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ABSTRACT
Image-text matching is gaining a leading role among tasks involv-
ing the joint understanding of vision and language. In literature,
this task is often used as a pre-training objective to forge architec-
tures able to jointly deal with images and texts. Nonetheless, it has a
direct downstream application: cross-modal retrieval, which consists
in finding images related to a given query text or vice-versa. Solving
this task is of critical importance in cross-modal search engines.
Many recent methods proposed effective solutions to the image-
text matching problem, mostly using recent large vision-language
(VL) Transformer networks. However, these models are often com-
putationally expensive, especially at inference time. This prevents
their adoption in large-scale cross-modal retrieval scenarios, where
results should be provided to the user almost instantaneously. In
this paper, we propose to fill in the gap between effectiveness and
efficiency by proposing an ALign And DIstill Network (ALADIN).
ALADIN first produces high-effective scores by aligning at fine-
grained level images and texts. Then, it learns a shared embedding
space – where an efficient kNN search can be performed – by distill-
ing the relevance scores obtained from the fine-grained alignments.
We obtained remarkable results on MS-COCO, showing that our
method can compete with state-of-the-art VL Transformers while
being almost 90 times faster. The code for reproducing our results
is available at https://github.com/mesnico/ALADIN.

CCS CONCEPTS
• Information systems → Information retrieval; Multime-
dia and multimodal retrieval; • Computing methodologies
→ Neural networks; Computer vision; Visual content-based
indexing and retrieval; Matching.
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1 INTRODUCTION
With the growing strength of deep learning methods and the avail-
ability of large-scale data, multi-modal processing has become one
of the most promising research topics. In particular, most of the fo-
cus is placed on the joint processing of images and natural language
sentences. By understanding the hidden semantic connections be-
tween a text and an image, many works in literature solved chal-
lenging multi-modal problems, such as image captioning [1, 10, 33]
or visual question answering [1, 3, 41]. Among these tasks, image-
text matching has crucial importance [9, 12, 16, 25, 26]: it consists of
outputting a relevance score for each given (image, text) pair, where
the score is high if the image is relevant to the text and low other-
wise. Although this task is usually employed as a vision-language
pre-training objective, it is crucial for cross-modal image-text re-
trieval, which usually consists of two sub-tasks: image retrieval,
where we want images relevant to a given text, and text retrieval,
where we ask for sentences better describing an input image. Effi-
ciently and effectively solving these retrieval tasks is strategically
important in modern cross-modal search engines.

Many state-of-the-art models for image-text matching, like Os-
car [21] or UNITER [8], comprise large and deepmulti-modal vision-
language (VL) Transformers with early fusion, which are computa-
tionally expensive, especially during the inference phase. In fact,
during inference, all the (image, text) pairs from the test set should
be forwarded through the multi-modal Transformer to obtain the
relevance scores. This is clearly unfeasible in large datasets and un-
usable in large-scale retrieval scenarios, where the system latency
should be as small as possible.

For achieving such a performance objective, many approaches
in the literature project image and text embeddings in a common
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space where similarity is measured through simple dot products.
This allows the introduction of an offline phase, in which all the
dataset items are encoded and stored, and an online phase in which
only the query is forwarded through the network and compared
with all the offline-stored elements. Although these approaches are
very efficient, they are usually not sufficiently effective as the ones
relying on early modality fusion using large VL Transformers.

In the light of these observations, in this paper we propose an
ALign And DIstill Network model (ALADIN ), which exploits the
knowledge acquired by large VL Transformers to craft an efficient
yet effective model for image-text retrieval. In particular, we employ
late fusion approaches so that the two visual and textual pipelines
are kept separated until the final matching phase. The first objective
consists of aligning image regions with sentence words, using a
simple yet effective alignment head. Then, a common visual-textual
embedding space is learned by distilling the scores from the align-
ment head using a learning-to-rank objective. In this case, we use
the learned alignment scores as ground-truth (teacher) scores.

