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Raman spectroscopy 
and topological machine learning 
for cancer grading
Francesco Conti 1,2*, Mario D’Acunto 3, Claudia Caudai 1, Sara Colantonio 1, Raffaele Gaeta 4, 
Davide Moroni 1 & Maria Antonietta Pascali 1

In the last decade, Raman Spectroscopy is establishing itself as a highly promising technique for 
the classification of tumour tissues as it allows to obtain the biochemical maps of the tissues under 
investigation, making it possible to observe changes among different tissues in terms of biochemical 
constituents (proteins, lipid structures, DNA, vitamins, and so on). In this paper, we aim to show that 
techniques emerging from the cross-fertilization of persistent homology and machine learning can 
support the classification of Raman spectra extracted from cancerous tissues for tumour grading. 
In more detail, topological features of Raman spectra and machine learning classifiers are trained 
in combination as an automatic classification pipeline in order to select the best-performing pair. 
The case study is the grading of chondrosarcoma in four classes: cross and leave-one-patient-
out validations have been used to assess the classification accuracy of the method. The binary 
classification achieves a validation accuracy of 81% and a test accuracy of 90%. Moreover, the test 
dataset has been collected at a different time and with different equipment. Such results are achieved 
by a support vector classifier trained with the Betti Curve representation of the topological features 
extracted from the Raman spectra, and are excellent compared with the existing literature. The added 
value of such results is that the model for the prediction of the chondrosarcoma grading could easily 
be implemented in clinical practice, possibly integrated into the acquisition system.

Raman spectroscopy (RS) is a noninvasive optical technique sensitive to the molecular composition of biological 
tissues so that RS can be used to optically probe the molecular changes associated with disease tissues, making 
it possible to classify malignant cancer  degrees1. Raman spectrum is a plot of scattered intensity as a function of 
the energy difference between the incident and scattered photons and is obtained by pointing a monochromatic 
laser beam at the tissue under investigation. Hence, the loss or gain in the photon energies corresponds to the 
difference in the final and initial vibrational energy levels of the molecules belonging to the specific spots of 
the tissue investigated. The difference between final and initial vibrational energy levels denote shifts in wave-
numbers, which are unique for individual molecules resulting in specific peaks that are spectrally narrow and 
potentially associated with the vibration of a specific chemical bond in the  molecules2.

Since the grading of cancer tissues is one of the main challenges for pathologists, RS is establishing itself as 
one of the most promising new techniques for supporting pathologists in making diagnoses as accurate as pos-
sible, avoiding or limiting as much as possible false positives and false negatives, unfortunately still commonly 
experienced by pathologists today, and increasing the overall accuracy of diagnostic  protocols3–7. Recently, RS has 
been applied to chondrogenic tumour classification with excellent  results8. Chondrogenic tumours are the second 
worldwide largest group of bone tumours, whose histologic pattern suggests a deep relationship to hyaline carti-
lage. Chondrosarcomas are tumours whose malignant cells produce a cartilaginous matrix. When they occur in 
previously normal bones, they are generally classified as primary chondrosarcomas. At the same time, secondary 
chondrosarcomas result from the malignant transformation of a benign cartilaginous lesion. They are classified 
into three malignant degrees, the first degree (CS G1), the second one (CS G2) and the third one (CS G3). In 
addition to such three degrees, Enchondroma (EC) is a noncancerous version. Distinguishing between EC and 
CS G1 is a rather critical issue for pathologists, generating many false positive and false negative  diagnoses9,10. In 
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order to adequately address the solution to this problem, RS has proved extremely  useful8. Multivariate analysis 
is the basic discriminant approach able to handle Raman data to perform a diagnosis. The first application of 
multivariate statistics to chondrosarcoma has been primarily based on the principal component analysis—linear 
discriminant analysis (PCA-LDA) algorithm together with leave-one-out cross-validation method, yielding the 
sensitivities of 70% between EC and G1, and 90%, between G1 and G2, respectively. These results have indicated 
that Raman spectroscopy combined with multivariate analysis techniques can be used to explore the biochemical 
intravariability of the cancerous tissue under  investigation8. A more recent  paper11 exploited a more complex 
processing scheme, i.e. CLARA (CLAssification through wavelet transform of RAman spectra). CLARA is a 
two-stage classification method: the first stage directly uses the 1D signal to discriminate between EC, CS G1 
and CS G2, G3, while the second stage applies the wavelet transform to Raman spectra in order to discriminate 
between EC and CS G1. CLARA achieves a 97% accuracy in the 3-label classification.

