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This paper demonstrates a simulation framework that collects data about
connected vehicles’ locations and surroundings in a realistic traffic scenario.
Our focus lies on the capability to detect parking spots and their occupancy
status.We use this data to train machine learningmodels that predict parking
occupancy levels of specific areas in the city center of San Francisco. By
comparing their performance to a given ground truth, our results show that it
is possible to use simulated connected vehicle data as a base for prototyping
meaningful AI-based applications.
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1 INTRODUCTION
Nowadays, connected vehicles around the world continuously col-
lect vast amounts of data from LIDAR systems, cameras or other
built-in sensors, providing information about their location and
their surroundings. This data is a valuable asset for industry, e.g.
when developing new, data-driven business models as well as for
researchers aiming to advance the future mobility.

However, acquiring such data poses numerous challenges for re-
search as it is usually not made available to the public. Additionally,
in its non-anonymized form, it is considered personal data and can
only be processed within the legal boundaries that are given in regu-
lations such as the GDPR [Otonomo 2020]. Often, these regulations
do not allow for it being used for research or for prototyping new
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use cases and applications. To overcome this hurdle, we propose a
framework that includes a realistic simulation of connected vehicles
and traffic in urban areas gathering connected vehicle data. The
collected data can serve as foundation for further empirical studies
and new data-driven applications.
To demonstrate how our simulation framework is utilized, we

apply it to a use case that many car drivers can relate to: parking
space search. It not only leads to a dissatisfactory driving experi-
ence, it also causes traffic congestion as well as atmospheric and
acoustic pollution. In our demo application, we train a set of ma-
chine learning models on the generated data and predict on-street
parking occupancy levels. In particular, we present a showcase in
central San Francisco, exploiting a mix of public datasets and simple
data reconstruction heuristics to feed the simulation framework.
The ideal result of our empirical study is a proof-of-concept that
shows a potential for optimizing the last mile mobility around trip
destinations and may facilitate parking space search in the future.

2 RELATED WORKS

2.1 Occupancy prediction
Parking occupancy prediction (POP) can be boiled down to a multi-
variable time-series prediction problem [Chen 2014]. A major re-
search line of POP relies on static on-street sensors. They provide
robust input for supervised POP methods. [Origlia et al. 2019] utilize
sensors in parking slots to detect the number of occupied parking
slots in real-time and train a supervised regressor for POP. Alter-
natively, multi-modality data fusion is proved to be beneficial for
POP in recent works. [Fiez and Ratliff 2017; Yang et al. 2019] fuse
the data from multiple sources, e.g., parking meter transaction data,
traffic data and mobility location data, and achieve considerable
improvements. [Gong et al. 2021] combine the spatial and temporal
information by reformulating a traffic net as a spatial graph. Com-
pared to traditional statistical methods [Fiez and Ratliff 2017], [Gong
et al. 2021; Yang et al. 2019] propose to deploy novel neural network
based methods for solving POP problems.
Although the static sensor based methods are efficient in terms

of performance, they can not be easily scaled out to larger areas
due to the high cost and effort of new sensor deployments. An al-
ternative is to exploit the streaming event data, e.g., from LIDAR
systems, sensors or cameras of moving vehicles. The research po-
tential is much less explored in this direction compared to using
static sensors. To our best knowledge, [Bock et al. 2019] is the only
work that uses the data from vehicle sensors, however, their data
source is limited to only taxis. Propelled by the development of
Car2X and 5G technologies, data collected by vehicles can be used
when proper anonymization and encryption methods are applied for
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data transmission. Therefore, we propose a simulation framework
and a proof-of-concept to boost the future research of POP using
streaming event data.

