mixer (e), and gMLP
(f). In each case, the input 3D medical image is flattened or tokenized before entering the actual network. For region-based classification,
each network is replicated (with an independent set of weights) after region extraction, and their output is then linearly processed for the
final classification label (g).

128-dimensional token. Then follows the encoder part,
composed of architecture-dependent encoding layers, fin-
ishing the module with a classifier made of dense layers. In
each architecture we used a Gaussian Error Linear Units
(GELU) activation function. In our ROI implementation,
the above architectures are replicated for each region, ex-
tending the output to 8 dimensions, each then concate-
nated and fed through a ReLU non-linearity before the
single-output linear layer. Note that per-ROI modules
have independent weights.
The ViT encoder consisted of 8 layers, in which each multi-
head attention submodule is composed of 8 heads of size 32
and a residual connection, followed by a feed-forward sub-
module with a 256-dimensional hidden layer and a gated
non-linearity.
The MLP-Mixer architecture is composed of 12 encoding
layers, with a 4× token expansion factor.
The gMLP architecture similarly has the encoding part
made of of 12 encoding layers, with a 4× token expansion
factor, and a final survival probability of 0.99.
Due to their analogy in explicit data intra-mixing, we call
this group of networks as transformer-based models.

6.2. Training and Testing Sets

We train and test our networks on the FTLDNI
dataset, and validate them on the CMND dataset. First,
we perform hyperparameters optimization via grid search
using 5-fold cross-validation on the train split of the
FTLDNI dataset; we keep the hyperparameter setting that
maximizes the mean balanced accuracy over the 5 test
folds, and we refit the model on the entire train set with

the selected hyperparameters. Then, we select the opti-
mal threshold that maximizes the balanced accuracy on
the test set of the FTLDNI dataset. Finally, we make pre-
dictions on the CMND dataset using the fitted model and
the optimal threshold found. This procedure ensures a
fair evaluation of the model performance, as it minimizes
the risk of overfitting both model’s parameters and the
threshold value to the target dataset.

6.3. Support Vector Machine

For comparative purpose, we use the Pattern Recogni-
tion for Neuroimaging Toolbox (or PRoNTo) [38] to per-
form a binary SVM analysis to classify bvFTD respect
to controls. In particular, in the training step smoothed
GM images on FTLDNI dataset are treated as spatial pat-
terns and a statistical learning model are used to identify
statistical properties of the data that can be used to dis-
criminate between the two groups of subjects [6]. We train
a binary SVM to classify patients with bvFTD versus con-
trol subjects with leave-one out cross-validation and to
construct voxel-wise discrimination maps. These maps of
weights contain the model parameters learned by the SVM.
Diagnostic prediction in the independent prediction set
(CMND dataset) is performed as follows: single-subject
smoothed GM densities is multiplied by the model weights
computed from the linear SVM. The integral of this prod-
uct define the class, which could be predicted by using a
simple threshold.
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7. Results

The conducted experiments were evaluated according
to the most common metrics and performance measure-
ments, revealing interesting behaviour according to net-
work architecture complexity.

Evaluation Metrics. We evaluate our models using com-
mon metrics for binary classification evaluation, that is,
the Area under the ROC curve (AuROC) as a threshold-
independent metric, and the specificity (SS), sensitivity
(SP) and balanced accuracy (Bal Acc) using the optimal
threshold according to Youden’s J statistic.

Networks Performances. We report metrics for each com-
bination of data source (wm, mwp), data crop (None,
FT, ROI, see Figure 1), data whitening (i.e., subtract-
ing mean and dividing by standard deviation of the voxel
distribution), and model, for a total of 72 configurations.
For each metric, we report mean and standard deviation
over 5 runs, training in total 360 models. Table 3 reports
the mean AuROC for each configuration obtained on the
FTLDNI test set and on the CMND set, whereas indi-
vidual ROC curves for each configuration are depicted in
Figure 3. In Table 4, we instead report metrics of the best
performing configurations per data type and per model. Of
note, SVM classification task reported a training AuROC
over FTLDNI dataset of 95.5%, sensitivity of 90.0% and
specificity of 96.4%. Diagnostic prediction in the indepen-
dent CMND set of bvFTD and HC achieved an AuROC of
85.8% with sensitivity of 73.3% and specificity of 100%.