We show that, on the widely used MS-COCO dataset, the align-
ment scores can reach results comparable with large joint vision-
language models such as UNITER and OSCAR, while being far
more efficient, especially during inference. On the other hand, the
distilled scores used to learn the common space can defeat previ-
ous common space methods on the same dataset, opening the way
toward metric-based indexing for large-scale retrieval.

To sum up, in this paper, we propose the following contributions:

• We employ two instances of a pre-trained VL Transformer
as a backbone for extracting separate visual and textual fea-
tures.

• We adopt a simple yet effective alignment method for pro-
ducing high-quality scores instead of the poorly-scalable
output of large joint VL Transformers.

• We create an informative embedding space by framing the
problem as a learning-to-rank task and distilling the final
scores using the scores in output from the alignment head.

2 RELATEDWORK
In the last years, many works tackled the image-text matching task.
The work in [12] paved the way for the common space approach for
cross-modal matching. They showed the effectiveness of the hinge-
based triplet ranking loss with hard-negative mining. Many works
followed their footsteps [20, 25, 27, 30, 34, 36], trying out BERT [11]
as a text extractor other than a simple GRU and showing the ef-
fectiveness of region-based features [1] as visual representation.
After the success of BERT-like models in Natural Language Pro-
cessing [11, 18, 22], many works tried to employ the Transformer
Encoder to jointly process images and text, like VilBERT [23], OS-
CAR [21], VL-BERT [35], or VinVL [40]. These methods tackle
image-text matching as a binary classification problem, where an
(image, sentence) pair is input to the complex Transformer archi-
tecture which is trained to predict the probability that the sentence
relates to the image. Although these architectures are very effec-
tive, they are computationally expensive at inference time, as they
need to process every (image, sentence) pair to obtain the scores
on the whole test set. For this reason, many methods keep the

visual and textual pipelines separated, without cross-talking be-
tween them [13, 25, 27, 32, 36]. Doing so, they can be forwarded
independently at inference time, at the cost of losing effectiveness.
Our work is inspired by the recent success of knowledge distilla-
tion [2, 4, 7, 38, 42], used to transfer knowledge from a large model
to a smaller and more efficient one. We propose to use scores dis-
tillation to learn a visual-textual common space, employing the
knowledge acquired by a pre-trained VL Transformer. In this case,
the knowledge distillation is framed as a learning-to-rank prob-
lem [5, 6, 28], widely used in literature but, as far as we know, never
used for distilling cross-modal scores.

3 PROPOSED METHOD
The proposed architecture is composed of two different stages. The
first stage, which we refer to as backbone, is composed of the layers
of a pre-trained large vision-language transformer – VinVL [40],
an extension to the powerful OSCAR model [21]. In the backbone,
the language and the visual paths do not interact through cross-
attention mechanisms so that the features from the two modalities
can be extracted independently at inference time.

The second stage, instead, is composed of two separate heads:
the alignment head andmatching head. The alignment head is used
to pre-train the network to efficiently align the visual and the tex-
tual concepts in a fine-grained manner, as done in TERAN [25].
Differently, the matching head is used to construct an informative
cross-modal common space, that can be used to efficiently repre-
sent images and text as fixed-length vectors for use in large-scale
retrieval. The scores from the matching head are distilled using the
scores from the alignment head as guidance. The overall architec-
ture is shown in Figure 1.

In the following, we dive into the building blocks of the archi-
tecture – i.e., the backbone, the alignment head, and the matching
head.

3.1 Vision-Language Backbone
As the backbone for feature extraction, we use the pre-trained layers
from VinVL [40], an extension to the large-scale vision-language
OSCAR model [21]. Our goal is to obtain suitable vectorial repre-
sentations for the image V and the text C in input. In particular,
we employ the model pre-trained on the image-text retrieval task.
The authors used a binary classification head on top of the CLS
token of the output sequence, and the model is trained to predict if
the input images and textual sentences are related or not.

In our use case, the visual and textual pipelines should be sepa-
rated, so that they can be forwarded independently at inference time.
For this reason, we use two instances of the VinVL architecture,
in a shared-weights configuration to forward the two modalities
independently, as shown in Figure 1.

