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Abstract. Deep learning models have become state-of-the-art in many
areas, ranging from computer vision to agriculture research. However,
concerns have been raised with respect to the transparency of their
decisions, especially in the image domain. In this regard, Explainable
Artificial Intelligence has been gaining popularity in recent years. The
ProtoPNet model, which breaks down an image into prototypes and uses
evidence gathered from the prototypes to classify an image, represents an
appealing approach. Still, questions regarding its effectiveness arise when
the application domain changes from real-world natural images to gray-
scale medical images. This work explores the applicability of prototypical
part learning in medical imaging by experimenting with ProtoPNet on
a breast masses classification task. The two considered aspects were the
classification capabilities and the validity of explanations. We looked for
the optimal model’s hyperparameter configuration via a random search.
We trained the model in a five-fold CV supervised framework, with mam-
mogram images cropped around the lesions and ground-truth labels of
benign/malignant masses. Then, we compared the performance metrics
of ProtoPNet to that of the corresponding base architecture, which was
ResNet18, trained under the same framework. In addition, an experi-
enced radiologist provided a clinical viewpoint on the quality of the
learned prototypes, the patch activations, and the global explanations.
We achieved a Recall of 0.769 and an area under the receiver operating
characteristic curve of 0.719 in our experiments. Even though our find-
ings are non-optimal for entering the clinical practice yet, the radiologist
found ProtoPNet’s explanations very intuitive, reporting a high level of
satisfaction. Therefore, we believe that prototypical part learning offers
a reasonable and promising trade-off between classification performance
and the quality of the related explanation.
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1 Introduction

Today’s world of information research is largely dominated by artificial intel-
ligence (AI) technologies. In particular, deep learning (DL) models are being
deployed transversely across many sectors, revealing a great added value to hu-
mans in many of them. Some examples are autonomous driving [8] and smart
agriculture [16]. Although DL models usually outperform humans at many lev-
els, performance is not all we need. Indeed, industrial and research communities
demand more explainable and trustworthy DL models. These needs emerge from
the user’s difficulty in understanding the internal mechanisms of an intelligent
agent that led to a decision. Based on this degree of understanding, the user
often decides whether to trust the output of a model.

Explainable AI (XAI) plays a pivotal role in this scenario. Research is now
focusing on developing methods to explain the behavior and reasoning of deep
models. Explanation methods developed so far can be divided into two major
classes: post-hoc explanations and ante-hoc explanations. The first class com-
prises solutions that are based on separate models that are supposed to repli-
cate most of the behavior of the black-box model. Their major advantage is that
they can be applied to an already existing and well-performing model. However,
in approximating the outcome, they may not reproduce the same calculations
of the original model. Among this family of explanations we find global/local
approximations, saliency maps and derivatives. By contrast, the second class
of explanation methods, also known as explaining by design, comprises inher-
ently interpretable models that provide their explanations in the same way the
model computes its decisions. Indeed, training, inference, and explanation of the
outcome are intrinsically linked. Examples of such methods are Deep k-Nearest
Neighbors [17] and Logic Explained Networks [7].

Regarding the image domain, a substantial body of DL literature concerns
classification tasks [14, 11]. When it comes to image classification, one of the most
familiar approaches humans exploit is to analyze the image and, by similarity,
identify the previously seen instances of a certain class. A line of DL research
focuses on models that mimic this type of reasoning, which is called prototyp-
ical learning [20, 13]. The key feature of this class of learning algorithms is to
compare one whole image to another whole image. Instead, one could wish to
understand what are the relevant parts of the input image that led to a specific
class prediction. In other words, parts of observations could be compared to parts
of other observations. In the attempt to build a DL model that resembles this
kind of logic, Chen et al. [6] proposed prototypical part network (ProtoPNet).

ProtoPNet breaks down an image into prototypes and uses evidence gath-
ered from the prototypes to qualify the image. Thus, the model’s reasoning
is qualitatively similar to that of ornithologists, physicians, and others on the
image classification task. At training time, the network uses only image-level la-
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bels without fine-annotated images. At inference time, the network predicts the
image class by comparing its patches with the learned prototypes. The model
provides an explanation visually by indicating the most informative parts of
the image w.r.t. the output class. This allows the user to qualitatively evaluate
how reasonable and trustworthy the prediction is according to the user domain
knowledge.

ProtoPNet posed brilliant promises in classification domains regarding natu-
ral images (e.g., birds and cars classification [6], video deep-fake detection [23]).
On the other hand, the applicability of this type of reasoning to medical images
is still in its infancy. When presented with a new case, radiologists use to com-
pare the images with previously experienced ones. They recall visual features
that are specific to a particular disease, recognize them in the image at hand,
and provide a diagnosis. For this reason, medical imaging seems to be suitable
for prototypical part-based explanations. Nevertheless, some critical issues can
arise when bringing technologies from other domains – like computer vision -
into the medical world. Unlike natural images, usually characterized by three
channels (e.g., RGB, CYM), conventional medical images feature single-channel
gray-scales. For this reason, pixels contain a lower amount of information. Fur-
thermore, x-ray images represent a body’s projection and therefore are flat and
bi-dimensional. As a result, objects in the field of view could not be as sepa-
rable and distinguishable as in real-world natural images. Such issues might be
detrimental to the application of these methodologies. In addition, the scarcity
of labeled examples available for supervised training undermines the generaliza-
tion capability achievable by complex models. This lack of labeled data is mainly
due to the low prevalence of certain diseases, the time required for labeling, and
privacy issues. Moreover, additional problems include the anatomical variability
across patients and the image quality variability across different imaging scan-
ners.

