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Abstract—Given their crucial role for a society and economy,
an essential component of critical infrastructures is the Bad State
Estimator (BSE), responsible for detecting malfunctions affecting
elements of the physical infrastructure. In the past, the BSE
has been conceived to mainly cope with accidental faults, under
assumptions characterizing their occurrence. However, evolution
of the addressed systems category consisting in pervasiveness of
ICT-based control towards increasing smartness, paired with the
openness of the operational environment, contributed to expose
critical infrastructures to intentional attacks, e.g. exploited through
False Data Injection (FDI). In the flow of studies focusing on
enhancements of the traditional BSE to account for FDI attacks,
this paper proposes a new solution that introduces randomness
elements in the diagnosis process, to improve detection abilities and
mitigate potentially catastrophic common-mode errors. Differently
from existing alternatives, the strength of this new technique is
that it does not require any additional components or alternative
source of information with respect to the classic BSE. Numerical
experiments conducted on two IEEE transmission grid tests, taken
as representative use cases, show the applicability and benefits of
the new solution.

A. Acronyms and Symbols

BSE Bad State Estimator
CDF Cumulative Distribution Function
FDI False Data Injection
R-BSE Random Bad State Estimation
SE State Estimator
a ∈ Rm Attack vector
α ∈ [0, 1] Significance level
B ∈ Rm×m Change matrix
c ∈ Rn State difference vector
e ∈ Rm Measurements error vector
ê ∈ Rm Estimation error vector
E ∈ Rn×m Estimator matrix
êa ∈ Rm False estimation error vector
ϵ ≥ 0 Distance from X, model defender’s ignorance
G ∈ Rn×n Gain matrix
h : Rn → Rm Physical model
H ∈ Rm×n Measurement matrix
J ∈ R Weighted sum of squares
Ĵ ∈ R Basic BSE statistic
J̃ ∈ R R-BSE statistic
J̃a ∈ R False R-BSE statistic
Ĵa ∈ R False basic BSE statistic
k ∈ N Dimension of X
m ∈ N Number of measurements
M ∈ Rn×n Confusion matrix

n ∈ N Number of state variables
r ∈ Rm Residue vector for R-BSE
ra ∈ Rm False residue vector for R-BSE
Σ ∈ Rm×m Variance matrix
Σ̂ ∈ Rm×m Covariance matrix
τ ∈ R Hypothesis threshold
Ŵ ∈ Rm×m Derived weight matrix
W ∈ Rm×m Weight matrix
x ∈ Rn State vector
χ2 Chi-squared distribution, i.e., the norm 2 of a

normal vector
X ⊊ Rn Vector space spanned by x
x̂a ∈ Rn Estimated false state vector
xa ∈ Rn False state vector
x̂ ∈ Rn Estimated state vector
z ∈ Rm Measurements vector
za ∈ Rm False measurements vector
ẑ ∈ Rm Estimated measurements vector

I. INTRODUCTION

Availability, reliability or resilience of modern cyber-physical
systems highly depend on the quality of data provided by the
sensors the system is equipped with. When the state of the
physical part of the system is not under direct observation by
the cyber control, because for instance the system is distributed
on a vast territory, measurements are taken by sensors and
sent to a control center, where the physical state is inferred.
The component that gathers sensors input and processes them,
relying on a model that takes into account measurement errors,
is called State Estimator (SE) [1]. The outcome of the SE
is in turn exploited to govern the system, so the issue of
error detection1 in the data sent from sensors to the control
center is crucial, since undetected errors tend to lead to system
failures. These errors originate from faults of different kinds
and likelihoods, and are addressed differently depending on
which system is considered.

This paper targets critical infrastructures, typical cyber-
physical systems providing essential services for the functioning

1An error is defined as the part of the system’s total state that may lead
to a failure [2]. In this paper, when the word state is used it is understood
physical state. Notice that measurement errors are determined by physical
instruments’ sensitivity and are part of the model, so are not errors in the
sense of [2]. To disambiguate, in the paper “error(s)” is used with the meaning
as in [2], and only errors in data sent from sensors to the control center are
considered, as it will be clarified in Section II-B; whereas, “measurements
error(s)” have the standard physical meaning and “gross error” indicates the
overall SE inaccuracy.



of a society and economy. They are built to operate for
decades, undergoing major modifications over a time scale
of several years. The error detection mechanisms in place in
this sector, that is the detection mechanism that corresponds
to SE, is called BSE [1]. The increasing pervasiveness of
ICT technologies in all critical infrastructures (electricity,
gas, oil, water, etc.) together with a mutated social and
legislation context, drastically changed the landscape where
those infrastructures operate. Specifically, there has been a
transition from a relatively secure operational environment,
where faults were mostly accidental (random), almost always
involving the (physical) measurement part of a sensor following
a characteristic pattern (some transient faults with increasing
frequency followed by a permanent fault), to an insecure
one, where intentional (deterministic) faults caused by well
targeted physical and cyber attacks are becoming increasingly
frequent. In particular, common-mode errors, i.e. erroneous but
coincident outcomes, affecting employed sensors were quite
unlikely in the past (due to geographical displacement of the
devices), resulting in a probability of undetected common-
mode considered low enough not to deserve special attention
(details in Section II-A). Nowadays, instead, FDI, where sensors
are intruded and their cyber part altered in such a way that a
coordinated attack can lead to undetected common-mode errors
(details in Section II-B), is considered a plausible event. The
consequences of such an attack can be devastating (e.g., [3]).