In this paper, we propose a novel method leveraging the topological features extracted from the Raman spec-
trum, to enhance the classification capability of standard machine learning techniques in classification. Even if 
the experimental dataset is not large, results show that such a method outputs a classification model which not 
only achieves high accuracy on never before seen data samples but also can be easily integrated into a Raman 
spectroscopic system as an automatic tool for supporting clinicians in grading the tumour.

The following section is devoted to the description of both the experimental data (Dataset 1 and Dataset 2) 
and the processing pipeline. In “Results” section, the processing pipeline is applied to the experimental data, and 
the classification results are reported; also, this section includes two ablation studies showing that the pipeline is 
more efficient than using only topological data analysis or only machine learning classifiers. The section closes 
with: (i) a thorough comparison of the best result we found in the state of the art; (ii) a description of the results 
achieved on new data (which have been acquired on new subjects using a different acquisition system). “Final 
test with new data” section discusses the best results achieved and concludes the paper.

Materials and methods
Data acquisition. The data acquisition was carried out with a Thermo Fisher Scientific DXR2xi Raman 
microscope. A total of 10 patients, who were being treated at the Institution, Azienda Ospedaliera Universitaria 
Pisana, Pisa, were enrolled in the study under the Ethical Committee agreement. Details can be found in the 
 paper8. Formalin-fixed paraffin-embedded tumour tissue sections (e.g. in Fig. 1) were collected on glass slides 
and subsequently submitted to RS analysis after the dewaxing step (e.g. in Fig. 2). The protocol to remove paraf-
fin and formalin has provided the immersion of the histopathological sections in a series of two baths of xylene 
for 10 min, respectively, and then washing the sections in PolyButylene Succinate (PBS) to remove residual for-
malin. Moreover, to give an idea of the variability of the datasets, Fig. 3 shows the Raman spectra coming from 
Dataset 1 (Fig. 3a) and from Dataset 2 (Fig. 3b).

The Raman spectroscopy measurements were configured based on the following experimental parameters: 
laser wavelength 532 nm; power laser of 5–10 mW; 400–3400 cm−1 full range grating; 10×, 50× and 100× objec-
tives; 25 µm pinhole; 5 (FWHM) cm−1 spectral resolution. Integration time for recording a Raman spectrum 
was 1 s and 10 scans for any spectrum. As a first step, the tissue morphology overview was carried out to identify 
the regions of interest with the collection of a number of mosaic images at low (10×) and intermediate (50×) 
magnification. Thus, the acquisition of Raman spectra was carried out with a 100× objective. Optimization of 
signal-to-noise ratio and minimization of sample fluorescence were obtained through preliminary measurements 
in order to set the best experimental parameters. Multiple measurements were performed in different regions 
within the various samples, in order to assess intra-sample variability. In turn, no pre-treatment of the samples 
was necessary before Raman measurements. Minimal preprocessing, including background removal and baseline 
application, was performed using the tools of the DXR2xi GUI, and a 5th order polynomial correction was used to 
compensate for the tissue fluorescence. Peaks were identified with specific tool support by Omicron 9.0 software.

Raman hyperspectral chemical maps ranging from 50× 50µm2 (step size 1 µm ) to approximately 
200× 200µm2 (step size 4µm ), recording several hundreds of spectra per map were collected. Raman maps 
provide the fundamental advantage of being able to localize Raman spectra to specific locations, providing local 
information about chemical composition. Step sizes were chosen to have a collection time for each map less 
than 7 h for all the maps.

Ten supplemental spectra have been acquired, making use of an Xplora Plus (Horiba) in a similar experimen-
tal setup and preprocessing procedure in order to test the classification method on never seen data samples. This 
way, the results of the final test reported at the end of the “Results” section show that the classification method 
proposed is neither subject-dependent nor vendor-specific (DXR Thermo Fisher data for model training, Xplora 
Horiba data for final model testing).

