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Abstract. The reference indexing problem for k-mers is to pre-process
a collection of reference genomic sequences R so that the position of all
occurrences of any queried k-mer can be rapidly identified. An efficient
and scalable solution to this problem is fundamental for many tasks in
bioinformatics.

In this work, we introduce the spectrum preserving tiling (SPT), a
general representation of R that specifies how a set of tiles repeatedly
occur to spell out the constituent reference sequences in R. By encoding
the order and positions where tiles occur, SPTs enable the implementa-
tion and analysis of a general class of modular indexes. An index over
an SPT decomposes the reference indexing problem for k-mers into: (1)
a k-mer-to-tile mapping; and (2) a tile-to-occurrence mapping. Recently
introduced work to construct and compactly index k-mer sets can be used
to efficiently implement the k-mer-to-tile mapping. However, implement-
ing the tile-to-occurrence mapping remains prohibitively costly in terms
of space. As reference collections become large, the space requirements of
the tile-to-occurrence mapping dominates that of the k-mer-to-tile map-
ping since the former depends on the amount of total sequence while the
latter depends on the number of unique k-mers in R.

To address this, we introduce a class of sampling schemes for SPTs
that trade off speed to reduce the size of the tile-to-reference map-
ping. We implement a practical index with these sampling schemes in
the tool pufferfish2. When indexing over 30,000 bacterial genomes,
pufferfish2 reduces the size of the tile-to-occurrence mapping from
86.3 GB to 34.6 GB while incurring only a 3.6× slowdown when query-
ing k-mers from a sequenced readset.

Availability: pufferfish2 is implemented in Rust and available at
https://github.com/COMBINE-lab/pufferfish2.
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1 Introduction

Indexing of genomic sequences is an important problem in modern computational
genomics, as it enables the atomic queries required for analysis of sequencing
data—particularly reference guided analyses where observed sequencing data
is compared to known reference sequences. Fundamentally, analyses need to
first rapidly locate short exact matches to reference sequences before performing
other operations downstream. For example, for guided assembly of genomes,
variant calling, and structural variant identification, seed sequences are matched
to known references before novel sequences are arranged according to the seeds
[1]. For RNA-seq, statistics for groups of related k-mers mapping to known
transcripts or genes allow algorithms to infer the activity of genes in single-cell
and bulk gene-expression analyses [2–4].

Recently, researchers have been interested in indexing collections of genomes
for metagenomic and pan-genomic analyses. There have been two main types
of approaches: full-text indexes, and hashing based approaches that typically
index the de Bruijn graph (dBG). With respect to full-text indexes, researchers
have developed tools that use the r-index [5] to compute matching statistics and
locate maximal exact matches for large reference collections [6,7]. For highly
repetitive collections, such as many genomes from the same species, r-index based
approaches are especially space efficient since they scale linearly to the number
of runs in the Burrows-Wheeler Transform (BWT) [8] and not the length of the
reference text. With respect to hashing based approaches, tools restrict queries
to fixed length k-mers [1,9] and index the dBG. These tools achieve faster exact
queries but typically trade off space. In other related work, graph-based indexes
that compactly represent genomic variations as paths on graphs have also been
developed [10,11]. However, these indexes require additional work to project
queries landing on graph-based coordinates to linear coordinates on reference
sequences.

Many tools have been developed to efficiently build and represent the dBG
[12,13]. Recently, Khan et al. introduced a pair of methods to construct the
compacted dBG from both assembled references [14] and read sets [15]. Ekim et
al. [16] introduced the minimizer-space dBG –a highly effective lossy compres-
sion scheme that uses minimizers as representative sequences for nodes in the
dBG. Karasikov et al. developed the Counting dBG [17] that stores differences
between adjacent nodes in the dBG to compress metadata associated with nodes
(and sequences) in a dBG. Encouragingly, much recent work on Spectrum Pre-
serving String Sets (SPSS) that compactly index the set-membership of k-mers
in reference texts has been introduced [15,18–23]. Although these approaches do
not tackle the locate queries directly, they do suggest that even more efficient
solutions for reference indexing are possible.

In this work, we extend these recent ideas and introduce the concept of
a Spectrum Preserving Tiling (SPT) which encodes how and where k-mers in
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an SPSS occur in a reference text. In introducing the SPT, this work makes
two key observations. First, a hashing based solution to the reference indexing
problem for k-mers does not necessitate a de Bruijn graph but instead requires
a tiling over the input reference collection—the SPT formalizes this. Second,
the reference indexing problem for k-mers queries can be cleanly decomposed
into a k-mer-to-tile query and a tile-to-occurrence query. Crucially, SPTs enable
the implementation and analysis of a general class of modular indexes that can
exploit efficient implementations introduced in prior work.

Contributions. We focus our work on considering how indexes can, in practice,
efficiently support the two composable queries—the k-mer-to-tile query and the
tile-to-occurrence query. We highlight this work’s key contributions below. We
introduce:

1. The spectrum preserving tiling (SPT). An SPT is a general representation
that explicitly encodes how shared sequences—tiles—repeatedly occur in a
reference collection. The SPT enables an entire class of sparse and modular
indexes that support exact locate queries for k-mers.

2. An algorithm for sampling and compressing an indexed SPT built from unitigs
that samples unitig-occurrences. For some small constant “sampling rate”, s,
our algorithm stores the positions of only ≈ 1/s occurrences and encodes all
remaining occurrences using a small constant number of bits.

3. Pufferfish2: a practical index and implementation of the introduced sam-
pling scheme. We highlight the critical engineering considerations that make
pufferfish2 effective in practice.

