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Monitoring fishery activity is essential for resource planning and guaranteeing

fisheries sustainability. Large fishing vessels constantly and continuously

communicate their positions via Automatic Identification System (AIS) or Vessel

Monitoring Systems (VMSs). These systems can use radio or Global Positioning

System (GPS) devices to transmit data. Processing and integrating these big

data with other fisheries data allows for exploring the relations between

socio-economic and ecosystem assets in marine areas, which is fundamental in

fishery monitoring. In this context, estimating actual fishing activity from time

series of AIS and VMS data would enhance the correct identification of fishing

activity patterns and help assess regulations’ e�ectiveness. However, these data

might contain gaps because of technical issues such as limited coverage of the

terrestrial receivers or saturated transmission bands. Other sources of data gaps

are adverse meteorological conditions and voluntary switch-o�s. Gaps may also

include hidden (unreported) fishing activity whose quantification would improve

actual fishing activity estimation. This paper presents a workflow for AIS/VMS

big-data analysis that estimates potential unreported fishing activity hotspots in

a marine area. The workflow uses a statistical spatial analysis over vessel speeds

and coordinates and a multi-source data integration approach that can work

on multiple areas and multiple analysis scales. Specifically, it (i) estimates fishing

activity locations and rebuilds data gaps, (ii) estimates the potential unreported

fishing hour distribution and the unreported-over-total ratio of fishing hours

at a 0.01◦ spatial resolution, (iii) identifies potential unreported fishing activity

hotspots, (iv) extracts the stocks involved in these hotspots (using global-scale

repositories of stock and species observation data) and raises an alert about their

possible endangered, threatened, and protected (ETP) status. The workflow is

also a free-to-use Web Service running on an open science-compliant cloud

computing platform with a Web Processing Service (WPS) standard interface,

allowing e�cient big data processing. As a study case, we focussed on the Adriatic

Sea. We reconstructed the monthly reported and potential unreported trawling

activity in 2019, using terrestrial AIS data with a 5-min sampling period, containing

∼50 million records transmitted by ∼1,600 vessels. The results highlight that the

unreported fishing activity hotspots especially impacted Italian coasts and some

forbidden and protected areas. The potential unreported activity involved 33

stocks, four of which were ETP species in the basin. The extracted information

agreed with expert studies, and the estimated trawling patterns agreed with those

produced by the Global Fishing Watch.
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1. Introduction

Fishing is one of the most impacting human activities on

marine resources (Kroodsma et al., 2018). Monitoring fishing

activity pressure on marine resources, protected species and

areas is essential to guarantee food availability from the sea and

safeguard ecosystems (Bergh and Davies, 2002; Gianelli et al.,

2018; Lockerbie et al., 2018; Muawanah et al., 2018; Koen-

Alonso et al., 2019). Ecosystem approaches to marine resource

management analyse the causal relations between economic and

human activities, and their pressure (emissions, waste, intensity) on

the ecosystems’ chemical and biological states (Antunes and Santos,

1999; Kristensen, 2004). Integrated Environmental Assessment

systems (IEAs) are computer science workflows that estimate these

relations by extracting and combining information from fisheries

data collections containing complex, heterogeneous, large-volume,

and noisy data (Coro et al., 2021). It is primary for IEA to estimate

fishing activity patterns, understand human-activity pressure

distribution, and asses if regulations and management strategies

correctly contributed to ecological and economic sustainability

(Robards et al., 2016; Le Tixerant et al., 2018; Coro et al., 2022b).

However, data gaps can hide much fishing activity (unreported

fishing activity). Filling these gaps would improve fishing activity

estimation accuracy. Following international regulations, large

fishing vessels over 15 m in length overall must be equipped

with transmission devices that communicate their positions to

monitoring systems such as Automatic Identification System (AIS)

and Vessel Monitoring Systems (VMSs) (European Parliament,

2002, 2011). Communication is generally based on satellite

or radio communication devices (Chang, 2003; Agnew et al.,

2009; ITU, 2009; Previero and Gasalla, 2018; Kurekin et al.,

2019). AIS and VMS data collectors in the European seas

receive billions of transmitted data records per month, which

include information on coordinates, speed, route, date, time, and

vessel identity. The data transmission period can be of a few

seconds or minutes. However, records could get lost because of

limited terrestrial receiver’s range coverage (for radio systems),

satellite communication hindrances, onboard technical issues,

adverse meteorological conditions, or voluntary transmission

device switch-offs (Taconet et al., 2019). Vessel-transmitted data are

the basis of many IEAs that analyse fishing patterns (GFW, 2020).

However, the heterogeneous nomenclatures, accessibility, process-

interoperability, and scalability issues across the vessel-transmitted

data collections make data and processes suitable only for specific

areas and thus limit their re-usability (Gari et al., 2015; Taconet

et al., 2016; James et al., 2018). Only a few systems publish data

as findable, accessible, interoperable, and re-usable (FAIR) data

(Jennings and Lee, 2012; Dunn et al., 2018; Song et al., 2018;

Depellegrin et al., 2020).