In this paper, an evolution of the classic and widely adopted
BSE [1] is presented. The classic BSE was not developed to
address FDI [4], which motivated the investigation on how
to advance it towards including also FDI management, in
addition to the detection of errors generated by accidental
faults. The logic guiding the development of the new Random
Bad State Estimation (R-BSE) is to introduce a minimal
number of changes to the classic solution to: i) reduce the
cost in terms of changes/additions to the currently adopted
configuration; ii) avoid/minimize potential revision of the cyber
control system to account for new components and related
dependencies; iii) minimize the need for more sophisticated
expertise for its management; iv) promote wider applicability
of more robust BSE for the reasons just listed at the previous
points. The idea at the basis of R-BSE is to introduce random
changes in the process to avoid the fully deterministic pattern
of BSE, easily exploitable by an attacker to compromise
carefully selected measurements in an undetected manner. The
randomness introduced acts as an element of confusion for the
attacker, who no longer has the certainty on how to intrude on
the system by mimicking behavior that cannot be detected. The
result is thus a lower probability of undetected common-mode
error.

The running example is an electrical transmission grid, but
similar reasoning applies to other critical infrastructures. The
main reasons for the choice are: • there exist a vast literature
on the subject; • the physical model commonly adopted is a
linear one (e.g., measurements: power injected at some buses,
i.e., nodes of the electrical grid, and power flowing from some
buses to others; state: voltage angles at all but one buses). This

simplifies the formal treatment, and in any cases prepares the
ground to address nonlinear models; • recently FDI attacks to
this infrastructure have been reported.

Despite research in this topic has investigated a variety of
directions, we believe that R-BSE is simple yet effective enough
to be considered an interesting and affordable alternative. More-
over, its simplicity is also expected to favor easy composition
with other BSE (see Section V), if synergistic configurations
would result appropriate for the specific application at hand.

The rest of the paper is structured as follows. First, Section II
summarizes relevant context and recalls the classic BSE,
as needed to understand the new technique R-BSE, that is
then illustrated in Section III. In particular, Sections II-A
and III-A are focused on the analysis of the relevant probability
distributions involved in classic BSE and R-BSE, respectively.
Section IV presents numerical evaluations that confirm the
expected properties of the proposed R-BSE. Section V briefly
discusses related work. Section VI draws conclusions and
outlines future work.

II. CONTEXT

In this section, relevant context necessary to understand
at high level the role and limitations of the classic BSE is
summarized.

In general terms, BSE is outliers detection [5], and the classic
BSE is an univariate statistical approach [6]: starting from the
measurements, assumed to have the same distribution and being
independent, a real valued random variable that captures SE’s
gross error (see Footnote 1) is defined and tested against a
threshold; the probability of the event “gross error greater than
the threshold” is so low that this event is considered an anomaly.
All the involved distributions are supposed to be known.

Figure 1 sketches both SE and BSE for the linear model so
it can guide the reader through the quite complicated notation.
Consider a stationary physical system whose state is represented
by x ∈ X ⊂ Rn. Being the system stationary, its state is
subject to small changes during long periods of time, so X is a
small vector subspace of Rn comprising the equilibrium point.
Once in a while the system jumps to a different equilibrium
point, and then X changes accordingly. The precise state x is
not directly knowable, even though the control center knows
(a good approximation of) X, thus a set of measurements
z ∈ Rm are taken (all at the same time) by sensors, sent to
the control center and an estimate x̂ of the state is inferred
from the relation z = h(x) + e, where e ∈ Rm is the vector
of measurement errors (a random vector) and h : Rn → Rm

is usually determined exploiting physical first principles, and
depends on the specific context of application. This is the
SE. As an example, consider the DC model of an electrical
transmission grid [1]. Here x comprises the voltage angle at
every node of the grid except for one of them that is considered
as a reference (angle equal to zero), z can comprise nodal
powers, power flowing through lines and others, depending
on which measurement and ICT components are available (a
concrete example is depicted in Figure 2). In this case, the
model is linear, i.e., h(x) = Hx, where H ∈ Rm×n.



H

x

+

y

e

z

za
FDI

E

x̂a

Ŵ
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Fig. 1. Pictorial representation of on-line computations performed by SE and
classic BSE.

For enhancing both awareness/observability2 and fault toler-
ance, m is chosen greater than n. The role of SE is to tolerate
unavoidable measurement errors and the presence of sensor
faults.

