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Abstract. The prediction of human mobility is enabled by the large
and diversified availability of data. Insurance companies leverage such
spatio-temporal information to develop effective deep learning-based
approaches to provide top-quality services to their customers. In Assicu-
razioni Generali, an automatic decision-making model is used to check
real-time multivariate time series and alert if a car crash happened. In
such a way, a Generali operator can call the customer to provide first
assistance. The high sensitivity of the model used, combined with the
fact that the model is not interpretable, might cause the operator to call
customers even though a car crash did not happen but only due to a
harsh deviation or the fact that the road is bumpy. Our goal is to tackle
the problem of interpretability for car crash prediction and propose an
eXplainable Artificial Intelligence (XAI) workflow that allows gaining
insights regarding the logic behind the deep learning predictive model
adopted by Generali. We reach our goal by building an interpretable
alternative to the current obscure model that also reduces the training
data usage and the prediction time.

Keywords: Multivariate Time Series · Crash Prediction · Explainability
· Interpretable Machine Learning · Car Insurance · Case Study

1 Introduction

The availability of real-time sequential data paired with accurate Artificial
Intelligence (AI) decision-making systems is changing the business landscape for
many mobility-related companies. Since the 1970s, Crash Data Recorders (CDR)
have been increasingly used inside cars to monitor safety measures, establish
human tolerance limits, and record impact speeds [36]. Lately, through the usage
of powerful machine learning models, these devices are becoming a valuable source
of data that can be used both for academic research purposes and for businesses,
such as insurance companies, to monitor and improve customer service quality [35].
These recorders are usually installed on the airbag control module, collecting
data over the period before and after the crash [36]. In our work, we collaborate
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with Assicurazioni Generali, Generali in short, and we rely on their multivariate
time series data and on their AI system based on a deep learning model to detect
car crashes. Generali is one of the largest global insurance and asset management
providers. At the heart of Generali strategy is its lifetime partner commitment to
customers, achieved through innovative and personalized solutions, best-in-class
customer experience and its digitized global distribution capabilities. To fulfil
its goals in the car mobility field, Generali is developing an automatic AI-based
decision-making system to provide first assistance to its customers. Through
ad-hoc CDR, Generali records speed and acceleration as multivariate time series
from each insured customer’s car. Such data is used to train a deep learning model
that enables the AI system to warn a Generali operator of possible car crashes.
In turn, the operator will physically call the customer to check if something bad
happened and to know which kind of assistance is required.

Two weaknesses are present in the current state. First, the high sensitivity
of the AI system might cause unnecessary and harassing calls. Second, the AI
system is based on a deep learning model that is inherently not interpretable. An
interpretability layer is helpful for numerous reasons. From an ethical standpoint,
as outlined in the Artificial Intelligence Act proposal by the European Commis-
sion [7], eXplainable Artificial Intelligence (XAI) can help in building user trust
toward more transparent AI decisions. This trust can also lead to a competitive
advantage, given that a consumer would prefer companies with a proven track
record of explainable and trustworthy AI. Moreover, from a governance stand-
point, an explainability layer is useful to optimize model performance and include
a human in the loop. XAI is a branch of AI that focuses on allowing human users
to comprehend and trust the decisions taken by complex black-box models used
by AI systems. XAI is becoming more and more popular, and it is used to shed
light on the accurate but otherwise opaque AI decision-making while supporting
experts, their accountability, and responsibility in their decisions [9].

