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Abstract—Precise and reliable identification of riparian veg-
etation along rivers is of paramount importance for managing
bodies, enabling them to accurately plan key duties, such as the
design of river maintenance interventions. Nonetheless, manual
mapping is significantly expensive in terms of time and human
costs, especially when authorities have to manage extensive
river networks. Accordingly, in the present paper, we propose
a methodology for detecting and automatically classifying the
riparian vegetation of urban rivers. Specifically, the calibration of
an unsupervised (Isodata Clustering) and a supervised (Random
Forest) machine learning algorithm (MLA) is carried out for
the classification of the riparian vegetation detected in aerial
orthoimages with a resolution of 1 meter. Riparian vegetation is
classified using Normalized Difference Vegetation Index (NDVI)
features. In the framework of this research, the Isodata Cluster-
ing slightly outperforms the Random Forest, achieving a higher
level of predictive performance and reliability throughout all the
computed performance metrics. Moreover, being unsupervised,
it does not require ground truth information, which makes
it particularly competitive in terms of annotation costs when
compared with supervised algorithms, and definitely appropriate
in case of limited resources. We encourage river authorities to
use MLA-based tools, such as the ones we propose in this work,
for mapping riparian vegetation, since they can bring relevant
benefits, such as limited implementation costs, easy calibration,
fast training, and adequate reliability.

Index Terms—Automatic Classification, Machine Learning Al-
gorithms, NDVI, Normalized Difference Vegetation Index, Ran-
dom Forest, Riparian Vegetation, River Management, Isodata
Clustering

I. INTRODUCTION AND MOTIVATION

Riparian vegetation refers to the plants and trees that grow
along the banks of rivers, streams, and other water bodies.
Also known as streamside or riverbank vegetation, riparian
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vegetation is important for a variety of ecological, hydrologi-
cal, and social reasons. Ecologically, riparian vegetation plays
a vital role in maintaining biodiversity by providing habitat
for a wide range of plant and animal species, including many
that are threatened or endangered. These ecosystems also help
to control erosion, stabilize streambanks, and improve water
quality by filtering pollutants and reducing sediment runoff
[1]. Additionally, riparian vegetation can help to moderate the
effects of flooding by slowing the flow of water and trapping
sediment [2]. Hydrologically, riparian vegetation is important
for maintaining the health and integrity of river systems.
The roots of riparian plants help to stabilize streambanks
and reduce erosion, while the leaves and branches of these
plants shade the water and help to keep it cool [3]. Socially,
riparian vegetation plays a vital role in providing recreational
opportunities, such as fishing and hiking [4], and can also
have economic benefits, such as providing timber and other
resources [5]. However, these ecosystems are facing many
threats, including urbanization, agriculture, mining, and water
withdrawals. Thus, it is essential to have accurate classifica-
tion and mapping of riparian vegetation to better understand
these systems’ distribution, health, and change dynamics. This
information can be used to develop conservation and river
management strategies that will help to protect and restore
these valuable ecosystems, optimizing ecological, hydrologi-
cal, social, and economic benefits and minimizing the costs of
implementation of interventions.

Traditional methods of mapping riparian vegetation, such
as field surveys, can be time-consuming, costly, and not as
accurate as other methods. In-situ surveys, for instance, require
trained personnel to physically visit the site, which can be
difficult in remote or inaccessible areas. In contrast, aerial
photography (especially orthoimages) or satellite imagery is
an effective method for monitoring large areas of riparian
vegetation [6]. This method can provide a broad overview
of the distribution and condition of vegetation, can be used
to track changes over time, and can be performed with



different equipment, such as Unmanned Aerial Vehicles, Light
Detection and Ranging (LIDAR), or satellite imagery [7].
Aerial products can be used to map the extent of vegetation in
large areas, identify areas of high or low vegetation density,
and detect changes in vegetation cover. Nonetheless, by using
the orthoimages solely, the analyst must carry out a manual
classification and mapping, facing significant costs in terms of
time and effort.

