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Abstract: A machine learning method for classifying lung ultrasound is proposed here to pro-
vide a point of care tool for supporting a safe, fast, and accurate diagnosis that can also be useful
during a pandemic such as SARS-CoV-2. Given the advantages (e.g., safety, speed, portability, cost-
effectiveness) provided by the ultrasound technology over other examinations (e.g., X-ray, computer
tomography, magnetic resonance imaging), our method was validated on the largest public lung
ultrasound dataset. Focusing on both accuracy and efficiency, our solution is based on an efficient
adaptive ensembling of two EfficientNet-b0 models reaching 100% of accuracy, which, to our knowl-
edge, outperforms the previous state-of-the-art models by at least 5%. The complexity is restrained
by adopting specific design choices: ensembling with an adaptive combination layer, ensembling
performed on the deep features, and minimal ensemble using two weak models only. In this way,
the number of parameters has the same order of magnitude of a single EfficientNet-b0 and the
computational cost (FLOPs) is reduced at least by 20%, doubled by parallelization. Moreover, a visual
analysis of the saliency maps on sample images of all the classes of the dataset reveals where an
inaccurate weak model focuses its attention versus an accurate one.

Keywords: convolutional neural networks; EfficientNet; lung ultrasound; SARS-CoV-2; COVID-19;
pneumonia; ensemble; computer vision; supervised learning; deep learning

1. Introduction

Artificial intelligence (AI), and specifically computer vision (CV), are having remark-
able developments in recent years, allowing software programs to obtain meaningful
information from digital images. Medicine is an area in which the experimentation and
use of this technology is experiencing a strong growth [1–3]. Moreover, considering that
only in 2020, in the United States of America alone, a production of 600 million medical
images was reported [4] and that this number seems to grow steadily, it is increasingly
necessary to process these data using robust and trustworthy algorithms, developed in
strong collaboration at different levels among medical staff, engineers, and physics. The
SARS-CoV-2 pandemic has made a quick and safe as well as economic response even
more necessary: the use of point-of-care ultrasound (POCUS) to detect SARS-CoV-2 (vi-
ral) pneumonia and the bacterial one is one of the most peculiar emerging case studies
which involves the use of sonography examinations in loco instead of at a dedicated facil-
ity [5,6]. In general, the preferred methods to assess pulmonary diseases are both X-ray and
computed tomography (CT) due to their high image quality and diagnostic power. Nonethe-
less, ultrasound appears to detect signs of lung diseases as well as, or even better than,
CT [7–11]. In some cases, there is a directed map between evidence found by ultrasound
and CT [12], too. The needs requested by the SARS-CoV-2 pandemic moved the attention
from a precision diagnostic approach to one that aims to maximize a trade-off between
accuracy, time, and safety, which are crucial aspects in “a real emergency situation”. Physi-
cians and researchers around the world adapted their points of view towards a common
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direction where the employment of lung POCUS seemed an optimal solution for both
quarantined and hospitalized subjects [8,13,14]. Obviously, CT and magnetic resonance
imaging (MRI) are far more precise and reliable examinations, but both have downsides
that cannot be ignored. Specifically for CT, a notable downside is the associated ionizing
radiation. The equivalent dose for a chest CT is around 7 mSV [15], which is roughly three
times the medium annual background radiation exposure.

A clear limitation for MRI is the fact that subjects with different kinds of implants may
not undergo the examination.

Moreover, both examinations are more time-consuming, much more expensive, and
affected by subject cooperation. In the case of POCUS, the trade-off between pros and
cons is hugely in favor of the former: it is portable, safe, cheap, and repeatable in many
medical activities. As a downside, the generated images are noisy and are deeply affected
by operator experience, therefore its interpretation can be less obvious than CT or MRI.
Artificial intelligence can be used to narrow this gap: before 2019, deep learning (DL)
methods were effectively used on ultrasound datasets [16,17], but not specifically on lung
disease detection. Following the SARS-CoV-2 pandemic, an increase in articles about this
topic can be noted. The underlying reasons are evident: prompt response, economic needs,
scientific purposes, and an amount of data not available in the past.

1.1. Related Works

Two very recent and exhaustive literature reviews [18,19] highlight how much SARS-
CoV-2 has sped up research on the use of lung ultrasound (LUS) and machine learning
(ML). From these studies reporting several lines of research carried out, it emerged that ML
and DL algorithms are mainly used for classification and segmentation tasks.