The objective of this work is to tackle the problem of interpretability for car
crash prediction, proposing a pipeline that allows to gain insights regarding the
logic behind a deep Convolutional Neural Network (cnn) classifier and build
a more transparent predictive model. We use state-of-the-art XAI approaches
to address this problem on a large, multivariate time series dataset. XAI for
multivariate time series is still an underexplored topic. Since we aim to explain
Neural Network (nn) black-box models, our interest is focused on post-hoc model-
specific approaches, i.e., on XAI methods designed for nn that are only responsible
for the explanation and leave the decision to the original model. Among them,
the methods proposed in [3,2] are based on Grad-CAM [30] and can analyze
the gradients of cnns to output understand the most important features in the
time series. However, to the best of our knowledge, none of the aforementioned
approaches was tested on large multivariate time series with signals of different
lengths. Furthermore, they can only be applied to cnns, which would limit the
proposed framework’s expandability. For these reasons, our work makes use of
GradientExplainer, a model-specific implementation of SHAP [22] which can deal
with any nn model and with signals of different lengths, ensuring fast feature-
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based explanations. In particular, we use GradientExplainer to distinguish the
main areas of attention in the time series data. Then, using this information, we
reduce the dimensionality of the dataset and train subsequence-based surrogate
trees to imitate the prediction of the nn in a more interpretable way. Finally, we
train the best performing surrogate tree as a possible interpretable predictor to
be used as a replacement of the cnn. Preliminary results show that the proposed
XAI workflow is promising (i) in terms of efficiency, as it reduces the data usage
and cuts the prediction time, and (ii) in terms of effectiveness, providing an
interpretability layer that helps operators better understand the prediction of
the AI system.

2 Related Work

The literature on crash prediction is broad and studies car accidents from various
perspectives. At a high level, we distinguish between real-time and long-term
crash prediction.

Long-term crash prediction is a relatively little explored area, with only a
few works in the literature. In [33] a machine learning method is applied to
predict the users’ driving behaviors based on movement statistics. Wang et al.
extend standard approaches consisting of global aggregates of speed and mileage
information by considering separately individual daytime and nighttime driving
statistics. This increased detail of aggregation was shown to improve performance.
In [10] the idea above is further developed by designing a data-driven model for
predicting car drivers’ risk of crash based on a model called individual mobility
network. In [25], such a work is extended with geographical transfer learning.

While extremely useful in creating a general risk profile of a customer, long-
term crash prediction approaches cannot be exploited to solve real-time crash
prediction that, on the other hand, can be very important for car insurance
companies to support the driver with first help and send immediate assistance.
Indeed, a large part of the literature focuses on real-time crash prediction. In [29]
a model is presented for real-time collision detection at road intersections by
mining collision patterns. In [32], the idea is to provide feedback to the user while
driving by identifying the events that will cause a crash in the next few seconds.
These approaches relate to sensors and mobility data, while [4] tries to link crashes
to both physiological parameters and behavioral characteristics. Another branch
of the literature [18,1,24] focuses on identifying mobility areas, i.e., crossroads,
intersections, parts of highways, that show characteristics usually associated with
accidents, such as adverse weather conditions, increased traffic density, etc. To
improve the performance of the proposed probabilistic model, the work in [15] uses
individual speed and time headway of cars passing through predefined detector
stations, besides peculiarities describing mobility areas. In [21] it is presented a
survey analyzing the key problems associated with crash-frequency data and the
strengths and weaknesses of some methodological approaches. In [16], is presented
a simple car crash detection algorithm implemented on Android smartphones
using accelerometer sensor and location sensor information to detect typical
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patterns of car crash situations. Recently, in [27] is proposed a framework for
automated accident detection based on multimodal sensors in cars.

We place our analysis more closely related to the second family of approaches,
i.e., real-time crash prediction. However, while in all the aforementioned works,
the classifiers are typically applied before the crash happening, in our scenario,
the automatic decision system that suggests the presence of a crash is applied
after that the crash happened. Also, a limitation of all the complex models used
in the aforementioned approaches is that they are not interpretable, i.e., the
supervised classifiers are black-box models [9]. Our goal is not to build such a
model but to design an explanation workflow that allows a better understanding
of why our pre-trained classification model signals that a crash happened.

3 Problem Description and Explanation Methodologies

Generali collects high-dimensional time series data through Crash Data Recorders
(CDR). This data is transferred in real-time from the CDR to the insurance
company servers, and it is processed through an automatic decision-making
system. If the AI system signals the presence of a possible crash, the operator
calls the customers to check if there is a need for first assistance. Generali aims
at solving two criticalities in the current approach. First, reduce false positives
by increasing the model precision in order to avoid unnecessary calls. Second,
increase the interpretability of the automatic decision-making system to help the
operator choose the right course of action.