Once the estimate x̂ is available, it is possible to compute
ẑ := h(x̂) = Hx̂ and then evaluate the estimation error
ê := ẑ − z. Intuitively, SE and BSE move back and forth
between measurements and (estimated) state variables, and
ê is the mismatch accumulated in the process. The reason
behind this convoluted approach is that the control center
cannot access directly e, but ê is computable. Thus, assuming
to know the distribution of e and being able to deduce from
that the distribution of ê, it is possible to define a random
variable J that “summarizes” the information embedded in ê,
i.e., a statistic that captures gross error. Then, to perform error
detection it is possible to define a test to see if J is statistically
relevant [8]. More formally, knowing the distribution of J and
given a significance level α it is possible to compute τ , the
α-quantile of J , and then design the single-tailed hypothesis
test with H0: J ≤ τ and Ha: J > τ . This is BSE. The test
provides error detection, and related information provide also

2Observability: if all state variables can be expressed as linear combinations
of measurements, the state is observable; otherwise, it is not [7]. Observability
can be determined investigating the null space of the rows of H .

2https://icseg.iti.illinois.edu/ieee-14-bus-system
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Fig. 2. Pictorial representation of the IEEE 14-bus3 grid where “power
injection” sensors are represented as dotted circles and “power flowing from”
sensors are represented as full circles. In the example, m = 17 and n = 13.
Generators and loads are not shown.

means to identify and remove bad measurements.
Summing up, the chain SE ⇝ classic BSE ⇝ bad measure-

ments identification and clearance can tolerate at most m− n
independent faults (depending on system observability after
measurements removal).

Notice that Σ can be considered a constant matrix over long
periods of time, so τ can be computed once off-line and hard
coded in the classic BSE. Figure 1 then shows only on-line
computations, where the only variable seen from SE and BSE
is za.

A. Classic (Bad) State Estimation for Linear Models

In the following, the weighted least squares approach,
typically adopted in BSE related literature (e.g., in [1], [9]),
is employed to obtain x̂. Usually, it is assumed that the
measurement error vector e is a zero-mean Gaussian vector
with diagonal covariance matrix Σ := diag

(
σ2
1 , σ

2
2 , . . . , σ

2
m

)
,

σi > 0, call W := Σ−1 the weight matrix and assume that
h is linear3, i.e., h(x) = Hx with H ∈ Rm×n. It is easy
to show that, calling G := HTWH the gain matrix and
E := G−1HTW the estimator matrix, the estimate vector
x̂ := Ez is the best4 because it solves the weighted least

3If h is nonlinear, almost all the reasoning applies as well because of the
Gauss-Newton algorithm (of course the involved random variable distributions
are slightly different). This is well-known and studied, so it is not addressed
here. For instance, see chapter 12.6 of [1], where in particular (12.30) defines
Ĵ for nonlinear h, and [9]–[11] for more details.

4If h is linear then least squares estimator and maximum likelihood estimator
coincide, so the “best” is not ambiguous. If h is nonlinear then things are
slightly more complicated, but equally well studied.



square optimization problem:

argminJ(x), where

J(x) :=
(
zT − xTHT

)
W
(
z −Hx

)
= eTWe ∼ χ2

m,

and χ2
m is the chi-squared distribution with m degrees of

freedom [8].
Under the assumption of independent sensor faults, it is

possible to design the BSE as a statistical test. Unfortunately
it is not possible to access directly the value of J because it
is not possible to read e. This would have been ideal because
J is χ2

m distributed and defining statistical tests for J is easy
[8]. Nevertheless, it is easy to show that ê is equal to

(
I −

HG−1HTW
)
e and then to prove 5 that ê is a zero-mean

Gaussian vector with covariance matrix

Σ̂ = E[ê · êT ] = Σ−HG−1HT ,

that is a m×m symmetric matrix, but unfortunately has rank
m − n, and then is not invertible. If Σ̂ was invertible then
êT Σ̂−1ê would have been χ2

m distributed. Two options are
commonly considered to define the gross error statistic:
O1: define the random variable

Ĵ :=êTWê = zT Ŵz =

=eT Ŵe ∼ generalized χ2
m−n (1)

where Ŵ := W − WHG−1HTW and observe that Ĵ
can be evaluated directly from z, so it is possible to
perform BSE in parallel to SE, as depicted in Figure 1.
Nowadays it is relatively easy to compute α-quartiles
of this distribution 6, and then define the corresponding
hypothesis test, but this choice has been rarely adopted
in practice;

O2: observe that Ĵ is almost7 χ2
m−n distributed, and then

it is possible to design the hypothesis test based on
χ2 distributions, that are much easier to manipulate.
This choice is the most commonly adopted in practice
because accidental hardware faults (the ones traditionally
addressed) tend to present huge deviation of Ĵ .

Notice that, even though it is not possible to evaluate the
mismatch between estimate x̂ and real values x, its covariance
is known: E[

(
x− x̂

)(
xT − x̂T

)
] = G−1. Notice also that it is

possible to define the normalized residual êni := êi/
√
Σii and

observe [10], [11] that êni has zero mean, unit variance, and is
a Gaussian variable, so Ĵn :=

(
ên
)T · ên is χ2

m−n-distributed.

5To show that the mean of ê is zero, it is sufficient to observe that multiplying
a Gaussian vector for a matrix defines a Gaussian vector with the same mean,
and conclude observing that E[e] = 0 by definition of e. For the covariance, one
can exploit the fact that G is symmetric and I −HG−1HTW is idempotent.
This formula has been reported in (45) of [10].

6Indeed, only recently the function gx2_params_norm_quad of the
MATLAB Generalized chi-squared toolbox made relatively easy to design
such a test.

