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NUMERICAL SOLUTION OF A CLASS OF QUASI-LINEAR MATRIX

EQUATIONS ∗

MARGHERITA PORCELLI†, ‡, AND VALERIA SIMONCINI†,§

Abstract. Given the matrix equation AX + XB + f(X)C = D in the unknown n × m matrix X, we
analyze existence and uniqueness conditions, together with computational solution strategies for f : Rn×m

→ R

being a linear or nonlinear function. We characterize different properties of the matrix equation and of its solution,
depending on the considered classes of functions f . Our analysis mainly concerns small dimensional problems,
though several considerations also apply to large scale matrix equations.
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1. The problem. We consider the following nonlinear equation

(1.1) AX +XB + f(X)C = D,

in the unknown matrix X ∈ R
n×m, where f : Rn×m → R is a linear or nonlinear function,

while A ∈ R
n×n, B ∈ R

m×m, and C,D ∈ R
n×m are given matrices. Throughout the

paper we assume that A and −B have no common eigenvalues, so that the operatorL : X 7→
AX + XB is invertible. Since the nonlinear function in X yields a scalar contribution to
the matrix equation, we will refer to this problem as a quasi-linear matrix equation. We also
notice that depending on the type of function f , the conditionm = n may also hold, and this
will be assumed throughout without explicit mention.

Equation (1.1) is among the simplest possible generalizations of the Sylvester equation
to more than two terms in the unknown matrix X . Yet, it provides different intriguing chal-
lenges for its numerical solution, that we aim to address. A natural further generalization is
the inclusion of more quasi-linear terms. Our interest in this problem stems from certain ap-
plications with linear f , see section 2.1 and [7], however we believe that the general case of f
nonlinear may find applications in different contexts where the given mathematical problem
can be formulated in terms of a matrix equation. To the best of our knowledge, no numerical
methods have been presented in the literature for the class of problems considered in (1.1).

To begin our analysis, we observe that by letting N = −L−1(C), M = L−1(D),
problem (1.1) is mathematically equivalent to

(1.2) X = M + f(X)N .

This equation provides the ideal computational setting in case n,m are small, as attention
can be put into the function f , assuming that M ,N can be computed accurately. In case
of matrices with large dimensions, the equality in (1.2) will in general be replaced by an
approximation.

We start by considering the case of linear f , which was motivated by an application in
solid mechanics and civil engineering developed in [7]. A linear function f : Rn×m → R

can be defined as f(X) = trace(HX) for some matrix H of appropriate dimensions. For
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instance, for H equal to the identity matrix and X square, f(X) = trace(X), while for
H = uvT with u ∈ R

m,v ∈ R
n, f(X) = vTXu, where the properties of the trace

have been used. We will derive a closed form for X , and also observe that under certain
hypotheses f(X) may be obtained without explicitly computing X .

We then analyze a more general setting where f is the composition of a linear and a
nonlinear function. The order in which these two functions are combined significantly influ-
ences the analysis and results: as an example, different existence and uniqueness properties
may hold. So, for instance, working with f(X) = trace(exp(−X)) (linear combined with
nonlinear) differs significantly from dealing with f(X) = exp(−trace(X)) (nonlinear com-
bined with linear). Distinct computational procedures also need to be devised.

We will explore iterative techniques that appropriately handle both f and the matrices
forming the linear part of the equation. The linear-nonlinear problem is more computation-
ally involved as the iteration requires matrix function evaluations and matrix updates. For
this problem we will derive convergence results for a natural fixed-point iteration. In the
nonlinear-linear case, the nonlinear iteration is performed at the scalar level and classical re-
sults for nonlinear equations can be employed, while taking into account the properties of the
given data.

The following notation is adopted: matrices (resp. vectors) are denoted by bold case
capital (resp. small) roman letters, while small roman letters are used for real valued functions
(with the exception of matrix indices and matrix dimensions), and greek letters are used for
scalars. The notationA ≻ 0 (A � 0) denotes a symmetric and positive definite (semidefinite)
matrix A; the notation A � B is equivalent to A − B � 0. For a given matrix X , the
operator vec(X) stacks all columns of X one below the other into a single long vector, while
the Kronecker operator of two matrices A ∈ R

nA×mA and B ∈ R
nB×mB , is given by

A⊗B =




a11B a12B · · · a1mA
B

a21B a22B · · · a2mA
B

...
...

anA1B anA2B · · · anAmA
B


 ∈ R

nAnB×mAmB .

2. The case of linear f . The following proposition yields the solution of (1.1) in closed
form when f is a linear function.

PROPOSITION 2.1. Let M ,N be the solutions to the Sylvester equationsAM+MB =
D and AN +NB = −C , respectively. Assume that 1 − f(N) 6= 0. Then the solution to

(1.1) is given by

X = M + σN , σ =
f(M)

1− f(N)
.

Proof. The problem can be written as in (1.2). Applying the linear function f to both
sides of (1.2) yields f(X) = f(M) + f(X)f(N), that is f(X) = f(M)/(1 − f(N)).
Substituting in (1.2) the expression for X follows. Finally, by linearity,

AX +XB + f(X)C −D = A(M + σN) + (M + σN)B + f(X)C −D

= σAN + σNB + f(X)C = −σC + f(X)C = 0,

which verifies that X solves (1.1).