This trend can even be spotted in the first two recognized works on the application of
DL in the analysis of LUS. The works of [20,21] were mainly based on a position paper that
proposes LUS as a standardized approach to assessing the condition of COVID-19 patients.
The work in [9] defines a standard procedure to acquire the images and proposes a score to
assert the severity of the pathology. The suggested score is based on different ultrasound
signs that are used as targets by different classification and segmentation algorithms. In
this context, [21] built a closed-access database named Italian COVID-19 Lung Ultrasound
DataBase (ICLUS-DB), while [20] mainly used open-access images to build the POCUS
dataset, which at present is the most used in literature for classification. Classification
studies focus primarily on the use of AI to discriminate between chest ultrasound images of
healthy and pneumonia-afflicted subjects [22]. The vast majority of these studies investigate
the possibility to distinguish between SARS-CoV-2 and bacterial pneumonia [23].

Among the best-performing ones, [11] employs a transfer learning approach by pre-
training a network using a more consistent lung CT/MRI dataset.

The ICLUS-DB database [21] is used to investigate both classification and segmentation
approaches.

Segmentation approaches studies focus more on the detection of biomarkers [21] and
signs that are important in POCUS diagnosis (e.g., A-lines, B-lines) [24]. Most recent and
interesting works provide solutions to discriminate LUS among healthy, pneumonia, and
SARS-CoV-2 conditions with good results: some preimplemented models, available in most
AI frameworks, have been applied on the dataset [25], such as Inception, VGG, and ResNet,
while some of them apply modifications to those models to better fit the problem [1,26].
Novel ad hoc architectures have been proposed; the most famous and often used as a
baseline is POCOVID-Net [27] and its improved version with attention mechanism [28];
a transformer from scratch is proposed in [29], and a network based on capsule (COVID-
CAPS) is used [30]. Other works with lightweight convolutional neural networks (CNNs)
defined from scratch are MINICOVID-NET [31,32] and lightweight transformer [33].

Since the classification of medical images entails decisions and actions involving
human beings, it is crucial that the system is secure and understandable, that it is used as
a second reading, and that the final decision must be made by a clinician. To this aim, an
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explanation of the results obtained by an automatic system must also be provided, and this
is what they attemptedin [1,29,31–33], using activation saliency map tools to highlight the
image region of interest (ROI) that the models focus on that affect the classification results.
Indeed, the use of POCUS as a diagnostic tool is a debated topic [9,34,35].

1.2. Work Contribution

In this paper, we aim to introduce new methods and models for the analysis of LUS
images in order to distinguish among SARS-CoV-2, pneumonia, and healthy conditions.
The proposed new model, using EfficientNet-b0 [36] as a core, is based on a recent strategy
for ensembling at the deep features level [37,38]. It reaches the state-of-the-art (SOTA)
accuracy of 100% on a well-known public reference dataset. The proposed model is
computationally efficient with a relatively low number of parameters and floating point
operations (FLOPs), making it in principle applicable for real-time operation in the point-
of-care scenario. As an additional contribution, the explainability of the ensemble model is
investigated with a preliminary analysis of activation maps. This research contributes to
the understanding of models and provides visual explanations of the obtained results.

The paper is organized as follows: in Section 2, the used dataset and the network
architecture proposed are introduced, current results are reported in Section 3 and discussed
in Section 4, while Section 5 ends the paper with conclusions and ideas for future work.

2. Materials and Methods
2.1. Dataset

The dataset used for this task is, to our knowledge, the largest publicly available LUS
dataset [39], comprising a total of 261 ultrasound videos and images from 216 different
patients among 41 different sources. The data were collected, cleaned, and reviewed by
medical experts. In particular, for the sake of this work and comparability with the SOTA,
we used the frame-based version when every single frame of each video is classified. In
Table 1, data distribution is described, and in Figure 1, some examples for each class
are shown. More details about the whole dataset (e.g., patient distribution, acquisition
technique, sources) are described both in [1] and in the GitHub repository of the project.

Table 1. Dataset description with the number of videos and the corresponding number of frames for
each class.