7For instance, a Kolmogorov-Smirnov test considering m−n = 3 degrees of
freedom with α = 0.05 and 30 samples can state that J and Ĵ are statistically
the same (p-vale 0.6749), and this justifies the choice of many books (e.g.,
[1]) to not distinguish among them, but with 80 samples they are statistically
relevant (p-value 0.0022).
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Fig. 3. Pictorial representation of the linear map h for the transmission grid
of Figure 2: the nonzero entries of H define a bipartite (undirected) graph
whose vertices are state variables and measurements. Power flowing from bus
i to bus j is indicated Pi,j , power injected at bus i with Pi and voltage angle
(with respect to the reference bus) at bus i with θi. As an example of FDI, the
third state variable has been selected as the attack target (red T), so ci ̸= 0 iff
i = 3, and correspondingly false data are injected (red Inj) into measurements
linked to it, namely ai ̸= 0 iff i ∈ {3, 12, 13}.

Indeed, {êni }i can be exploited to identify those measurements
that deviate too much (i.e., anomaly identification), but, being
the focus of this paper on error/anomaly detection, no further
detail is provided on this subject here.

B. False Data Injection

From the point of view of error handling in Dependability [2],
there is (almost) no difference between accidental faults and
intentional faults 8: they are both faults. However, accidental
faults are probabilistic whereas intentional are deterministic,
and this difference in the nature of the fault has an impact on
the efficacy of the techniques developed to cope with them. For
the case of FDI attacks, unfortunately if the defender continues
to apply the classic BSE, the consequences for the controlled
infrastructure can be severe.

Consider the case [4] of an attacker that selects an attack
vector a and adds it to (i.e., injects it into) the measure vector
z, so the defender receives za := z+a instead of z, as depicted

8Also called malicious faults, i.e., determined after an attack. The attack is
moved from an insider or through an intrusion of an outsider.



in Figures 1 and 3. This means that the attacker intrudes the
cyber part of sensors and alters the data that they transmit to
the control center. The attacker’s aim is to fool the defender in
believing that the state is xa := x+ c instead of x, where c is
selected either at random (if the attacker’s aim is just to force
the defender at taking wrong decisions) or specifying certain
values that the attacker knows will orient defender’s decisions
in a predetermined direction. Actually, the SE performed by
the defender outputs x̂a instead of x̂, so the attacker wants êa
to be as close as possible to ê for masking its actions. This is
how FDI works.

In Section II it has been remarked that the classic BSE
can tolerate independent (random) errors. The problem is that
the classic BSE cannot tolerate common-mode errors, either
determined by accidental faults (extremely rare) or by attacks
(unfortunately plausible). In particular, if no constraints on the
attack are considered, then the easiest choice for attackers is
to set a := Hc because za −Hxa = 0, and then Ĵa and Ĵ are
indistinguishable. More formally, if the attacker has:
A1: unlimited read access to the system information (i.e., h);
A2: write access to all the meters (i.e., al the entries of a can

be nonzero);
A3: (if h is nonlinear) read access to all the meters and the

ability to estimate the state (i.e., the attacker knows X
and a(z, x̂) can be a function of measures and estimated
states);

then FDI is easy. Of course such an attack is quite unrealistic,
and there is a florid literature [12], [13] on FDI to address,
from both attacker and defender points of view, the issue
under several conditions, i.e., constraints on attacker knowledge
or abilities. In particular, A3 is more involved [14] than the
version reported here. The key point is that, to the best of the
authors’ knowledge, in all the reported attack/defense strategies
the attackers have to know which information is exploited
by the defender to perform BSE. Examples [4] of attacks
(and corresponding constrains) are: address specific sensors
(targeting specific state variables, with specific or random
values), address a generic subset of sensors with a given
cardinality (for specific or random values of given or generic
state variables).

III. RANDOM (BAD) STATE ESTIMATOR

One can design BSEs to perform all sort of checks on the
measurements (e.g., seeing if the entries of z change magnitudes
abruptly in few consecutive observations), to estimate states
and also to integrate different sources of information. The
statistical tests-based analysis of the classic BSE can then
be part of a sophisticated component that performs error
detection in a broad sense. The idea is: more information
means more system awareness, and then better error detection.
Apart from noticing that more information also means increased
complexity, so designing SE and BSE can become challenging
and costly, when intentional faults are addressed another
important concept has to be considered: more information
sources means larger attack surface, and then potentially less
effective attack detection.
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Fig. 4. Pictorial representation of confusion as a (random) additional layer
between measurements and state variables. In particular, nonzero entries of
M defines the confusion undirected graph.

For this reason, the design of R-BSE relies on the same
information available to the classic BSE, just slightly increasing
its complexity. The idea is to exploit the difference of
information between defender and attackers: the defender
knows X, while the attackers do not. In other words, assumption
A3 of Section II-B is considered false, as usual in the context
of linear BSE.