In case it holds that 1 − f(N) = 0, the relation f(X) = f(M) + f(X)f(N) shows
that two possible scenarios arise: for f(M) = 0 then X = M + σN where σ can be any
real number, yielding a nonunique solution; if f(M) 6= 0 then no solutions exist.
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It is interesting to observe that when f(X) = uTXu and C = vvT , it holds that
f(X)C = (vuT )XuvT . The problem thus corresponds to the linear matrix equation

AX +XB +KTXK = D

with K = uvT of rank one; more generally, depending on f and C , the term KTXK

may take the form K1XK2, with K2 not necessarily the transpose of K1. With the previ-
ous choice of K , the closed form solution in Proposition 2.1 is equivalent to the Sherman-
Morrison-Woodbudy (SMW) formula obtained by the vector form of the matrix equation.
Indeed, the matrix equation above can be written as (G + VUT )x = d, where G =
I ⊗ A + BT ⊗ I, U = u ⊗ u, V = v ⊗ v and d = vec(D); see, e.g., [2]. Then the
SMW formula reads

x = G−1d−G−1V(1 + UTG−1V)−1UTG−1d

= vec(L−1(D))− σ vec(L−1(C)),

where σ = (1+UTG−1V)−1UTG−1d, which precisely corresponds to σ in Proposition 2.1,
as UTG−1V = uTL−1(vvT )u = −f(N) and similarly for the other quantities. The cases
where U = u1 ⊗ u2, V = v1 ⊗ v2 can be treated analogously.

It is also noticeable that for f(X) = trace(X) and B = A with A nonsingular, the
quantity trace(X) can be obtained without solving two Sylvester equations, but by only
solving linear systems with A. Indeed, from AX +XA+ trace(X)C = D we write

X +A−1XA+ trace(X)A−1C = A−1D.

Applying the trace to all matrix terms we obtain

trace(X) =
trace(A−1D)

2 + trace(A−1C)
,

where we have used the linearity and cyclic property of the trace. After this computation,
the final X is obtained by solving the Sylvester equation AX +XA = D − trace(X)C .
The actual number of systems with A depends on the structure of D and C . For instance, if
C = C1C

T
2 has low rank equal to k and C1 ∈ R

n×k, then only k systems with A need to
be solved to compute trace(A−1C) = trace(CT

2 A
−1C1). Other properties of the involved

matrices can be exploited to lower the computational efforts.

REMARK 2.2. The trace of the Sylvester solution matrix is of interest in its own right;

see, e.g., [14],[12],[9] and their references. In particular, for B = A symmetric and C = 0,

the procedure discussed in Proposition 2.1 can be used to compute the trace of the solution

to AX +XA = D, without explicitly computing or approximating the solution matrix.

This fact can be used for instance if in problem (1.1) one is interested in only computing

the trace of X , and not X itsself. In this case, trace(M), trace(N) can be obtained without

explicitly computing the two matrices M ,N .

In a way similar to Proposition 2.1 one can treat the related problem

(2.1) AX +XB + f1(X)C1 + . . . fℓ(X)Cℓ = D,

where fi, i = 1, . . . , ℓ are linear functions of their argument. Indeed, writing once again

(2.2) X = M +

ℓ∑

i=1

fi(X)Ni, M = L−1(D), Ni = −L−1(Ci),

3



we can compute

fj(X) = fj(M) +

ℓ∑

i=1

fi(X)fj(Ni), j = 1, . . . , ℓ.

Let σj = fj(X). Collecting all quantities, we obtain the ℓ× ℓ linear system

(2.3)











1− f1(N1) −f1(N2) · · · −f1(Nℓ)
−f2(N1) 1− f2(N2) · · · −f2(Nℓ)

...
...

. . .
...

−fℓ(N1) · · · · · · 1− fℓ(Nℓ)

















σ1

...
σℓ






=







f1(M)
...

fℓ(M)






⇔ (I − F )σ = f ,

where I is the identity matrix of matching dimensions. Solving this small linear system
yields the coefficients in

X = M +
ℓ∑

i=1

σiNi,

which generalizes the formula in Proposition 2.1. In general, the cost of solving this system
remains moderate compared with all other computational costs as long as ℓ is significantly
lower than n. Clearly, the solution uniqueness is related to the nonsingularity of I − F . A
well known sufficient condition for the nonsingularity is that ‖F ‖ < 1 where ‖ · ‖ is any
induced matrix norm.