2.2 Parking simulation
Works like [Leclercq et al. 2017] use real on-street parking data and
stochastic numerical experiments to simulate and investigate how
different parking strategies affect the parking search time and dis-
tance. [Codecá et al. 2018] investigates on how to monitor parking
areas by integrating them in a SUMO simulation environment. It
also provides some methods to aggregate and compute the intention
of a vehicle of occupying a given parking area. [Vo et al. 2016] in-
vestigates the modelling of a system that simulates vehicles moving
between parking lots in a NetLogo environment. [Balmer et al. 2006]
describes a modelling framework for large scale scenarios. Previ-
ous works regarding connected vehicle simulation scenarios were
mainly done in the field of communication infrastructure simulation
[Kim et al. 2017] and to spot anomalies in the communication of
connected vehicles due to cyber-attacks [Levi et al. 2018]. To the
best of our knowledge, this is the first work that presents a simula-
tion framework able to simulate connected vehicles that send event
data to a backend system, that describes directly the surrounding
area of a simulated agent.

3 SIMULATION
In this section, we describe the simulation framework we propose.
While it is general and can be applied to any desired area, we will
consider a reference case study located in the San Francisco down-
town area. The main driver for the selection of this area is the
availability of public datasets for traffic, parking slot locations and
parking occupancy patterns.

3.1 Parking slots reconstruction
To simulate a realistic parking situation, the locations and occupancy
levels of parking slots are required.When creating the simulation for
a specific area, we identify three possible situations: fully available
data, partially available data and no available data.
In case, the location and occupancy data is fully available (e.g.

data from parking meters/sensors), we can import this data into our
simulation framework and let the simulation run accordingly. In
case of partially available data, the missing areas can be filled using
interpolation and mapping distributions from known areas within
the same city. If no data is available at all, it might be an option to
map known parking spot distributions and occupancy levels from
one city to the target city. However, this is the least desired case
with the most drawbacks. In the given case of San Francisco, we are
faced with the second option - we used publicly available datasets
for parking slots locations and occupancy levels of parts of the San
Francisco city center and the framework fills the missing areas.

As base layer, we use OpenStreetMap data to include the descrip-
tions of roads and traffic lights and insert on-street parking spots.
As part of the SFPark project by the San Francisco Municipal Trans-
poration Agency, occupancy rates of stationary on-street parking
sensors were collected. Datasets containing the locations and occu-
pancy levels of these sensors are publicly available and serve as the

real-world data source for parking spot locations and occupancy
information 1. After inserting the real-world parking spots, we ap-
plied the following steps to fill gaps with synthetic parking spots
where we do not have real-world information:

(1) Compute the distribution of "spots permeter"-values for roads
where sensors are deployed

(2) Find roads without sensors and use the distribution of step 1
to assign a "spots per meter" value

(3) Create new parking spots along these roads according to their
assigned "spots per meter"-value

To fill missing parking occupancy information, we divided the se-
lected area in hexagons (see Figure 1), and computed the percentage
of occupied parking spot at each hour per hexagon for which the
measurement is available. To have meaningful data for hexagons
without parking occupancy information, we spatially interpolated
the data. The resulting occupancy patterns at midnight and 7 PM
can be observed in Figure 1.

Fig. 1. Park occupancy pattern at midnight and 7 PM

3.2 Mobility demand reconstruction
To model real-world traffic demand, we used a dataset proposed
by Piorkowski et al. in [Piorkowski et al. 2009], describing the GPS
coordinates of 536 taxis collected over 25 days in San Francisco
(USA)2. Outliers and noise GPS points were removed, and then the
GPS traces were segmented into trajectories (i.e. trips).
To generate a plausible mobility demand reflecting real traffic

patterns in the selected area of San Francisco (surface of ≈ 16 km2),
we computed an origin-destination (OD)matrix𝑀 from realmobility
traces, based on a regular grid that splits the region of interest
into squared cells with a size of 400 meters. The element 𝑚𝑖, 𝑗 ∈
𝑀 contains the number of trajectories having origin in tile 𝑖 and
destination in tile 𝑗 . Trips are then generated by first randomly
selecting a pair of tiles (𝑖, 𝑗) with probability 𝑝 (𝑖, 𝑗) =𝑚𝑖, 𝑗/

∑
𝑚𝑖, 𝑗 ;

then a road edge is randomly selected in tiles 𝑖 and 𝑗 , which are
used as starting and ending edges.