Artificial intelligence, particularly Machine Learning Algo-
rithms (MLAs), could solve this task and bring significant
benefits to the managing body. These algorithms use statistical
techniques to analyze data and find hidden patterns within
them. MLAs can be trained to recognize specific vegetation
types and can be used to classify large amounts of data
quickly and accurately. This can reduce the need for human
interpretation and observer bias. Several research addressing
this issue can be found in the literature. MLAs generally ex-
ploit multispectral or hyperspectral data as input features, and
attempt to predict some riparian vegetation classes. Scholars
generally exploit supervised MLAs, which implies having a
ground truth to be exploited for evaluating the algorithms
[8]–[12]. Unsupervised MLAs are less studied in riparian
vegetation mapping as they are considered less accurate than
supervised approaches [13], [14]. On the other hand, unsuper-
vised classification does not require either annotated data or
training of the MLAs, thus providing benefits in terms of im-
plementation costs. Accordingly, we aim to further explore the
field of unsupervised learning in riparian vegetation mapping
in comparison with supervised solutions. To the best of our
knowledge, only Townsend [15] studied unsupervised MLAs,
proposing a fuzzy approach to predict riparian vegetation.

The proposed procedure aims to support the river authorities
of the Tuscany Region, central Italy, which have to manage
rivers, streams, and channels in an area extended for more than
22,900 km2. The leading objective of this research is to verify
which MLAs are better in terms of predictive performance
and in terms of operations for technicians, even for those with
less experience in ML modeling. We emphasize the benefits
and limitations of supervised and unsupervised learning, also
demonstrating that, in the framework of our research, un-
supervised learning outperforms supervised one. Specifically,
we propose a comparison between the unsupervised Isodata
Clustering (ISO Cluster) and the supervised Random Forest
(RF) algorithm.

Outcomes have a significant double value. From the ana-
lytical side, results demonstrate that unsupervised algorithms
can be used to classify and map riparian vegetation with a
high level of reliability and accuracy, comparable with those of
supervised algorithms. Furthermore, from a practical point of
view, unsupervised learning permits users not to have ground
truth data and, therefore, allows for avoiding expensive manual
mappings on orthophotos to produce a training dataset. This
process also bypasses the inherent error due to the experience
and the capability of the human operator in determining the
training set needed for supervised learning.

(a) (b)

Fig. 1: The Serchio River, Tuscany (Italy) (a) and the study
area (b)

II. DATA

A. Study area

The extension of the study area is 1.37 km2, i.e., 1,323,138
pixels. The study area extension refers to a buffer of 150 m
(75 meters per side) made along the Serchio River (Fig. 1a), in
the Tuscany region, central Italy. Figure 1b corresponds to the
area within the red rectangle in Fig. 1a so to show the details
of the high-resolution orthoimage in use, such as the buildings
and the unpaved gravel roads along the Serchio River. Fig. 1b
is the reference for the qualitative assessment of MLAs that
we discuss in Section IV.

B. Input feature and output classes definition

The MLAs calibrated in the present research use as input
features the Normalized Difference Vegetation Index (NDVI),
i.e., a vegetation index that uses the reflectance of light in
the red and Near Infrared (NIR) wavelengths to determine
the health and density of vegetation [16]. NDVI values range
from -1 to 1, with higher values indicating denser and healthier
vegetation, and lower values indicating less vegetation or veg-
etation in poor condition. NDVI is commonly used in remote
sensing and GIS applications to map and monitor vegetation
growth and change over time. NDVI can be computed as in
(1):

NDV I =
NIR−RED

NIR+RED
(1)

where NIR is the reflectance of light in the near-infrared
wavelength, and RED is the reflectance of light in the red
wavelength. Healthy vegetation typically has NDVI values
between 0.4 and 0.8, while values between 0.1 and 0.4 indicate
bare soil or urban areas. NDVI values lower than 0.1 can
indicate the presence of water or other non-vegetation features.
Output classes of MLAs have been defined according to
the domain knowledge of the authors; they are five, namely
“Water”, “Bare Soil”, “Grass”, “Shrubs”, and “Trees”.