2.1. An application to solid mechanics. The modelling of masonry-like materials calls
for the computation of the projection of a symmetric matrix onto the cone of negative semi-
definite symmetric matrices with respect to the inner product defined by an assigned positive
definite symmetric linear map C, associating n×n symmetric matrices with n×n symmetric
matrices. The map C contains the mechanical properties of the masonry material and can take
different forms depending on the anisotropy of the material. When C models the elasticity
tensor of an isotropic elastic material, it takes the form

(2.4) C(X) =
E

1 + ν

(
X +

ν

1− 2ν
trace(X)I

)
,

where E is Young’s modulus, E > 0, and ν is the Poisson ratio, satisfying ν ∈ (−1, 1/2).
When, on the other hand, C represents a transversely isotropic elasticity tensor with respect to
the direction e3, then it can be written as C(X) =

∑ℓ
i=1 trace(HiX)Ki, for ℓ = n(n+1)/2

and suitable symmetric matrices Hi,Ki ∈ R
n×n for i = 1, . . . , ℓ which depend on the

scalars E and ν and on the spectral representation of C [6].
For a given symmetric matrix Ȳ , in [7] the projection problem was reformulated as the

following quadratic semidefinite programming problem

(2.5)
minY trace(Y C(Y + Ȳ ))
s.t. Y � 0,

and a primal-dual path-following interior point method was proposed. At each iteration of the
interior-point method, one Newton step is computed for the following perturbed first-order
optimality conditions for problem (2.5)

(2.6) Fµ(Y ,S) =

(
S − C(Y + Ȳ )

Y S − µI

)
= 0, Y ≻ 0, S ≻ 0,

where the positive scalar µ is driven to zero as the method progresses. To ensure that the
Newton steps produce symmetric matrices, different symmetrization schemes can be applied
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to the nonlinear equation Y S − µI = 0 in (2.6): the popular Alizadeh-Haeberly-Overton
(AHO) and Nesterov-Todd (NT) schemes have been explored in [7]. Fixed µ > 0 and given
the current approximation (Y ,S) of the solution of (2.6), let X denote the Newton step for
the variable Y . Consider first the AHO scheme: X solves the equation

(2.7) SX +XS + C(X)Y + Y C(X) = D,

where the right-hand side D = 2µI−(Y S+SY )−(Y (C(Y +Ȳ )−S)+(C(Y +Ȳ )−S)Y )
takes into account the value of the current Fµ(Y ,S) and the AHO symmetization. When C
is isotropic, inserting the form (2.4) into (2.7) yields

(
S +

E

1 + ν
Y

)
X +X

(
S +

E

1 + ν
Y

)
+ trace(X)

νE

(1 + ν)(1 − 2ν)
Y = D,

that corresponds to (1.1) with A = B =
(
S + E

1+νY
)

and C = νE
(1+ν)(1−2ν)Y . If C is

transversely isotropic, the terms involving C in (2.7) are given by

C(X)Y + Y C(X) =

ℓ∑

i=1

trace(HiX)(KiY + Y Ki) ≡
ℓ∑

i=1

fi(X)Ci,

yielding

AX +XA+

ℓ∑

i=1

fi(X)Ci = D,

with A = S, which thus corresponds to (2.1).
In the case of the NT scheme, the Newton step solves the general equation WXW +

C(X) = D with W ≻ 0 being the geometric mean of Y −1 and S, and D is suitably defined
taking into account the residual Fµ(Y ,S) and the NT scheme, see e.g. [11]. If C is isotropic,
the equation above reads

WXW +
E

1 + ν
X +

νE

(1 + ν)(1 − 2ν)
trace(X)I = D.

Dividing by W ,

XW +
E

1 + ν
W−1X + trace(X)

νE

(1 + ν)(1− 2ν)
W−1 = W−1D,

that is in the form (1.1) with A = E
1+νW

−1, B = W and C = νE
(1+ν)(1−2ν)W

−1. Finally,
for the transversely isotropic case one obtains the equation

X = M +

ℓ∑

i=1

fi(X)Ni, M = W−1DW−1, Ni = −W−1KiW
−1,

which has the form (2.2), with fi(X) = trace(HiX), i = 1, . . . , ℓ.
We remark that the explicit form of Newton step above within the NT scheme is a gener-

alization of the formula given in [11, Lemma 5.1] for the case C(X) = KXK and K � 0.
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3. The trace of a matrix power. A first generalization to the nonlinear setting is given
by the family of functions f(X) = trace(Xp), with p ∈ N, p > 1. For moderate p such as
p = 2, it is possible to give explicit solutions to the problem. We focus on the effect of f on
the matrix equation, where we work with the form in (1.2).

Let p = 2. We have

f(X) = trace(X2) = trace((M + f(X)N)(M + f(X)N))

= trace(M2) + 2 trace(MN)f(X) + f(X)2trace(N2)

= f(M) + 2 trace(MN)f(X) + f(X)2f(N).

Let β = 2 trace(MN) − 1. The equation above corresponds to the following (scalar) qua-
dratic algebraic equation in the variable r = f(X),

r2f(N) + βr + f(M) = 0.

If f(N) = 0 and β 6= 0 then the solution is r = −f(M)/β, giving X = M + rN . If
f(N) 6= 0 then the following two solutions are derived,

r1,2 =
1

2f(N)

(
−β ±

√
β2 − 4f(N)f(M)

)
.

The two final solution matrices X(1),X(2) are obtained as

X(1) = M + r1N , X(2) = M + r2N .