3.3 Simulation framework
The developed framework consists of a set of Python classes that
interact with the traffic simulation package SUMO by means of
its APIs. The code extends SUMO functionalities to replicate the
behavior of a connected fleet in the selected area. Implementing full

1The datasets are available at https://data.sfgov.org/Transportation/Parking-
Meters/8vzz-qzz9/data and https://www.sfmta.com/getting-around/drive-park/demand-
responsive-pricing/sfpark-evaluation
2The dataset is available at https://crawdad.org/epfl/mobility/20090224/
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Fig. 2. OD trips in tessellated map

connected vehicle capabilities (e.g. vehicle-to-vehicle communica-
tion) is beyond the scope of our research, therefore we focused on
the specific functionality of detecting the occupancy status of park-
ing spots along a traveled road and transmitting this information to
a simulated backend system.

The interaction between the framework modules can be described
as follows: the datasets described in 3.1 and 3.2 can be considered
as target traffic and parking occupancy patterns in our simulation.
These datasets are used to feed the developed Python objects, that
take care of controlling the simulation, by actively inserting cars,
or letting cars park inside the SUMO simulator. The simulator in
this case can be considered as a semi-supervised environment: we
impose certain traffic and parking operations inside simulation, but
the simulated vehicles will have sufficient freedom to interact with
each-other.

Fig. 3. Modules interaction diagram

The key elements of the developed framework are summarized
below:

Data Collector: collects information regarding the status of each
vehicle and their observations of parking spot occupancy levels. In
line with the real-world capability of modern cars to detect empty
or occupied parking spots with cameras and sensors, cars in our
simulation gather this information by passing on-street parking
spots and determining whether a spot is occupied. Every observed
parking spot status along the traveled edges is collected and stored
for further processing. The data collector additionally collects the
ground truth for parking spot occupancy at each step to prepare the
dataset for model training.

Traffic Router: orchestrates traffic demand and parking status,
making the simulation replicate desired mobility patterns, repre-
sented as "traffic dataset" and "parking dataset" blocks in Fig. 3.
This is done by inserting vehicles into the simulation and routing
them according to the dataset as well as synchronizing the parking
occupancy levels with the given data.

Grid Transformer: maps geographic coordinates to simulation
coordinates and vice-versa. It is responsible for bringing a given
map into a grid formwith addressable grid cells and performs spatial
aggregations where needed.
At each simulation step, the Data Collector stores simulated ob-

servations and ground truth, and at the end of the simulation it
stores all the collected data to the generated dataset, represented as
"Parking Spot Observations + Ground Truth" in Fig. 3. This repre-
sents also the entire set of data required to feed the machine learning
pipeline.

3.4 Results
The realism of the simulation was evaluated by taking into account
the following criteria:

Duration of trips: the distribution of the simulated trip duration
must match the real distribution of trips observed in SF taxi dataset.
Traffic management: the Traffic Router module schedules the

trips of simulated cars, which once inserted in simulation are able to
follow properly the desired behavior of traffic demand described in
3.2. During the trips, the vehicles behave like expected: they move
in the city and collect parking spots observations, but due to SUMO
limitations it was not possible to manage more than 500 active (non-
parked) cars simultaneously without facing the so-called "grid lock"
issue of the SUMO simulator.
Management of parking demand: the Traffic Router module

also takes care of managing parking occupancy in each position
at each instant. According to the parking reference described in
section 3.2 it was possible to replicate the desired parking schedule
in the in simulation.

4 PARKING OCCUPANCY PREDICTION
In this section, we conduct a comparative study to show the viabil-
ity of using simulated streaming event data for POP. We compare
five prediction models that were trained on the SFPark occupancy
dataset from static sensors as well as on the generated dataset from
simulated, moving vehicles and their sensors. To our best knowl-
edge, this study is the first proof-of-concept that aims to conduct
POP with synthetic streaming event data.

4.1 Experimental settings
4.1.1 Dataset. For the static sensor setup, the ground truth parking
data is simply adapted into the input data while only the parking
slots observed by an actively moving vehicle will be used as input
data in the vehicle sensor setup. The final datasets include 24 hours
of data collected within a selected area in the city center of San
Francisco and is sorted in chronological order.

