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Abstract—The Mobile Edge Computing paradigm shifts the
computation back to places where it is required. A traditional
MEC architecture comprises a number of Edge Data Centers
(EDC) in charge of seamlessly providing services to users with
wireless network technologies. In this scenario, it becomes crucial
to deploy the EDCs in strategic locations, such as highly visited
places. In this paper we focus on the deployment phase of an
EDC. In particular, we propose a probabilistic model designed
to measure the location converge, namely the probability that a
candidate location for an EDC is visited by users. Our model is
based on the analysis of user’s trajectories and on the probability
of detouring towards the target locations for the EDS. The
information returned by our model offers the possibility of
implementing mobility-aware deployment strategies in urban
environments. We test the model with two real-world mobility
data sets, evaluating its applicability of realistic settings.

Index Terms—Mobile Edge Computing, offloading, mobility

I. INTRODUCTION

The Mobile Edge Computing (MEC) paradigm introduces
the possibility of moving the computation close to the place
where it is required [1], [2]. The MEC enhances a traditional
Cloud-based architecture, with the addition of a number of
Edge Data Center (EDC) deployed according to a locality
principle. The idea of moving the computation to the edge
of the network is suitable for different kinds of services,
ranging from content offloading to on-demand computation
[3]. In particular, we argue that content offloading represents
a promising approach to reduce the required bandwidth of
traditional broadband Internet connections. The distinguishing
feature of the MEC paradigm is the existence of a further
layer, composed by a network of EDC deployed in specific
locations and connected to the Cloud. EDC generally interacts
with devices e.g. smartphone, smart watches and other portable
units, with wireless interfaces. In this context, the choice of the
target locations for the EDCs represents a strategic choice, as
such units are supposed to provide services to users roaming
at short distances from the location of the EDC [4], [5].

In this work we focus on a heuristic driving the deployment
of a set of EDCs according to knowledge extracted from user’s
mobility. More specifically, we introduce the notion of location
coverage which measures the probability that a user visits a
location or that a user detours towards such location. Detouring
implies that the original trajectory is altered, passing close to

the target location. Therefore, given a set of possible EDC
locations (also referred to as target locations), we propose a
probabilistic model that estimates how much such locations
will be visited by users. In turn, such assessment can be used
to decide the optimal EDC location. More specifically, our
model analyzes the past user’s trajectories and, for every target
location, it computes the cumulative probability of visiting it
by adopting an exponential distribution modeling the detour
probability. We test our model with two real-world mobility
data sets, namely Gowalla [6] and epfl/mobility (Cabspotting)
[7]. In the first case, the data set is obtained from user’s
check-ins marked as GPS location of the visited places, the
data set covers many world-wide countries and we cropped
the analysis to the most crowded area, namely Austin, Texas,
USA. In the second case, we consider a data set of taxi
rides, in this case the collected trajectories report the paths
followed by taxis in San Francisco Bay Area, CA, USA. Also
in this case, we cropped to most active area, namely San
Francisco city. The considered data sets allow us to evaluate
the model at different but realistic conditions. We first analyze
some mobility features of the experimental data sets, and
then we execute our model by studying the effect of the
distribution’s scale to the target locations. Our experiments
show that the model allows to clearly identify visited and non-
visited locations with both of the data sets, hence providing
a easy-to-use heuristic for the deployment of EDC units in
urban areas.

In Section II we survey the state-of-the art concerning de-
ployment strategies for MEC paradigm. Section III introduces
our location coverage model and Section IV describes the
experimental data sets. Section V describes how we executed
our model and the obtained results.

II. RELATED WORK

The MEC paradigm has been described and officially
standardized by the European Telecommunications Standards
Institute (ETSI) and Industry Specification Group (ISG). A
comprehensive review of the MEC paradigm from a research
perspective can be found in [8], [9]. For the purpose of
this work, we review solutions addressing the problem of
deploying EDC in a efficient way. The ETSI standard refers



such problem as NFVI-PoP Network Functions Virtualisation
Infrastructure Point of Presence (NFVI-PoP).