We keep this paper self-contained, presenting all the necessary concepts to
understand our proposal. Formally, we define a multivariate time series as follows:

Definition 1 (Multivariate Time Series). A multivariate time series X =
{x1,1, . . . xj,k, . . . , xm,d} ∈ Rm×d is an ordered set of m real-valued observations,
each having d > 1 dimensions (or signals/channels).

A Time Series Classification (TSC) dataset is a set of time series with a vector
of labels attached. Formally:

Definition 2 (TSC Dataset). A time series classification dataset D = (X ,y) is
a set of n time series, X = {x1,1,1, . . . xi,j,k, . . . , xn,m,d} ∈ Rn×m×d, with a vector
of assigned labels (or classes), y = {y1, y2, . . . , yn} ∈ {0, 1}n.

In practice, observation (i, j, k) of a time series dataset is denoted by xi,j,k. The
index i denotes the ith multivariate time series in the dataset, j denotes the jth

time-step, k denotes the kth signal of the time series. Hence, we define Time
Series Classification (TSC) as:

Definition 3 (TSC). Given a TSC dataset D, Time Series Classification is the
task of training a function f from the space of possible inputs X to a probability
distribution over the class variable values in y.

In the rest of this section, we describe in detail the dataset provided by Generali,
and the deep learning model adopted, referring to the definitions above.
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Fig. 1. Multivariate time series samples: top - no-crash instance, bottom - crash instance,
left - acceleration times series, right - speed time series.

Dataset. The car crash dataset (D) provided by Generali contains n = 81, 173
instances. Each instance is a multivariate time series composed of four signals
(d = 4), namely the acceleration of the car for the x, y, z axes, and the speed
of the car. The acceleration signals of the car contain m1 = 2, 490 observations
for each axis, and they are, in turn, a concatenation of two signals sampled
at different frequencies. The speed signal is a recording containing m2 = 41
time-steps. Each multivariate time series Xi is labelled either as yi = 1 when it
is a crash or as yi = 0 when it is a no-crash. Crashes are rarer than no-crashes
and represent only about the 6% of the dataset. From a classification perspective,
the main critical issues in dealing with this dataset are the presence of signals
with a big difference in length, i.e., speed and acceleration, and the heavy label
unbalance. An example of two instances is depicted in Figure 1. The dataset is
split by Generali into 50% training set, 25% validation set, and 25% test set.

Predictive Model. The automatic decision-making system adopted by
Generali implements the predictive model with a Convolutional Neural Network
(cnn) [17] with a deep structure5 that returns a probability for a crash between 0
and 1. On the test set, the cnn has an accuracy of 0.961 and a precision of 0.701.
As already mentioned, precision is paramount in this setting because every false
positive, i.e., every no-crash classified as crash, causes unnecessary calls by human
operators. Also, due to the cnn architecture, the predictive model is a black-box,
i.e., given a prediction as crash or no-crash, for a human, it is not possible to
understand the reasons that lead to that decision [9]. Thus, the challenges raised
by Generali are (i) gaining insights regarding the logic behind the prediction of
the provided cnn, without making any modification to the data or the model,
to understand which parts of the data and which patterns of the multivariate
time series are more important for the classification, (ii) building an efficient and
effective, interpretable alternative for the provided cnn model, possibly reducing

5 The specific structure and training details can not be disclosed due to company
policies.
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false positives and optimizing data usage. In particular, Generali requires high
efficiency at test time, to minimize response time when dealing with new and
unseen crash or no-crash instances.

Explanation Methodologies and Workflow. To meet these challenges, we
propose a set of explanation methodologies organized as a workflow and divided
into the following steps.
1. Analyze the attention of the provided cnn, inspecting its gradients,

discovering the parts of the multivariate time series that are more relevant
for the prediction (Section 4);

2. Build interpretable subsequence-based surrogates of the cnn that
rely on subsequences to imitate its output, focusing on the parts highlighted
by the previous step (Section 5);

3. Train an interpretable subsequence-based model directly on the real
labels, as a possible replacement of the cnn, still focusing only on the parts
highlighted in the first step while also leveraging the results of the second
step (Section 6).