2 Problem Definition and Preliminaries

The Mapped Reference Position (MRP) Query. In this work we consider
the reference indexing problem for k-mers. Given a collection of references R =
{R1, . . . , RN}, where each reference is a string over the DNA alphabet {A, C, T, G},
we seek an index that can efficiently compute the mapped reference position
(MRP) query for a fixed k-mer size k. Given any k-mer x, the MRP query
enumerates the positions of all occurrences of x in R . Precisely, each returned
occurrence is a tuple (n, p) that specifies that k-mer, x, occurs in reference n at
position p where Rn[p : p + k] = x. If a k-mer does not occur in some Rn ∈ R ,
the MRP query returns an empty list.

Basic Notation. Strings and lists are zero-indexed. The length of a sequence
S is denoted |S|. The i-th character of a string S is S[i]. A k-mer is a string of
length k. A sub-string of length � in the string S starting at position i is notated
S[i : i + �]. The prefix and suffix of length i is denoted S[: i] and S[|S| − i :],
respectively. The concatenation of strings A and B is denoted A ◦ B.

We define the glue operation, A ⊕k B, to be valid for any pair of strings A
and B that overlap by (k−1) characters. If the (k−1)-length suffix of A is equal
to the (k − 1)-length prefix of B, then A ⊕k B := A ◦ B[(k − 1) :]. When k clear
from context, we write A ⊕ B in place of A ⊕k B.
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Rank and Select Queries over Sequences. Given a sequence S, the rank
query given a character α and position i, written rankα(S, i), is the number of
occurrences of α in S[: i] The select query selectα(S, r) returns the position of
the r-th occurrence of symbol α in S. The access query access(S, i) returns S[i].
For a sequence of length n over an alphabet of size σ, these can be computed in
O(lg σ) time using a wavelet matrix that requires n lg σ + o(n lg σ) bits [24].

3 Spectrum Preserving Tilings

In this section, we introduce the spectrum preserving tiling, a representation of
a given reference collection R that specifies how a set of tiles containing k-mers
repeatedly occur to spell out the constituent reference sequences in R . This
alternative representation enables a modular solution to the reference indexing
problem, based on the interplay between two mappings—a k-mer-to-tile mapping
and a tile-to-occurrence mapping.

3.1 Definition

Given a k-mer length k and an input reference collection of genomic sequences
R = {R1, . . . , RN}, a spectrum preserving tiling (SPT) for R is a five-tuple
Γ := (U ,T , S ,W ,L):

Fig. 1. (a) A spectrum preserving tiling (SPT) with k = 3, (b) with tiles (an SPSS)
that contain all k-mers in references. (c) The SPT explicitly encodes where each k-mer
occurs.

• Tiles: U = {U1, . . . , UF }. The set of tiles is a spectrum preserving string set,
i.e., a set of strings such that each k-mer in R occurs in some Ui ∈ R . Each
string Ui ∈ U is called a tile.

• Tiling sequences: T = {T1, . . . , TN} where each Tn corresponds to each
reference Rn ∈ R . Each tiling sequence is an ordered sequence of tiles Tn =
[Tn,1, . . . , Tn,Mn

], of length Mn, with each Tn,m = Ui ∈ U . We term each Tn,m

a tile-occurrence.
• Tile-occurrence lengths: L = {L1, . . . , LN}, where each Ln =

[ln,1, . . . , ln,Mn
] is a sequence of lengths.

• Tile-occurrence offsets: W = {W1, . . . ,WN}, where each Wn =
[wn,1, . . . , wn,Mn

] is an integer-sequence.
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• Tile-occurrence start positions: S = {S1, . . . , SN}, where each Sn =
[sn,1, . . . , sn,Mn

] is an integer-sequence.

A valid SPT must satisfy the spectrum preserving tiling property, that every
reference sequence Rn can be reconstructed by gluing together substrings of tiles
at offsets Wn with lengths Ln:

Rn = Tn,1[wn,1 : wn,1 + ln,1] ⊕ . . . ⊕ Tn,Mn
[wn,Mn

: wn,Mn
+ ln,Mn

].

Specifically, the SPT encodes how redundant sequences—tiles—repeatedly
occur in the reference collection R . We illustrate how an ordered sequence of
start-positions, offsets, and lengths explicitly specify how redundant sequences
tile a pair of references in Fig. 1. More succinctly, each tile-occurrence Tn,m with
length ln,m tiles the reference sequence Rn as:

Rn[sn,m + wn,m : sn,m + wn,m + ln,m] = Tn,m[wn,m : wn,m + ln,m].

In the same way a small SPSS compactly determines the presence of a k-
mer, a small SPT compactly specifies the location of a k-mer. For this work,
we consider SPTs where any k-mer occurs only once in the set of tiles U . The
algorithms and ideas introduced in this paper still work with SPTs where a k-mer
may occur more than once in U (some extra book-keeping of a one-to-many k-
mer-to-tile mapping would be needed, however). For ease of exposition, we ignore
tile orientations here. We completely specify the SPT with orientations, allowing
tiles to simultaneously represent reverse-complement sequences, in Section S.2.

3.2 A General and Modular Index over Spectrum Preserving
Tilings

Any SPT is immediately amenable to indexing by an entire class of algorithms.
This is because an SPT yields a natural decomposition of the MRP query
(defined in Sect. 2) where k-mers first map to the tiles and tile-occurrences then
map to positions in references. To index a reference collection, a data structure
need only compose a query for the positions where k-mers occur on tiles in a
SPSS with a query for the positions where tiles cover the input references.

Ideally, an index should find a small SPT where k-mers are compactly repre-
sented in the set of tiles where tiles are “long” and tiling sequences are “short”.
Compact tilings exist for almost all practical applications since the amount of
unique sequence grows much more slowly than the total length of reference
sequences. Finding a small SPSS where k-mers occur only once has been solved
efficiently [18–20]. However, it remains unclear if a small SPSS induces a small
SPT, since an SPT must additionally encode tile-occurrence positions. Currently,
tools like pufferfish index reference sequences using an SPT built from the
unitigs of the compacted de Bruijn graph (cdBG) constructed over the input
sequences, which has been found to be sufficiently compact for practical applica-
tions. Though the existence of SPSSs smaller than cdBGs suggest that smaller
SPTs might be found for indexing, we leave the problem of finding small or even
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optimal SPTs to future work. Here, we demonstrate how indexing any given
SPT is modular and possible in general.