This work aims to investigate the applicability of ProtoPNet in mammogram
images for the automatic and explainable malignancy classification of breast
masses. The assessment of applicability was based on two aspects: the ability
of the model in facing the task (i.e., classification metrics), and the ability of
the model to provide end-users with plausible explanations. The novelty of this
work stems from both the application of ProtoPNet to the classification of breast
masses without fine-annotated images, and the clinical viewpoint provided for
ProtoPNet’s explanations.

2 Related Works

Several works in the literature have applied DL algorithms, and convolutional
neural network (CNN) architectures in particular, to automatically classify be-
nign/malignant breast masses from x-ray mammogram images. By contrast, only
few works explored the applicability of ProtoPNet to the medical domain and,
more specifically, on breast masses classification.
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Concerning the use of CNNs for this task on the Curated Breast Imaging
Subset of DDSM (CBIS-DDSM) [12] dataset some works follow. Tsochatzidis
et al. [24] explored various popular CNN architectures, by using both randomly
initialized weights and pre-trained weights from ImageNet. With ResNet50 and
pre-trained weights they obtained an accuracy of 0.749. Alkhaleefah et al. [1]
investigated the influence of data augmentation techniques on classification per-
formance. When using ResNet50, they achieved 0.676 and 0.802 before and after
augmentation, respectively. Arora et al. [3] proposed a two-stage classification
system. First, they exploited an ensemble of five CNN models to extract features
from breast mass images and then concatenated the five feature vectors into a
single one. In the second stage, they trained a two-layered feed-forward network
to classify mammogram images. With this approach, they achieved an accu-
racy of 0.880. They also reported the performance obtained with each individual
sub-architecture of the ensemble, achieving an accuracy of 0.780 with ResNet18.
Ragab et al. [19] also experimented with multiple CNN models to classify mass
images. Among the experiments, they obtained an accuracy of 0.722, 0.711 and
0.715 when applying ResNet18, ResNet50 and ResNet101, respectively. Finally,
Ansar et al. [2] introduced a novel architecture based on MobileNet and trans-
fer learning to classify mass images. They benchmarked their model with other
popular networks, among which ResNet50 led to an accuracy of 0.637.

Regarding the application of ProtoPNet to the medical domain, only few
attempts have investigated it to date. Mohammadjafari et al. [15] applied Pro-
toPNet to Alzheimer’s Disease detection on brain magnetic resonance images
from two publicly available datasets. As a result, they found an accuracy of
0.91 with ProtoPNet, which is comparable to or marginally worse than that ob-
tained with state-of-the-art black-box models. Singh et al. [22, 21] proposed two
works utilizing ProtoPNet on chest X-ray images of Covid-19 patients, pneumo-
nia patients, and healthy people for Covid-19 identification. In [22] they slightly
modified the weight initialization in the model to emphasize the effect of differ-
ences between image parts and prototypes in the classification process, achieving
an accuracy of 0.89. In [21] they modified the metrics used in the model’s clas-
sification process to select prototypes of varying dimensions, and obtained the
best accuracy of 0.87.

To the best of our knowledge, the only application of prototypical part learn-
ing to the classification of benign/malignant masses in mammogram images was
provided by Barnett et al. [4]. They introduced a new model, IAIA-BL, de-
rived from ProtoPNet, utilizing a private dataset with further annotations by
experts in training data. They included both pixel-wise masks to consider clin-
ically significant regions in images and mass margin characteristics (spiculated,
circumscribed, microlobulated, obscured, and indistinct). On the one hand, an-
notation masks of clinically significant regions were exploited at training time
in conjunction with a modified loss function to penalize prototype activations
on medically irrelevant areas. On the other hand, they employed annotations of
mass margins as an additional label for each image and divided the inference
process into two phases: first, the model determines the mass margin feature
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(a) (b) (c) (d)

Fig. 1. Examples of images from the original CBIS-DDSM dataset that were removed
due to artifacts. (a)-(b): annotation spot next to or within the mass; (c): white-band
artifact; (d) horizontal-pattern artifact.

and then predicts malignancy based on that information. For this purpose, they
added a fully-connected (FC) layer to convert the mass margin score to the ma-
lignancy score. With that architecture, they managed to achieve an AUROC of
0.84.

3 Materials and Methods

In this work, we trained a ProtoPNet model to classify benign/malignant breast
masses from mammogram images on a publicly available dataset. We compared
its performance to the baseline model on which ProtoPNet is based. We con-
ducted a random search independently on both models with five-fold cross-
validation (CV) to optimize the respective hyperparameters.