In the following, we present the background necessary to comprehend each step,
as well as the experimental results and main findings.

4 Gradient-based Explainer

In order to inspect the cnn and to gain knowledge about its attention, we use a
gradient-based interpretability approach called GradientExplainer, which is an
extension of the Integrated Gradients method proposed in [31]. It is a feature
attribution method that returns an explanation in the form of a saliency map,
highlighting the contribution of each time-step for the classification [9]. Formally:

Definition 4 (Saliency Map). Given a multivariate time series X a saliency
map Φ = {ϕj,k | ∀j ∈ [1,m], k ∈ [1, d]} contains a score ϕj,k for every real-valued
observation xj,k of X.

In particular, this saliency map is returned in terms of approximated SHAP
values [22], obtained by computing the expectations of gradients, sampling
reference values from a background dataset. In practice, to compute the SHAP
values, X is perturbed using a matrix Z ′ ∈ {0, 1}m×d to decide which values to
keep and which values to replace in X. Additive feature attribution methods
assume the explanation to be linear; therefore, each input observation receives
a positive or negative SHAP value, depending on its contribution to the model
output. Formally, for multivariate time series:

Definition 5 (Additive Feature Attribution). An additive feature attribution
method g has an explanation model that is a linear function of binary variables,
g(Z ′) = ϕ0 +

∑m
j=1

∑d
k=1 ϕj,kz

′
j,k, where z′j,k ∈ {0, 1} and ϕj,k ∈ R.

In other words, given a time series X, the explanation model g tries to trans-
parently approximate the prediction of a black-box classifier f in the local
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Fig. 2. Boxplots of SHAP values aggregated by signal. Red and blue colors highlight
positive and negative SHAP values.

neighborhood of X, i.e., g(Z ′) ≈ f(X)6. In our binary classification setting,
for each time-step j and each signal k, a ϕj,k SHAP value close to 0 indicates
that the point xj,k is almost irrelevant for the classification; a positive value
indicates a contribution towards the class crash, while a negative value indicates
a contribution towards the class no-crash. ϕ0 is the base value, i.e. the default
classification output for an “empty” time series. This kind of explanation is
local, meaning that it can be used to shed light on the decision of the cnn for
single time series. However, by retrieving such explanations for each instance of
the dataset and aggregating the SHAP values at different granularity, we can
gain an overview of the global behavior of the model. First, we aggregate SHAP
values signal-wise to understand which are the most relevant dimensions for
the classification. Then, they are aggregated observation-wise to recognize the
time-steps of the time series that have a greater impact. Despite being simple
operations, we highlight that, to the best of our knowledge, these two steps are a
novel contribution in the panorama of multivariate time series explanation.

Signal Importance. The first aggregation is performed signal-wise for each
multivariate time series by summing the SHAP values of each signal. This way,
for every prediction of the cnn model, we can understand the impact of the
different dimensions for every instance in the dataset. These sums are collected
in a matrix Φsignal ∈ Rn×d such that Φsignal

i,k is defined as: Φsignal
i,k =

∑m
j=1 ϕi,j,k

with i ∈ [1, n], k ∈ [1, d]. In our setting, Φsignal is a matrix with n rows and
d = 4 columns, corresponding to the sums of the SHAP values of all time-steps
for each time series in X for each signal, i.e., the accelerations on the x, y, z
axes and the speed. These sums are visualized in the boxplot in Figure 2 grouped
w.r.t. the signal type and divided by class. The difference in width of the boxplot
depends upon the base value ϕ0. In our setting, ϕ0 is closer to the class no-crash,
probably due to the heavy label unbalance. From this analysis, it is quite clear
that the most relevant dimension is the acceleration on the x-axis, for which
the SHAP values deviate the most from 0. This suggests a higher degree of
contribution towards the classification, both for a crash and no-crash time series.