The work reported in [10] refers to the placement of cloudlet
in wireless metropolitan areas. Authors adopt a strategy aiming
at minimizing the response time of clients accessing a service
provided by a cloudlet in terms of latency. The paper described
in [11] proposes a model to define the optimal number of
EDC to meet a specific requirement in a multi-layered MEC
architecture. The model is based on finding the optimal place
by considering both the user population and the distances from
the Base Station with a simulative-based approach. A similar
approach is implemented in [12] in which authors propose
two deployment strategies, namely DDA and Mobility-Aware
Deployment Algorithm (MDA) applied to a cellular network.
In the Distributed Deployment Algorithm (DDA) solution the
deployment is only based on the distance between the EDC
and the BS leading to possible high underused or overload
EDC. In the second case, authors also consider the mobility
to better balance the deployment of EDC. Differently from the
previous works, our approach consists of analyzing the user’s
mobility and to measure how much a set of target location
are covered. The proposed model quantifies the coverage
probability of such locations and, in turn, such information
can be used to drive the deployment of EDC in highly visited
locations.

III. THE LOCATION COVERAGE MODEL APPLIED TO A
MEC SCENARIO

In this work, we refer to a MEC distributed architecture
characterized by a back-end server, a set of EDC and a set
of users. The MEC architecture is structured to efficiently
provide services to users, i.e. by moving the computation close
to the location where the service is actually required. The
MEC paradigm can be applied to two specific use cases to
which we refer to. On the one hand, we refer to the possibility
of offloading the computation to a nearby EDCs. Users have
limited resources, such as computational capability and battery
life time, therefore high demanding tasks can be offloaded to
a local EDC. This is the case of content adaptation through
which a device adapts a multimedia content according to its
hardware features (e.g. downscaling a video stream). In this
case, the device delegates to the EDC the task of adapting
the video to a lower screen resolution, instead of fetching a
standard content and adapting it locally. On the other hand, we
refer to the possibility of providing low-latency services. More
specifically, some services need to be provisioned according to
stringent Quality of Services (QoS) requirements. This is the
case of augmented-reality-based contents and on-line gaming
designed to perform responsively. In these two use-cases, we
assume that users can interact with an EDC which, in turn,
offloads the required resources from the Cloud or perform
local computation on behalf of a user.

The previously aforementioned use-cases require investigat-
ing where to deploy the EDCs units in a region of interest, e.g.
an urban area. Indeed, the MEC architecture is grounded on
the locality principle, therefore it becomes mandatory to adopt

an efficient approach to evaluate the target location of EDC.
This work focuses on this last aspect. In particular, we propose
a heuristic which measures how much a set of target locations
are visited by users. Given a mobility data set and a set of
target locations, we measure the probability that at least a user
will visit each of such target locations. Our probabilistic model
not only considers the past user’s trajectories, but also the
possibility of detouring from the original destination towards
the target location. The notion of detour allows us to evaluate
a deviation of the final destination towards a target location
where an EDC can be deployed.

More formally, our model considers the set of target lo-
cations L and a set of user’s trajectories. The set L defines
those places where it is admitted to deploy an EDC, while
trajectories represent an ordered sequence of way-points of a
specific user. Our model measures for each location l ∈ L,
if at least a user visits or detours towards l. In particular,
we consider the possibility for a user of deviating from its
original trajectory A −→ B, passing though l, A l−→ B. Of
course, the closer the user to l, the higher the probability of
detouring. We report in Fig. 1 three user’s trajectories, the red
circle shows the target location l for an EDC. We compute the
distances x and x′ corresponding to the minimum distance
between trajectory #2 and l, and between trajectory #1 and
l, respectively. Since x ≤ x′, user following trajectory #2
more likely will accept a detour towards l, with respect to
user following trajectory #1 as closer to the target location l.