In this paper, we have introduced the following labels for the machine learning part: EC = 0, CS G1 = 1, CS 
G2 = 2, CS G3 = 3. In the following, they will be used as synonyms. Finally, the data acquired have been split 
into two datasets:

• Dataset 1 400 spectra from ten subjects, belonging to the following chondrosarcoma malignancy classes 
[0, 0, 0, 1, 1, 1, 2, 2, 3, 3]. Each subject has respectively the following number of spectra: [32, 31, 37, 24, 38, 
38, 50, 50, 49, 51].

• Dataset 2 10 spectra from ten subjects (no intersection with Dataset 1), belonging to the following chondro-
sarcoma malignancy classes [1, 2, 2, 1, 2, 0, 3, 3, 0].

Data analysis. The core idea of our study is to employ the many tools of Topological Data Analysis (TDA) 
and machine learning (ML) to perform classification in the dataset of Raman spectra described in the previ-
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ous section. The concept of using topological and geometrical ideas in medical data is not a novel one and has 
already demonstrated substantial potential through multiple research  papers12–18.

In our approach, we evaluated the effectiveness of topological features by combining them with established 
machine learning algorithms, including support vector classifiers, random forest classifiers, and Ridge regres-
sions. The reason why we preferred general machine learning algorithms to deep learning is twofold. Firstly, NNs 
are highly task dependent, whereas the adopted processing  pipeline19 based on TDA and ML is intended to be 
very general. Secondly, for completeness, a CNN was trained on the persistence images obtained in “Combining 
TDA and ML: the classification pipeline” section. Since the results were not at all satisfactory, this experiment 
was excluded from this work.

Mathematical background. This section is mainly devoted to the description of TDA, a relatively new branch 
of applied mathematics that aims to bridge the gap between computational topology and discrete Morse theory 
in the study of high dimensional data. The interested reader can find more information about this topic  here20,21. 
More precisely, we introduce Persistent Homology (PH) as one of the main concepts of TDA. Roughly speak-
ing, PH studies the geometry of spaces by looking at the evolution of k-dimensional holes at different scales. It 
keeps track of the appearance and disappearance of such holes, which are the topological features, in the form of 
intervals (birth, death) . The persistence of a topological feature is the span of its detectability, and it is a measure 
of its importance. In particular, features with a longer lifespan are more likely to be key features in describing 
the shape of the data space, while features with a short lifespan can often be assimilated to noise. The collection 
of the intervals (birth, death) is called the Persistence Diagram (PD). Mathematically, a persistence diagram is a 
multiset, which is a set where elements can appear multiple times, i.e. each element has a multiplicity. Different 
metrics can be defined in the space of persistence diagrams. Notwithstanding the precise mathematical defini-
tion of these metrics (for which we refer the reader  to20,21), an essential property is that the process that associates 

Figure 1.  Representative histologic images of the tumours analyzed in this study (hematoxylin and eosin 
staining). EC (a); CS G1 (b); CS G2 (c); CS G3 (d).
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a PD with data is stable with respect to these metrics. This means that a small perturbation in the data yields a 
small perturbation of the associated PD. This property is of fundamental importance in applications because it 
guarantees robustness against noise and repeatability. The main drawback of PDs is that the space of multisets 
lacks fundamental properties required in a machine learning context. For this reason, a number of representa-
tion methods have been devised in order to exploit the PDs’ expressiveness in ML algorithms. For more informa-
tion on such representation methods, we refer the reader to these  papers22–25. The key idea of all these methods is 
to embed the space of persistence diagrams in a more broad Hilbert space in a stable way, i.e. to vectorize the PD. 
After this last step, we are able to exploit the topological features extracted by persistent homology directly in a 
machine learning algorithm. Figure 4 shows the classical paradigm for topological data analysis.