Given an SPT, the MRP query can be decomposed into two queries that can
each be supported by sparse and efficient data structures. These queries are:

• The kmer-to-tile query: Given a k-mer x, k2tile(x) returns (i, p)—the
identity of the tile Ui that contains x and the offset (position) into the tile
Ui where x occurs. That is, k2tile(x) = (i, p) iff Ui[p : p + k] = x. If x is not
in R , k2tile(x) returns ∅.

• The tile-to-occurrence query: Given the r-th occurrence of the tile Ui,
tile2occ(i, r) returns the tuple (n, s, w, l) that encodes how Ui tiles the refer-
ence Rn. When tile2occ(i, r) = (n, s, w, l), the r-th occurrence of Ui occurs
on Rn at position (s+w), with the sequence Ui[w : w+ l]. Let the r-th occur-
rence of Ui be Tn,m on T , then tile2occ(i, r) returns (n, sn,m, wn,m, ln,m).

When these two queries are supported, the MRP query can be computed
by Algorithm 1. By adding the offset of the queried k-mer x in a tile Ui to
the positions where the tile Ui occurs, Algorithm 1 returns all positions where
a k-mer occurs. Line 10 checks to ensure that any occurrence of the queried
k-mer is returned only if the corresponding tile-occurrence of Ui contains that
k-mer. We note that storing the number of occurrences of a tile and returning
num-occs(Ui) requires negligible computational overhead. In practice, the length
of tiling sequences, T , are orders of magnitude larger than the number of unique
tiles. In this work, we shall use occi, to denote the number of occurrences of Ui

in tiling sequences T .

Algorithm 1:
1 def mrp(x):
2 tup ← k2tile(x)
3 if tup = ∅ then
4 return [ ]

5 (i, p) ← tup
6 occi ← num-occs(Ui)
7 ans ← [ ]

8 for r ← 0 to occsi do
9 (n, s, w, l) ← tile2occ(i, r)

10 if w ≤ p ≤ (w + l − k) then
11 ans.append(n, s + p)

12 return ans

3.3 “Drop in” Implementations for Efficient k-mer-to-tile Queries

Naturally, prior work for indexing and compressing spectrum preserving string
sets (SPSS) can be applied to implement the k-mer-to-tile query. When
pufferfish was first developed, the data structures required to support the
k-mer-to-tile query dominated the size of moderately sized indexes. Thus,
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Almodaresi et al. [9] introduced a sampling scheme that samples k-mer posi-
tions in unitigs. Recently, Pibiri [21,22] introduced SSHash, an efficient k-mer
hashing scheme that exploits minimizer based partitioning and carefully handles
highly-skewed distributions of minimizer occurrences. When built over an SPSS,
SSHash stores the k-mers by their order of appearance in the strings (which we
term tiles) of an SPSS and thus allows easy computation of a k-mer’s offset into
a tile. Other methods based on the Burrows-Wheeler transform (BWT) [8], such
as the Spectral BWT [23] and BOSS [25], could also be used. However, these
methods implicitly sort k-mers in lexicographical order and would likely need
an extra level of indirection to implement k2tile. Unless a compact scheme is
devised, this can outweigh the space savings offered by the BWT.

3.4 Challenges of the Tile-to-Occurrence Query

The straightforward solution to the tile-to-occurrence query is to store the
answers in a table, utab, where utab[i] stores information for all occurrences
of the tile Ui and computing tile2occ(i, r) amounts to a simple lookup into
utab[i][r]. This is the approach taken in the pufferfish index and has proven to
be effective for moderately sized indexes. This implementation is output optimal
and is fast and cache-friendly since all occi occurrences of a tile Ui can be accessed
contiguously. However, writing down all start positions of tile-occurrences in
utab is impractical for large indexes.

For larger indexes (e.g. metagenomic references, many human genomes),
explicitly storing utab becomes more costly than supporting the k-mer-to-tile
query. This is because, as the number of indexed references grow, the number of
distinct k-mers grows sub-linearly whereas the number of occurrences grows with
the (cumulative) reference length. Problematically, the number of start positions
of tile-occurrences grows at least linearly. For a reference collection with total
sequence length L, a naive encoding for utab would take O(L lg L) bits, as each
position require �lg L� bits and there can be at most L distinct tiles.

Other algorithms that support “locate” queries suffer from a similar problem.
To answer queries in time proportional to the number of occurrences of a query,
data structures must explicitly store positions of occurrences and access them
in constant time. However, storing all positions is impractical for large reference
texts or large k-mer-sets. To address this, some algorithms employ a scheme
to sample positions at some small sampling rate s, and perform O(s) work to
retrieve not-sampled positions. Since s is usually chosen to be a small constant,
this extra O(s) work only imposes a slight overhead.

One may wonder if utab—which is an inverted index—can be compressed
using the techniques developed in the Information Retrieval field [26]. For bio-
logical sequences, a large proportion of utab consists of very short inverted lists
(e.g. unique variants in indexed genomes) that are not well-compressible. In fact,
these short lists occur at a rate that is much higher than for inverted indexes
designed for natural languages. So, instead applying existing compression tech-
niques, we develop a novel sampling scheme for utab and the tile-to-occurrence
query that exploits the properties of genomic sequences.
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Fig. 2. (a) A unitig-tiling is an SPT where tiles, unitigs, always occur completely
in the reference sequences. (b) The MRP query is performed by computing a k-
mer’s offset into a unitig (k2u), then adding the offset to the positions where unitig-
occurrences appear in indexed reference sequences (u2occ). To naively support the
unitig-to-occurrence query, positions of all unitig-occurrences are stored in a table,
utab.

