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Abstract
We show through intensive simulations that the paradigmatic features of anoma-
lous diffusion are indeed the features of a (continuous-time) random walk
driven by two different Markovian hopping-trap mechanisms. If p ∈ (0, 1/2)
and 1 − p are the probabilities of occurrence of each Markovian mechanism,
then the anomalousness parameter β ∈ (0, 1) results to be β � 1 − 1/{1 +
log[(1 − p)/p]}. Ensemble and single-particle observables of this model have
been studied and they match the main characteristics of anomalous diffusion as
they are typically measured in living systems. In particular, the celebrated tran-
sition of the walker’s distribution from exponential to stretched-exponential and
finally to Gaussian distribution is displayed by including also the Brownian yet
non-Gaussian interval.
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1. Introduction

We show that anomalous diffusion emerges from a process that goes through the action of
two co-existing Markovian mechanisms acting with different statistical frequency. In other
words, anomalous diffusion emerges from standard diffusion when very seldomly the process
switches to another standard diffusion with a different set-up: the probability of occurrence
of this switch originates and fully characterizes the anomalous diffusion such that anomalous
diffusion is indeed not originated by a broad distribution of relaxation times [1, 2], or by a
crowded environment [3], or by other mechanisms linking it to complexity [4].

The motion of a random walker is called diffusion when it goes through a dissipative evo-
lution and the ensemble statistics of the process are characterized by the convergence of the
walker’s probability density function (PDF) to the Gaussian distribution and also by a mean-
square displacement (MSD) that is linear in time, namely the Brownian motion (Bm). An
offspring of the Gaussianity and of the Bm is that the governing equation of the walker’s PDF,
i.e., the Fokker–Planck (FP) equation, is an equation with a single and constant coefficient, that
is the diffusion coefficient. Since the Gaussian distribution is also named normal distribution,
we have that the term diffusion turns into normal diffusion and whenever one, or both, of the
characteristic features of the ensemble statistics of the normal diffusion are not fulfilled then
the corresponding process falls into the class of the anomalous diffusion.

We study here anomalous diffusion as it emerges from over-damped processes only. In this
respect, we report in this introductory section, as an overview, that the random walk for normal
diffusion goes through the Galton board setting, namely, at each fixed time-step the walker
performs a jump drawn from a symmetric distribution with finite variance [5]. But theories
of random walks could be even very refined. So when, few decades ago, anomalous diffu-
sion catched the attention of the scientific community ‘random walks were an old topic that
seemed fully understood and explored, belonging to textbooks and not having novel research
directions’ [6]. But, if the simple setting of the Galton board works well for normal diffu-
sion with the assumption of independence between consecutive states, i.e., the Markovianity
property, a fundamental feature of anomalous diffusion is embodied indeed by memory effects
between consecutive states, i.e., the non-Markovianity property. Therefore the best candidate
for modelling anomalous diffusion emerged to be the continuous-time random walk (CTRW),
first introduced by Montroll and Weiss in 1965 [7]. Namely, the CTRW is a random walk which
allows for random waiting-times between consecutive jumps and so there is no more a fixed
time-step for time evolution but a time-step drawn by a distribution. As a matter of fact, this
is a procedure for introducing non-Markovianity into the settings of the random walk. Later,
many successes of the CTRW have been reported, see, e.g., [8–11].

Anomalous diffusion took its place in 1973 when Scher and Lax discussed [12, 13], in
general, transport processes in disordered systems, and, in particular, the diffusion of carriers
in amorphous semiconductor films for photocopying machines. In 1975 a successful model on
the basis of the CTRW was proposed by Scher and Montroll [14] by using recent calculations
in 1973 by Montroll and Scher [15] and in 1974 by Shlesinger [16]. 1973–1975 were anni
mirabiles for the anomalous diffusion. After this, new applications of diffusion theory started
to call for new modelling approaches and, by passing through a number of other applications
in physics [17], anomalous diffusion landed nowadays in living systems [18, 19].

At the same time, the field of fractional calculus found its glorious application in modelling
anomalous diffusion through the time-fractional generalisation of the diffusion equation, i.e.,
by replacing the first-order time-derivative with a non-local derivative operator of a fractional
(actually a positive real) order. The link between anomalous diffusion and fractional calculus
is embodied by the so-called memory effect that governs the diffusion and is encoded into
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the power-law kernel of the operators of fractional calculus. The story of fractional models
for anomalous diffusion started in 1986 with Nigmatullin who modelled diffusion in porous
medium by using fractal comb-like structures and come down to derive a time-fractional dif-
fusion equation [20], see also reference [21] for other pioneering applications of fractional
calculus. The same year, the solution to such equation was provided by Wyss [22] for a time
fractional-order less than 1, that was extended to be less than 2 in 1989 by Schneider and Wyss
[23]. Following Schneider and Wyss [23], in 1989, Nonnenmacher and Nonnenmacher applied
fractional calculus to the Boltzmann equation for deriving a fractional extended irreversible
thermodynamics [24], and in the same year Nonnenmacher [25] applied fractional calculus to
lateral diffusion processes in biomembranes predicting the measured values more accurately
than when being compared with the predictions of standard diffusion.

Later, in 1995–1996, Mainardi published noteworthy papers [26–28] where the time-
fractional diffusion and its solution were put in an easy-to-understand setting that widely
popularised the topic, for an historical summary we refer the reader to reference [29], and
such popularisation continued with other noteworthy papers co-authored with Gorenflo, see,
e.g., [30–33]. Fractional diffusion were definitively legitimised in 2002 by Sokolov, Klafter
and Blumen [34]. The meaning of time fractional-derivative in physical models was investi-
gated since 1995 by Hilfer, see, among many, the papers [35–38], and see also two critical
analysis about the relation between fractional and fractality by Rutman dated 1994 and 1995
[39, 40]. The reader interested on the success of fractional calculus in anomalous diffusion can
pass through a number of edited books, e.g., [41–44]. CTRW and fractional diffusion emerged
to be linked de facto under certain mild conditions in 1985 when, without referring to frac-
tional operators, Balakrishnan showed for the first time a similar integral representation [45],
but unfortunately without well-posing the problem with respect to the initial condition. The
link between CTRW and fractional diffusion was indeed derived on rigorous basis only in
1995 by Hilfer and Anton [46], after that in 1993 the CTRW were linked to fractional relax-
ation phenomena by Glöckle and Nonnenmacher [47]. So, the correct setting of the CTRW in
the framework of non-local fractional operators was derived quite late in spite of the fact that
the relation between the CTRW and the generalised Master equation was already known since
the 70s [48–51], as well as the use of Fourier and Laplace multipliers in the framework of the
CTRW [16, 52], and very close results were obtained in the 80s [53–56]. For a critical review
about the link between the CTRW and fractional calculus, the reader is referred to the introduc-
tory section in reference [57] and to references [58, 59]. However, the link CTRW-fractional
diffusion is only an oversimplified picture that is unable to cover the rich phenomenology that
has a place behind the label of anomalous diffusion, but for sure it was the most successful
way for the scientific community to become acquainted with anomalous diffusion and to bring
out the most important observables.