Class Videos Frames Total Frames

COVID-19 70 22 1024
Pneumonia 51 22 704
Healthy 75 15 1326

2.2. Validation Pipeline

In this section, the validation pipeline used is motivated, discussed, and detailed.
As already mentioned, the proposed method is based on a recent ensembling strategy
that was presented in [37,38], where its advantages are demonstrated on a wide group of
benchmark datasets for image classification. While we refer the reader to those papers for
a complete treatment, we briefly review the main motivations and concepts. Ensembling
is a well-known technique that combines several models, called weak learners, in order
to produce a model with better performance than any of the weak learners alone [40].
Usually, the combination is accomplished by aggregating the output of the weak learners,
generally by voting (respective averaging) for classification (respective regression). Other
aspects, such as ensemble size (i.e., the number of weak learners) and ensemble techniques
(e.g., bagging, boosting, stacking), are crucial for obtaining a satisfactory result. Since it
requires the training of several models, ensembles make the overall validation much more
expensive, and model complexity grows at least linearly with respect to the ensemble size;
moreover, ensembling is a time-consuming process, and this is the main reason preventing
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a more extended use in practice, especially in CV. Conversely, we revisited ensembling to
exploit this tool with restrained resources (e.g., with respect to model complexity, validation
time, and training time) and demonstrate its usage of a classification task of high relevance
in clinical practice, providing a possible method for real-time decision support in LUS.
The basic idea is to start training a set of weak models—that, in our case, are based on
the EfficinetNet family, which is known to have a favorable ratio between accuracy and
complexity—and then to instantiate and tune an ensemble model using a subset of the best-
performing weak models, through an ad hoc designed training procedure. Namely, for each
weak model, only the first layers, which correspond to feature extractor, are kept, while the
final classification layers, named output module, are disregarded. A combination layer is
introduced to combine all the output of the weak feature extractors. Such a combination
layer is trainable through a standard procedure which is achieved by keeping the feature
extractors frozen. It might be argued that the proposed ensembling strategy performs a
combination at the deep feature level, which seems to be a rather innovative approach,
to the best of our knowledge. In addition, the training procedure of the ensembling does
not produce a relevant computational burden since most of the layers of the ensemble are
kept frozen. Finally, with the overall architecture being embarrassingly parallel, moving
from weak learners to ensembling does not involve a significant change in computational
time. Note that, in our experiments, end-to-end training using transfer learning [41] from
ImageNet pretrained models [42] is performed in order to assess and select the weak
models, and then the ensemble is defined and fine-tuned. Figure 2 shows the pipeline and
the architectures used in our work, and the description of details follows.

2.2.1. EfficientNet

Since ultrasound has the advantage of being processed in real time, the efficiency
of the processing plays a crucial role. In this work, EfficientNet-b0 [36] is used as a core
model because the EfficientNet architecture family is the only one that reverted the trend
to trade a small accuracy improvement with a huge complexity growth (Table 2) and,
according to Table 3 and previous work [37], EfficientNet-b0 is the architecture having the
best accuracy/complexity trade-off. The efficiency of this architecture is given by two main
factors: (i) the inverted bottleneck MBConv (first introduced in MobileNetV2) as a core
module, which expands and compresses channels, reducing the complexity of convolution;
and (ii) the compound scaling by which input, width, and depth scaling are performed in
conjunction, since it is observed that they are dependent.

2.2.2. Hyperparameters

After a previous investigation, in order to reduce the search space, some hyperparam-
eters have been fixed:

Input size: Set to 512 × 512 because it is the best resolution in order to have less computa-
tional cost without losing image details.

Batch size: Set to the maximum available using our GPU (32 GB RAM) which is 50 for
end-to-end and 200 for fine-tuning.

Regularization: To prevent overfitting, early-stopping is used, and patience is set at 10, be-
cause deep models have relatively fast convergence and they usually start overfitting
early, so no more patience is needed.

Optimizer: AdaBelief [43] with learning rate 5 · 10−4, betas (0.9, 0.999), eps 10−16, using
weight decoupling without rectifying, to have both fast convergence and generalization.

Validation metric: Weighted F1-score which better takes into account both errors and
data imbalance.

Dataset split: 75/10/15, respectively, for train/valid/test subsets.

Standardization: Data are processed in order to belong to a distribution with values
around the mean and unit standard deviation, improving stability and convergence
of the training.
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Interpolation: Lanczos for both end-to-end and fine-tuning.