Integrating vessel-transmitted data with gear, logbook, and

port information can enhance the precision of fishing activity

detection (Kia et al., 2000; Davis, 2001; Palmer and Wigley,

2009; Lee et al., 2010; Gerritsen and Lordan, 2011; Olesen

et al., 2012; Shaw et al., 2017; Muench et al., 2018; Roberson

et al., 2019). However, integration is rarely possible for extensive

data collections containing anonymous data or involving vessels

coming from far ports and different nations. Several studies

have proposed data processing workflows, working on minimal

transmitted information (such as AIS and VMS location, speed,

and course data), to estimate the volumes of illegal, unreported,

and unregulated (IUU) fishing activity (Tetreault, 2005; Bastardie

et al., 2010; Eriksen et al., 2010; Gerritsen and Lordan, 2011;

Pallotta et al., 2013; Natale et al., 2015; Le Guyader et al., 2017;

Le Tixerant et al., 2018; Shepperson et al., 2018; Kurekin et al.,

2019; Mullié, 2019; Tassetti et al., 2019; Yang et al., 2019; Belhabib

et al., 2020). These workflows often use rule-based or machine-

learning algorithms to automatically classify vessel activity based on

coordinate, speed, direction, and geo-morphological information

(Coro et al., 2013; de Souza et al., 2016). In some cases, they

conduct analyses by vessel gear and thus preliminarily identify the

used fishing gears (Coro et al., 2022b). Machine learning-based

models learn to detect IUU fishing patterns as anomalous patterns

in vessel tracks (Agnew et al., 2009; Ford et al., 2018; Singh and

Heymann, 2020; Wolsing et al., 2022). However, the specificity of

model training on particular areas makes them lowly re-usable

for other areas. Moreover, they usually do not estimate potential

IUU fishing activity that may occur in vessel track gaps. Some

approaches combine synthetic-aperture radar (SAR) images with

AIS data to gain better process scalability (Galdelli et al., 2021).

These approaches focus on estimating the correspondence between

transmitted data and actual vessel presence, and consequently

estimate unreported vessel presence (Perez et al., 2013; Pew

Trusts, 2015; HawkEye360, 2020; Cutlip, 2022). However, they do

not distinguish unreported activity per fishing activity type (e.g.,

trawling, purse seine, etc.) and wrongly include small vessels that

are not equipped with transmission devices.

This paper presents a workflow to estimate potential hidden

fishing activity hotspots in a marine area from big data of temporal

sequences of vessels’ coordinates and speeds belonging to an AIS

or VMS collection. With the expression “potential hidden fishing

activity” we indicate that the detected hidden-activity hotspots

very likely correspond to unreported fishing activity. However, for

simplicity, hereafter we will just use the more general expression

“unreported fishing activity.”

The workflow is easily scalable from small to extensive data

collections. It only requires prior indications about the fishing

speed ranges on which the analysis should focus, which it revises

through statistical data analysis. The workflow detects fishing

activity in the data gaps and produces aggregated distributions

of reported and unreported fishing activity and unreported

activity hotspots. Moreover, it estimates the stocks potentially

targeted in the hotspots and their “endangered, threatened, and

protected” (ETP) status. We released our workflow as a cloud-

computing Web service (Coro et al., 2015, 2017) invocable

through the Web Processing Service standard (WPS) of the

Open Geospatial Consortium (OGC) (Schut and Whiteside, 2007).

This service supports Open Science-oriented features such as

experiment reproduction, replication, re-use, and integration in

other workflows and IEAs (Coro et al., 2021).

We tested our workflow effectiveness at reporting valuable

information for fisheries management organizations and national

governments in the Adriatic Sea. We analyzed terrestrial AIS data

in this basin with a 5-min sampling period, and reconstructed the

reported and unreported trawling vessels’ activity in all months
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of 2019. This was a “regime” condition that approximated the

full-potential volume of the fishery, unaltered by the COVID-

19 pandemic (and consequent restrictions) and economic failures

occurring from 2020 onwards (Coro et al., 2022b). Trawling activity

in the Adriatic has the most significant volumes of catch and vessels

in the Mediterranean (Mannini et al., 2005; FAO, 2020) and among

the highest intensity globally (Amoroso et al., 2018). We evaluated

if the estimated monthly fishing patterns of unreported trawling

reflected known deviations from regulations and restrictions across

several areas monitored by fisheries management organizations.

We also verified the consistency of the extracted target and

ETP stock-species in the unreported-fishing locations. Finally, we

demonstrated that the detected trawling-activity patterns largely

agree with those published by Global Fishing Watch (GFW)

(Merten et al., 2016), estimated through a machine learning model.

In summary, this paper describes a multi-source statistical

workflow that can be integrated with larger IEAs to estimate

the volume of unreported fishing activity (due to technical

issues or voluntary switch-offs) and contribute to improving the

characterization of fishing activity in terms of compliance and

impact on ecosystems. It also indicates the stocks subject to

the most significant unreported fishing activity, along with their

ETP status, to inform stock assessment models. The workflow

application goes beyond the presented use case. It can scale from

large to small areas because it integrates global-scale data sources,

uses algorithms that adapt the analysis to the study-area data, and

runs on a cloud computing platform.

2. Methods

This section first describes our workflow (Section 2.1), then the

Web service version that complies with the Open Science paradigm

(Section 2.2), and finally the evaluation case study and approach

(Section 2.3).

2.1. Workflow description

Our workflow was entirely developed in R and is open source

(see section Supplementary information). This section describes it,

following the schema in Figure 1.

2.1.1. Input data pre-processing
The workflow input data are assumed to come from one

extensive AIS or VMS data collection. Our workflow requires

that these data contain records with (at least) unique vessel

identifiers and a temporal sequence of speed, longitude and latitude

indications for each vessel. The data input format is Comma

Separated Value (CSV), with each row containing at least one

column for the required information (hereafter named vessel-id,

speed, x, y, and date-time). The user should indicate the names

of the CSV columns containing the required information. The

input file should refer to a group of vessels acting in a limited

time period (e.g., 1 month or 1 year). As a pre-filtering stage, our

workflow deletes duplicate records and records with less than a

second of mutual temporal distance. It also deletes records with

coordinates falling on land, through the intersection with a global-

scale land-coverage raster file. Records with implausible speeds

[over 20 kn (Zhang et al., 2021)] are also deleted. The data are

thus ordered temporally for each vessel, and the time differences

(in min) between consecutive transmission records are calculated.