TABLE I: HYPERPARAMETERS OF MLAs

Hyperparameter Value
Max Number of Trees (RF) 50

Max Tree Depth (RF) 30
Max Number of Samples per Class (RF) 1000

Number of classes (ISO Cluster) 5
Minimum Class Size (ISO Cluster) 20

Sample Interval (ISO Cluster) 10

TABLE II: TRAINING SET DATA FOR RANDOM
FOREST

Class Pixels Area [m2] % of the total
Water 54,431 56,507 4.12%

Bare Soil 35,195 36,538 2.67%
Grass 23,633 24,534 1.79%

Shrubs 8,913 9,253 0.68%
Trees 35,615 36,974 2.70%
Total 157,787 163,806 11.96%

C. Hyperparameters of MLAs, training, and test

In order to calibrate MLAs, some hyperparameters have to
be defined before the training phase. Table I reports the list of
selected hyperparameters for both RF and ISO Cluster.

The RF algorithm needs a training dataset since it is a
supervised MLA. Accordingly, we manually defined a training
set (i.e., a ground truth) in GIS environment1. Compared to
the study area, the training set corresponds to a percentage
of 11.96%. Table II provides details of the training set, in
terms of extent in pixels, m2, and as a percentage of the
total. As regards the ISO Cluster, five potential clusters were
considered; in this way, it is also possible to make direct
comparisons with the classification in five possible classes
made by the RF.

As regards the evaluation of the MLAs (test phase), an
additional polygon-based layer has been defined in a GIS
environment (i.e., a second ground truth) which allows for
verifying the performance of both models. The polygons of
this layer do not overlap those of the training set, in order to
have total inequality between training data and test data. Table
II provides all the details of the test set, in terms of extent in
pixels, m2, and as a percentage of the total. It can be seen
that the test set covers an area equal to 3.88% of the study
area. The remaining percentage of the study area was used to
make predictions with the MLAs. This area does not belong
to either the training or test set.

1ArcGIS Desktop: Release 10.5

TABLE III: TEST SET DATA

Class Pixels Area [m2] % of the total
Water 21538 22360 1.63%

Bare Soil 6218 6455 0.47%
Grass 5174 5371 0.39%

Shrubs 5358 5562 0.41%
Trees 12851 13341 0.97%
Total 51139 53090 3.88%

III. METHODOLOGY

A. Machine Learning Algorithms

Two different categories of MLAs have been exploited in
the present research: an unsupervised and a supervised MLA.
The Isodata Clustering [17], or ISO Cluster, that has been
used in the present research, is an unsupervised clustering
algorithm developed in the 1970s. It is designed to address
some of the limitations of the original K-means algorithm,
particularly when dealing with large datasets. For instance,
selecting the right number of clusters (K) in K-means can be
challenging. ISO cluster may offer improvements in automati-
cally determining the optimal number of clusters, reducing the
need for manual selection or grid search. Moreover, K-means
is sensitive to outliers, which can disproportionately influence
the position of cluster centroids. ISO cluster may incorporate
mechanisms to handle outliers more robustly, making the
algorithm less susceptible to their influence.

The algorithm starts by randomly selecting a set of initial
cluster centroids, then it iteratively re-assigns data points to the
closest centroid and re-computes the cluster centroids based on
the new assignment of points. The main difference between
ISO Cluster and K-means is that the former also includes an
additional step of splitting or merging clusters based on certain
criteria, such as cluster size and standard deviation of the data
points in the cluster. The process is repeated until the cluster
assignments no longer change. ISO Cluster can be used for
both continuous and categorical data.

Conversely, RF [18] is an ensemble supervised machine
learning algorithm that combines multiple decision trees (i.e.,
Classification and Regression Trees, CARTs) to make a pre-
diction. By exploiting a bootstrap aggregation and feature
randomness process, RF randomly selects a subset of features
to split on at each decision node and generates several uncor-
related CARTs. The final prediction is made by combining
the predictions of all individual CARTs, by voting for the
majority of predicted class. Compared to a single CART, the
RF algorithm should be less prone to the overfitting issue,
generally resulting in improved accuracy.