3.1 Dataset

In our study, we used images from CBIS-DDSM [12]. The dataset is composed
of scanned film mammography studies from 1566 breast cases (i.e., patients).
For each patient, two views (i.e., MLO and CC) of the full mammogram images
are provided. In addition, the collection comes with the region of interest (ROI)-
cropped images for each lesion. Each breast image has its annotations given by
experts, including the ground truth for the type of cancer (benign, malignant, or
no-callback) and the type of lesion (calcification or mass). Only the ROI-cropped
images of benign and malignant masses for each patient were used in this study.
As a first step, we performed a cleaning process of the dataset by removing
images with artifacts and annotation spots next to or within the mass region
(Fig. 1). We then converted DICOM images of the cleaned dataset into PNG
files. The training and test split of the cohort was already provided in the data
collection. To obtain a balanced dataset, we randomly selected the exceeding
elements from the most numerous class and excluded them from the cohort.

3.2 ProtoPNet

Architecture and functioning ProtoPNet, introduced in [6], comprises three
main blocks: a CNN, a prototype layer, and an FC layer. As for the CNN block,
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it consists of a feature extractor, which can be chosen from many of the popular
models competing on ImageNet challenges (VGGs, ResNets, DenseNets), and
a series of add-on convolutional layers. This block extracts features from an
input RGB image of size 224 × 224. Given this input size, the convolutional
output has size 7× 7×D, where D is the number of output filters of the CNN
block. ReLU is used to activate all convolutional layers, except the last one that
utilizes the sigmoid activation. The prototype layer that follows comprises two
1× 1 convolutional layers with ReLU activation. It learns m prototypes, whose
shape is 1×1×D. Each prototype embodies a prototypical activation pattern in
one area of the convolutional output, which itself refers to a prototypical image
in the original pixel space. Thus, we can say that each prototype is a latent
representation of some prototypical element of an image.

At inference time, the prototype layer computes a similarity score as the
inverted squared L2 distance between each prototype and all patches of the
convolutional output. For each prototype, this produces an activation map of
similarity score whose values quantify the presence of that prototypical part in
the image. This map is up-sampled to the size of the input image and presented
as an overlayed heat map highlighting the part of the input image that mostly
resembles the learned prototype. The activation map for each prototype is then
reduced using global max pooling to a single similarity score. A predetermined
number of prototypes represents each class in the final model. In the end, the
classification is performed by multiplying the similarity score of each prototype
by the weights of the FC layer.

Prototype learning process The learning process begins with the stochastic
gradient descent of all the layers before the FC layer (joint epochs). Then, pro-
totypes are projected onto the closest latent representation of training images’
patches. Finally, the optimization of the FC layer is carried out. It is possible to
cycle through these three stages more than once.

Differences in our implementation Differences exist between the original
paper introducing ProtoPNet [6] and our work. Firstly and more importantly,
we conceived a hold-out test set to assess the final models’ performance, after the
models were trained using CV. In the original paper, instead, both the selection
of the best model and the evaluation of its performance were carried out on the
same set, i.e., validation and test sets were the same.

In addition, since ProtoPNet works with three-channel images, we modified
the one-channel gray-scale input images by copying the information codified in
the single channel to the other two. Then, we set the number of classes for
the classification task to two instead of 200. Finally, to reduce overfitting when
training a large model using a limited dataset, we introduced a 2D dropout layer
and a 2D batch-normalization layer after each add-on convolutional layer of the
model. An overview of our implementation of ProtoPNet architecture and its
inference process is depicted in Fig. 2, taking the classification of a correctly
classified malignant mass as an example.
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Fig. 2. Inference process through ProtoPNet: classification of a breast mass by means
of the activation of pre-learned prototypes within the test image.

3.3 Experiment with ProtoPNet

As for the CNN block of ProtoPNet, the residual network ResNet18 with weights
pre-trained on the ImageNet dataset was used in this experiment. Images were
resized to a dimension of 224× 224 pixels and their values were normalized with
mean and standard deviation (std) equal to 0.5 for the three channels. As a
result, image values range between −1 and +1 and this helps to improve the
training process.

We then performed a random search to optimize the model’s hyperparam-
eters. For each configuration, we built a five-fold CV framework for training
lesions, creating the internal-training and internal-validation subsets with an 80-
20% proportion. We performed the splitting in both class-balanced and patient-
stratified fashion; this way, we maintained the balance between the classes and
we associated lesions of the same patients to the same subset (internal-training
or internal-validation) for each CV fold. We employed the StratifiedGroupKFold
function from the scikit-learn library [18] for this purpose.

Given the large number of hyperparameters in ProtoPNet that can be op-
timized, we investigated only a fraction of them in this work. In particular,
we examined the learning rate (LR) at joint epochs, the weight decay (WD),
the batch size of the internal-training subset, the coefficients of the ProtoP-
Net loss function terms, and the number of prototypes per class. Their possi-
ble values are reported in Table 1. Among the resulting 2592 configurations,
30 were randomly selected and used for training. The remaining hyperparam-
eters were chosen with fixed values instead. The ones different from the origi-
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nal ProtoPNet paper follow: dropout proportion = 0.4; add on layers type =
bottleneck; num filters = 512; validation batch size = 2; push batch size =
40; warm optimizer lrs = {add on layers : 1e-6, prototype vectors : 1e-6}; and
last layer optimizer lr = 1e-6.