For higher powers of X , correspondingly larger degree scalar polynomial equations are
obtained, from which the corresponding numerical solution matrices can be derived, in case
the roots can only be computed numerically. The procedure may also yield complex (conju-
gate) values for r even for real data, from which complex (conjugate) solutions will follow.

Powers of affine functions can also be considered, such as f(X) = trace((X +H)p),
for a fixed matrix H . A similar solution procedure can be devised for other, related functions
such as the Frobenius norm, that is

f(X) = ‖X‖2F = trace(XTX).

A second generalization for which explicit solutions can be obtained under certain hy-
potheses is the function f(X) = trace(X−1).

PROPOSITION 3.1. Let M = m1m
T
2 be a rank-one matrix and N be invertible. Let

the nonlinear function be f(X) = trace(X−1). If the matrix equation X = M + f(X)N
admits nonsingular solutions, then these solutions are given as X(i) = M + riN , i =
1, . . . , 3 where ri are the roots of the polynomial equation

r3 + η2r
2 + η1r + η0 = 0,

with η2 = mT
2 N

−1m1, η1 = −f(N) and η0 = η1η2 +mT
2 N

−2m1.

Proof. We first note that if X is a nonsingular solution to the given equation, then
f(X) 6= 0 must hold, otherwise X = M would not be invertible. Using the Sherman-
Morrison formula we obtain

X−1 = (m1m
T
2 + f(X)N)−1

=
1

f(X)

(
N−1 −N−1m1(f(X) +mT

2 N
−1m1)

−1mT
2 N

−1
)
.
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f=@(X)(trace(inv(X)));

n=10; rng(2) rng(1)

%X=m1*m2’+f(X) N; %X=M+f(X) n1*n2’;

m1=randn(n,1); m2=randn(n,1); n1=randn(n,1); n2=randn(n,1);

N=randn(n,n); M=randn(n,n);

t2=m2’/N*m1; f2=n2’/M*n1;

t1=-trace(inv(N)); f1=1-f(M)*f2+ n2’/M^2*n1;

t0=t1*t2+m2’/N^2*m1; f0=-f(M);

r=roots([1 t2 t1 t0]); r=roots([f2, f1, f0]);

X1=m1*m2’+r(1)*N; X1=M+r(1)*n1*n2’;

X2=m1*m2’+r(2)*N; X2=M+r(2)*n1*n2’;

X3=m1*m2’+r(3)*N;

[norm(f(X1)-r(1)) norm(f(X2)-r(2)) norm(f(X3)-r(3))] [norm(f(X1)-r(1)), norm(f(X2)-r(2))]

FIG. 3.1. Matlab code for Example 3.2.

Using f(X) = trace((m1m
T
2 + f(X)N)−1), we obtain

f(X) =
1

f(X)

(
f(N)− (f(X) +mT

2 N
−1m1)

−1mT
2 N

−1N−1m1

)
.

Reordering terms, the third degree polynomial in r = f(X) is obtained.

A similar result can be obtained by exchanging the role of M and N , that is, requiring
that N is rank-one and M nonsingular, giving rise to at most two distinct solutions. More
precisely, given the problem X = M + f(X)n1n

T
2 , similar algebraic steps show that the

solutions are given as X(i) = M + rin1n
T
2 , where ri are the roots of the polynomial

η2r
2 + η1r + η0 = 0,

with η0 = −f(M), η2 = nT
2 M

−1n1 and η1 = 1 + η0η2 + nT
2 M

−2n1.
If M or N have larger rank, then the procedure described above cannot be directly

generalized.

EXAMPLE 3.2. In Figure 3.1 we give a general test code in Matlab [4] for the case

of f(X) = trace(X−1) and the solution formulas in Proposition 3.1 and the subsequent

discussion. The left hand side implements the case of M rank-one, while the right-hand side

refers to the case of N rank-one. The obtained computational results are

[1.5543e-15 5.0626e-14 2.4425e-15] [8.3313e-16 8.3313e-16]

4. The nonlinear case. Linear-nonlinear composition. The problem changes signifi-
cantly in case the function f has the general form

f(X) = φ(ψ(X)), φ : Rn×n → R, ψ : Rn×n → R
n×n,

where φ is linear, and ψ is a (nonlinear) matrix function [3]. This is the case for instance
for f(X) = trace(exp(−X)). We focus on the small size case, and use the form in (1.2)
derived from (1.1) after the application of the inverse Sylvester operator.

Let us consider the case when φ(Y ) = trace(Y ), and assume that N is diagonalizable,
so that N = QΛQ−1. Then (1.2) is equivalent to

Q−1XQ = Q−1MQ+ f(X)Λ.

We then note that

f(X) = trace(ψ(X)) = trace(ψ(Q−1XQ)) = f(Q−1XQ),

7



as the trace is invariant under similarity transformations. Let X1 ≡ Q−1XQ and M1 =
Q−1MQ, so that

X1 = M1 + f(X1)Λ.(4.1)

This form shows that the scalar value f(X1) only appears in the diagonal elements of X1,
while the off-diagonal part of X1 coincides with M1. In spite of this simple relation, it is
hard to determine expressions for the solution in closed form for general matrix functions ψ,
since computing trace(ψ(X1)) still involves the whole matrix X1, and the nonlinearity of
ψ does not allow for algebraic simplifications. We are thus led to consider classical iterative
schemes for solving (4.1).