B. Performance metrics

MLAs have been evaluated according to the set of perfor-
mance metrics reported below (2)- (7). F1 stands for F1-Score,
whereas κ stands for Cohen’s Kappa Index [19]. Finally, FM
represents the Fowlkes–Mallows Index [20].

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

Accuracy =
TP + TN

TP + TN + FN + FP
(4)

F1 =
2 ∗ Precision ∗Recall

(Precision+Recall)
(5)

κ =
p0 − pe
1− pe

(6)



(a) (b)

Fig. 2: Random Forest (a) and Isodata Clustering (b)

FM =
√
Precision ∗Recall) (7)

where TP is the number of True Positive samples, TN is the
number of True Negative samples, FP is the number of False
Positive samples, FN is the number of False Negative samples,
p0 is the observed proportional agreement between actual and
predicted values, and pe is the probability that true values and
false values agree by chance.

All the above-mentioned performance metrics can be de-
rived from the so-called Confusion Matrix, i.e., an n-by-n
table (where n is the number of classes) that summarizes the
number of correct and incorrect predictions made by a model,
highlighting errors in the identification of the classes. It is
essential to have as many metrics as possible, as each of them
highlights a particular aspect of the classifier, hiding others.

IV. RESULTS AND DISCUSSION

Fig. 2 below shows the classification maps performed by
MLAs. The reference RGB image is in Fig. 1b. It is possible
to visually and qualitatively compare their predictions. We
propose an enlargement of the study area in order to perceive
the granularity of them. Considering that orthoimages have
been employed as input products, we can also directly measure
the extension of areas belonging to different classes. This will
be essential for river management bodies, as it allows for
planning maintenance interventions and estimating their cost
precisely and reliably. From Fig. 2, we can observe that MLAs
behave similarly and provide similar outcomes regarding the
prediction of riparian vegetation classes. It seems that the ISO
Cluster (Fig. 2b) produces less noise than RF (Fig. 2a) when
mapping “Water”, and that it is able to better perceive the
distinction between the latter and “Bare Soil”; it is worth
noting the visual difference between the mapping of the two
classifiers in the left lower corner (according to Figure 1b,
there should be water, even if it is possible to perceive the
underneath bare riverbed).

The quantification of the predictive performance of MLAs
on the test area was performed by defining a layer composed

TABLE IV: CONFUSION MATRIX (TEST PHASE) FOR
RF

Class Water Bare Soil Grass Shrubs Trees Total
Water 20740 87 0 0 0 20827

Bare Soil 319 5857 192 0 9 6377
Grass 0 135 4179 177 23 4514

Shrubs 0 0 688 4957 1204 6849
Trees 0 0 0 105 11328 11433
Total 21059 6079 5059 5239 12564 50000

TABLE V: CONFUSION MATRIX FOR ISODATA
CLUSTERING

Class Water Bare Soil Grass Shrubs Trees Total
Water 21033 263 2 0 4 21302

Bare Soil 26 5678 180 0 5 5889
Grass 0 138 4213 180 23 4554

Shrubs 0 0 664 4884 964 6512
Trees 0 0 0 175 11568 11743
Total 21059 6079 5059 5239 12564 50000

of 50,000 points overlaying the test polygons; such evaluation
points are then associated with the ground truth values belong-
ing to the test polygons and the prediction values of the MLAs.
The points are randomly generated within the test polygons
and stratified, i.e., they are randomly distributed within each
class, with each class having a number of points proportional
to its relative area. Subsequently, Confusion Matrices can be
computed (Table IV and Table V).

Tables IV and V highlight that the MLAs work adequately,
generally assigning the correct class to the test pixels. This is
confirmed since most of the samples are located on the major
diagonal of the Confusion Matrix, i.e., they are TP or TN
(samples are TP or TN depending on the class being analyzed).
Points outside the major diagonal are considered FP (those
below and to the left of the diagonal) or FN (those above
and to the right of the diagonal). To better understand the
predictive performance of the classifiers, the values included in
the confusion matrices can be recombined using (2)-(7). Tables
VI and VII show these metrics and allow for an objective
comparison of the two classifiers. In Table VI, cells with a
grey background represent the highest metric among the two
classifiers.