4.1.2 Preprocessing. For each simulation step (2 steps/second of
the simulated time), the received event data (the observed parking
slot status and their locations) is aggregated into two observation
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matrices (occupied and free parking slot number matrices) by their
locations according to the tessellation in Fig. 2. This is followed
by a temporal aggregation, which sums up the sparse observation
matrices of 5 minute time intervals to a dense observation matrix.
The dense aggregated matrices are then Gaussian smoothed with a
window size of 10 and normalized by the total parking slot number
and the fleet size in the simulation. In the experiment, the prediction
models are trained to predict the parking occupancy level of each
grid cell in the next 30 minutes from the preprocessed parking slot
observation matrices.

4.1.3 Prediction Models and Implementation Details. In the com-
parative study, we implemented experiments with five prediction
models. We adapted three statistical prediction models, (linear re-
gressor, random forest regressor and KNN-regressor) from sklearn.
Moreover, we implemented two deep learning models (convolu-
tional neural network and multilayer perceptron) using PyTorch.
The deep learning models are optimized by minimizing the mean
squared error (MSE) of predicting the grid cell parking occupancy
using the Adam optimizer, where the batch size is 256 and the learn-
ing rate is 0.001. All model parameters are initialized by a default
Gaussian initializer. We applied a bottleneck architecture to the
multilayer perceptron and did a grid search for the layer number
amongst {3, 4, 5}. For the convolutional neural network, we adapted
the encoder-decoder architecture with matrix input and did a hyper-
parameter grid search for the encoder layer amongst {1, 2, 3} and
number of channels amongst {32, 64}.

4.1.4 Evaluation protocols. The performance of the implemented
POP models is evaluated by the mean absolute error (MAE) of the
predicted grid parking occupancy to the ground truth grid parking
occupancy. The MAE is defined as following,

MAE =
1

𝑇 × 𝑁

𝑇∑︁
𝑡=1

𝑁∑︁
𝑘=1

|𝑦𝑡𝑘 − 𝑦𝑡𝑘 |, (1)

where𝑦𝑡𝑘 and𝑦𝑡𝑘 are the parking occupancy prediction and ground
truth of the 𝑘th grid at the time 𝑡 , 𝑁 is the number of total grid cells
in the prediction area and 𝑇 is the prediction time horizon.

4.2 Experimental Results
Table 1 shows the POP performance comparison of 5 implemented
models using static and vehicle sensor setups. The neural network
based models demonstrate their superior performance compared
to other statistical models using both sensor setups. Three models
perform better under the static sensor setup, two with considerable
margins (4.5% using MLP and 5.3% using KNN-regressor ). Two
models are better using the vehicle sensor setup (-0.7% using DT
and -1.2% using RF). Nevertheless, the performance gaps measured
byMAE on all models have a maximum of 5.3% (KNN-regressor) and
are in general not large. The observations indicate that, although
the best POP model for the static sensor setup outperforms the
best model in the vehicle sensor setup, the vehicle sensor setup is
able to offer a comparable performance in POP tasks using various
prediction models. Our study suggests that the vehicle sensor setup
enabled by connected vehicle functionalities is an ideal replacement
for full static sensor setup in terms of flexibility and deployment.

Models static vehicle performance
attenuation
(percentage)

MLP (5 layers) 0.072* 0.117 0.045 (4.5%)
CNN (1 layer, 16 dim.) 0.105 0.110* 0.005 (0.5%)
DT 0.189 0.182 -0.007(-0.7%)
RF 0.243 0.231 -0.012(-1.2%)
KNN-regressor 0.177 0.230 0.053(5.3%)

Table 1. Performance comparison of implemented POP models with two
sensor setups: the star and bold values in the second and third columns
indicate the best and second-best performance in MAE. The fourth column
illustrates the performance attenuation under the vehicle sensor setup.

5 CONCLUSION
We presented a simulation framework for connected vehicles and
their capabilities to collect data about their surroundings. Using the
simulated data, we trained machine learning models that predict
parking occupancy levels in urban areas. By comparing these models
with models trained on real-world data from static sensors, we
demonstrated that simulated vehicle data can serve as basis for data-
driven applications and use cases. This proof-of-concept should
encourage researchers and industry to consider simulated data when
exploring new applications for connected vehicle data.
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