7.1. Discussion

The aim of this study was to investigate the diagnos-
tic capability of different deep network architectures based
on structural MRI in differentiating bvFTD patients from
healthy controls. Our models were trained on a publicly
available dataset and validated on a separated set to eval-
uate the generalizability of the achieved results. Respect
to conventional machine learning investigations based on
structural MRI data, deep learning methods showed higher
performances in bvFTD classification [12, 6]. Moreover,
our structural-based framework demonstrate a compara-
ble predictive power respect to the most recent works that
combined morphometric features with clinical outcomes or
functional connectivity information [13, 14].
The results of our experimental analysis provided several
insights on data, models, and the overall task.

Among the tested models, transformer-based models
(ViT, MLP-Mixer, and gMLP) tend to be the most per-
forming ones, overcoming the 90% AuROC value consis-
tently in the best data processing configurations (per-ROI
analysis of mwp data). They also appear more stable
across runs and different data preprocessing, whereas sim-
pler models may not converge or converge to sub-optimal
solutions achieving higher standard deviation of metric
values (see Table 3). Moreover, transformer-based models

are the most promising models in terms of generalization
abilities; whereas all the models can surpass the 90% val-
ues on most metrics on test data coming from the same
MRI machine used for training (Tables 4a and 4c), the
best performance when testing on data from different MRI
machines is mostly achieved by transformer-based models
(Tables 4b and 4d). Among them, ViT and gMLP mod-
els offer a better overall performance than the MLP-Mixer
(one-sided paired t-test on AuROC values, p-value = 0.005
and 0.007 respectively), whereas there is no significant dif-
ference among the former. Multi-layer perceptrons also
offer comparable performance while being less stable to
parameter initialization, and convolutional models suffer
the most from data shift. Linear logistic regressors often
do not converge on less curated data.

Processing ROIs independently (Crop = ROI) tends to
provide superior performance than processing the whole
volume (Crop = {None, FT}) where simpler models (Lo-
gistic Reg., MLP) get confused more easily. However, the
performance boost is payed with an increased model size
and computational cost (see Table 6). Per-ROI process-
ing also adds stability to model training as shown in Fig-
ure 4. We observed a strong correlation between predic-
tions across different models and across multiple training
runs when using per-ROI processing. This occurs also
when using unmodulated (wm) data. On the other hand,
when processing whole volumes, correlation between pre-
dictions of different models tends to decrease, sometimes
even between different training runs of the same model.
We deem that the per-ROI processing pipeline, adopting
multiple submodels per ROI, balances the local conver-
gence of each submodule and reduces the risk of global
overfitting. Table 5 shows how the AuROC changes for
the best model (gMLP on modulated and whitened data)
when using different configurations of ROIs inside macro-
regions. Note that ROIs in the frontal area lead to most
performant classifiers. When processing whole volumes,
frontotemporal masking (FT) should be adopted. As ex-
pected, modulated data (Kind = mwp) tend to increase
performances in all models but the simpler ones (Logis-
tic Reg., MLP) where we deem cleaner data, together
with its scarcity, increase chances of overfitting. Obtain-
ing high performances (AuROC > 85%) can be achieved
also with unmodulated data (Kind = wm) but is more de-
pendent on the specific data processing (in particular the
data crop) used. Concerning data whitening, no strong
pattern emerges, as performance only slightly improves or
degrades depending on the specific configuration consid-
ered.