At training time, we performed data augmentation on the internal-training
subset by adding slightly modified copies of already existing data. Typically,
this procedure reduces overfitting when training a machine learning model and
acts as regularization. We adopted the following transformations: (i) images un-
derwent rotation around their center by an angle randomly picked in the range
[−10◦,+10◦]; (ii) images were perspective skewed, that is, transforming the im-
age so that it appears as if it was viewed from a different angle; the magnitude
was randomly drawn from a value up to 0.2; (iii) images were stretched by shear
along one of their sides, with a random angle within the range [−10◦,+10◦];
images were mirrored (iv) from left to right along y-axis and (v) from top to
bottom along x-axis. Among the presented transformations, those based on a
random initialization of certain parameters were repeated ten times each to fur-
ther augment the number of instances. As a result, considering also the original
ones, the number of internal-training images was totally increased by a factor
of 33. For such augmentation we exploited the Python Augmentor Library [5],
which has been designed to permit rotations of the images limiting the degree
of distortion.

Differently from the original study, we used fixed LR values instead of an
LR scheduler, and we framed the training process within an early stopping (ES)
setting rather than a 1000-epochs one. In particular, we checked the trend of
the loss function for ES. We exploited a moving average with window = 5 and
stride = 5 to reduce the influence of noise in contiguous loss values at joint
epochs. At every push epoch, a discrete derivative was computed on the two
averaged values resulting from the ten joint epochs preceding that push epoch.
A non-negative derivative was the condition to be checked. If the condition
persisted for the following 30 joint epochs (patience), ES occurred, and the
training process stopped. The considered model was the one saved before the 30
patience epochs.

Table 1. Values of the ProtoPNet Hyperparameters for the Random Search

Parameter Domain

lr features [1e-7, 1e-6]

lr add on [1e-7, 1e-6]

lr prot vector [1e-7, 1e-6]

WD [1e-3, 1e-2]

train batch size [20, 40]

clst [0.6, 0.8, 0.9]

sep [−0.1,−0.08,−0.05]

l1 [1e-5, 1e-4, 1e-3]

num prots per class [5, 20, 40]
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Following the random search, we chose the best-performing configuration
based on the metrics reported in section 3.4. Hence, we re-trained the model
on the whole training set with the selected configuration for as many epochs as
the average maximum epoch in the CV folds. We then performed a prototype
pruning process, as suggested in the workflow of the original paper [6]. We did
that to exclude, from the set of learned prototypes, those that potentially regard
background and generic regions in favor of more class-specific ones. Finally, we
evaluated the final model on test set images.

In the end, we compared ProtoPNet with a simpler, conventional black-box
model. Since our ProtoPNet uses ResNet18 as the CNN block, we repeated the
classification task with the same pre-processed dataset using a ResNet18 with
weights pre-trained on ImageNet.

We conceived the training framework as a fine-tuning of the last convolutional
layers. The fine-tuning was performed under the same five-fold CV settings and
with the same data augmentation operations. To reduce the overfitting during
training, we also inserted a dropout layer before the final FC layer.

Provided that ProtoPNet and ResNet18 have globally different hyperparam-
eters, an independent random search was performed. The subset of investi-
gated hyperparameters follows: number of re-trained last convolutional layers
= [1, 2, 3, 4, 5, 10, 20]; LR = [1e-7, 1e-6]; WD = [1e-3, 1e-2, 1e-1]; and dropout
proportion = [0, 0.2, 0.4]. Among the 126 possible configurations, 50 were ran-
domly selected for training.

Following the random search, we selected the top-performing configuration
according to the metrics outlined in Section 3.4. Accordingly, we re-trained the
model on the entire training set with the chosen configuration for a number
of epochs equal to the average maximum epoch in the CV folds. Lastly, we
evaluated the final model on the test set images.

3.4 Evaluation Metrics

We used both quantitative metrics and a qualitative assessment to evaluate
the performance of the models at training time. As for quantitative metrics,
we computed the accuracy value and stored it for both the internal training
and the internal-validation subsets at each epoch for each CV fold of a given
configuration. We then obtained the configuration accuracy with its standard
deviation by averaging the best validation accuracy values across the CV folds.

Even though some CV folds might reach high validation accuracy values at
some epochs, the overall trend of the validation learning curves could be erratic
and noisy over epochs. Hence, we computed the learning curves of accuracy and
loss for each configuration and collected them for both internal-training and
internal-validation subsets at each CV fold. Then, these curves were averaged
epoch-wise to obtain an average learning curve and standard deviation values
for each epoch.

We used a qualitative assessment of the average learning curves in combi-
nation with quantitative metrics to verify the correctness of the training phase.
In this regard, we considered a globally non-increasing or with a high standard
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deviation trend as unjustifiable. We then selected the best performing config-
uration of hyperparameters based on both the configuration accuracy and the
quality assessment. When evaluating the model on the test set, we assessed its
performance through Accuracy, Precision, Recall, F1 score, F2 score, and AU-
ROC.

3.5 Implementation Environment

All the experiments in this study ran on the AI@Edge cluster of ISTI-CNR,
composed by four nodes, each with the following specifications: 1× NVIDIA®

A100 40 GB Tensor Core, 2× AMD - Epyc 24-Core 7352 2.30 Ghz 128 MB, 16
x DDR4-3200 Reg. ECC 32 GB module = 512 GB.

We implemented the presented work using Python 3.9.7 on the CentOS 8
operating system and back-end libraries of PyTorch (version 1.9.1, build py3.9-
cuda11.1-cudnn8005). In addition, to ensure reproducibility, we set a common
seed for the random sequence generator of all the random processes and PyTorch
functions.