Combining TDA and ML: the classification pipeline. This section is devoted to the description of the topological 
pipeline employed in this study. We refer to Fig. 5 for a general scheme of our approach. The classification pipe-
line consists of an automatic grid search for the optimal choice of (i) PH-base representation of the input data; 
(ii) ML classifier for cancer staging. Such a pipeline has already been presented in this  article19, where a variety 
of tests on benchmark datasets were carried out. The present work describes its first application to experimental 
data. See Fig. 6 for a graphical example of our pipeline. The first step of the pipeline is to compute the PDs from 
the Raman Spectra. In doing so, we chose the Vietoris-Rips  filtration27. In this approach, each point of the spec-
tra is treated as a point in the Euclidean space R2 . We grow balls centered at each point of the signal and when 
i balls intercept, an i − 1 simplex is added to the simplicial complex with birth value r, the current radius. An 
alternative approach might have been to use lower star  filtration20,28. Without going into details, since this filtra-
tion does not generate points in H1 for 1D signals, Vietoris-Rips was preferred. Hence, starting from the Raman 
spectra (Fig. 6a), restricted to the wavenumber range 400–1800 cm−1 , the persistence diagram of homology in 
dimension 0 and 1 is computed with a Vietoris Rips filtration using the python Ripser  package29 (Fig. 6b). The 

Figure 2.  Representative Raman spectra of the tumors analyzed in this study. EC (a); CS G1 (b); CS G2 (c); CS 
G3 (d).
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PD is therefore vectorized using four different vectorization methods with different combinations of parameters. 
More specifically, the PDs are vectorized using the following setup:

• Persistence  Images22 (PI) with bandwidth σ ∈ {0.1, 1, 10} and resolution n ∈ {5, 10, 25} (Fig. 6c);
• Persistence  Landscapes23 (PL) with resolution n ∈ {25, 50, 75, 100} (Fig. 6d);
• Persistence  Silhouette24 (PS) with resolution n ∈ {25, 50, 75, 100} (Fig. 6e);
• Betti  Curve25 (BC) with resolution n ∈ {25, 50, 75, 100} (Fig. 6f).

It is important to highlight the fact that PDs produce points in different homological dimensions, and such 
information must be treated carefully. In more detail, following the rich TDA literature, we employed four dif-
ferent approaches to deal with information originating from different dimensions. In the first (resp. second) 
approach, only the points in dimension Hi for i = 0 (resp. i = 1 ) are considered in the vectorization. In the third 

Figure 3.  The entirety of Raman spectra coming from Dataset 1 (a) and from Dataset 2 (b).
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one, the actual homology dimension is neglected, and all the points are vectorized altogether regardless of the 
dimension in which they show up. Finally, in the fourth approach, H0 and H1 are vectorized separately, and then 
the corresponding vectors are concatenated. We will refer to these approaches as H0 , H1 , H0 +H1 (fused) and 
H0 +H1 (concat) respectively. Such vectors represent the input for different machine learning classifiers. The 
classifiers employed in our pipeline are:

• Support Vector  Classifier30 (SVC) with RBF kernel and C ∈ {1, 2, 3, 5, 10, 20};
• Random Forest  Classifier31 (RFC) with #trees = 100;
• Ridge  Regression32 (RR) with α = 1.

These are well-known and standard ML classifiers; in this work, we used the implementation of the Scikit-learn 
 library33. The pipeline performs a grid search between the four approaches, the different vectorization and classi-
fiers and returns the accuracy of each method for each of the ten runs of a leave-one-patient-out cross-validation34 
(LOPO). We stress that the design of our experimentation, including vectorizations, classifiers and LOPO, is 
motivated by two main reasons: (i) to achieve enough consistency with the previous work of the  pipeline19 and 
others TDA papers; (ii) the limited amount of available data allows for meticulous research of optimality.

Ethics statements. The study was approved by the local Ethical Committee Comitato Etico Regionale per la 
Sperimentazione Clinica della Regione Toscana sezione AREA VASTA NORD OVEST (protocol number 14249). 
Ten patients affected by primary chondrogenic tumours of the skeleton were enrolled in this study. Informed 
consent was collected from all patients. All the experiments were carried out in accordance with Good Clinical 

Figure 4.  Data space at different scale resolutions (i.e. different radii) and the associated k-dimensional voids. 
The collection of such features forms the persistence diagram. Credits: Shafie Gholizadeh and Wlodek Zadrozny 
via A Tutorial on Topological Data Analysis in Text  Mining26.