We deem the attention-based processing in
transformer-like architectures, i.e., building finer repre-
sentations by comparing different 3D parts of the input,
can facilitate the learning of more scanner-independent
features and improve the generalization of classifiers,
especially in multiple source settings. Our experiments
support this trend, but further validation with additional
data sources should be carried out in future work.
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(a) Trained on FTLDNI Train Split - Tested on FTLDNI Test Split
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(b) Trained on FTLDNI Train Split - Tested on whole CMND
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(c) Trained on CMND Train Split - Tested on CMND Test Split
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(d) Trained on CMND Train Split - Tested on whole FTLDNI
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Figure 3: ROC curves and AUC (%, mean±std in parenthesis in the legend) for different data preprocessing. Different data modulations are
shown in columns, and different data cropping are shown in rows. Dashed lines and the hat symbol ·̂ in the legend indicate results with data
whitening. L = Linear Regressor; M = MLP; C = ConvNet3D; T = ViT; m = MLP-Mixer; g = gMLP.
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Data Kind wm mwp

Data Crop None FT ROI None FT ROI

Whitening ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✓

Trained on FTLDNI Train Split - Tested on FTLDNI Test Split

Logistic Regressor 93±1 74±11 93±0 67±19 94±0 93±1 63±19 51±2 55±8 50±0 91±5 95±2

MLP 94±1 94±1 92±2 93±1 95±1 91±6 73±20 77±21 87±10 95±0 91±8 96±0

ConvNet3D 82±5 93±1 89±3 94±1 89±3 86±2 92±6 93±4 96±1 96±1 95±0 93±3

ViT 78±4 88±2 90±2 85±1 94±0 95±1 82±0 90±1 89±0 95±0 96±0 95±0

MLP-Mixer 86±4 83±11 93±1 90±3 95±0 95±1 93±3 95±1 95±1 95±1 95±0 95±0

gMLP 89±6 85±2 94±2 90±1 95±1 95±1 97±1 89±4 95±2 94±1 95±1 95±0

Trained on FTLDNI Train Split - Tested on whole CMND

Logistic Regressor 88±1 65±10 88±0 64±19 86±2 83±3 58±14 50±1 57±8 51±2 86±7 90±4

MLP 88±0 88±1 85±5 86±4 86±2 85±3 73±19 72±15 85±8 91±1 88±7 92±1

ConvNet3D 64±3 72±2 79±2 83±3 65±3 64±2 88±3 88±1 86±2 90±1 91±1 87±2

ViT 71±2 74±2 84±4 85±2 85±3 87±2 83±0 88±0 84±0 88±0 90±2 91±1

MLP-Mixer 72±6 71±3 78±3 76±7 85±3 87±1 84±5 81±4 85±2 87±2 94±0 91±1

gMLP 77±5 73±7 84±3 82±2 84±2 88±1 82±4 81±5 87±1 87±1 93±2 92±1

Trained on CMND Train Split - Tested on CMND Test Split

Logistic Regressor 74±13 59±10 73±1 63±10 80±3 82±5 71±17 77±9 77±16 66±15 24±4 90±6

MLP 63±18 75±4 46±8 48±15 81±4 80±5 27±33 21±16 17±6 22±14 89±4 90±5

ConvNet 3D 45±2 73±8 41±5 78±8 57±4 66±6 82±17 91±2 44±42 92±3 93±2 90±6

ViT 43±10 77±2 46±17 77±4 78±6 81±3 57±34 87±1 37±32 85±2 94±1 92±1

MLP-Mixer 66±8 64±13 58±6 61±14 74±7 74±6 82±9 77±10 80±7 78±5 97±1 91±2

gMLP 73±6 73±6 59±9 58±12 78±4 80±6 89±2 87±2 82±9 89±2 94±2 93±2

Trained on CMND Train Split - Tested on whole FTLDNI

Logistic Regressor 77±15 64±13 81±1 65±18 85±3 83±2 73±19 78±9 85±19 67±17 28±9 88±4

MLP 58±21 75±8 47±9 56±17 88±1 84±2 36±24 30±10 23±5 25±8 92±1 91±5

ConvNet 3D 36±3 43±4 45±8 75±8 68±4 67±2 73±22 91±2 48±36 94±1 94±1 90±4

ViT 41±10 74±2 47±15 78±1 87±2 91±1 59±30 84±1 42±32 91±0 90±1 91±1

MLP-Mixer 69±5 62±8 73±6 70±7 86±2 88±2 80±2 84±5 91±2 88±3 95±1 91±1

gMLP 80±4 75±6 79±5 70±8 88±2 90±2 81±2 77±1 85±1 88±2 95±1 91±1

Table 3: Area under the ROC curve (%, mean±std) on FTLDNI and CMND datasets. None = Whole Volume; FT = Frontotemporal Masking;
ROI = Per-ROI Processing (see Figure 1).
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Table 4: Metrics (%, mean± std) of best performing configurations (in terms of balanced accuracy) for each model and data kind. Boldface
values indicates the highest values obtained among models for a specific metric.