4 Results

4.1 CBIS-DDSM dataset

The original dataset consisted of 577 benign and 637 malignant masses in the
training set and 194 benign and 147 malignant masses in the test set. As a
result of the cleaning process, we removed 49 benign and 60 malignant masses
from the training set and 48 benign and 16 malignant masses from the test set.
Next, based on the more prevalent class in each set, we removed 49 malignant
masses from the training set and 15 benign masses from the test set to balance
the resulting dataset. Therefore, the final number of utilized masses was 528 for
each label in the training set and 131 for each label in the test set.

4.2 Experiment with ProtoPNet

As a result of the internal-training and internal-validation split, each CV fold
consisted of 844 and 210 original images, respectively. Then, as a result of the
data augmentation, the internal-training subset consisted of 27852 images.

The random search with five-fold CV on the specified hyperparameters yielded
the results reported in Table 2. There, values in each configuration belong to the
hyperparameter domain of Table 1, and are listed in the same order. For each
configuration, we reported the values of mean and standard deviation accuracy
across the CV folds.

Based on those values, the best-performing model was obtained in configu-
ration 28, which has the following hyperparameter values: lr features = 1e-6;
lr add on = 1e-6; lr prot vector = 1e-6; WD = 1e-3; train batch size = 20;
clst = 0.8; sep = −0.05; l1 = 1e-4; and num prots per class = 20. With this
model, the validation accuracy was 0.763± 0.034.
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The selected model also satisfied goodness of the learning curves, according to
the quality assessment (Fig. 3). During the training phase, the ES condition was
triggered at epoch 30. Nevertheless, 60 epochs are reported in the plot because
of the 30 patience interval epochs.