6 Please refer to [22] for more details.



8 F. Spinnato et al.

Fig. 3. Mean of SHAP values aggregated pointwise. left : accelerations; right : speed.
Red and blue colors highlight positive and negative SHAP values.

The acceleration on the y and z-axis and the speed seem to be less impactful.
However, their contributions are not irrelevant, even if smaller w.r.t. the x-axis.

Time-Step Importance. A more fine-grained insight can be obtained by
averaging the SHAP values by time-step. Similarly to the previous point, we
collected these averages in a matrix Φpoint ∈ Rm×d such that Φpoint

j,k is defined

as: Φpoint
j,k = 1

n

∑n
i=1 ϕi,j,k with j ∈ [1,m], k ∈ [1, d]. In this case, for each

time-step of each signal, we can see its average contribution. In the barplot in
Figure 3, we present such averages, stacking the accelerations on the left-hand
side plots for better readability. We notice that, the main area of attention for
the acceleration signals is around the 500th time-step, independently of the class.
Moreover, regarding no-crash instances, there is also a minor contribution around
the 100th time step, with a very high peak of positive SHAP values, corresponding
to the point of the concatenation of signals having different frequencies. This
concatenation point seems to nudge the cnn towards the class crash, even
in no-crash instances. This concentration of high SHAP values highlights a
possible defect of the black-box model provided by Generali, which regards the
concatenation of signals sampled at different frequencies as an important feature
for the classification. The second part of the time series seems more relevant
for the speed signal, especially for the class crash. These insights gained at the
time-step granularity are extremely important because they suggest that only a
very small part of the data is relevant for the classification. Indeed, in the
following sections, we use this information to optimize data usage, while we will
continue to consider the four dimensions.

5 Subsequence-based Surrogates

Subsequences are one of the most common ways to build interpretable models in
the time series domain. Formally:
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Definition 6 (Subsequence). Given a single signal x = {x1, . . . , xm} of the
multivariate time series X, a subsequence s = {xj , . . . , xj+l−1} of length l is an
ordered sequence of values such that 1 ≤ j ≤ m− l + 1.

Subsequences can be real-valued, like shapelets [34], or can be symbolic, i.e.
discretized, like SAX-based subsequences [19]. In general, subsequence-based
classification approaches search for patterns that better discriminate the dataset
labels, i.e., they try to find those subsequences that are most dissimilar between
instances belonging to different classes. Subsequence extraction is computationally
expensive, and therefore, using the insights previously gained, we trim the x, y,
z acceleration signals taking only the observations between the 400th and 800th

time-step. In this way, the issue earlier raised regarding the concatenation of the
two signals sampled at different frequencies, is also avoided. On the other hand,
we leave the speed signal as it is. We denote this filtered version of X with X ′.

Shapelet-based Subsequences. We perform shapelet extraction by using
Learning-Shapelets (LTS) [8], an approach that learns shapelets via stochastic
gradient descent without the need to explore all the possible candidates. Once the
most discriminative shapelets are found, the Shapelet Transform [20] is applied
in order to transform the time series dataset into a simplified representation.

Definition 7 (Shapelet Transform). Given a time series dataset X and a set S
containing h shapelets, the Shapelet Transform, σ, converts X ∈ Rn×m×d into a
real-valued matrix T ∈ Rn×h, obtained by taking the minimum Euclidean distance
between each time series in X , and each shapelet in S, via a sliding-window.

As a note, the sliding-window Euclidean distance is calculated w.r.t. the sig-
nal/channel the shapelet was extracted from.