The minimum average time difference of non-zero short-term gaps

(<30 min), across all vessel tracks, is taken as the sampling period

of the data. Finally, the workflow internally uses a global dataset

of 5,729 harbor and port locations to exclude too close vessel

positions (<1.2 nautical miles) that would unlikely correspond to

fishing activity. This dataset was obtained by merging, cleaning,

and harmonizing the harbor and port locations available on the

EMODNET (EMODNET, 2022) andMarine Vessel Traffic (Marine

Vessel Traffic, 2022) repositories. It is internally represented as a

CSV file that could possibly be substituted with a more detailed

dataset for local-scale analyses. The workflow internally has an

option to skip the harbor and port proximity filter if not required.

Overall the pre-processing stage can be summarized as follows:

Read the input CSV file

Extract the vessel-id, speed, x, y, and date-time

columns (data records)

Delete duplicate records

Delete records with coordinates falling on land

Delete records with speed >20 kn

Delete records within 1.2 NM from harbors and

ports

For each vessel-id:

Order transmission records temporally

Calculate the time difference (time gap) in

minutes between consecutive records

Merge records with a time difference <1s

Average the time differences that are > 0 and

< 30 min;

Set the minimum average-time difference as the

data sampling period.

Algorithm 1. Data pre-processing.

As the result of this algorithm, the workflow produces a new

table with clean and ordered records organized by vessel-id with a

time gap indication for each record.

2.1.2. Vessel activity classification and gap filling
Time gaps can be due to transmitter-receiver communication

issues (e.g., saturated transmission band, temporary receiver or

transmitter malfunction, poor receiver signal power) or voluntary

switch-offs. Long gaps might indicate that a new vessel track started

(e.g., after one night of resting), and the associated record sequence

should be processed independently of the others. New vessel tracks

should therefore be separated from other vessel tracks. Data gaps

should be reconstructed only when the time gap is relatively short,

otherwise the vessel movements’ reconstruction would be highly
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FIGURE 1

Conceptual schema of our workflow.

uncertain. It is thus crucial to estimate the time gap threshold that

separates the data gaps that can be reasonably reconstructed from

too-long gaps. We calculated this threshold by analyzing the time

gap density distributions of the AIS data of our use case (Section

2.3), of the GFW training corpus (Global Fishing Watch, 2022),

and of the BOEM Marine Cadastre (BOEM, 2020) repository used

in other AIS and VMS data analyses (Coro et al., 2013, 2021).

These distributions showed a clear separation between long and

short gaps. Two distribution peaks could be separated for time

gaps below 30 min (short gaps) and above 3.5 h (long gaps).

Long gaps averagely corresponded to new tracks, whereas short

gaps corresponded to temporary transmission loss. The time gaps

between these two limits (gaps-to-reconstruct) were the data gaps

to be filled. Tracks between these data gaps can be reconstructed

through linear interpolation (straight line course assumption),

considering the ordinarily low vessels’ speed during fishing activity

(Ferrà et al., 2020) (∼15 km in 3 h for a trawler). Our workflow

linearly interpolates the gaps-to-reconstruct by generating a new

point record (with associated speed) each sampling period.

An additional input to our workflow is a prior speed range

of fishing activity (low and high prior fishing speed limits). This

range can vary from one fishing activity type to another (e.g., it

is typically between 2 and 4 kn for trawlers and 6 and 15 kn for

tuna purse seiners) and usually identifies activity performed with

a set of gears (e.g., bottom and mid-water trawling gears or purse

seines). Indeed, a coarser precision on gear identification might

extract more reliable results (Ferrà et al., 2020; Coro et al., 2021).

Similarly to Bayesian approaches, our workflow revises the prior

speed range based on a statistical analysis of speed distributions.

It first cuts the total speed density distribution between the low
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and high prior limits (with a 50% tolerance). Then, it fits a logistic

distribution to the data and uses the upper and lower confidence

limits as new fishing speed limits. The use of a logistic distribution

for this operation came after fitting several alternative distributions

to our study case data and the GFW andMarine Cadastre data. This

approach overcomes the issue of managing different speed ranges

depending on the study area and analysis period (Reid et al., 2011;

Coro et al., 2013) by re-adapting speed ranges to the data at hand.

All data records with speeds falling within these limits are marked

as fishing locations. The reconstructed gaps with speeds compatible

with fishing activity are marked as unreported fishing activity. All

other fishing locations are marked as reported fishing activity (re-

using a common expression of VMSs). Figure 2 reports an example

of one vessel’s tracks in January 2019, off the Termoli harbor in

Italy, with the indication of reported fishing locations and a zoom

on one sequence of reconstructed unreported-fishing locations.

Overall, the vessel activity classification algorithm can be

summarized as follows:

Mark the records with time gaps between 30 min

and 3.5 h as gaps-to-reconstruct

Linearly interpolate the gaps-to-reconstruct

at sampling-period steps and assign average

start-end speed to each reconstructed point

Read the low-high prior fishing speed range

Calculate the speed density distribution between

(low speed − 50% low speed) and (high speed + 50% high speed)

Fit a logistic distribution to the speed density

Record the logistic distribution lower and upper

confidence limits

For each record:

If (lower confidence limit < speed < upper confidence limit), mark

the record as fishing location

If the record was reconstructed, mark it as

unreported fishing location

Else, mark it as reported fishing location

Return all marked vessel track records.

Algorithm 2. Vessel activity classification.

As the result of this algorithm, the workflow produces a new

table with unreported and reported fishing location records.

2.1.3. Data aggregation
Based on the table produced by the previous step, the workflow

creates a grid of spatial cells with a square kilometer resolution

(∼0.01◦). Four data aggregations are generated by summing the

time gaps of the classified records onto this spatial grid: (i) reported

fishing hours, (ii) unreported fishing hours, (iii) total fishing hours,

and (iv) the ratio between unreported and total fishing hours.

The hour ratio highlights the locations where unreported activity

dominates reported activity, which is essential to detect potential

IUU fishing activity or poor communication zones (Section 3.1).