As in [40], we use as visual tokens both the visual features ex-
tracted from object regions1 and their labels, and the two sub-
sequences are separated by a SEP token. In the end, the outputs
from the last layers of the disentangled VinVL architecture are two
sequences, 𝑽 = {𝒗cls, 𝒗1, 𝒗2, . . . , 𝒗𝑁 }, representing the image V ,
and 𝑪 = {𝒄cls, 𝒄1, 𝒄2, . . . , 𝒄𝑀 }, representing the text C. Note that, in

1https://github.com/microsoft/scene_graph_benchmark

https://github.com/microsoft/scene_graph_benchmark
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[SEP] 
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Figure 1: Overview of our architecture. The backbone extracts visual and textual features that are used in both the matching
and alignment heads. The matching head is trained by distilling the scores using the ones coming from the alignment head.

both sequences, the first element is the CLS token, used to collect
representative information for the whole image or text.

3.2 Alignment Head
The alignment head comprises a similarity matrix that computes
the fine-grained relevances between the visual tokens 𝑽 and textual
tokens 𝑪 . The fine-grained similarities are then pooled to obtain
the final global relevance between the image and the text. In partic-
ular, we use a formulation similar to the one used in TERAN [25].
Specifically, the features in output from the backbone are used to
compute a visual-textual tokens alignment matrix 𝑨 ∈ R𝑛×𝑚 , built
as follows:

𝑨 = 𝑎𝑘𝑙𝑖 𝑗 = cosine(𝒗𝑖 , 𝒄 𝑗 ) =
𝒗𝑇
𝑖
𝒄 𝑗

∥𝒗𝑖 ∥∥𝒄 𝑗 ∥
𝑖 ∈ 𝑔𝑘 , 𝑗 ∈ 𝑔𝑙 , (1)

where 𝑔𝑘 is the set of indexes of the region features from the 𝑘-
th image and 𝑔𝑙 is the set of indexes of the words from the 𝑙-th
sentence. At this point, the similarities 𝑠𝑘𝑙 between the image 𝑘
and the caption 𝑙 are computed by pooling the similarity matrix 𝑨
along dimensions (𝑖, 𝑗) through an appropriate pooling function.
Guided by [25], we use themax-over-regions sum-over-words policy,
which computes the following final similarity score:

𝑺(a) = 𝑠
(a)
𝑘𝑙

=
∑︁
𝑗 ∈𝑔𝑙

max
𝑖∈𝑔𝑘

𝐴𝑖 𝑗 . (2)

The dot-product similarity used to compute 𝑨 in Eq. 1 resembles
the computation of the cross-attention between visual and textual
tokens. The difference boils down to the interaction between the
visual and textual pipelines, which happens only at the very end
of the whole architecture. This late cross-attention makes the se-
quences 𝑽 and 𝑪 cacheable, eliminating the need to forward the

whole architecture whenever a new query – either visual or textual
– is issued to the system. The computation of 𝑺(a), involving only
simple non-parametric operations, is very efficient and can be easily
implemented on GPU to obtain high inference speeds.

The loss function used to force this network to produce suitable
similarities 𝑠 for each (image, text) pair is the hinge-based triplet
ranking loss, used in previous works [12, 20, 25]. Formally,

Ltriplet =
∑︁
𝑘,𝑙

max
𝑙 ′

[𝛼 + 𝑠𝑘𝑙 ′ − 𝑠𝑘𝑙 ]+ +max
𝑘′

[𝛼 + 𝑠𝑘′𝑙 − 𝑠𝑘𝑙 ]+, (3)

where 𝑠𝑘𝑙 is the similarity estimated between image 𝑘 and caption 𝑙 ,
and [𝑥]+ ≡ max(0, 𝑥); the values 𝑘 ′, 𝑙 ′ are the indexes of the image
and caption hard negatives found in the mini-batch as done in [12],
and 𝛼 is a margin that defines the minimum separation that should
hold between positive and negative pairs.

Given that the alignment head is directly connected to the back-
bone, we fine-tuned the backbone on this new alignment objective.
More details on the training procedure are reported in Section 3.4.