COVID-19 COVID-19 COVID-19

Pneumonia Pneumonia Pneumonia

Healthy Healthy Healthy

Figure 1. Some COVID-19 (first row), pneumonia (second row), and healthy (third row) samples
from the dataset. As can be appreciated from the images, even among the same class, the sample
appears to be very heterogeneous, and there is no kind of bias (e.g., pattern, color).

Then, the search on the following hyperparameter is performed:

Seeds: Five seeds are used for the end-to-end training (seeds affect both subset splitting
and classification layer initialization) and five seeds for ensemble of the fine-tuning
(affecting the combination layer initialization only).

2.2.3. Efficient Adaptive Ensemble

Ensembling is the way of combining two or more models (i.e., weak models) in order
to have a new combined model better than the weak ones [44]. In this work, ensembling is
performed in this way:

• Select the best two end-to-end trained models (i.e., weak models);
• Remove the classification layers from the weak models;
• Freeze the parameters of the weak models;
• Initialize a fresh combination linear layer;
• Train the ensemble model (i.e., fine-tune the combination layer) by usual gradient descent.
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Run 1

EfficientNet-b0
End-to-end

EfficientNet-b0

Run 2EfficientNet-b0
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Fine-tuning

Ensemble 
model
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model

Run 3 Run 3

(a)

Frozen module 

Skipped module 

Trainable module 

Output  Module
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Extractor

Input

Features

Output

Output  
Module
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Input

Output  
Module
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Input

Features
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Output

Input

2Features1

Features2Features1

EfficientNet-b0 Ensemble 

(b)
Figure 2. The pipeline and the architectures used in this work. The pipeline (a) is made by
two main steps: first, end-to-end EfficienNet-b0 training, then ensemble fine-tuning using the
best two models (surrounded by a dashed line) of the previous step as weak models. The architectures
(b) used are EfficientNet-b0 for end-to-end training, and the ensemble is performed by using a train-
able combination layer on the features of the weak models (dark-filled output modules are skipped);
moreover, training computational complexity is reduced by freezing the parameters of weak models
(light gray filled modules). Both validation steps perform runs with five different seeds (i.e., modules
initialization). (a) Validation pipeline. (b) Architectures.

Table 2. Evolution of the state-of-the-art on the ImageNet classification task. As can be seen, after
EfficientNet, the complexity grows exponentially; with respect to the accuracy improvement, the
same trend can be noticed on other state-of-the-art datasets (e.g., CIFAR, MNIST). N.B. Only some
architectures providing relevant improvements are shown in this table.

Model Year Accuracy #Parameters #FLOPs

AlexNet 2012 63.3% 60 M 0.7 G
InceptionV3 2015 78.8% 24 M 6 G
ResNeXt-101 64 × 4 2016 80.9% 84 M 31 G
EfficientNet-b7 2019 84.3% 67 M 37 G
Swin-L 2021 87.3% 197 M 104 G
NFNet-F4+ 2021 89.2% 527 M 367 G
ViT-G/14 2021 90.4% 1843 M 2859 G
ViT-e 2022 90.9% 3900 M 1980 G
CoAtNet-7 (BASIC-L) 2023 91.1% 2440 M 2586 G

Table 3. Performances of EfficientNet family on ImageNet classification task.

Model Accuracy #Parameters #FLOPs

EfficientNet-b0 77.1% 5.3 M 0.39 G
EfficientNet-b1 79.1% 7.8 M 0.70 G
EfficientNet-b2 80.1% 9.2 M 1.00 G
EfficientNet-b3 81.6% 12 M 1.80 G
EfficientNet-b4 82.9% 19 M 4.20 G
EfficientNet-b5 83.6% 30 M 9.90 G
EfficientNet-b6 84.0% 43 M 19.0 G
EfficientNet-b7 84.3% 67 M 37.0 G

This kind of ensemble is (i) efficient because only the combination layer is fine-tuned
and there are just two weak models that can be executed in parallel since their processing
is independent, and (ii) adaptive since the ensemble and, especially, its combination layer
are trained according to the data.



Bioengineering 2023, 10, 555 7 of 15

3. Results

For the sake of robustness and comparability with the SOTA, experiments were
conducted using stratified 5-fold cross-validation, keeping the frames of a single video
belonging to one fold only and having the number of videos per class similar in all folds.
In this way, every fold is treated as an independent task, as described in Section 2.2.