Moving from the observation that both attackers and classic
BSE treat Hx̂ as a unique object with a physical meaning,
namely ẑ, and this makes FDI possible, the idea at the heart
of R-BSE is to decouple H and x̂ introducing an additional
layer of interactions between them, represented through the
confusion matrix M ∈ Rn×n, as depicted in Figure 4. Clearly,
the result has no more a physical meaning and it depends on the
particular choice of M , that the defender can define at random
with constraints detailed in Section III-A. This confounds the
attacker, but makes more involved the definition of a gross error
statistic that summarizes the mismatch resulted from going back
and forth between measurements and state variables. Seen from
a different perspective, deterministic (intentional) faults are
now treated as random faults, where the source of randomness
comes from the attacker’s lack of knowledge of X and M .
Notice that R-BSE presents similarities with cryptographic
schemes, but here no additional encoding or encryption of the



measurements z is involved with respect to the classic BSE.
More formally, define the residue vector as

r := z −HMx̂ = H(I −M)x+Be ̸= ẑ, (2)

where B := I−HMG−1HTW . The introduction of M makes
r dependent on x, that is not accessible, so the main concern
in designing R-BSE is how to make H(I −M)x as close as
possible to zero. In particular, if M is chosen so that Mx = x
then r is a zero-mean normal vector with covariance BΣBT ,
that is not invertible. Then

J̃ := rT r = eTBTBe ∼ generalized χ2
m (3)

can be used as a statistic, and R-BSE designed as an hypothesis
test. This approach is close to O1 in Section II-A. R-BSE is
depicted in Figure 5. Notice that J̃ is different from the gross
error Ĵ , but still measures the deviation of the system from
normal operation conditions.

Similarly to the link enforced by Equation (1) between the
measurement error vector e and the classic BSE statistic Ĵ ,
Equation (3) links e with the R-BSE statistic J̃ . Thus, R-BSE
is also able to address all the errors addressed by the classic
BSE.

If the attacker knows M then choosing a := HMc results
in ra = r, where ra := za −HMx̂a, and then the FDI is as
stealthy as in Section II-B. The point is that now M can be
chosen by the defender at random, so the attacker cannot know
M , despite the knowledge of all the system details, SE and
BSE algorithms, unless the attacker can intrude the memory
of the program running the algorithm depicted in Figure 5 or
the seed exploited by the random number generator employed
to update M (events that are usually excluded).

Notice that the standard FDI attack a := Hc is no more
stealthy because now ra = r+a−HMc ̸= r and then J̃a ̸= J̃ ,
so R-BSE can detect the error (when the classic BSE cannot),
unless c is such that Mc = c and then a −HWc = 0. The
necessity of the attackers to know X in order to define c is close
to A3 of Section II-B, so R-BSE can be considered almost as
difficult to fool as a nonlinear BSE.

Notice also that Equation (2) does not touch SE, so R-BSE
can go in parallel with the classic BSE (that can remain in
place), but it depends on x̂, and then R-BSE needs to go
in sequence with SE (see Appendix A for a proof of the
impossibility to define a BSE that can simultaneously address
FDI and operate independently from SE).

Is it magic? Actually, to work properly R-BSE requires
assumptions on the state space, i.e., the defender has to know
or approximate the proper subspace X of Rn the state x belongs
to between two system jumps, and this in some contexts can
require too much information to be feasible, or even being
impossible (when X = Rn). Nonetheless, in those contexts
where subsequent SEs produce slightly different values of x,
e.g., electrical transmission grids, R-BSE is effective. Notice,
though, that if the attacker knows X (for instance by explicitly
knowing a basis for it) then selecting c such that Mc = c is
easy. This eventuality is excluded because assumption A3 of
Section II-B has been considered false throughout the paper.
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Fig. 5. Pictorial view of the on-line computations performed by R-BSE.

A. Definition of M , false positives and negatives

Assumed known an orthogonal basis {u1, . . . , uk} of X,
there are several approaches to define M such that:
R1: M is orthogonal (i.e., it just “rotates” the space Rn);
R2: M acts as the identity over X: Mu = u,∀u ∈ X;
R3: M is “as random as possible” over X⊥, the subspace of

Rn orthogonal to X.
A simple way to accomplish the task is to complete the basis
{u1, . . . , uk} by adding n− k vectors uk+1, . . . , un so that

M = V

[
Ik

K

]
V T , V =

u1 . . . un

 , (4)

where K ∈ O(n − k), the Lie group of orthogonal matrices
of size n− k.

To accomplish R3, K is prescribed to be drawn according to
a probability measure µ over O(n−k), which is uniform: given
any constant orthogonal matrix P , and Borelian measurable
set S , µ(P · S) = µ(S) is required. Informally, “rotating” the
group of orthogonal matrices by a constant action of the group
should not modify the probability distribution. Note that this



choice in particular prescribes that reordering of the coordinates
is irrelevant for the choice of K. Such measure is called left-
invariant, and exists and is unique for compact Lie groups,
for which it is called the Haar measure [15]. In practice, such
a matrix can be easily sampled in MATLAB through a QR
decomposition, by

>> [Q, R] = qr(randn(n-k));
>> K = Q / diag(diag(sign(R)));

The second step, normalizing the Q factor by the sign of the
diagonal of R, forces the QR decomposition to have positive
signs on R, which makes it unique and guarantees that the
resulting K will be Haar distributed [15].