During the years, anomalous diffusion was slowly established both theoretically, see, e.g.,
the interpretation of fractional calculus as a macroscopic manifestation of randomness [60]
or the relation with Hamiltonian chaos [61], and experimentally, see, e.g., [62–66], up to
the recent confident exhortation by Metzler: ‘experimentalists, keep reporting unexpected
behaviors!’ [67].

In the last decades, a plethora of models were proposed and investigated, each one for fixing
and explaining some observables, see, e.g., [68–80]. Among these recent models, the so-called
diffusing-diffusivity (DD) approach [81] resulted to be well performing with respect to some
relevant features. The DD approach is based on two stochastic differential equations (SDEs):
the over-damped Langevin equation for driving the walker’s trajectory and a SDE for the
time-dependent diffusion coefficient. This two-equation model resembles the subordination
approach and it leads to a superstatistical solution at elapsed time shorter than the correlation
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time-scale of the diffusion coefficient [81]. In particular, the DD approach allows for a transi-
tion from an exponential walker’s PDF to a Gaussian PDF displaying also the Brownian yet
non-Gaussian (BynG) interval [81, 82].

To conclude this section, in this paper we show, by adopting the CTRW formalism, that
anomalous diffusion can emerge from a co-existing pair of well-set Markovian hopping-trap
mechanisms with only two different time-scales. Therefore, it is not needed indeed to introduce
a broad distribution of relaxation times [1, 2] and neither cumbersome random-walk models.
Actually, this model meets many ensemble and also single-particle statistics that define anoma-
lous diffusion: in particular, the transitions of the walker’s PDF and the BynG interval like
the DD model does. The present model has a number of analogies with the DD-like model
recently studied by Hidalgo–Soria, Barkai and Burov [83]. That model is based on an over-
damped Langevin equation for a Gaussian process with a dichotomous diffusion coefficient
that switches after a random time. The main difference with the present research lays on the
fact that any DD-like approach describes through the Langevin equation a pure Lagrangian
point-of-view of the continuous walker’s wandering by a fully characterisation in terms of the
elapsed time. In our CTRW setting, the Eulerian point-of-view of the hopping-trap mecha-
nism is previleged, and the adoption of two Markovian mechanisms allows for fulfilling the
Onsager principle [84]. Moreover, recent e-prints appeared [85, 86] where the authors, moti-
vated by experimental parameters for tau proteins in neuronal cells, through a simple Marko-
vian mobile–immobile transport of particles, which has some similarities with the present
model, unveil certain features of anomalous diffusion as the transitions of the walker’s PDF by
including also the BynG interval.

The rest of the paper is organised as follows. In section 2 we report the features of the
paradigmatic anomalous diffusion. In section 3 we introduce the model and in section 4 we
present and discuss the results of an intense study by simulations. Conclusions are reported in
final section 5.

2. The paradigmatic anomalous diffusion

With the advent of techniques for single-particle tracking in living systems, anomalous dif-
fusion found a paradigmatic setting on the basis of experimental data, see, e.g., [71, 87]. Let
t � 0 be the time-parameter and Ω be the sample space, then we denote a stochastic process in
unbounded domain by Xω

t : [0,∞) × Ω→R where ω ∈ Ω indexes each independent realiza-
tion (namely, each single-particle trajectory). What we call paradigmatic anomalous diffusion
is a generic one-dimensional random walk diffusing in an unbounded domain that meets the
followings features.

At the level of ensemble statistics, anomalous diffusion displays a regime characterized by
a MSD that grows in time according to a sub-linear power-law, namely

E[X2
t ] ∼ tβ , 0 < β < 1, (1)

and a stretched-exponential distribution that is related to the anomalousness parameter β by

ρ(z) ∼ |z|(β−1)/(2−β) exp{−|z|2/(2−β)}, |z| →+∞. (2)

Here, we refer to (2) as the time-fractional diffusion law.
In terms of FP equation, this phenomenology is modelled by the time-fractional diffusion

equation [23, 27, 28], that is the governing equation, for example, of the walker’s distribution
in the case of the CTRW with infinite-mean waiting times [46] or of the gray Brownian motion
(gBm) by Schneider [88, 89]. This last was originally based on the over-damped fractional
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Brownian motion (fBm) but it could be extended to the under-damped Langevin equation as
well [74]. In terms of physical interpretation, the approach based on the CTRW describes a
diffusion process in an inhomogeneous medium [90, 91] while the approach based on the gBm
describes a diffusion process by an heterogeneous ensemble of walkers [74]. Another stochastic
modelling, whose walker’s PDF is governed by the time-fractional diffusion equation, is the
subordination approach [68] and it is somehow related to the CTRW [92]. In this approach,
the Bm evolves with respect to an operational time that is a random variable driven by the
physical time. Such randomness can indeed be re-phrased as a randomness of the time-scale
of the physical time [93].