Table 2. Accuracy Results for the Random Search on ProtoPNet’s Configurations

Configuration mean± std

0 : [1e-6, 1e-7, 1e-7, 1e-3, 40, 0.6,−0.1, 1e-4, 5] 0.718± 0.069

1 : [1e-6, 1e-6, 1e-6, 1e-3, 20, 0.8,−0.1, 1e-3, 40] 0.753± 0.038

2 : [1e-6, 1e-7, 1e-7, 1e-3, 20, 0.9,−0.05, 1e-4, 20] 0.746± 0.043

3 : [1e-6, 1e-6, 1e-6, 1e-3, 20, 0.9,−0.08, 1e-5, 40] 0.743± 0.042

4 : [1e-6, 1e-6, 1e-6, 1e-3, 20, 0.9,−0.05, 1e-5, 40] 0.759± 0.035

5 : [1e-7, 1e-6, 1e-6, 1e-3, 40, 0.8,−0.08, 1e-3, 20] 0.706± 0.056

6 : [1e-7, 1e-6, 1e-6, 1e-2, 20, 0.8,−0.05, 1e-5, 5] 0.624± 0.045

7 : [1e-7, 1e-6, 1e-6, 1e-2, 20, 0.8,−0.1, 1e-3, 20] 0.698± 0.082

8 : [1e-7, 1e-6, 1e-6, 1e-2, 20, 0.6,−0.08, 1e-3, 5] 0.700± 0.037

9 : [1e-7, 1e-6, 1e-7, 1e-3, 20, 0.6,−0.05, 1e-5, 40] 0.713± 0.058

10 : [1e-7, 1e-6, 1e-7, 1e-2, 40, 0.9,−0.05, 1e-5, 5] 0.683± 0.042

11 : [1e-7, 1e-6, 1e-7, 1e-2, 40, 0.6,−0.08, 1e-3, 40] 0.697± 0.057

12 : [1e-7, 1e-6, 1e-7, 1e-2, 20, 0.6,−0.05, 1e-5, 40] 0.697± 0.066

13 : [1e-7, 1e-7, 1e-6, 1e-3, 40, 0.6,−0.08, 1e-4, 5] 0.591± 0.055

14 : [1e-7, 1e-7, 1e-6, 1e-3, 20, 0.8,−0.08, 1e-4, 20] 0.683± 0.067

15 : [1e-7, 1e-7, 1e-6, 1e-2, 20, 0.9,−0.08, 1e-3, 5] 0.668± 0.032

16 : [1e-7, 1e-7, 1e-7, 1e-3, 40, 0.6,−0.05, 1e-4, 5] 0.574± 0.030

17 : [1e-7, 1e-7, 1e-7, 1e-3, 20, 0.6,−0.1, 1e-4, 5] 0.679± 0.045

18 : [1e-7, 1e-7, 1e-7, 1e-2, 40, 0.6,−0.08, 1e-3, 20] 0.668± 0.041

19 : [1e-6, 1e-6, 1e-6, 1e-2, 20, 0.8,−0.05, 1e-5, 5] 0.748± 0.019

20 : [1e-6, 1e-6, 1e-6, 1e-3, 40, 0.9,−0.05, 1e-4, 20] 0.736± 0.039

21 : [1e-6, 1e-6, 1e-7, 1e-3, 40, 0.6,−0.08, 1e-5, 5] 0.757± 0.023

22 : [1e-6, 1e-6, 1e-7, 1e-3, 20, 0.8,−0.05, 1e-3, 20] 0.722± 0.018

23 : [1e-6, 1e-6, 1e-7, 1e-3, 20, 0.6,−0.1, 1e-3, 40] 0.762± 0.036

24 : [1e-6, 1e-6, 1e-7, 1e-2, 40, 0.6,−0.05, 1e-4, 20] 0.757± 0.038

25 : [1e-6, 1e-7, 1e-6, 1e-2, 40, 0.9,−0.1, 1e-3, 20] 0.732± 0.055

26 : [1e-6, 1e-7, 1e-6, 1e-2, 40, 0.6,−0.1, 1e-3, 40] 0.745± 0.028

27 : [1e-6, 1e-6, 1e-6, 1e-3, 40, 0.8,−0.08, 1e-5, 40] 0.743± 0.042

28 : [1e-6, 1e-6, 1e-6, 1e-3, 20, 0.8,−0.05, 1e-4, 20] 0.763 ± 0.034

29 : [1e-6, 1e-7, 1e-6, 1e-2, 20, 0.9,−0.1, 1e-4, 20] 0.741± 0.040

According to the training curves in Fig. 3, we re-trained the selected model on
the training set for 30 epochs. After pruning, 9 and 2 prototypes were removed
from the benign and the malignant classes, respectively. As a result, 29 final
prototypes were retained. Then, we assessed this model on the test set.

Finally, regarding the comparison with ResNet18, we obtained the follow-
ing results. Among the 50 explored configurations, the best performing model
was found with the following hyperparameters: number of re-trained last con-
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Fig. 3. Average accuracy curves across the five CV folds for the selected ProtoPNet
model’s configuration. Shaded regions represent ±1 · std interval for each epoch.

volutional layers = 3, LR = 1e-6, WD = 1e-3, dropout rate = 0.4. This model
reached an average validation accuracy across the five CV folds of 0.776±0.026.
After re-training the model on the whole training set for 20 epochs, we evaluated
it on the test set images.

The test-set metrics yielded by ProtoPNet and ResNet18 in their independent
experiments are reported in Table 3. In Fig. 4, we report an example of an
explanation provided by ProtoPNet for a test image of a correctly classified
malignant mass. Similarities with prototypes recognized by the model are listed
from top to bottom according to decreasing similarity score of the activation.
Note that the top activated prototypes correctly derive from training images of
malignant masses. Instead, towards the lower scores, prototypes originating from
other classes might be activated, in this case of benign masses.

5 ProtoPNet’s prototypes: a clinical viewpoint

Specific domain knowledge is necessary to understand and interpret explanations
provided by models such as ProtoPNet when applied to medical images. The
validity of provided visual explanations is hardly evaluable by someone without
a background in the specific task. Furthermore, explanations can be misleading
or confusing when analyzed by non-experts.

When dealing with explainable models, one of the first concerns is to assure
that explanations are based on correct information. Also, for such models to be
interpretable and hence helpful in the medical practice, their explanations should
use intuitions that somewhat resemble the reasoning process of a physician. In
this regard, we asked a radiologist with 16 years of experience for a clinical

Table 3. Test Set Metrics With Best-performing Models

Model Accuracy Precision Recall F1 F2 AUROC

ProtoPNet 0.685 0.658 0.769 0.709 0.744 0.719

ResNet18 0.654 0.667 0.615 0.640 0.625 0.671
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Fig. 4. The test image of a malignant mass is correctly classified as malignant by the
model. Each row of this image represents the activation process of a certain prototype.
In the first column there is the patch found on the test image, in the second column the
activated prototype is shown together with the training image from which it originated,
in the third column is shown the activation map with the corresponding similarity score.

viewpoint on the outputs of the selected model on a random subset of test
images (15 benign, 15 malignant). In particular, we conceived three tasks (i.e.,
Task 1, 2 and 3).

As before stated, ProtoPNet bases the classification outcome and the expla-
nation on patch similarities with a set of learned prototypes. Therefore, we first
wish to understand whether good-quality prototypes were learned and used to
characterize each class. This was done in Task 1. We presented the radiologist
with a series of images representing the learned prototypes from both classes
and the images from which they were extracted. We asked her to rate how much
each prototype was specific for its corresponding class on a scale from one to
five. Lower scores would be assigned to generic, not clinically significant proto-
types, while class-specific, meaningful prototypes would receive higher scores. As
a result of Task 1, only 50% of the benign prototypes were considered to be of
acceptable quality, while about 88% of malignant prototypes were deemed good
by the radiologist.
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Next, we would like to check that ProtoPNet was capable of learning a mean-
ingful concept of similarity. In this sense, image regions that the model recognized
as similar should contain comparable clinical information. Therefore, in Task 2,
we asked the radiologist to rate the activation of the most activated prototype
w.r.t each image in the selected subset. For each case, the activated patch on
the test image and the corresponding activating prototype were given. The rat-
ing was expressed on a scale from one to five. Activations that shared mutual
clinical information would receive higher scores. Regarding Task 2, among the
30 activated patches of the test images, 20 resulted as clinically similar to the
activating prototypes according to radiologist’s feedback.