(a) Trained on FTLDNI Train Split - Tested on FTLDNI Test Split

Data Model Crop Whiten Sensitivity Specificity Bal. Accuracy AuROC

wm

Logistic Regression FT ✗ 90.00± 0.00 95.60± 0.89 92.80± 0.45 93.48± 0.26
MLP FT ✓ 90.00± 0.00 94.40± 1.67 92.20± 0.84 93.46± 0.62
ConvNet 3D FT ✓ 86.00± 2.24 95.60± 4.34 90.80± 1.10 93.70± 0.63
Transformer ROI ✓ 93.00± 2.74 92.00± 3.74 92.50± 1.27 94.64± 0.74
MLP-Mixer ROI ✗ 91.00± 4.18 96.80± 1.10 93.90± 1.71 94.54± 0.38
gMLP ROI ✓ 94.00± 2.24 94.80± 1.79 94.40± 1.14 95.36± 0.61

mwp

Logistic Regression ROI ✓ 94.00± 2.24 96.80± 4.15 95.40± 1.88 94.55± 2.05
MLP ROI ✓ 95.00± 0.00 100.00± 0.00 97.50± 0.00 95.68± 0.11
ConvNet 3D ROI ✗ 95.00± 0.00 99.60± 0.89 97.30± 0.45 95.40± 0.39
Transformer ROI ✗ 92.00± 2.74 98.80± 1.10 95.40± 1.56 95.56± 0.30
MLP-Mixer ROI ✗ 92.00± 2.74 98.80± 1.79 95.40± 0.65 95.22± 0.16
gMLP None ✗ 93.00± 2.74 99.20± 1.10 96.10± 1.56 96.56± 1.13

(b) Trained on FTLDNI Train Split - Tested on whole CMND

Data Model Crop Whiten Sensitivity Specificity Bal. Accuracy AuROC

wm

Logistic Regressor FT ✗ 91.33± 1.83 74.17± 1.86 82.75± 0.81 88.25± 0.32
MLP None ✗ 88.00± 2.98 81.67± 3.73 84.83± 0.37 88.03± 0.42
ConvNet 3D FT ✓ 78.00± 10.95 80.00± 6.85 79.00± 3.64 83.43± 3.17
Transformer ROI ✓ 80.00± 4.08 90.83± 3.49 85.42± 2.34 86.56± 1.66
MLP-Mixer ROI ✓ 76.00± 5.96 91.67± 5.10 83.83± 2.23 87.06± 1.43
gMLP ROI ✓ 81.33± 6.91 87.50± 9.77 84.42± 2.14 87.75± 0.86

mwp

Logistic Regressor ROI ✓ 82.67± 6.41 91.67± 7.22 87.17± 2.44 89.75± 3.69
MLP FT ✓ 88.67± 2.98 90.00± 3.73 89.33± 0.91 91.36± 0.94
ConvNet 3D ROI ✗ 88.67± 3.80 90.00± 3.73 89.33± 0.70 91.19± 0.59
Transformer ROI ✓ 83.33± 8.16 93.33± 7.57 88.33± 2.59 91.19± 0.85
MLP-Mixer ROI ✗ 83.33± 6.67 95.83± 5.10 89.58± 1.93 93.56± 0.32
gMLP ROI ✗ 92.00± 1.83 90.00± 3.73 91.00± 2.53 92.56± 2.15