We define L = {li · · · lH} the target locations, and users
are denoted with set C = {ci · · · cK} Users move along a
set of GPS-based trajectories, e.g. the j-th trajectory of ci
is represented as ti,j ∈ Ti. We can compute the minimum
distance between trajectory ti,j and the location lh ∈ L,
denoted as x̄i,j,h. We define the random variable Xh

i modeling
the event that user ci accepts detouring towards lh up to
distance t̄ from lh. Events modeled by Xh

i are continuous
in R+, with fXh

i
the probability density function. We also

denote with φi,j,h the random variable modeling the event that
ci detours from ti,j to location lh. It is worth to notice that, if
ci detours up to distance t̄ from lh, with a given probability,
then ci will also detour at distance t ≤ t̄ from lh, as the
user is closer to the target location. Therefore, the probability
P (φi,j,h = 1) of detouring at distance t̄ from lh is given by:
P (φi,j,h) =

∫∞
x̄i,j,h

fXh
i

(t)dt.
We adopt an exponential distribution to reproduce the idea

of increasing the detour probability with the reduction of the
distance from the target location: fXh

i
(t) = λ ∗ exp(−λ ∗ t).

Given a user and all its trajectories, we can define the
probability that ci visits location lh from any of the followed
trajectories. Such probability is given by P (ηi,h) = 1 −∏
∀ti,j∈Ti

(1− P (φi,j,h)).
Finally, we define the location coverage αh as the probabil-

ity that lh is visited from any user following any trajectory. To
this purpose, the random variable Rh models the events that
at least one user detours towards lh and its opposite event.
Recalling φ and η, the probability P (Rh) is therefore given



by:

P (Rh) = 1−
∏
∀ci∈C

(
∏

∀ti,j∈Ti

(1− exp(−λ ∗ thi,j))) (1)

obtained by the opposite probability that none of the users in
C detour towards lh. We evaluate in this work the adopted lo-

Fig. 1. Example of trajectory’s detour (Map data copyrighted OpenStreetMap
contributors and available from https://www.openstreetmap.org).

cation coverage model by analyzing trajectories extracted from
two representative data sets: Gowalla [6] and epfl/mobility
(Cabspotting) [7]. Section IV introduces the experimental data
sets with a mobility features analysis, while Section V shows
our model in action.

IV. ANALYSIS OF THE MOBILITY DATA SETS

We now describe the mobility data sets that we adopted
to test the model described in Section III. More specifically,
Section IV-A describes how we prepare and filter the data sets,
while Section IV-B analyzes the mobility features.

A. Description of the data sets

The Gowalla project [7] has been launched as an online
social network in which the registered users were allowed to
share their geographic location in real-time. The geographic
position is obtained with check-ins through which friends were
notified about new friends’ positions. The Gowalla app also
allowed to share digital contents. The Gowalla project last
from 2007 to 2012 and the collected data are worldwide,
mostly of them located in Europe and US. For the purpose of

this work, we are interested in studying the location coverage
on a specific region. Therefore, we cropped the data set to the
most visited city, namely Austin, Texas (US), as reported in
Fig. 2.

Fig. 2. Geographic representation of the selected region for the Gowalla data
set (Map data copyrighted OpenStreetMap contributors and available from
https://www.openstreetmap.org).

The data provided with the Gowalla data set are in the
form: [uid, latitude, longitude, timestamp,
id location], where id location identifies the loca-
tion where user uid checked-in. We filtered the data so that
to cover 12 months, from November 2009 to October 2010,
as a result we obtain 295.532 check-ins. Since the number of
points is a relevant aspect for our location coverage model, we
decided to extended the number of check-ins. To this purpose,
we adopt a simple generative method based on the following
steps:
• detecting the user’s stop places, namely locations where

users rest for a while. To this purpose, we adopt the
methodology described in [13] and implemented with the
scikit-mobility library [14];

• computing the medoids of the stop places. The previous
step returns a set of stop places, we cluster them and we
extract from each cluster the corresponding medoid. The
medoid provides us a coordinate pair of the representative
stop place for each cluster;

• generating a set of new trajectories with origins and des-
tinations selected from the medoids previously identified.

The previous method extend the number of trajectories by only
considering those places where people generally stop. As a
result, the extended data set now contains 2.187.698 points
with 7711 users and 129.113 distinguished trajectories.