SAX-based Subsequences. The Symbolic Aggregate approXimation (SAX)
algorithm [19] transforms time series into strings. SAX uses the Piecewise Ag-
gregate Approximation (PAA) [14] to divide the time series into equally sized
intervals and averages the values of each interval. Then, the time series is dis-
cretized using a sequence of symbols. For our application, the subsequences
extraction is performed by using MR-SEQL [26], an approach that combines
SAX with different-sized sliding windows, thus converting time series into a
symbolic form with multiple resolutions. The most discriminative subsequences
are searched with SEQL [12], an algorithm that filters the symbolic patterns
using a greedy feature selection strategy. Similar to the Shapelet Transform,
the dataset is transformed into a new representation, having as features the
extracted subsequences and as values 0 or 1 depending on the absence or presence
of subsequences inside the time series. Formally:

Definition 8 (Symbolic Subsequence Transform). Given a dataset X and a set
S containing h symbolic subsequences, the Symbolic Subsequence Transform, σ,
converts X ∈ Rn×m×d into a binary-valued matrix T ∈ {0, 1}n×h, obtained by
checking if each subsequence in S is contained or not in each time series in X .

For interpretability purposes, the symbolic subsequences can be easily mapped
back to the original segments of the time series.
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Table 1. Surrogates performance (higher is better, best values in bold).

sax
dt

sax
rf

sax
xgb

sax
lgb

sax
cat

shp
dt

shp
rf

shp
xgb

shp
lgb

shp
cat

accuracy 0.954 0.966 0.975 0.974 0.976 0.950 0.950 0.951 0.951 0.951
precision 0.621 0.912 0.862 0.855 0.862 0.639 0.641 0.624 0.623 0.623

recall 0.567 0.475 0.681 0.678 0.697 0.360 0.361 0.435 0.438 0.437
fscore 0.593 0.625 0.761 0.756 0.771 0.460 0.462 0.513 0.514 0.514

Fig. 4. Critical Difference diagram for the surrogate models. The models are sorted
from the best (left) to the worst (right). Models connected with a line have performance
that are not statistically different using a Nemenyi test [11] with a p-value of 0.05.

Tree-based Global Surrogates. Regardless of the way subsequences are
extracted, the new simplified tabular representation T ′ = σ(X ′) can be paired with
any classification model, having the advantage of a more interpretable input [20].
Practically, most of the implementations of subsequence extraction methods work
only on univariate time series or multivariate time series having signals with
the same length. Since we have different-sized dimensions, we independently
extract the subsequences from each signal of the multivariate time series7, and
we concatenate the resulting transformed datasets column-wise.

As classification models, we adopt tree-based classifiers because they simulta-
neously offer good performance and provide partial interpretability by granting
the possibility to access the feature importance. We train the following five
models8: a standard Decision Tree (dt) as baseline, Random Forest (rf) [5],
XGBoost (xgb) [6], LightGBM (lgb) [13] and CatBoost (cat) [28]. We highlight
that we train these classifiers as global surrogates, i.e., not on the original dataset
labels y, but on the prediction of the cnn, ycnn = cnn(X ), in order to imitate
its output in a more interpretable way. In other words, the purpose of these
surrogate models is to emulate the underlying global logic of the cnn as well as
possible [9]. To guarantee a high level of generalization, the surrogate models are
trained on the prediction of the cnn for the validation set.

7 The subsequence extraction is performed using the default implementation parameters
for MR-SEQL and the heuristic proposed in [8] for LTS.

8 All the models are trained using the default library implementation parameters:
Scikit-learn for dt, rf, XGBoost for xgb, LightGBM for lgb, CatBoost for cat.

https://www.sktime.org/en/v0.4.2/modules/auto_generated/sktime.classification.shapelet_based.MrSEQLClassifier.html
https://tslearn.readthedocs.io/en/stable/auto_examples/classification/plot_shapelets.html
https://scikit-learn.org/
https://xgboost.readthedocs.io/
https://lightgbm.readthedocs.io/
https://catboost.ai/
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Table 2. Models performance.

accuracy precision recall fscore roc-auc runtime

cnn 0.961 0.701 0.660 0.680 0.924 784± 69.5
sax-cat 0.958 0.760 0.471 0.582 0.911 218± 23.9