3.3 Matching Head
The matching head uses the same sequences 𝑽 and 𝑪 given from
the backbone and employs them to produce the features �̃� ∈ R𝑑 for
the imageV and �̃� ∈ R𝑑 for the caption C. These representations
are forced to lay in the same 𝑑-dimensional embedding space. In
this space, 𝑘-neirest-neighbor search can be efficiently computed —
using metric space approaches or inverted files — to quickly retrieve
images given a textual query or vice-versa. Specifically, we forward
𝑽 and 𝑪 through a 2-layer Transformer Encoder (TE):

�̄� = TE(𝑽 ); �̄� = TE(𝑪) . (4)
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As in [27], the TE shares the weights among the two modalities,
and the final vectors encoding the whole image and caption are
the CLS tokens in output from the TE layers: �̃� = �̄� [0] = 𝒗cls and
�̃� = �̄� [0] = 𝒄cls. The final relevances are simply computed as the
cosine similarities between the the vector �̃�𝑘 from the 𝑘-th image
and �̃�𝑙 from the 𝑙-th sentence: 𝑺(m) = 𝑠

(m)
𝑘𝑙

= cosine(�̃�𝑘 , �̃�𝑙 ).
In principle, we could optimize the common space using the

same hinge-based triplet ranking loss in Eq. 3 already used to train
the alignment head. Instead, in the light of the good effectiveness-
efficiency trade-off of the alignment head, we propose to learn a
distribution for 𝑺(m) using the previously-learned 𝑺(a) as teachers.

Specifically, we frame the problem of distilling the distribution
of 𝑺(m) from 𝑺(a) as a learning-to-rank problem. We employ the
mathematical framework developed in the ListNet approach [6],
which models the probability of an object being ranked at the top,
given the scores of all the objects. Differently from this framework,
here we need to optimize for two different entangled distributions:
the distribution of text-image similarities when sentences are used
as queries, and the distribution of image-text similarities when
instead images are used as queries. In particular, given a textual
query 𝑘 and an image query 𝑙 , the probabilities of the image 𝑖 and
text 𝑗 to be the top-one elements respectively with respect to 𝑺(a)

are:

𝑃𝑺 (a) (𝑖) =
exp(𝑠(a)

𝑖𝑘
)∑𝐵

𝑡=1 exp(𝑠
(a)
𝑡𝑘
)
; 𝑃𝑺 (a) ( 𝑗) =

exp(𝑠(a)
𝑙 𝑗
)∑𝐵

𝑡=1 exp(𝑠
(a)
𝑡 𝑗
)

(5)

where 𝐵 is the batch size, as the learning procedure is confined to
the images and sentences in the current batch. Therefore, during
training, only𝐵 images are retrieved using the query𝑘 , and𝐵 textual
elements are retrieved using the query 𝑙 . Similarly, an analogous
probability can be defined over 𝑺(m):

𝑃𝑺 (m) (𝑖) =
exp(𝜏𝑠(m)

𝑖𝑘
)∑𝐵

𝑡=1 exp(𝜏𝑠
(m)
𝑡𝑘

)
; 𝑃𝑺 (m) ( 𝑗) =

exp(𝜏𝑠(m)
𝑙 𝑗

)∑𝐵
𝑡=1 exp(𝜏𝑠

(m)
𝑡 𝑗

)
(6)

where 𝜏 is a temperature hyper-parameter which compensates for
the fact that 𝑺(m) ranges in [0, 1]. We empirically found that 𝜏 = 6.0
works well in practice. The final matching loss can be formulated
as the cross-entropy between the 𝑃𝑺 (a) and 𝑃𝑺 (m) probabilities, for
both the image-to-text and text-to-image cases.

Ldistill = −
𝐵∑︁
𝑖=1

𝑃𝒔(a) (𝑖) log(𝑃𝒔(m) (𝑖)) −
𝐵∑︁
𝑗=1

𝑃𝒔(a) ( 𝑗) log(𝑃𝒔(m) ( 𝑗)) (7)

Notice that accurate and dense teacher scores are needed to
obtain a good estimate of the teacher distributions 𝑃𝒔(a) (𝑖) and
𝑃𝒔(a) ( 𝑗). This partly motivates our choice of first researching an
effective and efficient alignment head that could output the scores
to be used as ground-truth for the matching head.