The grids are further processed to categorize the fishing hours

as low/medium/high fishing activity intensity. To this aim, the

workflow fits a log-normal distribution to each distribution. It uses

lower and upper confidence limits to classify the fishing hours.

The choice of using a log-normal distribution derives from a

multi-distribution test analysis similar to the one used for vessel

activity classification. Intuitively, it is reasonable because high-

intensity fishing activity usually concentrates in a few hotspots,

whereas many sparse cells in the study area present a much lower

fishing intensity. Alternatively, the workflow internally allows to

set classification thresholds to fixed value, e.g., to produce results

categorized with respect to the ranges of another dataset (Section

3.1). As an additional step, the high-intensity unreported fishing

locations are processed through a kernel density estimator to

produce unreported activity hotspots. We use quartic kernel shape

and automatic bandwidth estimation at 0.1◦ spatial resolution

(∼11 km) for this operation [through the MASS R package

Ripley (2022)]. The hotspot intensity is finally categorized as

low/medium/high intensity through a linear separation of the

kernel density range.

For each 0.01◦ spatial cell in the study

area:

Sum the reported fishing hours in the cell

Sum the unreported fishing hours in the cell

Sum the reported + unreported fishing hours (total

fishing hours) in the cell

Calculate the summedunreportedfishing hours/totalfishing hours

in the cell

For each spatial aggregation:

Fit the fishing hour distribution to a

log-normal distribution

Calculate the lower and upper confidence limits

Categorize each cell as one among:

low-intensity (fishing hours < lower confidence limit)

medium-intensity (lower confidence limit < fishing hours <

upper confidence limit)

high-intensity (fishing hours > upper confidence limit)

Save all classified aggregations as CSV files

Apply a 0.1◦-resolution kernel density estimation

to the high-intensity unreported fishing cells to

produce unreported fishing hotspots

Classify hotspot intensity as low, medium, or

high through linear range subdivision

Save the raw hotspot and the classified hotspot

as two GeoTiff files.

Algorithm 3. Data aggregation.

As the result of this algorithm, the workflow produces

four tables (as CSV files) with unreported, reported, total, and

unreported/total fishing data at 0.01◦ spatial resolution, with a
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FIGURE 2

(A) Example of estimated trawling activity (green dots) for all trajectories of one vessel in January 2019 o� the Termoli harbor (Italy). The arrows

indicate the temporal direction of coordinate sequence. (B) Focus on unreported fishing activity points reconstructed between two reported fishing

activity points (yellow dots).

fishing intensity categorization for each cell. It also produces two

raster files (in GeoTiff format) with unreported fishing activity

hotspots (at 0.1◦ resolution), one with the raw kernel density

estimation and the other with hotspot intensity categorization as

low/medium/high intensity.

2.1.4. Stock and ETP species extraction
As the final step of our workflow, the unreported fishing

activity hotspots are intersected with open-access repositories of

stock and species-observation data to detect the potential vessels’

targets in those locations. This information is crucial to verify

if species known to be the target of IUU fishing activity were

involved in the unreported activity and give possible spatial

references to this activity. For this task, our workflow uses the

semantic knowledge base of the Global Record of Stocks and

Fisheries (GRSF) (i-Marine, 2020). The GRSF is an authoritative

open-access semantic knowledge base maintained and updated

by the Food and Agriculture Organization of the United Nations

(FAO). It integrates data from three authoritative sources: Fisheries

and Resources Monitoring System (FIRMS), RAM Legacy Stock

Assessment Database (RAM), and FishSource (Program of the

Sustainable Fisheries Partnership). Each stock and fishery have

unique identifiers and geospatial activity areas associated. A

SPARQL endpoint allows sending queries to retrieve stock-related

fisheries and fishing areas. Our workflow sends a SPARQL query for

each 0.1◦ hotspot cell to retrieve the target stocks of the fisheries in

that cell.

Although valuable for retrieving the potential list of target

stocks in an area, the GRSF areas have a too-coarse resolution (e.g.,

at the entire basin scale for the Adriatic) to be used for hotspot-

scale analyses. For this reason, our workflow checks if the GRSF

stocks were actually observed in the extracted hotspots. It performs

this operation by using the Ocean Biodiversity Information System

(OBIS) (Grassle, 2000), a global, open-access, and authoritative

database on marine biodiversity supported by the United Nations

Educational, Scientific and Cultural Organization (UNESCO). Our

workflow uses OBIS [through the robis R package Provoost et al.

(2017)] to check if at least one expert-verified observation is

available for the GRSF stock species in the unreported fishing

activity hotspots. If a GRSF-stock presence was observed and

certified by an expert, it is classified as a potential target stock in

the hotspots. Using expert-verified records improves the reliability

of this classification. OBIS also allows retrieving the stock’s ETP

status in the study area, according to the Red List of Threatened

Species of the International Union for Conservation of Nature

(IUCN) (IUCN, 2001). Stocks with vulnerable, endangered, or

critically-endangered IUCN-status are marked as ETP species.

Overall, the stock and ETP species retrieval algorithm can be

summarized as follows:

For each 0.1◦ cell in the unreported fishing

activity hotspots:

Retrieve the list of stocks from the GRSF

through a SPARQL query

For each stock:

Query OBIS to retrieve expert-verified

observations for the stock-species in the

cell

If an observation exists, mark the species

as potential target stock and report its ETP

status

Return all found potential target stocks with

their ETP status.

Algorithm 4. Stock and ETP retrieval.
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As the result of this algorithm, the workflow produces a

table (in CSV format) with the list of potential target stocks

in the unreported fishing activity hotspots, with their associated

ETP status. It is important to highlight that the extracted stocks

are related to the specific estimated unreported fishing activity

hotspots. However, these stocks could also include those of other

fishing activities having the same hotspots. Therefore, the stock

list should be possibly revised by experts to discard stocks not

belonging to the analyzed fishing activity. To enhance the stock-list

reliability, information on the used gears should be available from

both the fishing-activity classification algorithm and the GRSF. We

have planned future actions for overcoming this issue (Section 4).