(c) Trained on CMND Train Split - Tested on CMND Test Split

Data Model Crop Whiten Sensitivity Specificity Bal. Accuracy AuROC

wm

Logistic Regressor ROI ✓ 85.71± 8.75 80.00± 13.48 82.86± 4.90 81.95± 5.00
MLP ROI ✓ 75.71± 6.39 83.64± 11.85 79.68± 2.83 79.87± 4.90
ConvNet 3D FT ✓ 91.43± 5.98 69.09± 13.79 80.26± 5.37 77.53± 8.09
ViT ROI ✓ 82.86± 10.83 72.73± 11.13 77.79± 3.41 81.04± 3.16
MLP-Mixer ROI ✓ 67.14± 18.63 80.00± 14.94 73.57± 3.99 74.03± 5.70
gMLP None ✗ 81.43± 8.14 72.73± 11.13 77.08± 2.64 73.25± 6.48

mwp

Logistic Regressor ROI ✓ 92.86± 8.75 81.82± 12.86 87.34± 4.46 89.81± 5.96
MLP ROI ✓ 95.71± 3.91 83.64± 11.85 89.68± 4.41 90.00± 4.61
ConvNet 3D ROI ✗ 97.14± 3.91 81.82± 9.09 89.48± 4.05 92.99± 1.86
ViT ROI ✗ 90.00± 9.58 87.27± 10.37 88.64± 1.66 93.64± 1.48
MLP-Mixer ROI ✗ 94.29± 9.31 90.91± 6.43 92.60± 2.77 96.75± 0.80
gMLP ROI ✗ 98.57± 3.19 85.45± 4.98 92.01± 1.97 94.42± 2.08

(d) Trained on CMND Train Split - Tested on whole FTLDNI

Data Model Crop Whiten Sensitivity Specificity Bal. Accuracy AuROC

wm

Logistic Regressor ROI ✗ 79.20± 5.02 80.00± 7.79 79.60± 3.18 85.49± 2.97
MLP ROI ✗ 75.20± 4.60 87.82± 3.67 81.51± 1.29 87.64± 1.21
ConvNet 3D FT ✓ 66.00± 13.64 80.55± 9.01 73.27± 5.18 75.38± 8.29
ViT ROI ✓ 86.80± 5.22 84.00± 5.36 85.40± 2.17 90.72± 0.78
MLP-Mixer ROI ✓ 80.40± 9.84 83.45± 7.88 81.93± 2.74 87.65± 1.71
gMLP ROI ✓ 82.80± 3.63 86.55± 4.61 84.67± 1.94 90.22± 1.68

mwp

Logistic Regressor ROI ✓ 82.00± 4.24 85.82± 6.08 83.91± 4.78 88.14± 3.58
MLP ROI ✗ 90.00± 3.74 84.36± 5.91 87.18± 1.64 91.67± 0.98
ConvNet 3D FT ✓ 88.80± 3.03 91.64± 4.33 90.22± 1.28 94.39± 0.97
ViT FT ✓ 82.80± 4.38 90.36± 4.10 86.58± 0.64 91.49± 0.34
MLP-Mixer ROI ✗ 89.60± 4.77 89.64± 4.15 89.62± 0.90 94.68± 0.81
gMLP ROI ✗ 86.80± 3.63 92.55± 5.43 89.67± 1.20 95.01± 0.78
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Table 5: Classification performance of different input Macro-ROI
combinations. AuROC (mean±std) obtained by gMLP on modulated
and whitened data trained on FTLDNI and tested on CMND. Macro-
ROIs aggregate the left and right sides of the frontal (F), subcortical
(S), and temporal (T) brain regions.