To build M in practice, a QR factorization of [u1, . . . , uk]
is computed, which gives a Q matrix with an orthogonal basis
of X in the first k columns and of X⊥ in the remaining n− k,
and the Q = [U1, U2] is partitioned accordingly. Then, by
defining

M := U1U
T
1 + U2ZUT

2 , Z ∼ Haar over O(n− k),

a matrix as in Equation (4) is obtained. It is worth noting
that, if n is sufficiently large, then K can be sampled in an
effective way by directly sampling its factorization in terms of
Householder reflectors [16].

Notice that a large value of k = dim(X) implies that the
attacker has more chances to guess c such that Mc = c, i.e.,
higher probability of false negative (i.e., stealthy attack) in R-
BSE. On the other hand, if X changes (and consequently also M
and τ change), but the defender’s knowledge of such changes is
not well aligned, then the probability of false positive increases
because there are chances that H(I −M)x in Equation (2) is
not close to zero. Thus, the defender has to find trade-offs in
designing the algorithm for updating its own knowledge about
X, according to the criticality of the system. Studying such an
algorithm is beyond the scope of this paper.

Nevertheless, given a generic vector v, it is possible to
estimate how large is the norm of H(I −M)v, for a generic
full column rank H . This provides, from one hand, an estimate
of the probability of false negatives under the assumption that
the defender’s knowledge of X is perfect, and, on the other
hand, of false positives (to be added to α given by measurement
errors) where there is no attack but the defender’s knowledge
of X is not perfect. Note that if v ∈ X, then this norm is zero.
Otherwise,

∥H(I −M)v∥2 ≥ σn(H)∥(I −M)v⊥∥2,

where σn(H) is the n-th smallest singular value of H and
v = vX + v⊥ with vX ∈ X and v⊥ ∈ X⊥. Then

∥(I −M)v⊥∥2 = ∥(I − Z)(UT
2 v⊥)∥2

To avoid false negatives, it is important to ensure that the event
of having (I − M)v⊥ small in norm is unlikely. Hence, a
bound of the form

P{∥(I −M)v⊥∥2 ≤ α} ≤ F (α)

is sought, with F (α) → 0 as α → 0. The norm of (I −M)v⊥

is a random variable, and it is possible to assume that w :=
UT
2 v⊥ is fixed; being Z invariant under multiplication by

constant orthogonal matrices, it is not restrictive to consider
an Householder reflector P such that Pw = ∥w∥2e1; hence,

∥(I −M)v⊥∥2 = ∥(I − Z)w∥2 ∼ ∥(I − PZP )Pw∥2
= ∥(I − Z)e1∥2 · ∥w∥2

For k = n− 1, Ze1 is a discrete random variable with range
{−1, 1}, each with probability 0.5. Therefore, this case will be
discussed separately in Section IV. For k < n− 1, the vector
Ze1 is a (normalized) Gaussian vector of length n− k with
components Xi with i = 1, . . . , n−k. Hence, ignoring its first
component,

∥(I − Z)e1∥22 ≥

(
n−k∑
i=1

X2
i

)−1 n−k∑
i=2

X2
i =

G

X2
1 +G

where G =
∑n−k

i=2 X2
i ∼ χ2

n−k−1, with G and X1 independent.
Note that, if G = y, it holds

y

X2
1 + y

≤ α ⇐⇒ |X1| ≥ y

(
1

α
− 1

)
.

Since the PDF g(y) of G is known, it follows that

P
{

G

X2
1 +G

≤ α

}
=

∫ ∞

0

P
{
X2

1 ≥ y

(
1

α
− 1

)}
g(y)dy.

Using the standard tail bound for normally distributed random
variables

P{|X| ≥ t} ≤
√
2

t
√
π
e−

t2

2 ,

and the PDF g(y) = y
n−k−3

2 e−
y
2

Γ(n−k−1
2 )2

n−k−1
2

, the integral for k ≤
n− 3 can be bounded by

P
{

G

X2
1 +G

≤ α

}
≤

√
2

∫ ∞

0

e−
y
2 (

1
α−1)√

πy( 1
α − 1)

g(y)dy

=
1

Γ(n−k−1
2 )

√
2n−k−1π( 1

α − 1)

∫ ∞

0

e−
y
2α y

n−k−4
2 dy

=
Γ(n−k−2

2 )

Γ(n−k−1
2 )

1√
2π( 1

α − 1)
α

n−k−2
2 .

Combining all these results, yields the sought bound

P{∥(I −M)v⊥∥2 ≤ α∥v⊥∥2} ≤ αn−k−1

√
2(1− α)

, α < 1, (5)

where we took advantage of Γ(n−1
2 ) ≤

√
π · Γ(n2 ) and of the

property that Γ(n2 ) is an increasing function for n integer and
n ≥ 2.

To be more concrete, given k and selecting v := uj with
k + 1 ≤ j ≤ n, the defender’s knowledge imperfection can be
modeled working with the state vector x0 + ϵ · v, with x0 ∈ X,
for increasing values of ϵ ≥ 0.