3.4 Training
During the training phase, we initially respect the following con-
straints: (a) the backbone is finetuned only when training the align-
ment head, and (b) the gradients do not flow backward through 𝑺(a)

when training the matching head (as depicted in Figure 1 through
the stop-gradient indication). The constraint (b) comes from the fact

that the scores 𝑺(a) are used as teacher scores. Therefore, they should
not modify the weights of the backbone, because it is assumed that
the backbone is already trained with the alignment head. Given
these constraints, we train the network in two steps. First, we train
the alignment head by updating the backbone weights usingLtriplet
(ALADIN A/ft. in the experiments). Then, we freeze the backbone
and we learn the matching head by updating the weights of the
2-layer Transformer Encoder using Ldistill (ALADIN D in the ex-
periments). Note that the formalism X/ft. signifies that the gradients
coming from that head loss X are used to finetune the backbone.
Possible head losses are X={T, D, A} for T=triplet, D=distillation,
and A=alignment, where T and D come from the matching head,
while A from the alignment head. When /ft. is omitted, it means
that the backbone remains frozen.

We explore also the joint training of the two heads. Specifically,
we relax constraint (a), so that gradients coming from the two heads
can update the backbone. Sticking to the previous formalism, we
refer to this experiment as ALADIN A/ft. + D/ft.. Nevertheless,
when directly applying this training schema, we experienced some
instabilities. If the alignment head — working as a teacher for the
matching head — is not warmed-up, it can not initially provide good
teacher scores. The consequence is that noisy gradients backpropa-
gate through the matching head and interfere with the finetuning
of the backbone. For this reason, we warmup the backbone by pre-
training it with the alignment loss Ltriplet (as in the ALADIN A/ft.
setup).

4 EXPERIMENTS
In this section, we report detailed results for validating our approach.
In addition to the training setups described in 3.4, we consider
two more schemes as baselines: ALADIN T trains the matching
head using the standard hinge-based triplet ranking loss without
distillation, starting from a pre-trained backbone (i.e.ALADIN A/ft.)
and leaving it fixed; similarly, ALADIN T/ft. lacks the alignment
head and the backbone is finetuned only with the gradients from
the matching head.

4.1 Dataset and Metrics
We perform our experiments on the widely-used MS-COCO dataset,
which contains a large corpus of images scraped from the web.
Each image is annotated with 5 textual descriptions. We follow
the splits introduced by [15], which reserves 113,287 images for
training, 5,000 for validating, and 5,000 for testing. In literature, a
smaller test set comprising only 1,000 images is often used. For a
fair comparison, we report the results on both 5K and 1K test sets.
In the case of 1K images, the results are computed by performing a
5-fold cross-validation and averaging the results.

As commonly done to evaluate cross-modal retrieval models [12,
17, 20, 23, 29], we use the recall@𝑘 metric for evaluating the ability
of our model to correctly retrieve relevant texts or images. Specif-
ically, the recall@𝑘 measures the percentage of queries able to
retrieve the correct item among the first 𝑘 results.

4.2 Alignment Head Results
We first compare the results obtained with our alignment head
against some recent methods comprising large-scale pre-trained
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Table 1: Experiment results using scores from the alignment head. The comparison is performed with entangled visual-textual
Transformer models.

1K Test Set 5K Test Set

Text Retrieval Image Retrieval Text Retrieval Image Retrieval

Model Training Data 𝑘 = 1 𝑘 = 5 𝑘 = 10 𝑘 = 1 𝑘 = 5 𝑘 = 10 𝑘 = 1 𝑘 = 5 𝑘 = 10 𝑘 = 1 𝑘 = 5 𝑘 = 10