Using the formulation in (4.1), starting with some X
(0)
1 , a fixed point iteration can be

written as

(4.2) X
(k+1)
1 = M1 + f(X

(k)
1 )Λ,

for k ≥ 0, where, it is apparent that only the diagonal elements of X
(k+1)
1 are updated at

each iteration k, while the off-diagonal elements of X1 still coincide with those of M1 and
they never change through the iteration. Combining two consecutive iterations, we obtain for
k ≥ 1,

X
(k+1)
1 = X

(k)
1 + (f(X

(k)
1 )− f(X

(k−1)
1 ))Λ,

which only updates the diagonal elements of the matrices. Hence, settingλλλ = diag(Λ) where
the function diag extracts the diagonal elements of a matrix, we can write

(4.3) diag(X
(k+1)
1 ) = diag(X

(k)
1 ) + (f(X

(k)
1 )− f(X

(k−1)
1 ))λλλ.

The final solution is obtained as X(k) = QX
(k)
1 Q−1. We observe that for N non-

symmetric, the conditioning of Q influences the error norm in the final approximate so-
lution. More precisely, let X⋆

1 be the exact solution to (4.1). Then ‖X(k) − X⋆‖ ≤
‖Q‖ ‖Q−1‖‖X(k)

1 − X⋆
1‖, so that the final X(k) may be less accurate than the iteration

in X
(k)
1 would grant.
We first report on an algebraic characterization of the iteration, and then focus on error

norm bounds for a selection of well known matrix functions. To this end, we will focus on
the form (4.1), in which only the diagonal elements are modified by the iteration, when taking

X
(0)
1 = M1. The same occurs for the error matrix.

PROPOSITION 4.1. Let X
(0)
1 = M1 and {X(k)

1 }k≥1 be the sequence of iterates from

(4.1), with M1 ≻ 0 and Λ ≻ 0.

i) If f is a nonnegative function satisfying f(X) − f(Y ) ≤ 0 for Y − X � 0, then

X
(k+1)
1 � X

(k)
1 for all ks.

ii) If f is a nonnegative function satisfying f(X)− f(Y ) ≥ 0 for Y −X � 0, then the

iterates X
(k+1)
1 −X

(k)
1 alternate definiteness at each k.

Proof. For k = 0, X(1)
1 = M1 + f(M1)Λ � M1 = X

(0)
1 . For the subsequent iterates

we have X
(k+1)
1 = M1 + f(X

(k)
1 )Λ and X

(k)
1 = M1 + f(X

(k−1)
1 )Λ. Subtracting we

obtain
X

(k+1)
1 −X

(k)
1 = (f(X

(k)
1 )− f(X

(k−1)
1 ))Λ.

Hence, for any k > 1, if f(X(k)
1 ) − f(X

(k−1)
1 ) > 0 then X

(k+1)
1 − X

(k)
1 � 0 because

Λ � 0; this shows (i). For (ii), if X
(k)
1 −X

(k−1)
1 � 0 then (f(X

(k)
1 )− f(X

(k−1)
1 )) < 0 so

that X(k+1)
1 −X

(k)
1 � 0, and viceversa.
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Recalling relation (4.3), the definiteness explored in Proposition 4.1 refers to the way
the diagonal elements of the iteration matrix change. In the first case, these elements grow
monotonically as the iterations proceed; in case of convergence, the diagonal elements reach
the final value from below. On the other hand, if f grows monotonically, the diagonal entries
may showcase an alternating leapfrog behavior, which in case of convergence will terminate
with the exact solution.

For instance, the function trace(X1/2) satisfies (i) while the function trace(exp(−X))
satisfies (ii). The different behavior is reported in Figure 4.1 for the iteration in (4.3), with the
data created below in Matlab [4]. The values correspond to the (n/2, n/2) diagonal element,
however all diagonal elements behave similarly, as they change by the same factor.

n=10; rng(1)

N=randn(n,n); N=sqrtm(N’*N); N=rand(n,n); N=0.2*sqrtm(N’*N);

f=@(X)(trace(expm(-X))); f=@(X)(trace(sqrtm(X)))

Xstar=2*n*randn(n,n); Xstar=sqrtm(Xstar’*Xstar);

M=Xstar-f(Xstar)*N;
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FIG. 4.1. Convergence of the (n/2, n/2) diagonal element of X
(k)
1 . Left: f(X) = trace(X1/2). Right:

f(X) = trace(exp(−X)).

As a first consideration for the convergence analysis of the iteration {X(k)}k≥0, we first
notice that

(4.4) E(k+1) ≡ X
(k+1)
1 −X⋆

1 = (f(X
(k)
1 )− f(X⋆

1 ))Λ ≡ ηkΛ,

showing that the error is a scalar multiple of a constant, diagonal matrix, and only the scalar
ηk changes with k. Moreover, for any matrix norm ‖ · ‖,

‖X(k+1)
1 −X⋆

1‖ = |(f(X⋆
1 )− f(X

(k)
1 ))| ‖Λ‖

=

(
|(f(X⋆

1 )− f(X
(k)
1 ))|

‖X(k)
1 −X⋆

1‖
‖Λ‖

)
‖X(k)

1 −X⋆
1‖.