B. Computational complexity
R-BSE comprises two groups of computations: update of M ,

as in Equation (4), and τ exploiting quantiles of the generalized
χ2
m distribution; and the evaluation of J̃ as in Equation (3). The

former group is performed off-line and is required only when X
changes significantly, as a consequence of the system jumping
from an equilibrium point to another, or periodically in order
to increase attacker’s confusion. This requires O((n − k)3)
floating point operations. The latter is performed on-line, every
time new measurements are processed, and requires O(m)
floating point multiplications. For large n, it may be worth
considering the approach proposed in [16], which allows to
build the matrix M in factored form in O((n − k)2) flops,
and to perform a matrix-vector product with M at the same
quadratic complexity.

For comparison, the classic BSE needs no off-line update
and the on-line evaluation of Ĵ , performed in parallel to SE as
depicted in Figure 1, requires O(m2) operations. If the classic
BSE is implemented in series to SE working with ê and W ,
that is diagonal, it requires O(m) operations. The feasibility
of R-BSE in the electrical transmission grid context has been
analyzed in Section IV.

IV. NUMERICAL EVALUATIONS

Numerical evaluations involved the IEEE 14-bus (depicted in
Figure 2, where the attacked measurements are highlighted in
red in Figure 3) and 300-bus9 transmission grids. The computer
where the experiments were performed has a 11th Gen Intel(R)
Core(TM) i7-1165G7 CPU, 4 unit clocked at 2.80GHz, 8
treads, 40Gb of DDR4 RAM clocked at 3200MHz. The
operating system is Pop! OS 20.04 LTS. The implementation
of R-BSE has been written in Julia 1.5.3 and MATLAB,
numerical experiments are performed exploiting JuliaGrid10

and Generalized chi-square toolbox11.
First of all, the time complexity reported in Section III-B

has been checked and, for the 300-bus grid, the evaluation of
J̃ with a dense M took an average of 4.85 milliseconds, and
0.24 milliseconds for Ĵ . The off-line evaluation of τ took on
average 11.01 seconds, with the minimum of 2 seconds.

Then, the fact that J̃ is (slightly less disperse than) gener-
alized χ2

m distributed, whereas J̃a is not, has been verified
numerically for k = 2, as can be appreciated inspecting
Figure 6. The quantile-quantile plots compare the empirical
Cumulative Distribution Function (CDF) of J̃ and J̃a with
the empirical CDF of samples drawn from the distribution
determined in Equation (3). More formally, in Figure 6a the
couples (q-quantile of J̃ , q-quartile of generalized χ2

m) are
plotted for various values of q. Similarly, in Figure 6b the
couples (q-quantile of J̃a, q-quartile of generalized χ2

m) are
plotted. The closer these points are to the bisectrix, the better.
Clearly, Figure 6a shows an almost perfect accordance, whereas
Figure 6b shows a difference of about three orders of magnitude
(representative of the case where attacks occur).

9https://icseg.iti.illinois.edu/ieee-300-bus-system
10https://github.com/mcosovic/JuliaGrid.jl
11https://github.com/abhranildas/gx2
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Fig. 6. Quantile-quantile plot of J̃ for k = 2 in presence of no attack (a) and
J̃a under attack (b) with respect to samples drawn from the χ2

m distribution
(103 samples) that are taken as a reference. As an example, the IEEE 14-bus
grid depicted in Figure 2 and the attack illustrated in Figure 3 with c3 = 1
have been considered.

Equation (5) has been verified for several values of k,
an instance is shown in Figure 7, where the upper bound
of the false negatives’ CDF is checked. The proportion of
false positives and negatives are shown in Figure 8. For this
analysis, several values of k have been tested, for each of them
several grid parameters assignments have been considered at
increasing of ϵ. This way, in presence of no attack but assuming
an increasingly imperfect knowledge of X, ||H(I − M)x||
increases until J̃ overcomes the chosen threshold τ , thus
producing a false positive. Similarly, in presence of attack
with a defender that has perfect knowledge of X, if J̃ is not
above τ then this is counted as a false negative.

As expected, for ϵ ≤ 10−5 the proportion of false positives
equals α, and increases at increasing of k. No false negative
has been observed for k < n− 2, and a few are observed for
k = n− 2, confirming that R-BSE detects a FDI of the kind
described in Section II-B.

For k = n − 1, the expression (I − M)v, with v ∈ X⊥,
can assume only two values: zero and 2v, with probability 0.5.



Fig. 7. Numerical check of Equation (5) for α = 0.05 and k = 8 with 106

samples of M . Both x- and y- axes are in log scale.

Thus, according to the chosen value of τ , in presence of no
measurement error the probability of false negatives is either
zero or 0.5.

V. RELATED WORK

The literature on BSE accounting for FDI has been mainly
developed in the context of electrical grids, which is therefore
taken as the reference for discussing related work. Key ideas
on SE and BSE have been first reported in [10], [17], and
the subject soon reached maturity (nowadays these concepts
are common knowledge in electrical engineering [1], [11]).
Relevant developments towards the kind of analysis presented
in this paper are those in [18] on multiple errors, in [19] on
common-mode errors, and a recent approach on hypothesis
tests addressing attacks in [20].