Figure 5.  The pipeline for a topological study of digital data in a machine learning context. A filtration 
associates a persistence diagram with the digital data. The persistence diagram is then vectorized by means of 
various vectorization methods. Finally, the vector is fed to a machine learning classifier.
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Practice (GCP) and with the ethical principles of the Declaration of Helsinki. All patients were diagnosed and 
treated at Azienda Ospedaliera Universitaria Pisana, Pisa, in 2018.

Results
In this section, we are going to explore the results achieved by the pipeline described in “Combining TDA and 
ML: the classification pipeline” section. Due to the scarcity of data, we were able to perform a large number of 
experiments without any kind of computational restriction. For a more detailed description of the experimen-
tal data, please refer to “Data acquisition” section. In our first experiment (“Supervised results” section), we 

Figure 6.  Pipeline application for the Raman spectra of chondrogenic tumours. The Raman spectra (a) and the 
persistence diagram associated (b). In the second and third rows, four different vectorization methods for the 
same PD, namely Persistence Image (c), Persistence Landscape (d), Persistence Silhouette (e) and Betti Curve 
(f).
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performed supervised learning on Dataset 1. In more detail, in “Supervised results” section we trained different 
combinations of labels. Specifically, we experimented by training the classifier with 4 labels (“LOPO validation 4 
labels” section), with 3 labels (EC vs. CS G1 vs. CS G2 and CS G3, “LOPO validation 3 labels (EC vs. CS G1 vs. CS 
G2 and G3)” section) and two binary classifiers (EC vs. CS, “LOPO validation 2 labels (EC vs. CS)” section; EC 
and CS G1 vs. CS G2 and CS G3, “LOPO validation 2 labels (EC, CS G1 vs. CS G2, G3)” section). As explained 
in “Introduction” section, the most clinically meaningful subdivision is the binary classification EC vs. CS. Nev-
ertheless, other subdivisions that may be clinically useful were also investigated, as a proof-of-concept study of 
the applicability of our method to the more challenging task of supporting the pathologist in the tumour grading, 
i.e. the subdivision no cancer vs. mild cancer vs. severe cancer in “LOPO validation 3 labels (EC vs. CS G1 vs. 
CS G2 and G3)” section. Indeed, the results obtained with these subdivisions, although of limited validity due to 
the small number of patients, encourage to enlarge the experimentation in order to validate our method further. 
Moreover, in “Unsupervised clustering” section we performed unsupervised learning (clustering) on Dataset 
1. In “Comparison with CLARA 11” section, we compare with the state of the art from the  paper11. Finally, in 
“Final test with new data” section, the best model of “LOPO validation 2 labels (EC vs. CS)” section (supervised, 
2-label classification), trained on Dataset 1, was tested on Dataset 2, in order to assess its generalization capability.

The pipeline takes the Raman spectra as input, computes the PDs by means of a Vietoris Rips filtration, 
vectorizes the PDs, and feeds such vectors to a machine learning classifier: basically, we start from a vector, and 
we end up with another vector of topological features. For this reason, in “Supervised learning without TDA” 
section, an ablation study has been carried out by feeding the Raman spectra directly to the machine learning 
classifiers, and comparing with the results achieved. We recall that the pipeline performs a grid search between a 
large number of methods {vectorization method, classifier}. Moreover, we treat separately the different homology 
dimensions discussed in “Combining TDA and ML: the classification pipeline” section. For this reason, in the 
following, for each experiment, we report both a table showing the best accuracy among all methods for each 
run of the LOPO validation and each homology dimension, as well as a table showing the best single method 
(as average accuracy) for each homology dimension.

Supervised results. In the first, somewhat naive experiment, we split all the spectra in training and test, not 
requiring to have all the spectra from the same patient in the training or in the test set (and not in both). Soon 
after, we opted for a leave-one-patient-out cross-validation (LOPO) approach to prevent overfitting. Moreover, 
we did not always carry out a 4-class classification, but also conducted 3 and 2-class studies in accordance with 
the existing literature.

Tenfold cross‑validation with 4 labels. The first experiment uses all the 400 spectra from Dataset 1 and performs 
a tenfold cross-validation. We highlight that, in doing so, spectra coming from the same patient can occur both 
in the train dataset and in the test dataset. We report the classification accuracy of each run and each homology 
dimension in Table 1, while Table 2 reports the single best method for each homology dimension. Clearly, the 

Table 1.  Accuracy of the pipeline with 4 labels and a tenfold cross-validation approach.