2.2. Web service

Our workflow was developed as an open-source R script

internally combining functions to operate big data processing and

aggregations (Section 2.1). We published the workflow as a multi-

source, parallel, secure, and Open Science-oriented (Hey et al.,

2009) Web service. To this aim, we integrated our workflow

with the DataMiner cloud computing platform of the D4Science

e-Infrastructure (Coro et al., 2015, 2017; Candela et al., 2016;

Assante et al., 2019). This platform publishes the hosted processes

under the WPS standard, which allows to directly integrate it in

other geospatial data processing software supporting this standard

(e.g., QGIS and ArcGIS) (Coro, 2020). Moreover, the DataMiner

automatically produces a graphic user interface based on the

workflow input/output data and parameter definitions (see section

Supplementary information). Our process interface requires a CSV

input file containing coordinate, speed, date/time, and vessel

identifier records in each row. The user should also specify the

names of the CSV columns containing this information (the

interface includes a helper for this operation). Moreover, it requires

specifying the prior fishing speed range. Input and output big

data can be uploaded on an integrated distributed storage system

(Assante et al., 2019).

The results produced for our study case are available

as CSV files and in OGC-compliant formats (see section

Supplementary information). The GRSF is hosted and managed

by the same D4Science e-infrastructure, which ensures fast access

and high service availability. The workflow accesses OBIS via

direct connection through provider-specific libraries (Provoost

et al., 2017). DataMiner supports our workflow with 15 machines

equipped with Ubuntu 18.04.5 LTS x86 64 operating system, 16

virtual cores, 32 GB of RandomAccessMemory, and 100 GB of disk

for each machine, and can manage executions in distributed and

concurrent modes. Furthermore, the parameters, input and output

data of each execution are tracked in a user’s private data space as

XML documents following the Prov-O ontological specifications

(Lebo et al., 2013) for provenance tracking, which is integral

for computational reproducibility and tracking experiment history

(Koop et al., 2011; Freire et al., 2012). This way, the platform enables

our workflow with repeatability, reproducibility, re-usability, and

interoperability features. Integrating our workflow with D4Science

also allowed us to process several big data collections concurrently,

e.g., to study monthly activity change and long-term fishing

activity quickly.

2.3. Case study

As a study case, we reconstructed the reported and unreported

bottom and pelagic-pair trawling activity (hereafter indicated as

trawling activity) in the Adriatic Sea in all months of 2019. We

analyzed terrestrial-AIS data bought from the authoritative Astra

Paging provider for the geographical sub-areas 17 and 18 (Adriatic

Sea) of the General Fisheries Commission of the Mediterranean

(GFCM), with a 5-min sampling period. We focused our analysis

on trawling activity, which produces ∼70% of the catch in the

basin (∼100k tons) and involves over ∼1,600 vessels fishing for

∼10k hours annually (Mannini et al., 2005; FAO, 2020). The

analyzed dataset contained ∼50 million records transmitted by

a consistent part of these vessels - most of them having at least

15 m length-overall - committed to equipping AIS transmitters

according to international regulations. In agreement with other

studies (Coro et al., 2013, 2021), the prior speed of trawling

activity was set to 2–4 kn. The cloud computing platform was

used to parallelise the process over the 2019 months using different

parametrisations to verify the workflow sensitivity to prior speed

ranges and reconstructed gap lengths, optimize the workflow code,

and correct possible errors.

Adriatic Sea trawling is constantly monitored by national

authorities and regulated by fisheries management organizations

(especially the GFCM), which annually assess if the fishing effort

(the total fishing hours) is commensurate with stock status

and long-term planned sustainability goals, in accordance with

the GFCM “Multi-annual Management Plan” for small pelagic

and demersal species (General Fisheries Commission for the

Mediterranean, 2013). Adriatic governmental authorities (Albania,

Bosnia and Herzegovina, Croatia, Italy, Montenegro, and Slovenia)

regulate the allowed fishing hours based on the annual estimated

pressure on target stocks abundance, by limiting fishing days and

applying spatial closures on vulnerable species, spawning, nursing,

dangerous, and protected areas (Fonda et al., 1992; Froese et al.,

2018b; Coro et al., 2022b). Over a year, fishing patterns change due

to seasonal and monthly regulations and restrictions, but stocks are

subject to moderate-high fishing pressure in all months of the year.

Adriatic trawlers act as insatiable predators on their target resources

(Coro et al., 2022b); therefore, estimating the actual trawlers total

fishing hours is crucial to assess their sustainability and minimize

the risk of stock depletion.

We targeted the estimation of unreported trawling activity and

effort in “regime” conditions that approximated the full-potential

volume of the fishery. Therefore, we selected the 2019 conditions

as representative of standard fishing effort levels unaltered by

the COVID-19 pandemic, and the consequent restrictions and

economic failures occurring after 2020. For each 2019 month, our

workflow (i) identified trawling areas, (ii) estimated unreported

trawling activity hotspots, and (iii) identified the stocks potentially

involved in the unreported areas along with their vulnerability

status. We projected the unreported activity hotspots onto zones

monitored by fisheries management organizations (sensitive zones),

such as marine protected areas and restricted areas. We used

the density of hotspots falling in these zones as an impact

measurement. Specifically, we focussed on seven sensitive zones

currently monitored and regulated in the Adriatic: (i) coast-

distance ban (between 1-6 NM, depending on the month and the
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FIGURE 3

Sequence of monthly unreported trawling activity hotspots in the Adriatic in 2019, estimated through kernel density at 0.1◦ spatial resolution. The

classification colors were assigned using the same classification thresholds for all months.

area), (ii) trawling-restricted areas, (iii) Pomo Pit fishery restricted

area (FRA), (iv) marine protected areas (MPAs), (v) offshore

platforms, (vi) areas with depth over 1,000 m, and (vii) Zones of

Biological Protection (ZTB or BPA). We evaluated if the monthly

hotspots and impact patterns corresponded to those reported by

other expert studies and if the extracted target and ETP stocks were

consistent with official reports.