The Cabspotting data set is obtained from May to
June 2008 and it reports 11.219.955 GPS trajectories
followed by the Yellow Cab in San Francisco, CA,
USA. Similarly to Gowalla, the information provided
by the data set are: [uid, latitude, longitude,
timestamp, occupancy]. The uid identifies the taxi,
while the occupancy column describes if the taxi is occu-
pied by a passenger or not. Also for the Cabspotting data
set, we applied some filtering mechanisms to restrict the
geographic area. In particular, we restrict to San Francisco area



as it shows the highest number of taxi rides. Fig. 3 shows the
Cabspotting heatmap and the inset reports the cropped area.

Fig. 3. Geographic representation of the selected region for the Cabspotting
data set (Map data copyrighted OpenStreetMap contributors and available
from https://www.openstreetmap.org).

As a result, the extended data set now contains 2.650.083
points with 525 users and 270.136 distinguished trajectories.

B. Mobility Features Analysis

We now analyze some mobility features of the considered
data set. More specifically, we characterize both the users’
profiles and the visited locations. For what concerns the
users’ profiles, we measure the typical traveled distance by
computing the radius of gyration rg [15], [16]. The radius is
defined as:

rg =

√√√√ 1

nu

nu∑
i=1

δ(ri(u)− rcm(u))2 (2)

where ri(u) represents the nu locations of user u and rcm is
center of mass of trajectories of user u, and δ is a distance mea-
sure, e.g. the geodetic distance. The center of mass of a given
user can be defined as the location where the majority of the
points are located, more formally rcm(u) = 1

nu

∑nu

i=1 ri(u),
as reported in [15]. The smaller rg the shorter the distance
traveled, while the higher rg the higher the traveled distance.
We report in Fig. 4 the distribution of the radius of gyration.
As expected, the distributions differ as the data sets reproduce
very different conditions. For what concerns Gowalla, we
compute the 50th percentile corresponding to 3.5km, with a
maximum rg of 14.46km and a standard deviation of 2.7km.
Differently, for what concerns Cabspotting we observe that
the 50th percentile of rg is 2.64km, but with a maximum rg
of 3.3km and a standard deviation of 0.24km. Users of the
Cabspotting data set exhibit a characterizing radius, as shown
with the peaked distribution of rg reported in Figure 5a and
5b.

Concerning the visited locations, we analyze how much they
can be predicted. To this purpose, we compute the real entropy

(a) Gowalla data set. (b) Cabspotting data set.

Fig. 4. (a), (b) Distribution of rg of Gowalla and Cabspotting.

(a) Gowalla data set. (b) Cabspotting data set.

Fig. 5. (a), (b) Distribution of real entropy E of Gowalla and Cabspotting.

E [17] which considers the frequency and the order of the
visits for a location, capturing the full spatio-temporal order of
the mobility pattern of user. The real entropy E(u) is defined
as:

E(u) = −
∑
T ′
u

P (T ′u)log[P (T ′u)] (3)

where P (T ′u) is the probability of finding an ordered sub-
sequence T ′u ordered along the time in Tu. As a representative
example, given a certain value of E(u) = x, this implies that
the next visited location of user u can be chosen between 2x

distinguished locations. We report in Fig. 5 the distribution
of the real entropy for the two data sets. Also in this case,
the considered data set shows a very different result. In the
case of Gowalla’s users, the 50th percentile of E = 3.9, while
for the Cabspotting data set we measure a 50th percentile of
E = 12.21, hence in this case the next predictable location
can be found in a set of of 212.3 ≈ 5042 different locations.
This remarkable difference is caused by the fact that users of
Cabspotting can select any location to stop with a taxi.

V. EXPERIMENTAL RESULTS

Our experimental campaign measures the location coverage
for a set of target locations L. Target locations identify those
places where it is allowed to deploy an EDC, e.g. locations
provisioned with power line, Internet connection and other
requirements for the hardware maintenance.



TABLE I
EXPERIMENTAL SETTINGS.