Fig. 3. (a) Pufferfish2 samples unitigs and their occurrences on a unitig-tiling. Only
the positions of the occurrences of the sampled unitigs (black) are stored in utab. Posi-
tions of the not-sampled unitigs (gray) can be computed relative to the positions of
sampled unitigs by traversing backwards on the visualized tiling of references. Sam-
pling the zero-th unitig-occurrence on every reference sequence guarantees that traver-
sals terminate. (b) Predecessor and successor nucleotides are obtained from adjacent
unitig occurrences and are stored in the order in which they appear on the references.
These nucleotides for the r-th occurrence of Ui is stored in ptab[i][r] and stab[i][r],
respectively.

4 Pufferfish2

Below, we introduce pufferfish2, an index built over an SPT consisting of
unitigs. Pufferfish2 applies a sampling scheme to sparsify the tile-to-occurrence
query of a given pufferfish index [9].

4.1 Interpreting pufferfish as an Index over a Unitig-Based SPT

Though not introduced this way by Almodaresi et al., pufferfish is an index
over a unitig-tiling of an input reference collection [9]. A unitig-tiling is an SPT
which satisfies the property that all tiles always occur completely in references
where, for every tile-occurrence Tn,m = Ui, offset wn,m = 0 and length ln,m =
|Ui|. When this property is satisfied, we term tiles unitigs.

An index built over unitig-tilings does not need to store tile-occurrence off-
sets, W , or tile-occurrence lengths L since all tiles have the same offset (zero)
and occur with maximal length. For indexes constructed over unitig-tilings, we
shall use k2u to mean k2tile, and u2occ to be tile2occ with one change.
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That is, u2occ omits offsets and lengths of tile occurrences since they are uninfor-
mative for unitig-tilings and returns a tuple (n, s) instead of (n, s, w, l), In prose,
we shall refer to these queries as the k-mer-to-unitig and unitig-to-occurrence
queries.

The MRP query over unitig-tilings can be computed with Algorithm 4
(in Section S.1) where Line 10 is removed from Algorithm 1. We illustrate the
MRP query and an example of a unitig-tiling in Fig. 2.

4.2 Sampling Unitigs and Traversing Tilings to Sparsify
the Unitig-to-Occurrence Query

Pufferfish2 implements a sampling scheme for unitig-occurrences on a unitig-
tiling. For some small constant s, our scheme samples 1/s rows in utab each
corresponding to all occurrences of a unique unitig. In doing so, it sparsifies the
u2occ query and utab by only storing positions for a subset of sampled unitigs.
To compute unitig-to-occurrence queries, it traverses unitig-occurrences on an
indexed unitig-tiling.

Notably, pufferfish2 traverses unitig-tilings that are implicitly represented.
For unitig-tilings with positions stored in utab, there exists no contiguous
sequence in memory representing occurrences that is obvious to traverse. How-
ever, when viewed as an SPT, unitig-occurrences have ranks on a tiling and
traversals are possible because tiling sequences map uniquely to a sequence of
unitig-rank pairs.

Specifically, we define the pred query—an atomic traversal step that enables
traversals of arbitrary lengths over reference tilings. Given the r-th occurrence
of the unitig Ui, the pred query returns the identity and rank of the preceding
unitig. Let tile Tn,m be the r-th occurrence of the unitig Ui on all tiling sequences
T . Then, pred(i, r) returns (j, q) indicating that Tn,m−1, the preceding unitig-
occurrence, is the q-th occurrence of the unitig Uj . If there is no preceding
occurrence and m = 1, pred(i, r) returns the sentinel value ∅.

When an index supports pred, it is able to traverse “backwards” on a unitig-
tiling. Successively calling pred yields the identities of unitigs that form a tiling
sequence. Furthermore, since pred returns the identity j and the rank q of a pre-
ceding unitig-occurrence, accessing data associated with each visited occurrence
is straightforward in a table like utab (i.e., with utab[j][q]).

Given the unitig-set U , pufferfish2 first samples a subset of unitigs US ⊆
U . For each sampled unitig Ui ∈ US , it stores information for unitig-occurrences
identically to pufferfish and records, for all occurrences of a sampled unitig
Ui, a list of reference identity and position tuples in utab[i].

To recover the position of the r-th occurrence a not-sampled unitig Ui and
to compute u2occ(i, r), the index traverses the unitig-tiling and iteratively calls
pred until an occurrence of a sampled unitig is found—let this be the q-th
occurrence of Uj . During the traversal, pufferfish2 accumulates number of
nucleotides covered by the traversed unitig-occurrences. Since Uj is a sampled
unitig, the position of the q-th occurrence can be found in utab[j][q]. To return
u2occ(i, r), pufferfish2 adds the number of nucleotides traversed to the start
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position stored at utab[j][q], the position of a preceding occurrence of the sam-
pled unitig Uj .

This procedure is implemented in Algorithm 2 and visualized in Fig. 3.
Traversals must account for (k−1) overlapping nucleotides of unitig-occurrences
that tile a reference (Line 5). Storing the length of the unitigs is negligible since
the number of unique unitigs is much smaller than the number of occurrences.

On the Termination of Traversals. Any unitig that occurs as the zero-th
occurrence (i.e., with rank zero) of a tiling-sequence is always sampled. This
way, backwards traversals terminate because every occurrence of a not-sampled
unitig occurs after a sampled unitig. This can be seen from Fig. 3. Concretely,
if Tn,1 = Ui for some tiling-sequence Tn, then the unitig Ui must always be
sampled.