As an additional evaluation, we compared our reported-

trawling distribution with the one downloadable from the GFW

Web portal at 0.1◦ resolution (Clavelle, 2022), to verify that

they produced similar patterns. The GFW portal is managed by

Google in partnership with Oceana and SkyTruth. It produces

a global view of commercial fishing activities by collecting

and analyzing VMS, AIS, and SAR data. The GFW data also

report aggregated fishing activity for trawlers, estimated through

a supervised machine learning model mainly based on speed

information (de Souza et al., 2016). We calculated the fraction

of 0.1◦ cells for which our distribution and the GFW data

matched their classifications of fishing and non-fishing locations

(accuracy). For this comparison, we up-scaled our reported-

trawling hour distribution through nearest neighbor interpolation.

Moreover, we calculated Cohen’s kappa (Cohen, 1960) to estimate

the agreement between the two distributions with respect to

a chance agreement. We also calculated accuracy and kappa

using four classes: low/medium/high fishing activity and non-

fishing locations. This comparison aimed to demonstrate the

effectiveness of our workflow’s fishing activity classifier for

trawlers, and, consequently, its potential reliability to classify

unreported trawling activity (which focuses on gaps in this

classification). However, it was impossible to compare unreported-

trawling activity distributions because GFW does not report

this information.
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TABLE 1 Summary table of the main results obtained from the execution

of our workflow on the Adriatic Sea case study data.

Prior speed range of trawling activity 2–4 kn

Statistically revised speed range 1.6–4.8 kn

Sequential data processing time 13 h

Cloud data processing time 1 h

Highest-intensity unreported fishing activity

region

Italian coasts

Lowest-intensity unreported fishing activity

regions

Pomo Pit and 1,000 m areas

Unreported fishing activity decrease period April–September

Month with the highest number of total trawling

activity hours

April

Month with the lowest number of total trawling

activity hours

August

Month with the highest number of unreported

trawling activity hours

December

Month with the lowest number of unreported

trawling activity hours

August

Regions with unreported fishing activity likely

due to signal loss

Off the Po river’s delta and far

from the coasts

Regions with unreported fishing activity likely

due to voluntary switch-offs

Northern prohibited areas

(around hydrocarbon

extraction platforms) and

marine protected areas

Number of commercial stocks potentially

involved in the unreported fishing activity

33

Number of ETP stocks potentially involved in

the unreported fishing activity

4

3. Results

3.1. Identification of Adriatic unreported
trawling hotspots

Our workflow produced unreported trawling activity hotspots

for all months of 2019 at a 0.1◦ resolution (Figure 3, with the main

results summarized in Table 1). To enhance comparison, we used

the fishing-hour classification range of the month with the most

intense unreported trawling activity (December) for all months.

The statistically revised trawling speed range went from ∼1.6 kn

to ∼4.8, with up to a 20% variation across the months. The data

processing required ∼1 h using cloud computing and ∼13 h using

a sequential execution on one machine.

The analysis highlighted that Italian coasts were generally

subject to the highest intensity of unreported trawling, even at

a short distance from the coast. Here, the highest unreported

trawling intensity was concentrated in the northwest (off Po

river’s delta), in central coasts (off Abruzzo and Marche coasts),

and in a few localized spots in the south (off Apulian coasts).

During warmermonths (April–September), the unreported activity

strongly decreased because of the summer fishing bans but was

sparser and tended toward the middle of the basin. The month with

the most intense total trawling activity was April, whereas the one

with the lowest intensity was August.

Homogenizing trawling intensity categorization across

the months enhanced inter-month result comparison. For

example, it highlighted that unreported fishing activity

always presented medium-high intensity locations across all

months, even in the lowest-intensity month (Figures 4A, B; the

“Supplementary information” section contains links to data and

images for all months). These locations sensibly contributed to

the total fishing effort. In fact, a high unreported/total activity

ratio was often concentrated in the unreported activity hotspots,

especially in the high intensity months (Figure 4A). These hotspots

might correspond to systematic signal loss, e.g., off the Po river’s

delta where signal power loss and high traffic can interfere

with transmission (Mantovani, 2019). However, they might also

correspond to voluntary transmission switch-offs, especially in

(or around) prohibited or protected areas (Ferrà et al., 2020).

High-ratio locations could also be sparse outside unreported

trawling hotspots (Figure 4B). These locations likely corresponded

to communication issues, especially far from the coasts (Liping and

Shexiang, 2012; Natale et al., 2015; Shepperson et al., 2018).

These observations can be further explored by analyzing the

density of unreported fishing hotspots in the sensitive areas

(Section 2.3). Since the definitions of these areas might change

across the months, we distinguished and aggregated the month-

data when the sensitive areas remained almost constant (Figures 5,

6). We used the same density scale and classification thresholds

to compare the aggregations better. This analysis confirmed that

Italian coasts were particularly subject to unreported trawling

activity (Figure 5-Coast Distance Ban), in agreement with other

studies (Scarcella et al., 2014; Ferrà et al., 2018). The hotspots

intersected several MPAs (Figure 5-MPA Ban), suggesting a hidden

negative pressure on these delicate ecosystems, especially off the

northern and southern Croatian coasts (off Rijeka/Fiume and

Split, and around Vis island), also highlighted by other studies

(Chimienti et al., 2020; Ferrà et al., 2020). The Pomo Pit and the

1,000m area (Figure 5-PomoBan and 1,000mBan) presented a low

level of unreported trawling activity, slightly increasing in warmer

months, in agreement with expert studies (de Juan and Lleonart,

2010; Elahi et al., 2018). This was probably due to too-deep waters.