Gowalla Cabspotting
duration 18 months 1 month
#points 2.187.698 2.650.083
#users 7711 525
#trajectories 129.113 270.136
50th percentile rg 3.5Km 2.6km
50th percentile E 3.9 12.21

A. Experimental Settings

Given the user’s mobility and the set L, we execute the
model described with 1 so that to quantitatively measure how
much items l ∈ L are actually visited by users of the two data
sets. The output of our model is a probability map for every
l ∈ L which provides an indication to select the highly visited
locations for the EDC deployment. Concerning the mobility
data set, we analyze the trajectories of Gowalla and Cabspot-
ting, with 7711 and 525 users, respectively. Concerning the
choice of the actual target locations L, they strictly depend
on local policies, e.g. admitted areas for the EDCs. Since the
analyzed data sets do not provide any information about the
target locations, we apply the following criteria to build the
set L:

• target locations lay within the selected area of the data
sets (see Fig. 2 and 3;

• target locations represent popular places of the urban
area;

• target locations are freely accessible.

For what concerns Gowalla, we extract from OpenStreepMap
the bus stops of Austin city (921 tags of type bus stop),
as reported in Figure 6a. Differently, the target locations
selected for Cabspotting correspond to historical places of
San Francisco area, namely places of worship (794 tags of
type place of warship), as reported in Fig. 6b. Figure 6
shows a heatmap of the GPS points for the two data sets and
of the target locations, so that to qualitatively appreciate how
items in L overlap with the GPS’s points. It is worth to notice
that the selection criteria of the target locations does not affect
the validity of the proposed solution, as our primary goal is
showing how the model defined in Section III can be used to
drive the selection of the deployment locations of EDCs.

Concerning the settings of the model in 1, we analyze
several values of the distribution’s scale 1/λ. The scale affects
the dispersion of the distribution, modifying the attitude of
users in accepting a detour or rejecting it. High values of
the distribution scale decrease the slope of the curve, and in
this case users tend to accept a detour also a high distances
from the target location. Conversely, low values of the scale
parameter increase the slope, reproducing the situation in
which users accept a detour only at short distances from the
target location. We test our model with values of λ ∈ [10, 500]
so that to capture two different user’s behaviors.

(a) Target locations of Gowalla. (b) Target locations of Cabspotting.

Fig. 6. (a), (b) Target locations of the experimental data sets.

B. Numerical Results of the Location Coverage Model

We now report the numerical results of the location coverage
model. Fig.s 7a and 7b report the results for Gowalla and
Cabspotting data sets, respectively. We show the probabil-
ity distribution obtained with the distribution’s scale set to
1/λ = 10, 500 and the resulting heatmap. The heatmaps show
the probability obtained with model for the target locations.
Concerning the Gowalla data, setting the scale to small values,
reproduces the situation in which users accept a detour only
if they are close to the target locations. As a result, the
model clearly distinguishes between locations not visited (0-
bin in Figure 7a) form locations that will be visited in high
probability (1-bin). In this last case, we observe the effect
of the scale parameter is to reproduce a situation in which
users always accept a detour. The information provided by
our model help deciding the location of a set of Mobile Edges
from a list of possible target locations. More specifically, given
k EDC, a reasonable choice is deploying them on the top-k
visited location according to our model as they will represent
places in which users probability will pass through. Similar
considerations also apply for the Cabspotting data set reported
in Fig. 7b. Differently from Gowalla, the heatmap are more
clearly distinguishable.

VI. CONCLUSIONS

The problem focused in this paper addresses the deployment
strategy of EDCs in a MEC architecture. In particular, we
study the problem of measuring how much the candidate
locations for a set of EDCs are actually visited by users.
The model measures for each of such locations the visiting
probability obtained by also considering a trajectory’s detour
towards such locations. We test our model with two real world
experimental data sets, namely Gowalla and Cabspotting. They
offer a very different perspective of user’s mobility useful to
evaluate the model with different scenarios.



(a) Location coverage model applied to Gowalla data set. (b) Location coverage model applied to Cabspotting data set.

Fig. 7. (a), (b) Results of the location coverage model applied to the experimental data sets.

The proposed model represents one of the building blocks
for a complete deployment strategy for EDCs. We consider
two further lines of investigation. On the one hand, we are in-
terested in integrating our model with a predictive tool able to
anticipate crowded locations giving the past user’s trajectories,
e.g. by adopting Recurrent Neural Network approaches. On the
other hand, we are interested in investigating the possibility
of migrating the computation according to movements of the
crowd. This approach allows to further extend the concept
of locality to the notion of proximity so that to emphasize
the possibility of requesting a service to devices in close
proximity.
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