We measure the performance on the test set in terms of accuracy, precision,
recall and f-score, and we report them in Table 1. All the metrics are computed
w.r.t. the prediction of the cnn, i.e. given a model m: metric = eval(ycnn,ym)
with ym = m(σ(X ′)). Also, we summarize the results in the Critical Difference
(CD) plot in Figure 4. In general, all SAX-based methods outperform their
shapelet-based counterpart. They are quite successful in imitating the output
of the cnn, using a fraction of the input data. Specifically, sax-lgb, sax-xgb,
sax-cat and sax-rf perform better than sax-dt. sax-rf achieves the highest
precision; however, it falls behind in all other performance metrics. From these
results, it is quite clear that the best performing model overall is sax-cat. Given
that sax-cat imitates the provided model with high accuracy, the next logical
step is to train it on the real dataset labels as a completely independent model,
bypassing the need of querying the cnn.

6 Subsequence-based Classifier

The best performing model of Section 5 (sax-cat) is chosen as a possible
interpretable replacement of the cnn. As for the surrogates, sax-cat is trained
on the transformed version of the trimmed set, T ′ = σ(X ′), which only contains
around 17% of the initial observations. However, differently from the previous
section, sax-cat is trained on the original training set labels y. The optimal
number of iterations of CatBoost is set to 295 by monitoring the Logloss on the
validation set. We keep the other parameters as default values.

In Table 2 we benchmark the performance of sax-cat and the cnn on the test
set, comparing ycnn and ysax-cat with the original test labels y. This result shows
a comparable performance in terms of accuracy, with a substantial improvement
in precision. On the other side, there is a degradation in performance both for
the recall and f-score. However, as required by Generali, the main purpose of
our work was to reduce the number of false positives, giving less weight to false
negatives. In the next stage of our collaboration, we will try to maintain the
precision we reached in this work by increasing the recall. On training time,
the most expensive computation for sax-cat is the extraction of discriminative
subsequences, which takes about 7 hours. However, this search has to be performed
only once. On the other hand, the training of the cnn takes less than an hour. On
test time, the average runtimes to classify and explain an unseen test instance are
784ms± 69.5ms for the cnn and 218ms± 23.9ms for sax-cat. The runtime of
sax-cat includes the subsequence transform, the classification and explanation
in terms of features importance, which is attached to the SAX-based features.
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Fig. 5. SHAP values summary plot (top); sample of relevant subsequences (bottom).

The most significant advantage of using tree-based approaches is that their
predictions can be efficiently and effectively interpreted using SHAP’s TreeEx-
plainer [23], both from a local and global perspective. Formally, the formula in

Definition 5 can be rewritten as: g(z′) = ϕ0 +
∑h

j=1 ϕjz
′
j where h is the number

of extracted subsequences. The extracted contributions are guaranteed to be con-
sistent and locally accurate. Moreover, these local explanations can be aggregated
to have a general global overview of the logic behind the model. Practically, in our
setting, we can understand which subsequences are more relevant for classifying
crash and no-crash instances.

The global explanation plot is presented in Figure 5 (top). This summary
global plot depicts the SHAP values for all the instances and subsequences
in the dataset and sorts them by the overall impact on the model prediction.
Specifically, on the y-axis are presented the top-10 subsequences, sorted from the
most influential (top) to the least influential (bottom). For example, the 3591th

subsequence (S-3591 ) is the least important subsequence in the top-10. Each
point on each row in the plot corresponds to one multivariate time series. Points
colored in orange indicate that the corresponding subsequence is contained in the
multivariate time series, while points colored in green represent a not-contained
subsequence. For example, an orange point in the S-3591 line means that the
time series corresponding to that point contains the subsequence with index 3591.
The SHAP values are plotted on the x-axis, showing the contribution of feature
values toward the classification. For example, an orange point with a SHAP value
greater than 0 in the S-3591 line means that for that multivariate time series, the
presence of the subsequence S-3591 influenced the model in predicting the class
crash. In general, this plot helps visualize if the presence/absence of subsequences
contributes to the no-crash (negative SHAP values) or crash (positive SHAP
values) class at a global level. In our case, the most influential subsequence is
S-6645, belonging to the speed signal, which represents a decrement of car speed
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Fig. 6. SHAP values explanation for the two instances in Figure 1 obtained from
sax-cat. top: no-crash instance; bottom: crash instance.

followed by a stop. As expected, the presence of S-6645 contributes to the class
crash, while its absence is an indicator of the class no-crash.