The prohibited and ZTB/BPA areas falling in unreported trawling

hotspots were especially located in the North Adriatic (Figure 6-

Prohibited Areas and BPA Ban), e.g., in the “Barbare” ZTB/BPA

(at 30 NM from the Ancona coasts), and off the Croatian coasts.

This observation finds confirmation in other studies (Galdelli et al.,

2020, 2021). These areas contain several hydrocarbon extraction

platforms (Figure 6-Platform Ban), where trawling is forbidden

because of the inter-platform cables present on the seabed.

The unreported activity hotspots involved 33 commercial

stocks, four of which (sharks and tuna) were also ETP species of the

basin (Table 2). This list contains actual Adriatic trawlers’ targets,

and the detected ETP species are known to be subject to illegal

fishing activity (Piroddi et al., 2015; Froese et al., 2018b; Armelloni

et al., 2021).

3.2. Comparison with the Global Fishing
Watch data

We compared the reported trawling hours estimated by our

workflow with those available on the GFW Web portal (Global

Fishing Watch, 2022). In particular, we compared the distributions
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FIGURE 4

Comparison between the 0.01◦ resolution distributions of unreported, reported, total, unreported fraction, and unreported trawling hotspots for the

(A) highest-intensity and (B) lowest-intensity total trawling-activity months (April and August). To enhance visual comparison, the same fishing-hour

classification thresholds were used for the two months’ distributions, and only medium and high locations were reported.

in the months of highest and lowest total activity (April and

August 2019) (Figures 7A, B, Table 3). When comparing only two

classes (fishing vs non-fishing activity), our workflow accuracy at

reproducing the GFW distribution was 94.4% for April and 95.1%

for August, with kappa agreements of 0.77 and 0.68 respectively

[good according to Fleiss’ interpretation (Fleiss, 1971)].When using

four classes (low/medium/high fishing activity and non-fishing

activity), accuracy was 92.7% for April and 94.4% for August,

with 0.70 and 0.64 kappa agreements (still good). Overall, these

results indicate a high overlap between the distributions, which

enforces our statistical approach reliability on the case study and

consequently suggests coherence in detecting unreported fishing

activity in the reported-activity gaps.

4. Discussion and conclusions

We have presented a workflow to estimate the distribution

of reported and hidden/unreported fishing activity in a marine

area. The workflow can process big data of sequences of vessels

coordinate and speed information collected by AISs and VMSs. The

workflow automatically revises a prior fishing speed range provided

as input. It rebuilds gaps in the estimated fishing activity locations

and estimates the potential unreported activity in the study area

and the related hotspots. By integrating stock and biodiversity data

sources, the workflow extracts the potential vessels target stocks in

the unreported activity hotspots and their ETP status. Unlike other

solutions (Merten et al., 2016), our workflow is also available as a

standardized Web service running on a cloud computing platform,

which supports the concurrent processing of big data flows.

We have demonstrated the effectiveness of our workflow

through a case study focussing on Adriatic trawling vessels.

The workflow correctly extracted trawling patterns in agreement

with an alternative model. Additionally, it detected unreported-

activity hotspots and their potential impact on sensitive areas in

agreement with expert studies. These hotspots contain valuable

information for monitoring authorities, because they indicate

areas with systematic communication problems and illegal fishing

activity. The extracted target and ETP stocks in these locations were

correct and included stocks known to be subject to major illegal

fishing. Through cloud computing, we could quickly process ∼50

million records, experiment different workflow parametrisations,

and produce monthly analyses for the case study. The generality

of the workflow and its standardized Web service interface make

it easily re-usable for other areas, in compliance with the Open

Science paradigm (Hey et al., 2009).

Compared to other solutions, our workflow does not use

gear/logbook data and spatially explicit catch information from

Regional Fisheries Management Organizations (RFMO) (Palmer

and Wigley, 2009; Lee et al., 2010; Gerritsen and Lordan, 2011;

Olesen et al., 2012; Muench et al., 2018; Roberson et al., 2019; Burns

et al., 2023). This information would likely increase our workflow

accuracy in identifying unreported fishing activity hotspots.

However, it would also increase the workflow dependency on the

RFMO regions for which data are available, consequently lowering

the current cross-region applicability.Moreover, our workflow does

not consider the environmental effects on stock presence, which

can enhance vessel activity prediction accuracy in multi-source

integration models (Chang and Yuan, 2014; Coro et al., 2022a;

Burns et al., 2023). The principal reason is that our workflow

assesses the potentially involved stocks after identifying unreported

fishing activity hotspots. Improving the detection of the involved

stocks is among our prior directions of improvement, which will

require including environmental aspects. Another limitation of our

workflow is that processing AIS/VMS trajectory data alone does

not allow for distinguishing between technical issues and voluntary

transmitter switch-offs. Using supervised machine learning instead

of statistical analysis would have helped identify voluntary switch-

offs as anomalous patterns in vessel trajectories (Marzuki et al.,

2015; Ford et al., 2018; Singh and Heymann, 2020; Wolsing et al.,

2022). Some machine learning-based approaches search for these

patterns also in the data gaps, using SAR image processing to
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FIGURE 5

Classification of unreported hotspot density over 4 monitored Adriatic subdivisions: coast-distance ban (within 3 and 6 NM, respectively for Italian

coasts) (Coast Distance Ban), marine protected areas (MPAs), Pomo Pit restricted area (Pomo Ban), areas with depth over 1,000 m (1,000 m Ban). The

same classification thresholds were used for each chart pair to enhance comparison. The aggregation months were chosen as those during which

the subdivisions remained almost constant.
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FIGURE 6

Classification of the unreported hotspot density over 3 monitored Adriatic location types: trawling-restricted areas (Prohibited Areas), Zones of

Biological Protection (BPA Ban), o�shore platforms (Platforms Ban). The same classification thresholds were used for each chart pair to enhance

comparison. The aggregation months were chosen as those during which the areas remained almost constant.

estimate ship presence (Perez et al., 2013; Galdelli et al., 2021;

Cutlip, 2022). Unlike supervised machine learning approaches, our

workflow does not use (expensive) annotated corpora for model

training. Moreover, since our workflow operates fishing activity

classification and focusses on fishing vessels only, integrating SAR

images would require reliable, currently unavailable (Cutlip, 2022),

algorithms to identify fishing activity type and vessel size from

the images.
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TABLE 2 List of stock/species detected in the unreported trawling activity hotspots.