First of all, we can affirm that both models are capable of
decently handling this task, since the considered metrics are,
generally speaking, adequately high for the classes to be pre-
dicted. Furthermore, it can be observed that the metrics of the
two MLAs are numerically similar; the F1 parameter allows
us to understand that the ISO Cluster slightly outperforms the

TABLE VI: PERFORMANCE METRICS FOR MLAS

Random Forest Isodata Clustering
Class Prec. Rec. F1 Prec. Rec. F1

Water 0.985 0.996 0.990 0.999 0.987 0.993
Bare Soil 0.963 0.918 0.940 0.934 0.964 0.949

Grass 0.826 0.926 0.873 0.833 0.925 0.877
Shrubs 0.946 0.724 0.820 0.932 0.750 0.831
Trees 0.902 0.991 0.944 0.921 0.985 0.952

Weighted Average 0.943 0.941 0.939 0.949 0.948 0.946



TABLE VII: AGGREGATE EVALUATION METRICS OF
MLAS

MLA Accuracy κ FM
Random Forest 0.941 0.919 0.942

Isodata Clustering 0.948 0.928 0.948

RF. As mentioned, this MLA does not require a training set
to be created manually, thus saving time, money, and avoiding
possible human errors during the creation of the ground truth.
We can also appreciate that the weighted average metrics, i.e.,
the metrics averaged over all classes and weighted according
to the number of samples belonging to each class, are higher
for the ISO Cluster.

MLAs exhibit a common limit, even if not excessively
significant; it lies in the non-negligible number of FPs relating
to the “Grass” class (limited precision) and in that of FNs for
the “Shrubs” class (limited recall). Nonetheless, it should be
considered that the process of distinguishing these two classes
on the basis of the NDVI is a complex activity even for a
human operator since the values assumed by this parameter
are basically similar. Therefore, considering the outcomes, we
can confirm that the MLAs behave no worse than a human
would do manually.

Table VII is proof of the formerly discussed outcomes,
showing how the aggregate evaluation metrics of the two
classifiers are markedly high, also confirming that the ISO
Cluster slightly outperforms the RF classifier.

V. DISCUSSION AND CONCLUSIONS

In the present paper, we proposed a cost-effective and
efficient solution for mapping riparian vegetation of rivers by
using MLAs. To classify the riparian vegetation detected in
high-resolution aerial orthoimages, we calibrated an unsuper-
vised ISO Cluster and a supervised RF, exploiting the NDVI
as an input feature. We found that the Isodata Clustering
algorithm slightly outperformed the Random Forest, making
it a suitable operating tool for addressing this task.

It is worth noting that some limitations may arise when
using MLAs to classify riparian vegetation. Firstly, a limited
training dataset (for RF only): vegetation may vary greatly
depending on location, season, and other factors, making it
difficult to collect a large and diverse set of training samples.
Secondly, a high intra-class variability: even within a single
class of vegetation (e.g. “Trees”), there can be significant
variations in shape, color, and species. This can make it
difficult for an MLA to accurately classify all samples of
that class. Thirdly, the interference from other environmental
factors: lighting, weather, and the presence of other objects
(e.g. buildings, roads) may interfere with the appearance of
vegetation, making it difficult for an MLA to classify it
accurately. Fourthly, the class imbalance issue: data for some
vegetation classes are more limited than for other classes,
making it difficult for an MLA to accurately classify the
under-represented classes. Fifthly, the predictions of MLAs
can be affected by the inherent limitations of the input feature.