At the same time, the anomalous diffusion regime is indeed an intermediate regime, and
further features emerged as well as prototypical features of the anomalous diffusion from the
improved experimental capacities [18, 71, 87, 94]. So, nowadays, the paradigmatic anoma-
lous diffusion includes also a walker’s distribution ρ(x; t) with exponential tails at short
elapsed time, t � τB, i.e., ρ(z) ∼ e−|z| as |z| →+∞, where τB stays for the Barkai–Burov
time-scale who proved that such exponential tails (up to a logarithmic correction: ρ(x; t) ∼
e−|x| log (|x|/t)γ−Ct as |x|/t →+∞ and γ, C > 0) are indeed universal for diffusing walkers
[95, 96], and also a distribution with Gaussian tails at large elapsed times, t 	 τD, i.e., ρ(z) ∼
e−z2

as |z| →+∞, where τD stays for the normal diffusion time-scale when, as a matter of
fact, walkers go through a Brownian and Gaussian diffusion (anomalous-to-normal transition)
[76, 97, 98]. We remark that here the universal exponential-tailed distribution by Barkai &
Burov [95] is intended as small-time universality rather than as large-space universality: this
exchange is done on the basis of the limit |x|/t →∞. The ensemble phenomenology is finally
enriched by the mentioned BynG interval [81, 82], when the MSD starts to grow linearly in
time before than the anomalous-to-normal transition occurs, namely at τB � τBnG � t � τD.
Within these PDF-transitions, the DD approach emerged to be the higher flexible formulation
[81, 83]. In its minimal-model scheme, the diffusion coefficient in the DD approach is deter-
mined by the square of an Ornstein–Uhlenbeck process and this introduces an extra time-scale
that allows for a transition of the walker’s PDF through the mentioned regimes and also for the
appearing of the BynG interval. The PDF-transition is the strength point of the DD model with
respect to other superstatistical-like approaches as: the gBm [88, 89] and the generalized gray
Brownian motion (ggBm) [73], which are both superstatistical-like fBm [99], that indeed do
not display a transition of the walker’s PDF between different shapes. The CTRW approach
allows indeed for the anomalous-to-normal transition [100], that can be observed also in the
under-damped ggBm as a consequence of the finite statistical sampling of the time-scales [76].

At the level of single-particle statistics, the observables that characterize anomalous diffu-
sion are the p-variation test [101, 102], the time-averaged MSD (TAMSD) and the ensemble-
averaged TAMSD (ETAMSD). The p-variation test provides information on the stochastic
origins of the data allowing for discriminating among processes. The TAMSD and the
ETAMSD allow for observing the dependence of the statistics on the time-lag between the
start of the process and the start of the measurement [94, 103, 104], which is called aging.
TAMSD and ETAMSD also allow for estimating the degree of ergodicity breaking [105, 106],
namely when the walkers need an infinite time for exploring an infinite system but they can
access to the whole domain because it is not split in mutually inaccessible regions [105]. In
formulae they are as follows.
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Let T be the measurement time, i.e., t ∈ [0, T], with time-step h such that T = Nh and Δ =
mh, where N, m ∈ N and N > m, then the p-variation test V (p)(t) is defined as

V (p)(t) = lim
n→∞

2n−1∑
j=0

∣∣∣Xt j+1∧t − Xt j∧t

∣∣∣p
, with 2n = N, (3)

where t j = jT/2n and a ∧ b = min{a, b}. The TAMSD is calculated by the formula

δ2(T,Δ) =
1

N − m + 1

N−m∑
k=0

[
Xkh+Δ − Xkh

]2
, (4)

as a function of Δ, while when the ETAMSD E [δ22] is calculated as a function of T then aging
is observed. Finally, the degree of ergodicity breaking is estimated by the parameter

EB(T,Δ) = lim
T→∞

E

[
δ22

]
E2

[
δ2

] − 1. (5)

Actually, EB is an indicator of the inequality between time-averaged and ensemble-averaged
statistics.

Paradigmatic anomalous diffusion displays a p-variation consistent with Gaussian pro-
cesses, in particular with the fBm [101]. Moreover, TAMSD displays a linear growing in time,
suggesting an underlying Bm, but the diffusion coefficient differs among single-trajectories,
see, e.g., reference [94]. The distribution of the diffusion coefficients among the trajectories
causes the weak ergodicity breaking [73, 94, 107]. The CTRW [107], the subordinated fBm
[108] and the ggBm [73] have the same degree of ergodicity breaking, i.e., they provide the
same value of EB. Furthermore, anomalous diffusion in living systems displays aging with an
ETAMSD that decreases as T−λ with λ > 0 [94, 103, 104]. All these properties are reproduced
by the ggBm [73], while the CTRW cannot reproduce the p-variation test [101] together with
other failures [94].

3. The model

3.1. Definition

We propose a model based on the theory of the CTRW, see references [6, 109–112] for tech-
nical and historical reviews. Let Ω be the sample space, then ω ∈ Ω indexes each independent
realization of the walker’s trajectory. In the CTRW approach, eachω-realization of the walker’s
trajectory goes through the pair of iterative processes

Xω
N − Xω

N−1 = RN , tωN − tωN−1 = τN , N = 1, 2, . . . , (6)

where the displacements R are i.i.d. random variables distributed according to the jump-size
distribution λ(x) and the positive time-increments τ between consecutive jumps are i.i.d. ran-
dom variables distributed according to the waiting-time distribution ψ(t) such that, after N
iterations, the walker of the ω-realization is located in Xω

N = x0 +
∑N

i=1 Ri at the elapsed time
tωN = t0 +

∑N
i=1 τi. It holds that, for the same number of iterations N, the elapsed times of two

different ω-realizations are different. We can compress this notation in (Xω
N , tωN) = Xω

tN . We set
x0 = 0 and t0 = 0.
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Without loss in generality, we consider the case of a random walk in continuous space, rather
than in a lattice, and then Xω

tN
: [0,+∞) × Ω→ R with λ(x) : R→ R+ and ψ(t) : R+ → R+.

Within the formalism of the uncoupled CTRW [113], if ρ(x; t) : R× (0,+∞) → R+ is the
walker’s PDF at site x ∈ R and time t > 0 with initial datum ρ(x; 0) = δ(x), such that∫
R
ρ(x; t) dx = 1 and ρ(x; t) > 0 for all (x, t) ∈ R× (0,+∞), then in the Fourier–Laplace

domain it holds

̂̃ρ(κ; s) =
∫ +∞

0
e−st

∫ +∞

−∞
e−iκxρ(x; t) dx dt =

1 − ψ̃(s)

s[1 − λ̂(κ)ψ̃(s)]
, (7)

where ψ̃(s) and λ̂(κ) are the Laplace and the Fourier transforms of the waiting-time distribu-
tion ψ(t) and of the jump-length distribution λ(x), respectively. Since from the normalization
condition of ψ(t) and λ(x) it follows that ψ̃(0) = λ̂(0) = 1, then it holds ̂̃ρ(0; s) = 1/s.