The results on the single folds reported in Tables 4–8 show that the ensemble obtains
100% accuracy at every run in all folds, so now we focus on end-to-end weak model results.
Fold 1 (Table 4) seems to be the hardest, having no runs with 100% at every subset, and
Fold 2 (Table 5) is the easiest, with 100% accuracy at every run while the remaining folds
are in the “average” (see Table 9 for the mean accuracies on every subset for each fold).

Last, but not least, according to Table 10, the proposed method improves the SOTA,
reducing the number of parameters and FLOPS.

Table 4. Fold 1 results—this fold seems to be the hardest one, having end-to-end run with the lowest
mean accuracies. With the ensemble fine-tuning, similar to the rest of the folds, 100% accuracy
is reached.

Weak Ensemble
Test Valid Train Test Valid Train

0.982456 1.000000 0.995536 1.000000 1.000000 1.000000
0.964912 0.927273 0.959821 1.000000 1.000000 1.000000
0.964912 0.927273 0.941964 1.000000 1.000000 1.000000
0.964912 0.927273 0.939732 1.000000 1.000000 1.000000
0.964912 0.909091 0.939732 1.000000 1.000000 1.000000

Table 5. Fold 2 results—this fold seems to be the easiest one, having 100% on all end-to-end runs;
results are also confirmed by the ensemble (runs on ensemble were performed just for completeness).

Weak Ensemble
Test Valid Train Test Valid Train

1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
1.000000 1.000000 1.000000 1.000000 1.000000 1.000000

Table 6. Fold 3 results—results on this fold are unusual since the best end-to-end run obtains 100%
on test and valid, but not on train, subsets. Ensemble fine-tuning confirmed reaching 100%.

Weak Ensemble
Test Valid Train Test Valid Train

1.000000 1.000000 0.995402 1.000000 1.000000 1.000000
1.000000 0.981481 0.997701 1.000000 1.000000 1.000000
1.000000 0.981481 0.995402 1.000000 1.000000 1.000000
1.000000 0.981481 0.986207 1.000000 1.000000 1.000000
1.000000 0.962963 0.997701 1.000000 1.000000 1.000000
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Table 7. Fold 4 results—results on this fold are “average” since some end-to-end runs obtain 100%
accuracy on all subsets while the ensemble confirms 100% on all runs.

Weak Ensemble
Test Valid Train Test Valid Train

1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
1.000000 0.984127 0.996047 1.000000 1.000000 1.000000
0.984375 1.000000 0.998024 1.000000 1.000000 1.000000
0.984375 1.000000 0.996047 1.000000 1.000000 1.000000

Table 8. Fold 5 results—results on this fold are “average” since some end-to-end runs obtain 100%
accuracy on all subsets while the ensemble confirms 100% on all runs.

Weak Ensemble
Test Valid Train Test Valid Train

1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
1.000000 1.000000 0.995789 1.000000 1.000000 1.000000
1.000000 1.000000 0.989474 1.000000 1.000000 1.000000
1.000000 1.000000 0.987368 1.000000 1.000000 1.000000

Table 9. End-to-end weak models training mean accuracies on every subset for each fold.

Test Valid Train

Fold 1 0.968 ± 0.007 0.938 ± 0.032 0.955 ± 0.021
Fold 2 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000
Fold 3 1.000 ± 0.000 0.981 ± 0.012 0.994 ± 0.004
Fold 4 0.993 ± 0.008 0.996 ± 0.006 0.998 ± 0.002
Fold 5 1.000 ± 0.000 1.000 ± 0.000 0.994 ± 0.005

Average 0.992 ± 0.012 0.983 ± 0.024 0.988± 0.017

Table 10. Comparisons, with metrics for each class, of the proposed model with the SOTA. Accuracy
in brackets, if any, refers to balanced accuracy. Values are reported with the same significant digits as
reported in the original papers.