Accuracy: H0 H1 H0 +H1 (fused) H0 +H1 (concat)

Run 1 0.925 (PI) 0.842 (PI) 0.933 (PS) 0.933 (PI)

Run 2 0.958 (PI) 0.875 (PI) 0.925 (PI) 0.958 (PI)

Run 3 0.975 (PS) 0.833 (PL) 0.975 (PS) 0.967 (PS)

Run 4 0.958 (PI) 0.842 (PI) 0.958 (PS) 0.950 (PI)

Run 5 0.967 (PI) 0.792 (PI) 0.958 (PS) 0.942 (PS)

Run 6 0.950 (PI) 0.875 (PI) 0.958 (PS) 0.950 (PI)

Run 7 0.983 (PS) 0.858 (PI) 0.975 (PS) 0.950 (PI)

Run 8 0.958 (PI) 0.875 (PI) 0.967 (PS) 0.950 (PI)

Run 9 0.942 (PS) 0.858 (PL) 0.967 (PS) 0.917 (PI)

Run 10 0.925 (PS) 0.808 (PI) 0.933 (PS) 0.942 (PI)

Mean: 0.954± 0.018 0.846± 0.027 0.955± 0.017 0.946± 0.013

Table 2.  Best method with 4 labels and a tenfold cross-validation approach.

Homology Accuracy Vectorization Classifier

H0 0.943 PS RFC

H1 0.824 PI SVC

H0 +H1 (fused) 0.948 PS RFC

H0 +H1 (concat) 0.940 PI RFC
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accuracy results are extremely satisfying and fully justify a study of Raman spectra for chondrosarcoma tumour’s 
degree of malignancy.

LOPO validation 4 labels. In this second experiment, we repeat the same experiment of “Tenfold cross-valida-
tion with 4 labels” section but using a leave-one-patient-out cross-validation approach. That is, in turn, all spec-
tra from the same patient were used as test and all other spectra from other subjects as train. Table 3 reports the 
accuracy results over the course of the ten runs of the leave-one-patient-out and Table 4 the best single method 
in terms of accuracy. Clearly, there is a huge difference with the results of the previous experiment. We want to 
focus on a very important aspect of these results. Regardless of the homology dimension considered, runs 1, 2, 3 
and 6 obtain high accuracy, runs 4 and 5 fluctuating accuracy while the accuracy is low in the remaining runs. 
Comparing these runs with the composition of Dataset 1, described in “Data acquisition” section, we note that 
in the train dataset of runs 7, 8, 9, 10 there were spectra from a single patient, while in runs 4 and 5 there were 
spectra from two patients, but one in significantly greater numbers than the other, and finally in the remaining 
runs there were always spectra from two patients in the train set. These facts, together with the excellent results 
obtained in “Tenfold cross-validation with 4 labels” section, lead us to think that our method is effective in cor-
rectly classifying spectra, but the variability of spectra from a single patient is low and at least the spectra of two 
patients in the train set are needed to learn the class features. Otherwise, the classifier only learns to recognize 
the patient.

LOPO validation 3 labels (EC vs. CS G1 vs. CS G2 and G3). In our third experiment, we repeat a leave-one-
patient-out approach but only with 3 labels, i.e., more specifically, class EC vs. CS G1 vs. CS G2 and CS G3. The 
results in Table 5 show a marked improvement over “LOPO validation 4 labels” section, but there is no stabil-
ity in the method that achieves them; also, the accuracy of the best single method, shown in Table 6, is not as 
satisfactory.

LOPO validation 2 labels (EC vs. CS). In this experiment, we again performed supervised learning with a leave-
one-patient-out cross-validation approach with only two labels, specifically class EC versus CS, viz. the benign 
class versus the malignant ones. We highlight the fact that in this way the balance of classes is lost. In particular, 
the EC class represents only 25% of the dataset. We recall that in the literature this is the most meaningful subdi-
vidion. We report the accuracy results in Tables 7 and 8. The accuracy results are promising in both tables, being 
above 98% in the first one, and above 80% in the second one.