The memory of the process is provided by the waiting-time distribution ψ(t). In fact, by
inverting (7) we have that the FP equation is [32]∫ t

0
Φ(t − τ )

∂ρ

∂τ
dτ = −ρ(x; t) +

∫ +∞

−∞
λ(x − ξ)ρ(ξ; t) dξ, (8)

where the memory kernel Φ(t) is defined by

Φ̃(s) =
1 − ψ̃(s)

sψ̃(s)
. (9)

Therefore, the process is memory-less, i.e., Markovian, when Φ(t) = δ(t/τM) = τMδ(t), where
τM is the time-scale of the Markovian process, which means Φ̃(s) = τM and then ψ(t) =
e−t/τM/τM [32, 55] such that the mean waiting-time is: 〈t〉 =

∫ +∞
0 t ψ(t) dt = τM.

We consider a Gaussian jump-length distribution, i.e.,

λ(x) =
e−x2/(2σ2)

√
2πσ2

, 〈x2〉 =
∫ +∞

−∞
x2 e−x2/(2σ2)

√
2πσ2

dx = σ2, (10)

and the following model for the waiting-time distribution

ψ(t) = p
e−t/τD

τD
+ (1 − p)

e−t/τB

τB
, τB � τD, (11)

where p ∈ [0, 1] is the probability of occurrence of each family of Markovian mechanisms:
ψD(t) = e−t/τD/τD and ψB(t) = e−t/τB/τB, τD is the time-scale of the diffusion-limit and τB is
the Barkai–Burov time-scale [95, 96], both have been discussed in section 2, and the diffusion
coefficient results to be D = σ2/(2 〈t〉) with 〈t〉 = pτD + (1 − p)τB.

3.2. Non-Markovianity

By using the Laplace transform of the memory kernel (9), we can study the non-Markovianity
of model (11). Actually, we obtain

Φ̃(s) =
τB(1 + τDs) + p(τD − τB)

p(1 + τBs) + (1 − p)(1 + τDs)
, (12)

and it can be checked that model (11) is Markovian when τB = τD = τM, such that Φ̃(s) = τM

for all p, and when p = 0, such that Φ̃(s) = τB = τM for arbitraty τD. At large time, the memory
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fades away and then, when τD 	 τB, we have that in the Laplace domain the large-time limit
corresponds to the limit s � 1/τD � 1/τB and it holds

Φ̃(s) � pτD + (1 − p) τB = τM, τBs � τDs � 1, (13)

that is an estimation of τM because in this limit Φ̃(s) is independent of s. Therefore we have
that

τM = τB

(
1 − p+ p

τD

τB

)
, (14)

and by assuming that τM exists and is bounded for all p and whatever is the inequality τD 	 τB,
it means that pτD/τB is always bounded for all p and whatever is the inequality τD 	 τB,
too, such that τB � pτD when p→ 0. In fact, if τD < ∞ then the quantity pτD/τB is not
bounded for all p when for example τB ∝ p2 and p→ 0. To conclude, if we plug τB ∝ pτD
into (14), together with p→ 0 such that τD 	 τB, we have that τM � τB (2 − p) ∝ 2pτD and,
by plugging this last into (13), we finally have the following constraints for non-Markovianity

τB = τD
p

1 − p
, p ∈ (0, 1/2), (15)

when p = 1/2 then τB = τD and, according to (12), model (11) results to be Markovian. In
particular, constraint (15) provides an estimation of the Barkai–Burov time-scale τB for defin-
ing the small elapsed-times, i.e., t � τB, and states the time-scale τD for defining the large
elapsed-times, i.e., t 	 τD.

Hence, from (9) we have that model (11) and (15) is non-Markovian, in fact it holds

Φ̃(s) = τD
p(1 + τBs) + p(1 + τDs)

p(1 + τBs) + (1 − p)(1 + τDs)
, p ∈ (0, 1/2), (16)

that is dependent on s when τDs 	 τBs 	 1 and p ∈ (0, 1/2), and it goes to Φ̃(s) = 2 pτD =
τM when τBs � τDs � 1. Note that in (15) and (16) p �= 0, see also below (12), otherwise for
model (11) and (15) it holds τB = 0 for τD < ∞ and Φ̃(s) = 0 for all s, namely ψ(t) = 0 for
all t.

Moreover, in opposition to literature on CTRW models for anomalous diffusion, see, among
many, the reviews [10, 11, 110], the mean waiting-time of model (11) and (15) is finite, i.e.,

〈t〉 =
∫ +∞

0
t ψ(t) dt = 2 pτD = τM < ∞. (17)

By setting τD < +∞, a finite-mean waiting-times exists (17) which guarantees a transition to
normal diffusion.

3.3. Power-law memory fading and anomalousness parameter β

Together with non-Markovianity, model (11) displays also a power-law memory fading. We
introduce the so-called survival probability, see, e.g., [109], namely the probability for the
walker to remain at the initial position:

Ψ(t) = 1 −
∫ t

0
ψ(ξ)dξ,

dΨ
dt

= −ψ(t), Ψ̃(s) =
1 − ψ̃(s)

s
, (18)

that, for the present model (11), is

8
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Ψ(t) = pe−t/τD + (1 − p) e−t/τB , Ψ̃(s) =
pτD

1 + τDs
+

(1 − p) τB

1 + τBs
. (19)

It is known that anomalous diffusion is obtained within the CTRW formalism when ψ̃(s) ∼
1 − sβ with s → 0, e.g., [10], and it is embodied in the CTRW/fractional diffusion formalism
by [46]

ΨML(t) = Eβ(−tβ), Ψ̃ML(s) =
sβ−1

sβ + 1
, (20)

with

Ψ̃ML(s) ∼ 1
s1−β

, s → 0, (21)

where Eβ(−tβ), with 0 < β < 1, is the Mittag–Leffler function [114, appendix E]