12-in-1 [24] 4.4M - - - 65.2 91.0 96.2 - - - - - -
VilBERT [23] 3.1M - - - 58.2 84.9 91.5 - - - - - -
Unicoder-VL [19] 3.8M 84.3 97.3 99.3 69.7 93.5 97.2 62.3 87.1 92.8 46.7 76.0 85.3
UNITER (Base) [8] 5.6M - - - - - - 63.3 87.0 93.1 48.4 76.7 85.9
OSCAR (Base) [21] 6.5M - - - - - - 70.0 91.1 95.5 54.0 80.8 88.5
VinVL (Base) [40] 8.9M - - - - - - 74.6 92.6 96.3 58.1 83.2 90.1

ALADIN A/ft. 8.9M 88.1 99.1 99.7 75.4 95.2 97.9 70.0 90.7 95.6 54.4 81.0 88.6
ALADIN A/ft. + D/ft. 8.9M 87.6 98.5 99.7 75.0 95.2 98.0 69.9 91.3 95.7 54.7 81.0 88.7

Table 2: Experimental results using scores from the matching head. The comparison is performed with methods using
disentangled visual-textual pipelines.

1K Test Set 5K Test Set

Text Retrieval Image Retrieval Text Retrieval Image Retrieval

Model Training Data 𝑘 = 1 𝑘 = 5 𝑘 = 10 𝑘 = 1 𝑘 = 5 𝑘 = 10 𝑘 = 1 𝑘 = 5 𝑘 = 10 𝑘 = 1 𝑘 = 5 𝑘 = 10

TERN [27] 0.6M 65.5 91.0 96.5 54.5 86.9 94.2 40.2 71.1 81.9 31.4 62.5 75.3
SAEM (ens.) [37] 0.6M 71.2 94.1 97.7 57.8 88.6 94.9 - - - - - -
CAMERA (ens.) [30] 0.6M 77.5 96.3 98.8 63.4 90.9 95.8 55.1 82.9 91.2 40.5 71.7 82.5
TERAN (ens.) [25] 0.6M 80.2 96.6 99.0 67.0 92.2 96.9 59.3 85.8 92.4 45.1 74.6 84.4
DSRAN (w. BERT) [36] 0.6M 80.6 96.7 98.7 64.5 90.8 95.8 57.9 85.3 92.0 41.7 72.7 82.8

ALADIN T 8.9M 79.2 96.7 99.1 68.9 92.8 96.6 57.9 84.8 91.8 46.0 74.8 84.1
ALADIN D 8.9M 83.1 97.4 99.3 70.5 93.6 97.3 62.7 87.5 93.5 47.4 76.2 85.4
ALADIN T/ft. 8.9M 84.9 98.5 99.6 71.9 93.8 97.0 63.6 87.4 93.5 49.7 77.7 86.3
ALADIN A/ft. + D/ft. 8.9M 84.7 98.0 99.8 72.7 94.5 97.5 64.9 88.6 94.5 51.3 79.2 87.5

CLIP (0-shot) [31] 0.4B - - - - - - 58.4 81.5 88.1 37.8 62.4 72.2
ALIGN [14] 1.8B - - - - - - 77.0 93.5 96.9 59.9 83.3 89.8

Transformer models (Table 1). We consider only the Base versions
and not the Large ones, for hardware limitations. For a fair compari-
son, we initialize our backbone with the weights of VinVL Base [40].
Notice that, at test time, all the reported models except ours need to
compute a number of network forward steps in the order of𝑂 (𝑛2𝑟 ),
where 𝑛 is the number of images and 𝑟 is the number of sentences
associated to each image (𝑟 = 5 in case of MS-COCO). In fact, due
to cross-attention links between visual and textual pipelines, inter-
mediate representations cannot be cached for being reused with
a different query. Instead, given the disentangled pipelines, our
model enables caching of the image and text features in output
from the backbone for speeding up the retrieval with never seen
queries, with a number of network forward steps in the order of
𝑂 (𝑛 + 𝑛𝑟 ). As we can notice from Table 1, this disentanglement
comes at the cost of a slight reduction of the overall effectiveness,
as we can notice by comparing our approach to the VinVL model.
Nevertheless, our model ALADIN A/ft. can perfectly compete, and
partially overtake, all the previous entangled visual-textual Trans-
former models on both image and sentence retrieval tasks. From
the results on the ALADIN A/ft. + D/ft. model, we can notice that
when the distillation loss is also active the alignment scores are
pretty comparable to ALADIN A/ft. In particular, on the 5K test

set, we observe slight improvements in both image and sentence
retrieval. This evidence suggests that the distillation loss has the
collateral effect of regularizing its own teacher scores, as done in
recent works on self-distillation [7, 39].