Algorithm 2:
1 def u2occ(i, r):
2 l ← 0
3 while !isSamp[i] do
4 (i, r) = pred(i, r)
5 l ← l + |Ui| − k + 1

6 (n, s) ← utab[i][r]
7 return (n, s + l)

Algorithm 3:
1 def pred(i, r):
2 p ← ptab[i][r]
3 y ← p ◦ Ui[: k − 1]
4 (j, ) ← k2u(y)

5 s ← Ui[k]
6 t ← rankp(ptab[i], r)
7 q ← selects(stab[j], t)
8 return (j, q)

4.3 Implementing the pred Query with pufferfish2

Pufferfish2 computes the pred query in constant time while requiring only
constant space per unitig-occurrence by carefully storing predecessor and suc-
cessor nucleotides of unitig-occurrences.

Predecessor and Successor Nucleotides. Given the tiling sequence Tn =
[Tn,1, . . . , Tn,Mn

], we say that a unitig-occurrence Tn,m is preceded by Tn,m−1,
and that Tn,m−1 is succeeded by Tn,m. Suppose Tn,m = Ui, and Tn,m−1 = Uj ,
and let the unitigs have lengths �i and �j , respectively.

We say that, Tn,m−1 precedes Tn,m with predecessor nucleotide p. The pre-
decessor nucleotide is the nucleotide that precedes the unitig-occurrence Tn,m on
the reference sequence Rn. Concretely, p is the first nucleotide on the last k-mer
of the preceding unitig, i.e., p = Tn,m−1[�j − k]. We say that, Tn,m succeeds
Tn,m−1 with successor nucleotide s. Accordingly, the successor nucleotide, s, is
the last nucleotide on the first k-mer of the succeeding unitig, i.e., s = Tn,m[k].

Abstractly, the preceding occurrence Tn,m−1 can be “reached” from the
succeeding occurrence Tn,m by prepending its predecessor nucleotide to the
(k − 1)-length prefix of Tn,m. Given Tn,m and its predecessor nucleotide p,
the k-mer y that is the last k-mer on the preceding occurrence Tn,m−1 can
be obtained with y = p ◦ Tn,m[: k − 1]. Given an occurrence Tn,m, let the func-
tions pred-nuc (Tn,m) and succ-nuc (Tn,m) yield the predecessor nucleotide and
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the successor nucleotide of Tn,m, respectively. If Tn,m is the first or last unitig-
occurrence pair on Tn, then succ-nuc (Tn,m) and pred-nuc (Tn,m) return the
“null” character, ‘$’.

These notationally dense definitions can be more easily understood with
a figure. Figure 3 shows how predecessor and successor nucleotides of a given
unitig-occurrence on a tiling are obtained.

Concrete Representation. Pufferfish2 first samples a set of unitigs US ⊆ U

from U and stores a bit vector, isSamp, to record if a unitig Ui is sampled where
isSamp[i] = 1 iff Ui ∈ US . Pufferfish2 stores in utab the reference identity
and position pairs for occurrences of sampled unitigs only.

After sampling unique unitigs, pufferfish2 stores a predecessor nucleotide
table, ptab, and a successor nucleotide table, stab. For each not-sampled unitig
Ui only, ptab[i] stores a list of predecessor nucleotides for each occurrence of Ui in
the unitig-tiling. For all unitigs Ui, stab[i] stores a list of successor nucleotides
for each occurrence of Ui. Concretely, when the unitig-occurrence Tn,m is the
r-th occurrence of Ui,

ptab[i][r] = pred-nuc (Tn,m) and stab[i][r] = succ-nuc (Tn,m) .

As discussed in Sect. 4.2, unitigs that occur as the zero-th element on a
tiling is always sampled so that every occurrence of a not-sampled unitig has
a predecessor. If Tn,m has no successor and is the last unitig-occurrence on a
tiling sequence, stab[i][j] contains the sentinel symbol ‘$’. Figure 3 illustrates
how predecessor and successor nucleotides are stored.

Fig. 4. Visualizing the pred query that finds the occurrence of Uj that precedes the
queried occurrence of Ui with rank 1. (a) All occurrences of Ui and Uj are visualized
(in sorted order) with their preceding and succeeding unitig occurrences, respectively.
The figure shows stored successor nucleotides for Uj , and predecessor nucleotides for
Ui. Whenever an occurrence of Uj precedes an occurrence of Ui, a corresponding pair
of nucleotides “A” and “T” occur and are stored in stab[j] and ptab[i] respectively. (b)
Their ranks (annotated with subscripts) of the corresponding predecessor-successor
nucleotide pair match in ptab[i] and stab[j], but the indices do not. A rank query for
predecessor nucleotide “T” at index r = 1 yields the matching rank of the successor
nucleotide “A”. A select query for the nucleotide “A” with rank 1 yields the index and
occurrence of the predecessor Uj .
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Computing the pred Query. Given the k-mer-to-unitig query, pufferfish2
supports the pred query for any unitig Ui that is not-sampled. When the r-th
occurrence of Ui succeeds the q-th occurrence of Uj , it computes pred(i, r) =
(j, q) with Algorithm 3. To compute pred, it constructs a k-mer to find Uj , and
then computes one rank and one select query over the stored lists of nucleotides
to find the correct occurrence.

Pufferfish2 first computes j, the identity of the preceding unitig. The last
k-mer on the preceding unitig must be the first (k − 1)-mer of Ui prepended
with predecessor nucleotide of the r-th occurrence of Ui. Given ptab[i][r] = p, it
constructs the k-mer, y = p ◦ Ui[: k − 1], that must be the last k-mer on Uj . So
on Line 4, it computes k2u(y) to obtain the identity of the preceding unitig Uj .

It then computes the unitig-rank, q, of the preceding unitig-occurrence of Uj .
Each time Ui is preceded by the nucleotide p, it must be preceded by the same
unitig Uj since any k-mer occurs in only one unitig. Accordingly, each occurrence
Uj that is succeeded by Ui must always be succeeded by the same nucleotide s
equal to the k-th nucleotide of Ui, Ui[k]. For the preceding occurrence of Uj that
the algorithm seeks to find, the nucleotide s is stored at some unknown index q
in stab[j]—the list of successor nucleotides of Uj .