Indeed, NDVI suffers from surface shading. In the areas along
the banks of the Serchio river, where there are trees whose
foliage gives shade to the water, the NDVI takes on higher
values than in unshaded water. In such areas, therefore, MLAs
could predict the “Bare Soil” class instead of “Water”. This
limitation could be overcome by using a greater number of
input features, including for example also the RGB bands or
a combination thereof, aimed at a better identification of the
water and the other classes. Additionally, further vegetation-
related indexes can be used, such as green NDVI (gNDVI)
[21], [22], soil-adjusted vegetation index (SAVI) [22], and
the normalized difference red edge (NDRE) [22], [23], or a
combination of them.

Finally, there is a limit in evaluating the accuracy of MLAs
across “borderline” areas, i.e., in those areas where there is
a separation between one class and another. In these areas,
there would be significant difficulties in recognizing the correct
classes even for a human operator. Therefore, at the moment,
we cannot evaluate the performance of MLAs in such areas.
Presumably, this issue can be reduced by exploiting images
with a higher resolution; one should be able to define reliable
test polygons even in borderline areas and evaluate MLAs
within them. This task will constitute future research that we
intend to pursue, as well as to exploit a larger test dataset
to provide more precise and general insights into MLAs’
performance. Additionally, a comparison with state-of-the-art
algorithms would lead to a more transparent and objective
assessment.

Nonetheless, our proposed methodology offers many bene-
fits, such as easy calibration, fast training, adequate reliability,
and low implementation cost. The proposed methodology
should facilitate river management practices that can lead to a
more sustainable and healthier environment for both rivers and
the surrounding communities. Identifying riparian vegetation
automatically can improve maintenance planning of managing
bodies. When specific types of vegetation in an area are
detected, it is possible to estimate accurately when certain
plants are likely to overgrow and require maintenance cuts.
This knowledge helps to avoid unnecessary in-situ inspections.
Additionally, if vegetation can be accurately detected using
aerial ortho-images, it is possible to bypass inspections during
the initial mapping of the managed area. This is especially
valuable in hard-to-reach areas that are challenging to monitor.
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J. Marcato Junior et al., “A machine learning approach for mapping
forest vegetation in riparian zones in an atlantic biome environment
using sentinel-2 imagery,” Remote Sensing, vol. 12, no. 24, p. 4086,
2020.

[13] K. Yoshida, S. Pan, J. Taniguchi, S. Nishiyama, T. Kojima, and M. T.
Islam, “Airborne lidar-assisted deep learning methodology for riparian
land cover classification using aerial photographs and its application for
flood modelling,” Journal of Hydroinformatics, vol. 24, no. 1, pp. 179–
201, 2022.

[14] K. Peerbhay, O. Mutanga, R. Lottering, and R. Ismail, “Mapping
solanum mauritianum plant invasions using worldview-2 imagery and
unsupervised random forests,” Remote Sensing of Environment, vol. 182,
pp. 39–48, 2016.

[15] P. A. Townsend, “A quantitative fuzzy approach to assess mapped
vegetation classifications for ecological applications,” Remote Sensing
of Environment, vol. 72, no. 3, pp. 253–267, 2000.

[16] F. Kriegler, W. Malila, R. Nalepka, and W. Richardson, “Preprocessing
transformations and their effects on multispectral recognition,” Remote
sensing of environment, VI, p. 97, 1969.

[17] G. H. Ball and D. J. Hall, “A clustering technique for summarizing
multivariate data,” Behavioral science, vol. 12, no. 2, pp. 153–155, 1967.

[18] L. Breiman, “Random forests,” Machine learning, vol. 45, pp. 5–32,
2001.

[19] J. Cohen, “A coefficient of agreement for nominal scales,” Educational
and psychological measurement, vol. 20, no. 1, pp. 37–46, 1960.

[20] E. B. Fowlkes and C. L. Mallows, “A method for comparing two
hierarchical clusterings,” Journal of the American statistical association,
vol. 78, no. 383, pp. 553–569, 1983.

[21] H. Cicek, M. Sunohara, G. Wilkes, H. McNairn, F. Pick, E. Topp, and
D. Lapen, “Using vegetation indices from satellite remote sensing to as-
sess corn and soybean response to controlled tile drainage,” Agricultural
Water Management, vol. 98, no. 2, pp. 261–270, 2010.
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