4.3 Matching Head Results
We compare the common space created from our matching head
with other disentangled methods using similar approaches. The
results are shown in Table 2. As explained above, for comparison we
report also thematching head directly trained using the hinge-based
triplet loss (ALADIN T and ALADIN T/ft.) without distilling the
scores from the alignment head. Furthermore, for completeness, we
report also the results from the recent methods CLIP (0-shot) [31]
and ALIGN [14]. Although the comparison with CLIP (0-shot) may
result unfair, we decided to stick with the results obtained by the
authors of the original paper, to avoid all the intricacies deriving
from the hyper-parameter tuning phase needed for a satisfactory
fine-tuning stage. However, these models use from 100× to 1000×
more training data, so we exclude them from the analysis.

All of our methods outperform the previous models, notably
surpassing TERAN [25], the method that introduced the alignment
matrix used in the alignment head. Concerning the experiments
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Figure 2: Effectiveness vs efficiency. We report effectiveness
as the sum of recall values on the image retrieval (rsum), and
efficiency as the time needed to search the 5K test images.

that non-finetune the backbones (ALADIN T and ALADIN D), we
argue that scores distillation helps, especially in the recall@1, where
we observe an improvement of about 8% and 2% on sentence and
image retrieval respectively for the 5K test set. We obtain the best
results by using our model ALADIN A/ft. + D/ft., which jointly
trains the alignment and distillation heads by also finetuning the
backbone with the respective gradients. The alignment scores from
this setup already proved to be effective in Table 1. The distilled
scores in output from the matching head follow the same trend,
obtaining the best results on the 5K test set.

4.4 Effectiveness vs Efficiency
To better show the advantage of our model in terms of comput-
ing times, in Figure 2 we plot the effectiveness vs the efficiency of
our approach compared with other methods. We address image-
retrieval on the 1K test set, and we report the sum of the recall
values (rsum) versus the average time needed to solve a textual
query. These experiments are run on a system equipped with an
RTX 2080Ti and an AMD Ryzen 7 1700 Eight-Core Processor. As
we can notice, the scores from the alignment head (ALADIN A/ft.)
can directly compete with VL Transformer models, although being
almost 20 times faster. Notably, the scores computed on the distilled
space from ALADIN A/ft. + D/ft. obtain a speedup of almost 90×,
with a rsum loss of only about 7% with respect to VinVL. There-
fore, the proposed models help fill the gap between efficiency and
effectiveness – i.e., the top left zone of the diagram.

Considering the efficiency-effectiveness trade-offs of both the
alignment and matching heads, the whole architecture could be
deployed in real application scenarios in a two-stage configuration:
first, the faster matching head proposes relevant candidates using
k-NN search on the common space; then, the candidates are re-
ranked using the scores from the alignment head. This pipeline
would enable the alignment head, which is slower butmore effective,
to contribute to the final ranking while keeping the whole system
highly scalable.

5 CONCLUSIONS
In this paper, we presented an efficient and effective architecture
for visual-textual cross-modal retrieval. Specifically, we proposed

to learn an alignment score by independently forwarding the vi-
sual and the textual pipelines using a state-of-the-art VL Trans-
former as a backbone. Then, we used the scores produced by the
alignment head to learn a visual-textual common space, which can
produce easily indexable fixed-length features. Specifically, we ap-
proached the problem using a learn-to-rank distillation objective,
which empirically demonstrated its effectiveness over the standard
hinge-based triplet ranking loss to optimize the common space. The
experiments conducted on MS-COCO confirmed the validity of our
approach. The results demonstrated that this method helps fill the
gap between effectiveness and efficiency, enabling this system to
be deployed in large-scale cross-modal retrieval scenarios.
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