Eα(z) =
∞∑

n=0

zn

Γ(1 + αn)
, α > 0, z ∈ C. (22)

The Laplace transforms of the two survival probabilities (19) and (20) are related by the
formula [114, formula (E.51)]

1
1 − s

=

∫ ∞

0
e−u Eα(uαs) du, α > 0, (23)

and then

Ψ̃(s) = pτD

∫ ∞

0
e−u Eα(−uατDs) du + (1 − p)τB

∫ ∞

0
e−u Eα(−uατBs) du. (24)

If we consider the interval 1/τD � s � 1/τB then it holds τDs 	 1 and τBs � 1 such
that uατDs → 0 for u � um(s) � (τDs)−1/α and uατBs → 0 for all u. Therefore, by noting that
Eα(0) = 1, in the interval 1/τD � s � 1/τB, formula (24) becomes

Ψ̃(s) � τM − pτD e−um(s) + pτD

∫ ∞

um(s)
e−u Eα(−uατDs) du, (25)

where definition (13) of τM has been used. Through the change of variable ξ = (τDs)1/αu, we
have that

Ψ̃(s) � τM − pτD e−um(s) +
pτD

(τDs)1/α

∫ ∞

ξm

e−ξ/(τDs)1/α
Eα(−ξα) dξ, (26)

where ξm = (τDs)1/α um(s) is independent of s. By looking at the integral term and by remem-
bering that τDs 	 1, we observe that for an arranged interval of s such that ξm ∼ O(1) we
finally obtain the following power-law scaling

Ψ̃(s) � τM +
pτD

1−1/α

s1/α

∫ ∞

ξm

Eα(−ξα) dξ,
1
τD

� s � 1
τB

, α > 0. (27)

From this derivation the value of α is indetermined, as a consequence of the indetermination
of α in formula (23). However, the value of α is expected to be determined as function of p,
i.e., α = α(p). Moreover, since we are focused on the resulting anomalous diffusion, we can

9
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Figure 1. Plots of the Laplace transforms of the survival probabilities ˜ΨML(s)/τ1 vs τ2s
(dashed line) and ˜Ψ(s)/τB vs τBs (continuous line) for different values of p ∈ (0, 1/2),
from (a) to (d): p = 0.001, 0.005, 0.01, 0.05. The universal short-time behaviour is evi-
dent by the overlapping of the two curves for large values of the corresponding arguments
and starting at τ 2s = 1 and at τBs = 1, respectively.

establish a relation between the value of α, which corresponds to the model (11) and (15), and
the exponentβ as follows from the anomalous diffusion displayed by a CTRW model equipped
with (20). Hence, by comparing (27) and (21), we have the relation

β = 1 − 1
α(p)

, (28)

and we can fix α(p) by comparing plots of the power-law interval of (19) for different values
of p against plots of (20) for different values of β.

In particular, by writing Ψ̃ML(s) in dimensional form:

Ψ̃ML(s) = τ1
(τ2s)β−1

(τ2s)β + 1
, (29)

and by searching for the time-scales τ 1 and τ 2 by comparing (29) against (19), in the limit
τB/τD → 0 we get

Ψ̃ML(s) � Ψ̃(s), s 	 1
τ2

, with τ1 = pτD, τ2 = 2
τDτB

τD + τB
. (30)

The Laplace transforms of the two survival probabilities, i.e., Ψ̃ML(s) in (20) and Ψ̃(s) in (19),
are compared in figures 1 and 2.

10
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Figure 2. Plots (left column) of the Laplace transforms of the survival probabilities
˜ΨML(s)/τD vs τDs (dashed line) and ˜Ψ(s)/τD vs τDs (continuous line) for different values
of p ∈ (0, 1/2), from (a) to (d): p = 0.001, 0.005, 0.01, 0.05. It is evident that for small
enough p there exists an intermediate interval of a couple of decades located around
τDs = 1 where both Laplace transforms of the survival probabilities display a power-law
decaying, see the zoom in the right column.
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Figure 3. Determination of the anomalousness parameter β by plotting the parameter
β of ˜ΨML(s) and the ratio (1 − p)/p of ˜Ψ(s) as they emerge in the equal power-law
decaying interval in figure 2. The fit is given in formula (31).

In figure 1 we observe that the two survival probabilities display an universal behaviour for
large values of s with respect to the associated short-time time-scales: this corresponds to the
universal behaviour for short elapsed-times related to the Barkai–Burov time-scale τB, i.e.,
s 	 1/τB.

In figure 2 we observe that, for small enough p, the two survival probabilities display a
parallel power-law decreasing for intermediate values of s for a couple of decades around the
large-time time-scale τD. At very large-time, i.e., s � 1/τD, the present model transits to the
normal diffusion while the CTRW equipped with the survival probability ΨML(t) continues
with the anomalous diffusion.

Moreover, searching for the common power-law between Ψ̃ML(s) and Ψ̃(s) in the interval
around τDs = 1 leads to a determination of the anomalousness parameter β, see figure 3, that
emerges to be approximated by the formula

β � 1 − 1

1 + log 1−p
p

, p ∈ (0, 1/2), (31)

and then we have from (28) that

α(p) = 1 + log
1 − p

p
, p ∈ (0, 1/2). (32)

Again we have that p �= 0, otherwise β = 1 and anomalous diffusion is lost. On the con-
trary, we have that when p = 1/2 it holds β = 0 such that diffusion stops as an extreme
consequence of sub-diffusion. However, when p = 1/2 the model (11) and (15) reduces to
Markovian standard diffusion and anomalous diffusion is lost again. An explanation follows

12
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Figure 4. Plots of MSD for different values of p ∈ (0, 1/2). The plots show that
at large-times t > τD the model (11) and (15) diffuses according to standard dif-
fusion while at intermediate-times τB < t < τD diffuses anomalously with parame-
ter β dependent on p ∈ (0, 1/2). The values of p adopted for this figure are p =
0.001, 0.0025, 0.005, 0.0075, 0.01, 0.025, 0.05, 0.075, 0.1. Coloured dashed-lines corre-
spond to the estimation of the anomalousness parameter β as plotted in figure 3 and fitted
by formula (31).

from the estimation of the extension of the anomalous diffusion interval by the difference

τD − τB = τD

(
1 − p

1 − p

)
, (33)

where (15) has been used. From formula (31) we finally obtain that the extension of the
anomalous diffusion interval is

τD − τB = τD

[
1 − e−β/(1−β)

]
, (34)

that decreases when β decreases and we have the ratio

τB

τD
= e−β/(1−β). (35)

3.4. Further to model (11) and (15)

Present model (11) and (15) is fully determined by a pair of dimensional parameters, i.e.,
[τB] = Time and [σ] = Length, and one single adimensional parameter, i.e., p ∈ (0, 1/2).
When p = 1/2 the model reduces to the Markovian normal diffusion with τD = τB = τM and
Φ̃(s) = τM such that the mean waiting-time is 〈t〉 = τM.