The quantity in parenthesis is what we expect from the scalar case. Due to the linearity of
the trace, the quotient in parenthesis is closely related to the differential of the considered
matrix function ψ. To make more precise statements about convergence we thus need to
focus on specific examples of f . We will make use of the Frechet derivative of a matrix
function ψ, defined as the linear function L(X,E) such that we have ψ(X +E)−ψ(X) =
L(X,E) + o(‖E‖) for ‖E‖ sufficiently small [3, section 3.1]. If the Frechet derivative of
the given function ψ in X exists, then ψ is said to be Frechet differentiable at X .

9



THEOREM 4.2. Let f(X) = trace(exp(−X)), and let {X(k)
1 }k≥0 be the sequence of

iterates from (4.2), with M1 � 0 and Λ � 0. If X⋆
1 is a solution to (4.1) and we let

E(k) = X
(k)
1 −X⋆

1 , then for X
(k)
1 sufficiently close to X⋆

1 we have

E(k+1) = trace(Λ exp(−X⋆
1 ))E

(k) + o(‖E(k)‖)Λ.

Proof. The matrix exponential is Frechet differentiable at any X , and its Frechet deriv-

ative is given by L(X,E) =
∫ 1

0
exp(−X(1 − s))E exp(−Xs)ds [3, formula (10.15)].

The differential of f thus corresponds to trace(L(X,E)), which can be written as

trace(L(X,E)) =

∫ 1

0

trace(exp(−X(1− s))E exp(−Xs))ds

=

∫ 1

0

trace(E exp(−Xs) exp(−X(1− s)))ds

=

∫ 1

0

trace(E exp(−X))ds = trace(E exp(−X)).

Hence, for X(k)
1 sufficiently close to X⋆

1 , using (4.4) we have

X
(k+1)
1 −X⋆

1 = (f(X
(k)
1 )− f(X⋆

1 ))Λ

= trace(L(X⋆
1 ,E

(k)))Λ+ o(‖E(k)‖)Λ
= trace(E(k) exp(−X⋆

1 ))Λ+ o(‖E(k)‖)Λ
= trace(Λ exp(−X⋆

1 ))ηk−1Λ+ o(‖E(k)‖)Λ
= trace(Λ exp(−X⋆

1 ))E
(k) + o(‖E(k)‖)Λ,

and the proof is complete.

The above expression for the error allows us to give a sufficient condition for conver-
gence. The proof follows the usual steps of the Ostrowski Theorem; see, e.g., [5, 10.1.3].

THEOREM 4.3. Assume that the notation and hypotheses of Theorem 4.2 hold. Suppose

that ψ is Frechet differentiable at X⋆
1 . If trace(Λ exp(−X⋆

1 )) = σ < 1 then there exist an

X
(0)
1 and a σ1 ∈ [0, 1) such that

‖E(k+1)‖ ≤ σ1‖E(k)‖,

for k ≥ 0, for any matrix norm ‖ · ‖.

Proof. We proceed by induction. The differentiability of ψ and Theorem 4.2 ensure that

for an arbitrary ǫ > 0 there exists a X
(0)
1 sufficiently close to X⋆ such that

||E(1) − trace(Λ exp(−X⋆
1 ))E

(0)‖ ≤ ǫ‖E(0)‖,

so that

||E(1)‖ ≤ ||E(1) − trace(Λ exp(−X⋆
1 ))E

(0)‖+ |trace(Λ exp(−X⋆
1 ))| ‖E(0)‖

≤ (ǫ + σ)‖E(0)‖.

By taking ǫ so that σ1 = ǫ+ σ < 1 the result follows for k + 1 = 1. Assuming now that the
result holds for ‖E(k)‖, we can write again

||E(k+1) − trace(Λ exp(−X⋆
1 ))E

(k)‖ ≤ ǫ‖E(k)‖,

and proceed as for k = 0, to obtain the final bound.
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trace(Λ exp(−X⋆
1 )) α k ‖X(k+1)−(M+f(X(k+1))N)‖

‖M‖

0.079 12.589 3 8.3190e-08
0.176 10.000 6 3.4123e-08
0.335 7.9433 11 3.7944e-08
0.570 6.3096 23 6.9902e-08
0.889 5.0119 117 9.6324e-08
1.296 3.9811 500 3.5943e-01
1.789 3.1623 500 1.2832e+00

TABLE 4.1
Example 4.4. f(X) = trace(exp(−X)). Behavior of the iteration (4.3) as α varies.