Class Recall Precision F1-Score

POCOVID-Net [27]
Acc.: 82.1% COVID-19 0.881 ± 0.108 0.846 ± 0.068 0.863 ± 0.083
#Param.: 14.7 M Pneumonia 0.915 ± 0.031 0.939 ± 0.042 0.927 ± 0.028
FLOPs: 30.7 G Healthy 0.519 ± 0.029 0.562 ± 0.082 0.540 ± 0.043

MINICOVID-Net [31]
Acc.: 82.7% COVID-19 0.918 ± 0.096 0.819 ± 0.039 0.866 ± 0.056
#Param.: 3.4 M Pneumonia 0.903 ± 0.053 0.824 ± 0.045 0.862 ± 0.049
FLOPs: 1.15 G Healthy 0.447 ± 0.011 0.623 ± 0.095 0.521 ± 0.010

VGG-16 [1]
Acc.: 87.8% (87.1%) COVID-19 0.88 ± 0.07 0.90 ± 0.07 0.89 ± 0.06
#Param.: 14.7 M Pneumonia 0.90 ± 0.11 0.81 ± 0.08 0.85 ± 0.08
FLOPs: 15.3 G Healthy 0.83 ± 0.11 0.90 ± 0.06 0.86 ± 0.08

InceptionV3 [25]
Acc.: 89.1% (89.3%) COVID-19 0.864 ± 0.036 0.901 ± 0.031 0.880 ± 0.030
#Param.: 23.9 M Pneumonia 0.908 ± 0.025 0.842 ± 0.037 0.871 ± 0.025
FLOPs: 6 G Healthy 0.907 ± 0.026 0.918 ± 0.021 0.911 ± 0.021
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Table 10. Cont.

Class Recall Precision F1-Score

DenseNet-201 [26]
Acc.: 90.4% COVID-19 0.892 0.918 0.905
#Param.: 20 M Pneumonia 0.903 0.610 0.728
FLOPs: 4.29 G Healthy 0.850 0.842 0.846

Light Transformer [33]
Acc.: 93.4% COVID-19 0.958 ± 0.025 0.958 ± 0.012 0.951 ± 0.017
#Param.: 0.3 M Pneumonia 0.948 ± 0.013 0.951 ± 0.038 0.949 ± 0.020
FLOPs: 1 G a Healthy 0.877 ± 0.034 0.912 ± 0.037 0.894 ± 0.036

Weak model (our)
Acc.: 98.7% (98.3%) COVID-19 0.984 ± 0.004 0.993 ± 0.004 0.990 ± 0.004
#Param.: 5 M Pneumonia 0.997 ± 0.005 0.991 ± 0.006 0.991 ± 0.007
FLOPs: 0.39 G Healthy 0.999 ± 0.003 0.993 ± 0.003 0.995 ± 0.004

Ensemble (our)
Acc.: 100% (100%) COVID-19 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000
#Param.: 10 M b Pneumonia 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000
FLOPs: 0.78 G c Healthy 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000

a FLOPs or any computational-cost-related metrics are not provided in this work; however, even if the number
of parameters is very low (due to weight sharing), the attention modules are the bottleneck of the transformer
and perform a huge amount of FLOPs, and the types of attention they used usually perform at least 1GFLOPs.
b The actual trainable parameters are 0.1 M (the parameters of the combination layer), and the backward
pass during the training ends very early because there is no reason to propagate gradients to the input layer.
c The forward pass can be parallelized, having the same execution time of a weak model.

4. Discussion

Dataset issues were extensively discussed in its official presentation paper [1]. The
method presented here for classifying COVID-19, pneumonia, and healthy LUS outper-
forms the SOTA: its importance is in terms of the number of parameters and on complexity
which are both lower than previous methods, pointing the way to an efficient and fast
classification system that can be embedded in real-time scenarios. On one side, the dataset
used is undoubtedly the biggest one publicly available; on the other side, it would be
better to test the proposed method on even larger and more heterogeneous datasets to
prove its validity. However, since such datasets are not currently available, we performed
two more actions to further investigate our model: (a) progressively reducing the size
of the training set without modifying the validation and test sets, and (b) progressively
reducing the train set and moving the removed data to the other two sets. In both cases,
deterioration is observed when there is a strong reduction (in case (a) when the train set is
reduced to 40% of the original size; in case (b) when the train dataset is less than one-third
of the entire dataset). Clearly, this behavior might be symptomatic of a certain overfitting
level which, however, cannot be overcome, given the limits of the POCOVID dataset itself.
To analyze more in-depth the model and to better understand its behavior, we applied
the gradient-weighted class activation mapping (GradCAM) [45] algorithm, producing
visual explanations: as the saliency maps show, our model seems to produce reasonable
explanations since in all the cases it is focusingon meaningful areas. On the other side,
when we apply the same method to weak models which did not obtain 100% of accuracy,
it is clear that the model concentrates on areas of the LUS that are less, or not, important.
Indeed, we generally noticed that an accurate classification focused on (see a representative
example in Figure 3):

• “Evidence” usually at the upper side of the image and concentrated activations in the
case of COVID-19;

• “Evidence” everywhere (mainly lower part) with relaxed activation in the case of
pneumonia;



Bioengineering 2023, 10, 555 10 of 15

• Mainly the healthy part of the lung (black) with very expanded activation in the case
of healthy.