Finally, we wished to figure out the degree of satisfaction in medical end-users
for the explanations provided. This was carried out in Task 3. We presented the
radiologist with test images, each labeled with the classification yielded by Pro-
toPNet, along with the explanation based on the two most activated prototypes.
She provided scores on a scale from one to five for the overall satisfaction of such
explanations. A lower score would be assigned to explanations that highlighted
non-relevant regions or did not highlight regions on which the radiologist would
focus. Instead, if the radiologist believed the explanation to be convincing and
complete (i.e., all the relevant regions are identified), she would have returned
a higher score. The analysis on Task 3 showed that the radiologist recognized
explanations for benign-predicted masses as sufficiently satisfying only in 50% of
the cases. On the other hand, explanations for malignant-predicted masses were
convincing 89% of the times.

This investigation of the explanation quality of the proposed method, both
on the detection of prototypes and the activations correctness, is preliminary.
As a by-product, the expert radiologist’s feedback is a precious contribution for
the design, in the near future, of other tests to assess both the explanation’s
correctness and of explanation’s acceptance by end-users.

6 Discussion

Historically, not knowing precisely why DL models provide their predictions has
been one of the biggest concerns raised by the scientific community. Healthcare,
in particular, is one of the areas massively impacted by the lack of transparency
of such black-box models. That is especially relevant for automatic medical image
classification, which medical practice still strives to adopt. Explainable and inter-
pretable AI might overcome this issue by getting insights into models’ reasoning.
In this regard, a promising approach is that of ProtoPNet [6], an explainable-
by-design model firstly introduced in the natural images domain.

Our work aimed at exploring the applicability of prototypical part learning
in medical images and, in particular, in the classification of benign/malignant
breast masses from mammogram images. We assessed the applicability based on
two aspects: the ability of the model to face the task (i.e., classification metrics)
and the ability of the model to provide end-users with plausible explanations.
We trained a ProtoPNet model and optimized its hyperparameters in a random
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search with five-fold CV. Then, we compared its performance to that obtained
with an independently optimized ResNet18 model. We selected images from
CBIS-DDSM [12], a publicly available dataset of scanned mammogram images.
After, came a cleaning and balancing process to obtain the final study cohort. As
opposed to the original paper, we utilized a hold-out test independent from the
internal-validation subset used at training time to assess the final performance.
In addition, we introduced two-dimensional dropout and batch-normalization
after each add-on convolutional layer in the ProtoPNet architecture.

Evaluation metrics resulting from the best performing ProtoPNet model seem
mostly higher than with the ResNet18 architecture. In particular, we observed
the most substantial improvement in the Recall, which is of considerable interest
for this specific task. Indeed, it represents the capacity of the model to detect
positive cases: a high Recall means that the model correctly identifies the major-
ity of malignant masses. In addition, ProtoPNet provides a level of transparency
that is completely missing from ResNet18. That said, it is well known that neural
networks often use context or confounding information instead of the informa-
tion that a human would use to solve the same problem in both medical [25] and
non-medical applications [10].

We believe a large amount of prior domain knowledge is necessary to evalu-
ate ProtoPNet’s explanations. Without domain knowledge, its results are likely
to be misinterpreted. Moreover, such knowledge would be necessary to prop-
erly select the number of prototypes for each class, instead of empirically derive
it from a hyperparameter optimization. To prevent explanations to be based
on irrelevant regions of the images, we asked for the radiologist’s viewpoint. In
this regard, she provided some helpful insights into the models’ outputs. From
Task 1, it seems reasonable to assume that ProtoPNet manages to learn more
relevant prototypes for malignant masses similar to radiologists. As in actual
practice, a suspicious finding (a non-circumscribed contour, whether microlob-
ulated, masked, indistinct, or spiculated), even only in one projection, results
easy to detect and justifies a recall for further assessment. On the other hand, a
benign judgment requires an accurate bi-dimensional analysis of typical benign
findings in both projections and differential diagnoses with overlapping tissue.
From Task 2, it appears that the model’s mathematical concept of similarity
differs from how a radiologist would deem two regions clinically similar. The
reason behind this may be that the radiologist recalls specific features from past
experience, possibly consisting of other exams aside from mammography and
biopsy results alone. This is way broader than the dataset the network uses for
training, which strictly consists of image-biopsy label pairs. Finally, from Task
3, results that explanations for images classified as malignant are, in general,
more likely to be more convincing to the radiologist. Notably, this behavior goes
in the same direction as the low clinical relevance of benign prototypes from
Task 1. Overall, the radiologist found ProtoPNet’s explanations very intuitive
and hence reported a high level of satisfaction. This is remarkably important
because we were interested in the right level of abstraction for explanations to
foster human interpretability.
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Comparing our work with previous studies is not straightforward: no other
work with prototypical part learning has been done on the CBIS-DDSM dataset
and benign/malignant mass classification task. Nevertheless, we hereafter com-
pare our results with previous works utilizing ResNets on the same dataset and
task, albeit some of them in slightly different ways. In the comparison, we re-
port the accuracy as the common performance metric across these studies. In
our experiments we achieved an accuracy of 0.654 with ResNet18 and of 0.685
with ProtoPNet. Among the ones using ResNet18, Arora et al. [3] and Ragab
et al. [19] achieved an accuracy of 0.780 ad 0.722, respectively. Instead, among
the works using different ResNet architectures, Ragab et al. [19] achieved an
accuracy of 0.711 and 0.715 when using ResNet50 and ResNet101, respectively.
Tsochatzidis et al. [24] deployed ResNet50 obtaining an accuracy of 0.749. Also
Alkhaleefah et al. [1] experimented with ResNet50 in different scenarios and
achieved accuracy values between 0.676 and 0.802. Finally, Ansar et al. [2] re-
ported an accuracy of 0.637 by using ResNet50. Although performance metrics
reported in the previous works are in line with ours, they are, in general, higher.