Whenever an occurrence of Ui succeeds an occurrence of Uj , so do the cor-
responding pair predecessor and successor nucleotides stored in ptab[i] and
stab[j]. Since ptab[i] and stab[j] store predecessor and successor nucleotides
in the order in which unitig-occurrences appear in the tiling sequences, the fol-
lowing ranks of stored nucleotides must be equal: (1) the rank of the nucleotide
p = ptab[i][r] at index r in the list of predecessor nucleotides, ptab[i], of the
succeeding unitig Ui, and (2) the rank of the nucleotide s = Ui[k] at index q in
the list of successor nucleotides, stab[j], of the preceding unitig Uj . We illus-
trate this correspondence between ranks in Fig. 4. So to find q, the rank of the
preceding unitig-occurrence, pufferfish2 computes the rank of the predeces-
sor nucleotide, t = rankp(ptab[i], r). Then, computing selects(stab[i], t), the
index where the t-th rank successor nucleotide of Uj occurs must yield q.

Time and Space Analysis. Pufferfish2 computes the pred query in constant
time. The k-mer for the query k2u is assembled in constant time, and the k2u
query itself is answered in constant time, as already done in the pufferfish
index [9].

For not-sampled unitigs, pufferfish2 does not store positions of unitig-
occurrences in utab. Instead, it stores nucleotides in tables stab and ptab. These
tables are implemented by wavelet matrices that support rank, select, and access
operations in O(lg σ) time on sequences with alphabet size σ while requiring only
lg σ + o(lg σ) bits per element [24].

As explained in Sect. 3.1, we have avoided the treatment of orientations of
nucleotide sequences for brevity. In actuality, unitigs may occur in a forward or
a backwards orientation (i.e., with a reverse complement sequence). When con-
sidering orientations, pufferfish2 implements the pred query by storing and
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querying over lists of nucleotide-orientation pairs. In this case, ptab and stab
instead store predecessor-orientation and successor-orientation pairs. Accord-
ingly, wavelet matrices are then built over alphabets of size 8 and 9 respectively—
deriving from eight nucleotide-orientation pairs and one sentinel value for unitig-
occurrences that have no predecessor. Thus, ptab and stab in total require ≈ 7
bits per unitig-occurrence (since 7 = �lg 8� + �lg 9�). We describe how the pred
query is implemented with orientations in Section S.3.

Construction. The current implementation of pufferfish2 sparsifies the
unitig-to-occurrence query and compresses the table of unitig occurrences, utab,
of an existing pufferfish index, and inherits its k-mer-to-unitig mapping. In
practice, sampling and building a pufferfish2 index always takes less time
than the initial pufferfish index construction. In brief, building pufferfish2
amounts to a linear scan over an SPT. We describe how pufferfish2 in con-
structed in more detail in Section S.4.

4.4 A Random Sampling Scheme to Guarantee Short Backwards
Traversals

Even with a constant-time pred query, computing the unitig-to-occurrence query
is fast only if the length of backwards traversals—the number of times pred is
called — is small. So for some small constant s, a sampling scheme should sample
1/s of unique unitigs, store positions of only 1/s of unitig-occurrences in utab,
and result in traversal lengths usually of length s.

At first, one may think that a greedy sampling scheme that traverses tiling
sequences to sample unitigs could be used to bound traversal lengths to some
given maximum length, s. However, when tiling sequences become much longer
than the number of unique unitigs, such a greedy scheme samples almost all
unitigs and only somewhat effective in limited scenarios (see Section S.5). Thus,
we introduce the random sampling scheme that samples 1/s of unitigs uni-
formly at random from U . This scheme guarantees that traversals using the
pred query terminate in s steps in expectation if each unitig-occurrence Tn,m is
independent and identically distributed and drawn from an arbitrary distribu-
tion. Then, backwards traversals until the occurrence of a sampled unitig is a
series of Bernoulli trials with probability 1/s, and traversal lengths follow a geo-
metric distribution with mean s. Although this property relies on a simplifying
assumption, the random sampling scheme works well in practice.
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Table 1. Size and speed of pufferfish2 indexes querying 10 million random k-mers
and 100,000 reads. Uncompressed, baseline implementations of the unitig-to-occurrence
query (pufferfish indexes with the sparse k2u implementation [9]) are labeled with
“None” sampling strategy. Relative sizes of compressed representations and relative
slowdowns to the baseline are indicated in parentheses.

Dataset Sampling strategy u2occ size (GB) 10M k-mers (secs) 100K reads (secs)

7 Humans None 16.8 86.1 139.4

Random (s = 3, t = .05) 7.8 (0.46) 4159.1 (43.8×) 8092.8 (58.04×)

Random (s = 3, t = .25) 9.9 (0.59) 681.1 (7.9×) 1466.2 (10.52×)

4000 Bacteria None 7.7 35.5 12.6

Random (s = 3, t = .05) 3.7 (0.48) 420.4 (11.9×) 15.6 (1.24×)

Random (s = 3, t = .25) 4.7 (0.61) 323.8 (9.1×) 15.5 (1.23×)

30K Human gut None 86.3 80.6 178.7

Random (s = 3, t = .05) 45.6 (0.53) 439.4 (5.5×) 570.2 (3.19×)

Random (s = 3, t = .25) 54.4 (0.63) 365.2 (4.5×) 576.9 (3.23×)

Random (s = 6, t = .05) 34.6 (0.40) 1037.5 (12.9×) 644.8 (3.61×)

Random (s = 6, t = .25) 45.6 (0.53) 614.0 (7.6×) 646.1 (3.56×)

4.5 Closing the Gap Between a Constant Time pred Query
and Contiguous Array Access

Even though the pred query is constant time and traversals are short, it is
difficult to implement pred queries in with speed comparable to contiguous array
accesses that are used to compute the u2occ for when utab is “dense”—i.e.,
uncompressed and not sampled. In fact, any compression scheme for utab would
have difficulty contending with constant time contiguous array access regardless
of their asymptotics since dense implementations are output optimal, very cache
friendly, and simply store the answers to queries in an array. To close the gap
between theory and practice, pufferfish2 exploits several optimizations.