Healthy Healthy

Pneumonia Pneumonia

COVID-19 COVID-19

Figure 3. Healthy (first row), pneumonia (second row), and COVID-19 (third row) samples from the
dataset and their saliency map. Red (higher) to blue (lower) scale.

Samples of saliency maps of every possible combination of wrong versus correct
predictions are shown in Figures 4–9.
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From the point of view of the classification, no particular limitations can be found at
the current stage; indeed, our work hugely improved (+5.3% up to +6.6%) the accuracy
of the SOTA with lower complexity (in the worst case, −22% up to −61% FLOPs). As
reported in Table 10, the FLOPS of the old SOTA model were not provided by the authors,
but we just estimated it as lower bound; therefore, this difference may be even higher. The
explainability is still an challenging open problem in DL [46–48]; nevertheless, our model
in combination with GradCAM provides a significant support to understand the relevant
information exploited to produce its output.

Prediction vs. Real (Healthy vs. COVID-19)

Figure 4. Classifications of a COVID-19 image: in the middle, the input image; on the left, the focus
of a wrong classification as healthy; on the right, the focus of the correct classification obtained by the
classifier achieving 100% accuracy. Red (higher) to blue (lower) scale.

Prediction vs. Real (Pneumonia vs. COVID-19)

Figure 5. Classification of a COVID-19 image: in the middle, the input image; on the left, the focus of
a wrong classification as pneumonia; on the right, the focus of the correct classification obtained by
the classifier achieving 100% accuracy. Red (higher) to blue (lower) scale.

Prediction vs. Real (Healthy vs. Pneumonia)

Figure 6. Classification of a pneumonia image: in the middle, the input image; on the left, the focus
of a wrong classification as healthy; on the right, the focus of the correct classification obtained by the
classifier achieving 100% accuracy. Red (higher) to blue (lower) scale.
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Prediction vs. Real (COVID-19 vs. Pneumonia)

Figure 7. Classification of a pneumonia image: in the middle, the input image; on the left, the focus
of a wrong classification as COVID-19; on the right, the focus of the correct classification obtained by
the classifier achieving 100% accuracy. Red (higher) to blue (lower) scale.

Prediction vs. Real (COVID-19 vs. Healthy)

Figure 8. Classification of a healthy image: in the middle, the input image; on the left, the focus of a
wrong classification as COVID-19; on the right, the focus of the correct classification obtained by the
classifier achieving 100% accuracy. Red (higher) to blue (lower) scale.

Prediction vs. Real (Pneumonia vs. Healthy)

Figure 9. Classification of a healthy image: in the middle, the input image; on the left, the focus of a
wrong classification as pneumonia; on the right, the focus of the correct classification obtained by the
classifier achieving 100% accuracy. Red (higher) to blue (lower) scale.

5. Conclusions

An artificial intelligence method was presented to automatically classify LUS videos
into healthy, COVID-19, or pneumonia: the proposed method matches both advantages
(e.g., portability, safety) and disadvantages (e.g., challenging interpretation) of LUS. An
efficient adaptive ensembling model based on two EfficientNet-b0 weak models achieved
an accuracy of 100% on the largest publicly available LUS dataset, improving the perfor-
mance with respect to the previous SOTA, maintaining the same order of magnitude of an
EfficientNet-b0 model. The extremely low computational cost makes the proposed method
suitable for embedding in real-time systems; in fact, the FLOPs are comparable to values
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considered acceptable more than ten years ago (i.e., AlexNet, Table 2). Moreover, using
saliency maps, the proposed method provides a supporting visual explanation highlighting
areas of the LUS images to discern between the analyzed class.

Future investigations will focus on further improving our adaptive efficient ensem-
bling model and applying it to classify other important signs in LUS that we are acquiring
in an ongoing telemedicine project [49]. Finally, we would also like to test our work on
further point-of-care analysis (e.g., A-lines, B-lines, thickness) involving object detection
and segmentation tasks.
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