EXAMPLE 4.4. We analyze the convergence of the fixed point iteration with respect to the

condition of Theorem 4.3 on the derivative trace(Λ exp(−X⋆
1 )). To this end, we consider

f(X) = trace(exp(−X)) and the matrix X⋆ =
√
αG with G = (GT

0 G0)
1
2 , where G0

=randn(n,n) (Matlab seed rng(1)). By varying α a different magnitude of the Frechet

derivative can be obtained. The matrix N is defined in the same way as G, and M =

X⋆ − f(X⋆)N , In Table 4.1 we report the results of the fixed point iteration X
(0)
1 = M1,

X
(k+1)
1 = M1 + f(X

(k)
1 )Λ, k = 0, 1, . . .. The iteration stops either for ‖X(k+1) − (M +

f(X(k+1))N)‖/‖M‖ < 10−7 or for k = 500. The numbers in the table show lack of

convergence as soon as the condition on the derivative fails, as is typical of Ostrowski type

theorems.

We next derive similar results for a nonlinear function involving the matrix square root.

THEOREM 4.5. Let f(X) = trace(X
1
2 ), and let {X(k)

1 }k≥0 be the sequence of iterates

from (4.1), with M1 � 0 and Λ � 0, so that the exact solution X⋆
1 to (4.1) is symmetric and

positive definite. Let E(k) = X
(k)
1 −X⋆

1 . Then

E(k+1) =
1

2
trace(Λ(X⋆

1 )
−1)E(k) + o(‖E(k)‖)Λ.

If 1
2 trace(Λ(X⋆

1 )
−1) = σ < 1 then there exist an X

(0)
1 and a σ1 ∈ [0, 1) such that

‖E(k+1)‖ ≤ σ1‖E(k)‖,

for any matrix norm ‖ · ‖.

Proof. For the matrix square root we have L(X,E) = L−1
X

(E), where LX is the linear
operator LX : Z 7→ XZ +ZX [3, p.134]. Using Remark 2.2 and (4.4) we can write

X
(k+1)
1 −X⋆

1 = trace(L−1
X

⋆

1
(E(k)))Λ+ o(‖E(k)‖)Λ

=
1

2
trace((X⋆

1 )
−1E(k))Λ+ o(‖E(k)‖)Λ

=
1

2
trace((X⋆

1 )
−1

Λ)E(k) + o(‖E(k)‖)Λ,

and the first result follows. The proof of the final bound follows the same lines as the corre-
sponding bound in Theorem 4.3.

5. The nonlinear case. Nonlinear-linear composition. The procedure described in
Proposition 2.1 can be employed within a procedure for solving (1.1) when the nonlinear

11



function has the form f(X) = g(h(X)) where g : [α, β] → R and h is a real valued linear

function with image in [α, β]. The problem becomes nonlinear in X , hence uniqueness of
the solution is in general not guaranteed.

To analyze the new setting, consider again equation (1.2), that is X = M + f(X)N ,
and apply the linear function h to both sides,

(5.1) h(X) = h(M) + f(X)h(N).

For γ1 ≡ h(M), γ2 ≡ h(N) and setting y ≡ h(X), the equation above corresponds to the
nonlinear scalar equation

(5.2) γ1 + g(y)γ2 − y = 0, y ∈ [α, β].

We next formalize the fact that if this equation has a solution y∗ in the considered interval,
then (5.2) yields a solution to (1.2). To make the treatment simpler, we assume that h(X) =
trace(X). The general case h(X) = trace(HX) will also depend on the spectral and
structural properties of the matrix H .

PROPOSITION 5.1. With the previous notation, assume that y∗ is a solution to (5.2) in

[α, β]. Then X ≡ M + g(y∗)N is a solution to (1.1) with f = g ◦ h. If y∗ is unique, then

X is also the unique solution to (1.1).

Proof. Let X ≡ M + g(y∗)N . Applying the linear function h to both sides we obtain
h(X) = h(M) + g(y∗)h(N). We recall that h(M) + g(y∗)h(N) = y∗, therefore it must
be that h(X) = y∗, that is, X = M + f(X)N , which is equivalent to (1.1).

The quantities γ1, γ2 play a crucial role in the existence of (at least) one solution to
(5.2). In turn, these scalars depend on the eigenvalues of the two Sylvester solutions, and
thus on A,B,C and D. We abstain from exploring all possible cases of the nonlinear scalar
problem, as our focus is on the difficulties stemming from the matrix setting. Below we give
a sample of theoretical and computational considerations that can be of help in solving the
final problem, keeping in mind that several other strategies could be used.

To explore the influence of the data on the nonlinear scalar equation, we assume γ2 6= 0
and rewrite (5.2) as

(5.3) g(y) = −γ1
γ2

+
1

γ2
y,

and set g1(y) ≡ − γ1

γ2
+ 1

γ2
y, where the function g1 is linear and defined on the whole real line.

Hence, y∗ is a solution to (5.2) in [α, β] if and only if the two functions g and g1 intersect (at
y∗). For simplicity, let us assume that [α, β] ≡ R. If for instance g (resp. g1) is monotonically
decreasing (resp. increasing) in R, then y∗ exists and is unique. This behavior depends on
the choice of g, but also on the sign of γ1 and γ2, which in turn depends on the properties
of the matrices M ,N . Examining all possible combinations of these properties would be
cumbersome. We provide here a typical setting.

PROPOSITION 5.2. Assume that M (N ) is symmetric and positive (negative) definite,

and g(y) ≥ 0 for any y ≥ 0, g at least C2 and monotonically decreasing. Then the Newton

iteration {yk} applied to F (y) = 0 with F (y) = γ1 + g(y)γ2 − y will converge for any

y0 ≥ 0.