In practice, a small proportion of unique unitigs are “popular” and occur
extremely frequently. Fortunately, the total number of occurrences of popular
unitigs is small relative to other unitigs. To avoid an excessively large number
of traversals from a not-sampled unitig, pufferfish2 modifies the sampling
scheme to always sample popular unitigs that occur more than a preset number,
α, times. Better yet, we re-parameterize this optimization and set α so that
the total number of occurrences of popular unitigs sum to a given proportion
0 < t ≤ 1 of the total occurrences of all the unitigs. For example, setting t = 0.25
restricts pufferfish2 to sample from 75% of the total size of utab consisting
of unitigs that occur most infrequently.

Also, the MRP and pred query are especially amenable to caching. Notably,
pufferfish2 caches and memoizes redundant k2u queries in successive pred
queries. Also, it caches “streaming” queries to exploit the fact that successive
queried k-mers (e.g., from the same sequenced read) likely land on the same
unitig. We describe in more detail these and other important optimizations
in Section S.6.
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5 Experiments

We assessed the space-usage of the indexes constructed by pufferfish2 from
several different whole-genome sequence collections, as well as its query perfor-
mance with different sampling schemes. Reported experiments were performed
on a server with an Intel Xeon CPU (E5-2699 v4) with 44 cores and clocked at
2.20 GHz, 512 GB of memory, and a 3.6 TB Toshiba MG03ACA4 HDD.

Datasets. We evaluated the performances on a number of datasets with vary-
ing attributes: (1) Bacterial collection: a random set of 4000 bacterial genomes
from the NCBI microbial database; (2) Human collection: 7 assembled human
genome sequences from [27]; and (3) Metagenomic collection: 30,691 representa-
tive sequences from the most prevalent human gut prokaryotic genomes from [28].

Results. To emulate a difficult query workload, we queried the indexes with 10
million random true positive k-mers sampled uniformly from the indexed refer-
ences. Our results from Table 1 show that sampling popular unitigs is critical
to achieve reasonable trade-offs between space and speed. When indexing seven
human genomes, the difference in space between always sampling using t = 0.05
and t = 0.25, is only 2.1 GB (12.5% of the uncompressed utab). However, explic-
itly recording 2.1 GB of positions of occurrences of popular unitigs, substantially
reduces the comparative slowdown from 43.8× to 7.9×. This is because setting
t = 0.25 instead of t = 0.05 greatly reduces the maximum number of occurrences
of a not-sampled unitig—from ≈87,000 to ≈9,000 times, respectively. Here, set-
ting t = 0.25 means that random k-mer queries that land in not-sampled unitigs
perform many fewer traversals over reference tilings.

On metagenomic datasets, indexes are compressed to a similar degree but
differences in query speed at different parameter settings are small. Pufferfish2
is especially effective for a large collection of bacterial genomes. With the fastest
parameter setting, it incurs only a 4.5× slowdown for random queries while
reducing the size of utab for the collection of 30,000 bacterial genomes by 37%
(from 86.3 GB to 54.4 GB).

Apart from random lookup queries, we also queried the indexes with k-mers
deriving from sequenced readsets [29,30]. We measured the time to query and
recover the positions of all k-mers on 100,000 reads. This experiment demon-
strates how the slowdown incurred from sampling can (in most cases) be further
reduced when queries are positionally coherent or miss. Successive k-mer queries
from the same read often land on the same unitig and can thus be cached (see
Sect. 4.5). True negative k-mers that do not occur in the indexed reference col-
lection neither require traversals nor incur any slowdowns.

To simulate a metagenomic analysis, we queried reads from a human stool
sample against 4,000 bacterial genomes. This is an example of a low hit-rate
analysis where 18% of queried k-mers map to indexed references. In this scenario,
pufferfish2 reduces the size of utab by half but incurs only a 1.2× slowdown.
We also queried reads from the same human stool sample against the collection
of 30,000 bacterial genomes representative of the human gut. Here, 88% of k-
mers are found in the indexed references. At the sparsest setting, pufferfish2
indexes incur only a 3.6× slowdown while reducing the size of utab by 60%.
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We observe that pufferfish2’s sampling scheme is less effective when index-
ing a collection of seven human genomes. When sampled with s = 3 and t = 0.25,
pufferfish2 incurs a 10.5× slowdown when querying reads from a DNA-seq
experiment in which 92% of queried k-mers occur in reference sequences. Inter-
estingly, the slowdown when querying reads is larger than the slowdown when
querying random k-mers. This is likely due to biases from sequencing that cause
k-mers and reads to map to non-uniformly indexed references. Nonetheless, this
result motivates future work that could design sampling schemes optimized for
specific distributions of query patterns.

We expect to see less-pronounced slowdowns in practice than those reported
in Table 1. This is because tools downstream of an index like pufferfish2 almost
always perform operations much slower after straightforward exact lookups for
k-mers. For example, aligners have to perform alignment accounting for mis-
matches and edits. Also, our experiments pre-process random k-mer sets and
read-sets so that no benchmark is I/O bound. Critically, the compromises in
speed that pufferfish2 makes are especially palatable because it trades-off
speed in the fastest operations in analyses—exact k-mer queries—while sub-
stantially reducing the space required for the most space intensive operation.

Table 2. Sizes in GB of possible, new indexes—with k2u implemented by SSHash and
u2occ by pufferfish2—compared to the size of original pufferfish indexes. Selected
sampling parameters for datasets (top-to-bottom) are (s = 3, t = 0.25), (s = 3, t =
0.05), and (s = 6, t = 0.05), respectively.