Aristaeomorpha foliacea Aristeus antennatus Auxis rochei Coryphaena hippurus Dicentrarchus labrax

Engraulis encrasicolus Euthynnus alletteratus Galeorhinus galeus Loligo forbesii Merluccius merluccius

Micromesistius poutassou Mullus barbatus Mustelus asterias Nephrops norvegicus Pagellus erythrinus

Parapenaeus longirostris Phycis blennoides Raja clavata Sardina pilchardus Scomber colias

Scomber scombrus Scophthalmus maximus Scyliorhinus canicula Solea solea Sparus aurata

Sprattus sprattus Squalus acanthias Squilla mantis Thunnus alalunga Thunnus thynnus

Trachurus trachurus Triakidae spp. Trisopterus minutus

Red colors indicate endangered, threatened, and protected (ETP) species.

FIGURE 7

Comparison (at 0.1◦ resolution) between distributions of reported fishing activity hours produced by our workflow and by the Global Fishing Watch

(GFW) in the months of (A) highest and (B) lowest intensity (April and August). To enhance comparison, fishing activity was classified as low to high in

each distribution, using statistically calculated thresholds for our workflow and GFW-provided thresholds for the GFW data.

The information produced by our workflow is complementary

to the one used by RFMOs to monitor fishing activity and conduct

stock assessments. It is also valuable for IEAs to better estimate

human-related driving forces on ecosystems, and suited for being

integrated in marine spatial planning workflows, e.g., to prioritize

closures and controls that guarantee fisheries sustainability while

reducing unreported fishing activity (Agnew et al., 2009; Klein

et al., 2010; Agardy et al., 2011; Plumptre et al., 2014; Metcalfe

et al., 2015; Coro et al., 2021). The fishing activity classification

algorithm is suited for applications where specific speed ranges

characterize the fishing activity [e.g., 2–4 kn for trawlers and 6–

15 kn for tuna purse seiners, Zhang et al. (2021)]. In a big data

context, where data are noisy and untrustworthy (Coro et al., 2021),

a more specific fishing-activity classification (e.g., with trawling

Frontiers in Sustainable FoodSystems 13 frontiersin.org

https://doi.org/10.3389/fsufs.2023.1152226
https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org


Coro et al. 10.3389/fsufs.2023.1152226

TABLE 3 Comparison between our reported fishing activity distribution

and the Global Fishing Watch’s distribution for the Adriatic Sea.

Accuracy Kappa Interpretation

April—two classes 94.4% 0.77 good agreement

August—two classes 95.1% 0.68 good agreement

April—four classes 92.7% 0.70 good agreement

August—four classes 94.4% 0.64 good agreement

The comparison is reported for the highest (April) and lowest (August) total fishing-intensity

months at a 0.1◦ spatial resolution, using two agreement classes (fishing vs non fishing)

and four agreement classes (low, medium, high, non fishing). Performance is reported in

terms of accuracy (number of agreed cells over total cells) and Cohen’s kappa. Fleiss’ kappa

interpretation is reported for all comparisons.

type specification) might end in less reliable results or a less re-

usable process for other areas (Coro et al., 2022b). Nevertheless,

our workflow allows for using other, more precise, fishing-activity

classifications. For example, the input data could come from the

GFW-classified AIS data, with include fishing gear indication. In

this case, our fishing activity classification algorithm would be

skipped. We indeed plan to integrate GFW data with our workflow

to support gear-specific analyses, which will require buying the

GFW-AIS data. Alternatively, GFWprovides open data sets to train

supervised machine learning models and build alternative fishing-

activity classification models for other AIS data (e.g., the Astra

Paging data).

As for the GRSF, through an existing agreement between FAO

and D4Science for knowledge base access (FAO, 2019), we will

ask for accessing the data of the frequently used gears per stock.

Alternatively, similarly to other approaches (Froese et al., 2018a),

a strategy to exclude stocks from gear-specific captures could be

developed, based on average stock weight, length, and habitat.

Separating the analysis by fishing gear, would allow, for example, to

differentiate the lower impact of bottom trawling on pelagic species

with respect to overall trawling activity, and consequently refine

the results. We plan to in-depth explore the balance between gear-

specific activity classification and result reliability in future work.
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The results on the use case data are freely available on the

Zenodo open repository as CSV, raster (GeoTiff), and image files:

https://zenodo.org/record/7402415#.Y46EvXbMJPY.

The Workflow source code is freely available as a GitHub

repository at https://github.com/cybprojects65/VesselAnalytics,

which also contains a one-month example of input data.

The WorkflowWeb service is freely available on the D4Science

e-Infrastructure after registration to the RProtopypingLab Virtual

Research Environment: https://services.d4science.org/group/

d4science-services-gateway/explore.

It is accessible through the DataMiner cloud computing

platform at https://services.d4science.org/group/rprototypinglab/

data-miner?OperatorId=org.gcube.dataanalysis.wps.

statisticalmanager.synchserver.mappedclasses.transducerers.

UNREPORTED_FISHING_ACTIVITY_HOTSPOTS.

Programmatic Web service calls can follow the WPS

specifications (https://wiki.gcube-system.org/gcube/How_to_

Interact_with_the_DataMiner_by_client).
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