Proof. Note that the hypothesis on M ,N implies that γ1, γ2 are both positive real val-
ues. Moreover, the hypotheses on g also imply that F is at least C2, F ′(y) < 0 and F ′′(y) >
0 for all positive y, so that F is convex in [0,+∞). Moreover, limy→+∞ F (y) = −∞.
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Since F (0) > 0, a zero y∗ must exist. The tangent passing through y = 0 encounters the
first coordinate axis at y1 = −F (0)/F ′(0) > 0. Convexity ensures that y1 < y∗. The
tangent passing through y = b for some b > y∗ encounters the first coordinate axis at
y1 = b − F (b)/F ′(b) = (bg′(b)γ2 − γ1 − g(b)γ2)/F

′(b) > 0 for all b > 0. A known
theorem ensures that the Newton iteration converges in any interval [0, b] with y∗ ∈ [0, b].

EXAMPLE 5.3. Let g(t) = exp(−t), so that f(X) = exp(−tr(X)). Then (5.1) be-

comes γ1 − e−yγ2 − y = 0, for y ∈ R.

As an alternative to the Newton method, one can resort once again to a fixed point itera-
tion. A natural choice, but not necessarily the best one, is given by

y(k+1) = γ1 + g(y(k))γ2 ≡ Φ(y(k)).

If a zero y∗ exists such that |Φ′(y∗)| < 1 then Ostrowski’s theorem ensures that there exists
an open interval centered in y∗ such that this iteration will converge for any y(0) taken in this
interval. Hence, the condition is that |g′(y∗)γ2| < 1.

As an example, let use take g(y) = ln(y), for y > 0, so that f(X) = ln(trace(X)).
Then g′(y) = 1/y and |Φ′(y∗)| < 1 as long as y∗ > γ2. The existence of y∗ depends on
whether the curves g(y) and g1(y) intersect, and as said around (5.3), this depends on the
mutual values of γ1, γ2.

6. Considerations on the large scale case. Problem (1.1) becomes computationally

very challenging if the given matrices have large dimensions. Let M̃ , Ñ be the approxima-
tions to the solutions M and N respectively, of the Sylvester equations. If f is linear, say
f(X) = trace(X), then from Proposition 2.1 an approximate solution is obtained as

X̃ ≡ M̃ + σÑ , σ =
f(M̃ )

1− f(Ñ)
,

with a clear dependence of the error X−X̃ on the error committed in approximating M̃ , Ñ .
For the approximation of M ,N different methods can be considered, especially in case

the right-hand sides D and C have low rank [10]; see also [8] for the sparse setting. Structural

or sparsity properties are in fact a crucial hypothesis to be able to store M̃ , Ñ and thus X̃ in
a memory saving, factored format. Evaluating the trace can also profit from a factored form.

If projection methods are used to determine M̃ , Ñ [10], then the same type of projection
strategy could be applied directly to (1.1), so that the residual can be monitored explicitly.
For the approximation X̃ the associated residual is

R = AX̃ + X̃B + f(X̃)C −D,

which yields the following relation with the error matrix E ≡ X̃ −X⋆,

R = AE +EB + (f(X̃)− f(X⋆))C.

If f is linear, then f(X̃)− f(X⋆) = f(E), hence it follows

E = L−1(R) + f(E)N ,

which is the natural (linear) generalization of the known expression for the error matrix in
terms of the residual in linear algebraic equations.
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Dealing with a nonlinear-linear f is similar to the linear case, since the matrix h(X)
is a scalar, after which the nonlinear function acts as in section 5. The linear-nonlinear case
analyzed in section 4 with large matrices is far more complicated. Assuming that the problem

to be solved can again be written as X̃ = M̃ + f(X̃)Ñ , a fixed-point iteration could be

considered, possibly taking into account memory saving representations of X̃,M̃ and Ñ ,
that is

X̃(k+1) ≡ M̃ + f(X̃(k))Ñ .

However, how to approximate f(X̃(k)) remains complicated. Consider for instance f(X̃) =

trace(ψ(X̃)). The approximation of this function is a problem in its own, and different,
mostly iterative, approaches have been devised. This will give rise to an inner-outer procedure

for the fixed point scheme above. Now popular choices for approximating trace(ψ(X̃))
include randomized, Monte-Carlo and probing methods, which replace the trace computation
with the product zTk ψ(X)zk for a selection of vectors {zk}; see, e.g., [1],[13] and their
references. Since in general we cannot expect high accuracy in this computation at each
iteration, the quality of the outer iteration may be considerably affected. A detailed analysis
and experimental study of these approaches is left for future research.

7. Conclusions. We have analyzed a new class of quasi-linear matrix equations, de-
vising solutions in closed form for the linear case. In the quasi-linear framework, we have
proposed numerical methods and theoretically studied their convergence under hypotheses
that are satisfied for a wide class of problem data. The large scale problem remains particu-
larly challenging, especially when involving the computation of matrix functions, for which
further work is required.
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