Focusing on FDI, the seminal paper [4] systematized the
subject and started a florid literature (an overview is provided
in [12], [13]). The problem has been analyzed from different
perspectives but, to the best of the authors’ knowledge, no
approach is directly comparable with R-BSE presented in this
paper.

Several variations to the attack model presented in [4] have
been addressed. Most of the studies assume that the attacker
does not have access to complete information on the system
structure and related parameters (such as [21]), or rely on only
a subset of grid data, but collected over a period of time (such
as [22]). Also the attack model in this paper assumes partial
knowledge of the attacker, but explores a different direction
than in previous studies, by assuming full knowledge of the
grid structure and measurements, but partial knowledge of the
state space that can be generated and needed to understand
how the electrical grid moves from one equilibrium state to
another one.

A different research direction concentrated on how new
sensors (e.g., PMUs [23], [24] in addition to RTUs in the

electrical context) can enhance not only SE but also BSE in
addressing FDI.

Instead, R-BSE is sensor-agnostic, as soon as the physical
model remains linear, because no special role is assigned to
specific sensors. Moreover, we observe that, unavoidably, new
equipment sooner or later becomes the target of attacks, and
then attack surface and BSE design complexity increase.

Recently, in the literature the focus gradually shifted from
linear to nonlinear model h [14], nowadays more commonly
employed in several contexts. An example referred to FDI attack
can be found in [25]. Differently from how R-BSE behaves,
in these studies the assumption A3 discussed in Section II-B
is usually enforced, and then detectors often rely on different
mechanisms with respect to the classic BSE (for an example,
see [26]).

Finally, R-BSE is tailored on dynamical systems close to
equilibrium and stationary, so measurements useful for SE are
taken with a frequency chosen to ignore transients. The very
same data are exploited also by the classic BSE, and then by R-
BSE. Other studies on FDI proposed anomaly detection based
on data from different sources, e.g., transient data (collected
periodically or after a stimulus [27]), or measurements on ICT
components [28].

From the above reviewed literature, it is evident that the
proposed R-BSE solution is not directly comparable with other
approaches because of heterogeneity of assumptions or variety
of information the specific techniques are based on. Therefore,
in this paper we focused on assessing the enhancements of
the new proposal with respect to the classic BSE, which is the
reference baseline. A comparison study with other solutions
requires careful planning to account for their inherent diversity,
and it is therefore postponed to future work.

VI. CONCLUSIONS AND FUTURE WORK

This paper presented R-BSE, an evolution of the classic
and widely adopted BSE towards the management of FDI. Its
strength consists in introducing a minimal number of changes
to the classic solution, to essentially gain benefits in terms
of costs and more straightforward applicability in contexts
where the classic BSE is currently adopted. R-BSE leverages
random elements in the analysis of measurements data to
break the deterministic pattern of BSE, easily exploitable by
an attacker to compromise carefully selected measurements
in an undetectable manner. Application of the new techniques
to representative IEEE transmission grid use cases show the
enhancements of R-BSE with respect to the classic BSE.

Future work is foreseen in several directions. Among
extensions of technical aspects to improve the efficacy of the
proposed method, there is how to design an algorithm that
approximates the vector space X. In addition, investigating
more realistic formulations of X than a vector space would
bring benefits in lowering the chances an attacker may have
to successfully accomplish the FDI attack.

Another interesting and timely research question to tackle in
future work is how to adapt R-BSE to address nonlinear models
h. It is expected that such adaptation process will follow a
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Fig. 8. Proportion of false positives (blue) and false negatives (red) over 100 samples of M , and for each of them 104 samples of e. The histogram reports
the means, and for completeness also the min and max values are shown through segments on top of the histogram. The IEEE 14-bus grid depicted in Figure 2
and the attack described in Figure 3, where a = Hc with c3 = 1 and ci = 0 for i ̸= 3, have been taken as an example. The significance level in R-BSE is
α = 0.05.

similar path as taken by the classic BSE to nonlinear models,
but the attack model may reveal peculiar differences.

Of course, extending the assessment campaign by adopting
a variety of use cases and attack scenarios is another direction
worth to elaborate more in depth.

Finally, developing a benchmark for conducting comparison
with alternative solutions, accounting for the heterogeneity
characterizing the different families, is a challenging but
certainly useful development to pursue. Further, this kind of
comparison would also pave the way to studies on identifying
useful synergies among subset of anomaly detection techniques,
so to attempt system designs that fruitfully compose them
to improve attack detection, in accordance with security
requirements of the application at hand.

APPENDIX

A. Issues with BSE in parallel with SE

Trying to design a statistic for BSE that is computable in
parallel with the SE, and then relies only on z, produces a
contradiction. Indeed, consider J̃ := zTMz, with M a generic
matrix, so

J̃ = xTHTMHx+ xTHT
(
M +MT

)
e+ eTMe.

At the same time, consider the standard FDI attack a := Hc,
that produces

J̃a = J̃ + cTHT
(
M +MT

)
z + cTHTMHe.

The issue is that, in order to make mean and covariance of
J̃ computable, M has to be chosen so that HTMH = 0 and
HT
(
M +MT

)
= 0, but this implies J̃a = J̃ , so the attack is

stealthy. Notice that the classic BSE is a special case of this,
namely when M := Ŵ .
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