Dataset u2occ w/pufferfish2 k2u w/SSHash New index Original pufferfish index

7 Human 9.9 3.2 13.1 28.0

4000 Bacteria 3.7 7.3 11.0 26.1

30K Human gut 34.6 22.0 55.6 131.7

Using SSHash for Even Smaller Indexes. For convenience, we have imple-
mented our SPT compression scheme within an index that uses the specific
sparse pufferfish implementation for the k-mer-to-tile (k-mer-to-unitig) map-
ping [9]. However, the SPT enables the construction of modular indexes that use
various data structures for the k-mer-to-tile mapping and the tile-to-reference
mapping, provided only a minimalistic API between them. A recent represen-
tation of the k-mer-to-tile mapping that supports all the necessary function-
ality is SSHash [22]. Compared to the k2u component of pufferfish, SSHash
is almost always substantially smaller. Further, it usually provides faster query
speed compared to the sparse pufferfish implementation of the k-mer-to-tile
query, especially when streaming queries are being performed.

In Table 2, we calculate the size of indexes if SSHash is used for the k-mer-to-
tile mapping—rather than the sparse pufferfish implementation. These sizes
then represent overall index sizes that would be obtained by pairing a state-
of-the-art representation of the k-mer-to-tile mapping with a state-of-the-art
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representation of the tile-to-reference mapping (that we have presented in this
work). Practically, the only impediment to constructing a fully-functional index
from these components is that they are implemented in different languages (C++
for SSHash and Rust for pufferfish2)—we are currently addressing this issue.

Importantly, these results demonstrate that, when SSHash is used, the repre-
sentation of the tile-to-occurrence query becomes a bottleneck in terms of space,
occupying an increasingly larger fraction of the overall index. Table 2 shows that,
in theory, if one fully exploits the modularity of SPTs, new indexes that combine
SSHash with pufferfish2 would be half the space of the original pufferfish
index. As of writing, with respect to an index over 30,000 bacterial genomes,
the estimated difference in monetary cost of an AWS EC2 instance that can fit
a new 55.6 GB index versus a 131 GB pufferfish index in memory is 300USD
per month (see Section S.7).

Comparing to MONI and the r-Index. We compared pufferfish2 to
MONI, a tool that builds an r-index to locate maximal exact matches in highly
repetitive reference collections [6]. In brief, pufferfish2 is faster and requires
less space than MONI for our benchmarked bacterial dataset. Our tool does so
with some trade-offs. Pufferfish2 supports rapid locate queries for k-mers of
a fixed length, while r-index based approaches supports locate queries for pat-
terns of any arbitrary length and can be used to find MEMs. Notably, it has
been shown that both k-mer and MEM queries can be used for highly effective
read-mapping and alignment [1,6].

For reference, we built MONI on our collection of 4,000 bacterial genomes.
Here, MONI required 51.0G of disk space to store which is 29% larger than the
pufferfish index (39.5 GB) with its dense k2u implementation—its least space-
efficient configuration. The most space efficient configuration of the pufferfish2
index (with s = 3, t = .25) is 42% the size of MONI when built on from the
same data and requires 21.7 GB of space. Compared to a theoretically possible
index specified in Table 2 that would only require 11.0 GB, MONI would need
4.6× more space.

We also performed a best-effort comparison of query speed between
pufferfish2 and MONI. Unfortunately, it is not possible to directly mea-
sure the speed of exact locate queries for MONI because it does not expose
an interface for such queries. Instead, we queried MONI to find MEMs on true-
positive k-mers treating each k-mer as unique read (encoded in FASTQ format
as MONI requires). We argue that this is a reasonable proxy to exact locate
queries because, for each true-positive k-mer deriving from an indexed reference
sequence, the entire k-mer itself is the maximal exact match. For MONI, just like
in benchmarks for in Table 1, we report the time taken for computing queries
only and ignore time required for I/O operations (i.e. loading the index and
quries, and writing results to disk).

We found that pufferfish2 is faster than MONI when querying k-mers
against our collection of 4,000 bacterial genomes. MONI required 1,481.7 s to
query the same set of 10 million random true-positive k-mers queried in Table 1.
When compared to the slowest built most space efficient configuration of
pufferfish2 benchmarked in Table 1, pufferfish2 is 3.5× faster.
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6 Discussion and Future Work

In this work, we introduce the spectrum preserving tiling (SPT), which describes
how a spectrum preserving string set (SPSS) tiles and “spells” an input collection
of reference sequences. While considerable research effort has been dedicated to
constructing space and time-efficient indexes for SPSS, little work has been done
to develop efficient representations of the tilings themselves, despite the fact that
these tilings tend to grow more quickly than the SPSS and quickly become the
size bottleneck when these components are combined into reference indexes.
We describe and implement a sparsification scheme in which the space required
for representing an SPT can be greatly reduced in exchange for an expected
constant-factor increase in the query time. We also describe several important
heuristics that are used to substantially lessen this constant-factor in practice.
Having demonstrated that modular reference indexes can be constructed by
composing a k-mer-to-tile mapping with a tile-to-occurrence mapping, we have
thus opened the door to exploring an increasingly diverse collection of related
reference indexing data structures.

Despite the encouraging progress that has been made here, we believe that
there is much left to be explored regarding the representation of SPTs, and that
many interesting questions remain open. Some of these questions are: (1) How
would an algorithm sample individual unitig-occurrences instead of all occur-
rences of a unitig to explicitly bound the lengths of backwards traversals? (2)
Does a smaller SPSS imply a small SPT and could one compute an optimally
small SPT? (3) Given some distributional assumptions for queries, can an algo-
rithm sample SPTs to minimize the expected query time? (4) In practice, how
can an implemented tool combine our sampling scheme with existing compres-
sion algorithms for the highly skewed tile-to-occurrence query? (5) Can a lossy
index over an SPT be constructed and applied effectively in practical use cases?

With excitement, we discuss in more detail these possibilities for future work
in more detail in Section S.8.
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