Three example subsequences are presented in Figure 5 (bottom). Given
that they are symbolic subsequences, they can assume slightly different shapes
in the dataset; therefore, a representative subsequence is presented in orange,
while the other subsequences are presented in a faded gray. The representative is
computed as a medoid, i.e., the subsequence that minimizes the average Euclidean
distance w.r.t. the other subsequences. Given their higher frequency, subsequences
belonging to the acceleration axes are inherently harder to interpret. However,
they could still be of interest to domain experts. In fact, the importance of these
subsequences for the model output suggests that the car’s jerk (or jolt), i.e., the
rate at which the car’s acceleration changes w.r.t. time, is probably relevant to
the classification. For example, the most important subsequence for the y-axis is
S-3627, and presents a decrement in acceleration, contributing to the class crash.
S-1136 is instead most relevant for the x-axis and presents a decrement followed
by an increment in acceleration, also contributing to the class crash.

Besides having a global explanation, we can also understand the classification
at a local level, i.e., for each individual time series. In Figure 6 we report the
explanations for the two instances depicted in Figure 1. Features contributing
to the class crash are colored in red, while features contributing to the class no-
crash are colored in blue. These explanation plots, combined with the knowledge
of the shape of the subsequences, can help domain experts to understand the
logic behind the prediction of the tree-based approach. For example, the top
plot represents the subsequence contribution towards the classification of the
first no-crash instance in Figure 1. In this case, the presence of the 6641th and
the 6699th subsequence pushes the prediction toward the class crash, while the
presence of the 1641th subsequence and the absence of the 6645th contribute
towards the class no-crash. Given that the instance is a no-crash, contributions
towards no-crash are greater in magnitude w.r.t. contributions towards the class
crash. Moreover, many other minor contributions are too small to be shown in
the plot but can still be accessed by Generali operators. The prediction for the
crash instance is similarly explained in the bottom part of the same figure.
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7 Conclusion

We have presented a XAI workflow to tackle the problem of explainability in the
domain of crash prediction. First, through a gradient-based approach, we have
gained insights into the attention of the cnn adopted by Generali, understanding
which part of the data is more relevant to its predicted output. Using this
knowledge, we have optimized the data usage, and we have built and compared
subsequence-based surrogates which imitate the prediction of the cnn. Finally,
we have trained the best surrogate model, i.e., sax-cat, on the original dataset
labels as an interpretable replacement of the cnn. We have observed that, with
respect to the cnn, the predictive performance of sax-cat is slightly subpar in
terms of recall and f-score, comparable in terms of accuracy, and achieves higher
precision, thus reducing false positives which was one of the goals of this work. In
addition, the observed results are also extremely promising in terms of runtime
and efficiency at test time: sax-cat is three times faster than the cnn in making
the prediction and uses only 17% of the original data. Also, the predictions of
sax-cat are also interpretable both from a local and global standpoint, providing
an explainability layer that allows understanding the logic behind the model in
terms of subsequences. As future research directions, we would like to increase
the performance by further fine-tuning the subsequence-based models. Another
perspective is to focus on data by carefully relaxing the constraint of efficiency in
terms of data utilization and using a larger part of the dataset for the training, or
by representing the time series in other feature spaces. Furthermore, we plan on
improving the interpretability of the framework. Indeed, the current explanation
is in the form of feature importance, which can sometimes be challenging to
understand as the number of features grows. In this sense, we are investigating
different explanation types, such as prototypes, counterfactuals and decision
rules, to further simplify the explanation, possibly injecting the experts’ domain
knowledge. Finally, the flexibility of the proposed XAI workflow allows for its
deployment in other fields that heavily rely on multivariate time series data.
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