We highlight that the present model (11) is not a two-state CTRW [115]. It is indeed much
more close to the model studied by Hilfer in his objection to the relation between the CTRW
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Figure 5. Plots of walker’s PDF at different elapsed-times for different values
of p ∈ (0, 1/2], from (a) to (f): p = 0.5, 0.1, 0.05, 0.01, 0.005, 0.001 that is β =
0, 0.6872, 0.7465, 0.8213, 0.8411, 0.8735. The PDF goes through two regime-transitions
from short-time t < τB (violet), to intermediate-time τB < t < τD (green), and to large-
time t > τD (red). The reference lines for PDF tails corresponds to the exponential (gray
solid-line), to the stretched-exponential (black dashed-line), and to the Gaussian (black
solid-line). The stretched-exponential PDF follows the time-fractional diffusion law (2).
It is important to observe that when p = 0.5 the tails of the PDF transit from expo-
nential to Gaussian by skipping the stretched-exponential that is in agreement with the
Barkai–Burov theory [95].

14



J. Phys. A: Math. Theor. 55 (2022) 224012 S Vitali et al

Figure 6. Comparison of the starting of the Brownian linear scaling of the MSD (blue)
against the kurtosis (red), this last expresses through its value K = 3 the Gaussianity
of the PDF. In panel (a) it is reported the behaviour of the basic Markovian CTRW
(p = 1/2) and in panel (b) that of the over-damped Langevin equation. An intrinsic
BynG delay of one decade is displayed by an hopping-trap mechanism with respect to a
continuous stochastic process.

and time-fractional diffusion equations [58] and to the models studied by Barkai and Sokolov
in their subsequent reply [59]. Those models [58, 59] were based on a waiting-times distribu-
tion builted by the combination of a power-law and an exponential-law: a recent analog study
showed that for an inhomogeneous version of that model a weak form of the objection still
holds [116] because normal diffusion can be observed for a particular interval of the exponent
of the power-law. Similarly, model (11) relates also with the double-order time-fractional dif-
fusion equation in the Caputo sense [117–119] by plugging into (8) the memory kernel Φ(t)
as defined in (9) and split according to (11). Furthermore, model (11) and (15) shares with the
Weistrass random-walk for Lévy flights [120, 121] the fact that it allows for the estimation of
the anomalousness parameter from the dynamics of the process, and it is not indeed plugged
into the formulation.

Beside all of this, we have that two families of Markovian mechanisms are enough for
generating an anomalous diffusive regime, in opposition to the Mittag–Leffler formalism that
claims for a large spectrum of families of Markovian mechanisms [2]. Moreover, much more
unbalanced is the occurrence of each family of Markovian mechanisms, i.e., p→ 0+, much
more solid is the intermediate interval where anomalous diffusion is generated by a power-law
memory fading. Actually, the approximation of power-law functions through exponential sums
has been already investigated [122–124]. Theoretically, this is the main result of the present
paper and, with respect to the existing literature, we want to stress that the present model (11)
and (15) liberates research on anomalous diffusion from the shackles of power-law or infinite
mean.

In the following we show through intensive simulations that this two Markovian hopping-
trap mechanisms are enough for obtaining a random walk that meets the features that define
the here-called paradigmatic anomalous diffusion.

4. Simulations

In spite of its simple definition, we computed no further analytical result, yet, and we present
here an intensive study based on simulations. Model (11) and (15) is investigated with respect
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Figure 7. The same as in figure 6 for model (11) and (15) only with different values of
p ∈ (0, 1/2], from (a) to (f): p = 0.5, 0.1, 0.05, 0.01, 0.005, 0.001. Panel (a) shows the
basic Markovian CTRW model (p = 1/2) as in panel (a) of figure 6, it is shown again
for convenience for comparison with model (11) and (15). The oscillating behaviour
of the kurtosis reflects the action of two co-existing Markovian mechanisms acting on
the walker with different statistical frequency (11). The intrinsic one-decade delay of an
hopping-trap mechanism displayed in panel (a) increases for decreasing values of p up
to an extention of two decades.

to its regime-transitions with focus on the intermediate regime. Such intermediate regime can
be long enough to characterize the process. A similar study on Lévy flights showed that, in
some special settings, an intermediate regime could extend so much to making the large-time
limit unattainable from measurements in real systems [125].
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Figure 8. Plots of p-variation tests of variation orders 2/β (left) and 2 (right) for dif-
ferent values of p ∈ (0, 1/2), from (a) to (d): p = 0.05, 0.01, 0.005, 0.001 that is β =
0.7465, 0.8213, 0.8411, 0.8735. The monotonic-continuous growing is consistent with
an underlying Gaussian-like motion, in particular with the fBm [101] and the ggBm
[73], and then consistent also with a typical signature of motion inside living cells, see,
e.g., [101].

The setting of simulations is the following: the number of independent realizations is
max{ω ∈ Ω} = 104, the two dimensional parameters are τB = 1 and σ = 1, and different
values of p ∈ (0, 1/2).