FL FR SL SR TL TR AuROC

✓ 92±1

✓ 89±1

✓ 85±1

✓ 81±3

✓ 88±21
R

eg
io

n

✓ 84±1

✓ ✓ 92±0

✓ ✓ 91±0

✓ ✓ 92±1

✓ ✓ 91±1

✓ ✓ 91±1

✓ ✓ 90±1

✓ ✓ 90±0

✓ ✓ 90±0

✓ ✓ 89±1

✓ ✓ 83±2

✓ ✓ 88±1

✓ ✓ 86±1

✓ ✓ 87±1

✓ ✓ 84±1

2
R

eg
io

n
s

✓ ✓ 87±1

✓ ✓ ✓ 92±0

✓ ✓ ✓ 92±1

✓ ✓ ✓ 92±1

✓ ✓ ✓ 91±1

✓ ✓ ✓ 91±0

✓ ✓ ✓ 91±1

✓ ✓ ✓ 91±1

✓ ✓ ✓ 91±1

✓ ✓ ✓ 90±1

✓ ✓ ✓ 91±0

✓ ✓ ✓ 90±1

✓ ✓ ✓ 91±1

✓ ✓ ✓ 89±1

✓ ✓ ✓ 91±1

✓ ✓ ✓ 90±1

✓ ✓ ✓ 90±1

✓ ✓ ✓ 87±2

✓ ✓ ✓ 86±1

✓ ✓ ✓ 88±1

3
R

eg
io

n
s

✓ ✓ ✓ 88±0

✓ ✓ ✓ ✓ 92±0

✓ ✓ ✓ ✓ 92±1

✓ ✓ ✓ ✓ 92±0

✓ ✓ ✓ ✓ 92±1

✓ ✓ ✓ ✓ 92±1

✓ ✓ ✓ ✓ 92±0

✓ ✓ ✓ ✓ 90±0

✓ ✓ ✓ ✓ 90±1

✓ ✓ ✓ ✓ 92±0

✓ ✓ ✓ ✓ 90±0

✓ ✓ ✓ ✓ 90±1

✓ ✓ ✓ ✓ 90±1

✓ ✓ ✓ ✓ 90±1

✓ ✓ ✓ ✓ 90±1

4
R

eg
io

n
s

✓ ✓ ✓ ✓ 87±1

✓ ✓ ✓ ✓ ✓ 92±1

✓ ✓ ✓ ✓ ✓ 92±1

✓ ✓ ✓ ✓ ✓ 92±0

✓ ✓ ✓ ✓ ✓ 92±1

✓ ✓ ✓ ✓ ✓ 91±15
R

eg
io

n
s

✓ ✓ ✓ ✓ ✓ 90±1

All ✓ ✓ ✓ ✓ ✓ ✓ 91±1
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Figure 4: CMND: Pearson Correlation Coefficients among predic-
tions of various transformer-based models. T = ViT, m = MLP-
Mixer, g = gMLP. For each configuration, we report 5 runs with
randomly initialized weights. Note that when ROI processing is used,
predictions tend to highly correlate independently from the model or
random weight initialization used.

Table 6: Computational complexity of compared models in terms of
floating point operations (FLOPs) and number of parameters.

Data Crop None FT ROI

FLOPs Params FLOPs Params FLOPs Params

Logistic Reg. 4.2M 2.1M 1.7M 856.7k 2.3M 1.1M
MLP 424.6M 212.3M 171.4M 85.7M 227.8M 113.9M
ConvNet 3D 45.3k 471.0k 16.9k 471.0k 678.0k 3.4M
ViT 973.9M 468.6k 282.0M 443.8k 3.2G 142.0M
MLP-Mixer 2.7G 41.5M 1.1G 8.2M 2.6G 128.0M
gMLP 8.2G 9.4M 2.6G 5.2M 5.5G 268.8M

8. Conclusion

In our work, we investigated several neural network
architectures with the purpose of creating a robust and
generalizable model that was able to identify patients
affected by behavioral variant frontotemporal dementia
(bvFTD) from medical imaging data obtained by different
acquisition devices. We considered the Frontotemporal
Lobar Degeneration Neuroimaging Initiative (FTLDNI)
as primary dataset on which we performed training and
testing, and the Center for Neurodegenerative Diseases
and the Aging Brain (CMND) dataset as source to vali-
date the generalizability of the model without performing
any fine tuning. We considered different architectures,
from the simple logistic regressor to threedimensional
convolution networks and the latest vision transformers
with its similar variants. In general, we found that all
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architectures perform well in the bvFTD identification
task with both dataset, but the transformer-based ones
are the most stable in terms of weight initialization
conditions, consistently reaching and exceeding the 91.0%
for AuROC and balanced accuracy values. These results
let us validate that overall data intra-mixing (i.e., as it
emerges from the attention mechanism and its variants)
is a principal component in imaging classification.

We plan to further dig into the most recent attention-
based architectures, trying to define a model able to
intra-mix data in linear-time complexity using learned
intermediate representations or frequency analysis [39], as
well as extending the systems robustness by testing them
on future-available imaging datasets.
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