Regarding previous studies adopting a prototypical part learning scheme to
the mass classification task, not much work has been done. To the best of our
knowledge, the work by Barnett et al. [4] is the only one, even though the au-
thors utilized a different (and private) dataset and a different novel architecture,
derived from ProtoPNet. For these reasons, a fair comparison may not be feasi-
ble. Besides, we achieved an AUROC of 0.719 with ProtoPNet, which is lower
than theirs (0.840). The authors used images in combination with a dedicated
fine-annotation of relevant regions and mass margins, and their model heavily
exploits that information for its conclusions. We point out that this is different
from our work, where ProtoPNet uses only image-level labels without anno-
tated images to resemble the experimental setup of the original work on bird
classification [6]. This is probably one of the reasons for the performance dis-
crepancies between the two studies. However, fine-annotated images needed in
their methodology require a massive intervention by clinical experts. Also, in-
tending to deploy such models to fast assist radiologists in the classification of
a new image, we believe their approach to be too dependent on annotations,
therefore, our approach may be preferable. We likely obtained acceptable results
without the complexity of the model and of the dataset of [4].

Interestingly, the performance in [4] is somewhat similar to that obtained on
the bird classification task of the original work introducing ProtoPNet [6]. The
inclusion of information regarding relevant regions and mass margins annotations
might have been the key to achieve such high results on the mass classification
task. However, our work shows that, by taking the same annotation-free ap-
proach of [6], lower results might be obtained for this task. According to our
results, without additional information to complement images, the task to be
solved is more challenging, and the problem covers a higher level of complex-
ity. Specifically, in images acquired by projection, planes at different depths are
fused in a single bi-dimensional representation. That makes object separation es-
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pecially hard for these images. This implies that answering our research question
may not be as straightforward as for the ornithology task.

Our work comes with limitations. Firstly, given the large number of hyper-
parameters in ProtoPNet, we selected a subset of them for the optimization
process. Moreover, of all the possible configurations obtainable with the chosen
subset of hyper-parameters, we evaluated the model only on a random selection
of them. That likely had an impact on the discovery of the optimal configura-
tion. Secondly, due to the limited size of the utilized dataset, our models were
prone to overfitting, which affects the generalization capabilities on new images.
That is particularly true for ProtoPNet, where the entire architecture has to
be re-trained. That happened even though we took several actions to counter-
act the issue. Specifically, we selected a shallower ResNet architecture, deployed
WD, and introduced dropout and batch-normalization layers. In addition, we
provided the clinical viewpoint of a single radiologist. We are aware that this
clashes somewhat with the subjective nature of such views: a group of differ-
ently experienced radiologists should have been included to reach more robust
conclusions.

7 Conclusion and Future Work

Our research question was to investigate the applicability of ProtoPNet to the
automatic classification of breast masses from mammogram images. Although a
clear-cut answer might not have been provided, this exploratory work allowed
us to assess the advantages and the weak points of this kind of approach. The
two aspects we considered to evaluate the applicability of this approach were the
classification capabilities and the validity of explanations. Classification results
were acceptable but insufficient for this method to enter the clinical practice.
Based on the clinical assessment, we may say that explanations provided for
malignant masses were highly plausible, valuable, and intuitive to a radiologist.
However, this is not true for benign masses yet, and this currently invalidates
the applicability of ProtoPNet in real clinical contexts. On the other hand, this
behavior is comparable to that of a radiologist, who, typically, finds it easier
to recognize malignant masses’ characteristics. Nevertheless, our findings are
promising and suggest that ProtoPNet may represent a compelling approach that
still requires further investigation. We believe that training this model on more
images or performing a more extensive optimization of the model’s architecture
may bring improved classification performance. That might also increase the
ability of the model to deliver plausible explanations for benign cases.

Future work would include combining several ProtoPNet models with dif-
ferent base architectures together in an ensemble fashion or choosing a Vision
Transformer architecture [9] instead of a CNN model at the core of ProtoPNet.
In addition, a different initialization for the filter values could be adopted, for
example, with values learned on the same dataset using the corresponding base
architecture instead of those pre-trained on ImageNet. Moreover, in addition to
geometrical transformations, one could also exploit intensity-based transforma-
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tions to try improving the networks’ generalization capabilities on images pos-
sibly obtained with different acquisition settings. These may include histogram
equalization and random brightness modification. Also, one could utilize a com-
bination of different mammogram images datasets to augment diversity in the
data cohort. On top of that, a dataset comprising digital breast tomosynthesis
images instead of conventional digital mammogram images could be used. That is
a pseudo-3D imaging technique based on a series of low-dose breast acquisitions
from different angles, which has the potential to overcome the tissue superpo-
sition issue and thus improve the detection of breast lesions. From a broader
point of view, we see the customization of ProtoPNet functioning to produce
explanations grounded in causality, instead of correlation, as a promising future
work.
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