We report the outputs of model (11) and (15) regarding the observables proper of the
paradigmatic anomalous diffusion presented in section 2. We start this numerical study with
ensemble statistics. The MSD is shown in figure 4 and we observe that the MSD displays
an anomalous sub-linear regime with exponent β when τB < t < τD and Brownian linear
diffusion when t > τD. For different values of p different values of β follow according to
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Figure 9. Plots of the TAMSD for different values of p ∈ (0, 1/2), from (a) to (d):
p = 0.001, 0.005, 0.01, 0.05 that is β = 0.8735, 0.8411, 0.8213, 0.7465. The dashed-
line represents the ETAMSD and the solid-line provides a guide to the eye of the linear
scaling.

formula (31). Furthermore, consistently with the paradigmatic anomalous diffusion discussed
in section 2, the walker’s PDF of model (11) and (15) goes through regime-transitions. In
particular, in figure 5 it is shown that when the walker’s PDF is re-scaled with the corre-
sponding variance, we can distinguish three different tail-behaviours: exponential (t < τB),
stretched-exponential (τB < t < τD) and Gaussian (t > τD). In particular, we can see that the
stretched-exponential PDF follows the time-fractional diffusion law (2) and the anomalous-
ness parameter β is dependent on p according to formula (31). Moreover, we observe that
when p = 1/2 the walker’s PDF transits from the exponential to the Gaussian by skipping the
stretched-exponential, that is in agreement with the Barkai–Burov theory [95]. This is con-
sistent also with the previous analysis where, from formula (31), we have that β = 0 when
p = 1/2 and then the duration of the anomalous diffusion interval is τD − τB = 0 according
to formula (34).

We end the analysis of the ensemble statistics by discussing the occurrence of the BynG
interval. In particular we plot in the same figures the MSD and the kurtosis to compare the
starting of the Brownian linear scaling of the MSD against the Gaussianity of the PDF, this
last is expressed through its kurtusis value K = 3. First of all we observe that the hopping-trap
mechanism intrinsically displays a delay in the spirit of the BynG with respect to continu-
ous processes. This is shown in figure 6 where the basic Markovian CTRW model (p = 1/2)
displays a one-decade of delay while this delay is indeed not displayed at all by the over-
damped Langevin equation, i.e., dYω

t =
√

2D dWω
t , withω ∈ Ω, where Yω

t : [0,+∞) × Ω→ R

and dWω
t is the delta-correlated Wiener process with variance E[(dWt)2] = dt.
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Figure 10. Plot of the ergodicity breaking parameter EB (5) as a function of the mea-
surement time T and of the time-lag Δ for different values of p ∈ (0, 1/2), from (a) to
(d): p = 0.001, 0.005, 0.01, 0.05 that is β = 0.8735, 0.8411, 0.8213, 0.7465. The color
map provides the dependence on the parameter Δ: from purple (small Δ) to red (large
Δ). The decreasing of the initial and final regimes is T−1.

The BynG interval for model (11) and (15) is shown in figure 7. Qualitatively, we observe
that the kurtosis has an oscillating behaviour, as a consequence of the action of two co-existing
Markovian mechanisms acting on the walker with different statistical frequency (11). Quan-
titatively, we observe that the intrinsic one-decade delay of an hopping-trap mechanism, see
panel (a) of both figures 6 and 7, increases for decreasing values of p up to an extention of
two decades of the relaxation time for the diffusive limit τD. This behaviour can be compared
against the behaviour of the minimal DD model displayed in [81, figure 3]. In particular, the
duration of the BynG interval in the minimal DD model is two decades with respect to the relax-
ation time of the stochastic diffusion coefficient. Therefore, the BynG interval of the present
model (11) and (15) is comparable with that of the prototypical DD model [81].

About statistics of single-trajectory, in figure 8 it is shown that model (11) and (15) displays
a p-variation test consistent with an underlying Gaussian-like motion, e.g., the fBm [101] and
ggBm [73], and then consistent also with the typical signature of motion inside living cells,
see, e.g., [101]. Moreover, in figure 9 it is shown that the TAMSD scales linearly as the Bm
but it displays a distribution of diffusion coefficients among the trajectories. This behaviour
is also observed in data of molecular motion in living cells, see, e.g., [94]. Together with the
p-variation trend, the TAMSD is another characteristic consistent with the ggBm formalism
[73, 126] that, for a distribution of the diffusion coefficients which is characteristic of each
data set, was successfully applied to anomalous diffusion observed in live Escherichia coli
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Figure 11. Plot of the ETAMSD as a function of the measurement time T and of the time-
lag Δ for different values of p ∈ (0, 1/2), from (a) to (d): p = 0.001, 0.005, 0.01, 0.05
that is β = 0.8735, 0.8411, 0.8213, 0.7465. The color map provides the dependence on
the parameter Δ: from purple (small Δ) to red (large Δ). When model (11) and (15)
displays aging, the decreasing of the curve is approximately T−0.2, see figure 12 for
details.

bacteria by tracking mRNA molecules, see reference [64] for the data and [99] for the ggBm-
like model, and by tracking DNA-binding proteins, see reference [127] for the data and [79]
for the ggBm-like model. The distribution of the diffusion coefficient causes weak ergodicity-
breaking in the anomalous diffusion regime τB < t < τD, see figure 10, and also aging, see
figure 11. In particular, figure 10 shows that the EB parameter (5) displays an initial and a
final linear decreasing-law ∼T−1 towards ergodicity that is broken during the intermediate
anomalous regime. The strength of the break reduces when p grows. This behaviour confirms
that weak ergodicity breaking is the cause of the emerging of fractional diffusion [73] and it
is the ruler of its extension. In figure 11 the aging of model (11) and (15) is shown through
the plot of the ETAMSD. Again during the intermediate anomalous regime, we observe that
the ETAMSD is not constant and a decreasing-law ∼T−λ, with λ > 0, manifests a transition
between two aged regimes that are independent of T . The aging exponent λ is analysed in
figure 12 and it emerges to be λ � 0.20 in the interval with maximum slope.

We conclude that model (11) and (15) meets all the paradigmatic features that belong to the
anomalous diffusion as it is observed in living systems. Moreover, the plots show a clear char-
acterization of the intermediate anomalous regime as due and driven by the ratio between the
time-scales of two Markovian mechanisms (15) and this ratio determines the anomalousness
parameter β (31).
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Figure 12. Analysis of the decreasing-law T−λ of the ETAMSD. The exponent λ is
plotted as a function of the measurement time T and of the time-lag Δ for differ-
ent values of p ∈ (0, 1/2), from (a) to (d): p = 0.001, 0.005, 0.01, 0.05 that is β =
0.8735, 0.8411, 0.8213, 0.7465. The color map provides the dependence on the param-
eter Δ: from purple (small Δ) to red (large Δ). At the peak of maximum aging it holds
λ ≈ 0.20 and it corresponds to the intermediate anomalous diffusion regime.

5. Conclusions

In this study we analysed a simple CTRW model with a waiting-time distribution defined as
the weighted sum of two exponential distributions with different time-scales τB and τD (11):
τB is the Barkai–Burov time-scale related to the universal exponential tails of walker’s PDF
and τD is the time-scale of the diffusive limit. The weight parameter p ∈ (0, 1/2) is a free-
parameter that rules non-Markovianity of model (11) and relates the two time-scales according
to formula (15). We tested this model against paradigmatic features of anomalous diffusion.
In particular, ensemble features as the sub-linear MSD growing with a power-law of degree
0 < β < 1, a stretched-exponential walker’s PDF and the occurrence of the BynG interval,
and single-particle features, as the TAMSD, p-variation test, weak ergodicity breaking and
aging. Remarkably, model (11) and (15) meets all these features that therefore are caused by
a process characterized by solely two time-scales. This allows to avoid the introduction of a
wide spectrum of time-scales [1, 2] as adopted in superposition of fBm [73, 99] or in CTRW
models with trapping mechanism with infinite-mean waiting-times, e.g., [16]. Moreover, the
model dynamically provides the anomalousness parameters β as a function of p (31).

Model (11) and (15) describes a diffusive hopping-trap mechanism in a disordered medium
where two families of Markovian sites characterize its structure. These two families of sites are
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not compartmented in separated zones, but they are uniformly mixed together with different
percentage and randomly shuffled in time. On a phenomenological level, this is equivalent to
saying that the two families of Markovian sites reflect the fact that the energy barrier may fluc-
tuate within each equilibrium state (because of an exponential distribution of waiting-times)
and also between two equilibrium states. The statistical occurrence of such state-fluctuations
along walker’s trajectory causes the emergence of an intermediate regime where walker moves
according to features of anomalous diffusion.

In a more dynamical sense, we argue here that a CTRW model with a waiting-time dis-
tribution given by the weighted sum of two waiting-time distributions is indeed a model for
walker’s trajectory going under the action of two hopping-trap mechanisms: namely a trajec-
tory that goes under the action of two co-existing random forcings each one responsible for
each hopping-trap mechanism. This observation brings to our mind the case of the motion of
a material–particle in a fluid, that moves under the co-existing effects of the velocity of the
fluid–particle hosting the material–particle and of the molecular diffusion, this last allowing
the material–particles to shift between fluid–particles [128–130]. Actually, in this case, the
motion of a material–particle in a fluid is described by a SDE equipped with a delta-correlated
Wiener process that takes the form dZω

t = Uω
t dt +

√
2κ dWω

t , where Zω
t : [0,∞) × Ω→ R,

with ω ∈ Ω, is the position of the material–particle at time t, Uω
t is the random velocity of the

fluid–particle containing the material–particle, and κ is the molecular diffusivity. Since turbu-
lent velocity Ut is correlated, it results that the process Zt is non-Markovian. By reminding that
in homogeneous, stationary and isotropic turbulence the fluid–particle velocity is Gaussian
[131] as well as the Wiener process, we have that the above scheme composed by a trans-
port flow plus molecular diffusion can indeed be applied to model (11) and (15) at least as
interpretative scheme.

As a matter of fact, in the framework of the CTRW, the Markovian hopping-trap mech-
anism, i.e., a CTRW with an exponential waiting-time distribution, is the one that fulfills
the Onsager principle [84] analogously to the turbulent motion and the molecular diffusion.
Therefore model (11) describes the motion of a walker under two co-existing forcings that
are properly set, separately, for out-of-equilibrium systems. Hence, model (11) is a model for
the motion of a diffusive particle under the action of a co-existing large-scale process, under-
standable as the mixing by an underlying hydrodynamical forcing, and a small-scale process,
understandable as the molecular diffusion, provided that (11) is non-Markovian (15).

We want to conclude by remarking that, even if it is not new that anomalous diffusion is just
an intermediate regime in a row of three [132, see figure 1] and that it is known that its exten-
sion is limited by thermodynamic uncertainty relation [133], this intermediate regime follows
indeed the time-fractional diffusion law (2) and this provides an argument for its modelling
through fractional diffusion. This bridging modelling-role of fractional diffusion supports pre-
vious ‘physical mathematics’4 interpretations of fractional kinetics by Grigolini, Rocco and
West [60] and by Zaslavsky [134]. Grigolini et al argue that fractional diffusion describes sys-
tems where there is no separation of time-scales between the microscopic and the macroscopic
level of the process, such that the randomness of the microscopic level is, at least partially,
transmitted to the macroscopic level and the macroscopic dynamics is described by means of
fractional calculus operators [60]. Zaslavsky argues that, since chaotic dynamics is a physical

4 Physical mathematics is here used in the spirit of Sommerfeld: the topic with which I regularly conclude my six-term
series of lectures in Munich is the partial differential equations of physics. We do not really deal with mathematical
physics, but with physical mathematics; not with the mathematical formulation of physical facts, but with the physical
motivation of mathematical methods. Foreword in: Sommerfeld 1949 Partial Differential Equations in Physics (New
York: Academic).
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phenomenon whose evolution bridges between a completely regular integrable system and a
completely random process, kinetic equations and statistical tools arise as modelling meth-
ods [134]. In the present approach, fractional diffusion emerges as a mathematical method for
bridging two co-existing equilibrium states in a disordered medium.
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[62] Tolić-Nørrelykke I M, Munteanu E L, Thon G, Odderhede L and Berg-Sørensen K 2004 Phys.

Rev. Lett. 93 078102
[63] Klafter J and Sokolov I M 2005 Phys. World 18 29–32
[64] Golding I and Cox E C 2006 Phys. Rev. Lett. 96 098102
[65] Bronstein I, Israel Y, Kepten E, Mai S, Shav-Tal Y, Barkai E and Garini Y 2009 Phys. Rev. Lett.

103 018102
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