LOPO validation 2 labels (EC, CS G1 vs. CS G2, G3). Finally, we repeat the experiment of “LOPO validation 
2 labels (EC vs. CS)” section with different labels, that is classes EC, CS G1 vs. CS G2, G3, that is low/no malig-
nancy versus high malignancy. The results are reported in Table 9 and Table 10, and again we obtain pretty good 
accuracies.

Table 3.  Accuracy of the pipeline with 4 labels and a leave-one-patient-out cross-validation approach.

Accuracy H0 H1 H0 +H1 (fused) H0 +H1 (concat)

Run 1 0.844 (PI) 0.844 (PI) 0.844 (PI) 0.844 (PI)

Run 2 1.000 (PI) 1.000 (PI) 1.000 (PI) 1.000 (PI)

Run 3 0.973 (BC) 0.892 (PI) 1.000 (PI) 1.000 (BC)

Run 4 0.791 (BC) 0.333 (BC) 0.792 (BC) 0.792 (BC)

Run 5 0.447 (BC) 0.289 (PL) 0.421 (BC) 0.395 (PL)

Run 6 1.000 (PI) 0.868 (PI) 1.000 (BC) 1.000 (PI)

Run 7 0.100 (PI) 0.160 (PI) 0.160 (BC) 0.100 (PI)

Run 8 0.040 (PL) 0.300 (PL) 0.002 (PI) 0.100 (PL)

Run 9 0.204 (BC) 0.245 (BC) 0.204 (PI) 0.408 (BC)

Run 10 0.078 (PL) 0.294 (PS) 0.020 (PI) 0.255 (PL)

Mean: 0.548± 0.393 0.523± 0.314 0.546± 0.400 0.589± 0.357

Table 4.  Best method with 4 labels and a leave-one-patient-out cross-validation approach.

Homology Accuracy Vectorization Classifier

H0 0.411 BC SVC

H1 0.300 PI Ridge

H0 +H1 (fused) 0.433 BC SVC

H0 +H1 (concat) 0.395 BC SVC
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Supervised learning without TDA. As specified in “Results” section, our pipeline transforms vectors (Raman 
spectra) into vectors (topological features) before feeding them into a machine learning classifier. Therefore, 
to justify a topological study of Raman spectra, we perform an ablation study: in this experiment, we directly 
feed the Raman spectra in the same classifiers as in the pipeline and compute the accuracy following the same 
validation scheme. For the sake of brevity, we only report the mean accuracy and best classifier for each label 
classifier. We report these results in Table 11. We can see from the results that the accuracies are slightly worse. 

Table 5.  Accuracy of the pipeline with 3 labels and a leave-one-patient-out cross-validation approach.

Accuracy H0 H1 H0 +H1 (fused) H0 +H1 (concat)

Run 1 0.844 (PI) 0.813 (PI) 0.844 (PI) 0.844 (PI)

Run 2 0.973 (PI) 1.000 (PI) 1.000 (PI) 1.000 (PI)

Run 3 0.792 (BC) 0.622 (BC) 0.973 (BC) 1.000 (BC)

Run 4 0.421 (BC) 0.292 (PI) 0.792 (BC) 0.750 (BC)

Run 5 1.000 (BC) 0.316 (PL) 0.421 (BC) 0.447 (PL)

Run 6 1.000 (PI) 0.974 (PI) 0.974 (BC) 1.000 (PI)

Run 7 1.000 (PI) 1.000 (PI) 1.000 (PI) 1.000 (PI)

Run 8 1.000 (PI) 1.000 (PI) 0.960 (PI) 0.780 (PI)

Run 9 1.000 (PI) 1.000 (PI) 1.000 (PI) 1.000 (PI)

Run 10 1.000 (PI) 1.000 (PS) 1.000 (PI) 1.000 (PI)

Mean: 0.902± 0.176 0.802± 0.275 0.896± 0.173 0.882± 0.174

Table 6.  Best method with 3 labels and a leave-one-patient-out cross-validation approach.

Homology Accuracy Vectorization Classifier

H0 0.586 PI SVC

H1 0.531 PI SVC

H0 +H1 (fused) 0.569 PI SVC

H0 +H1 (concat) 0.581 PI SVC

Table 7.  Accuracy of the pipeline with 2 labels (EC vs. CS) and a leave-one-patient-out cross-validation 
approach.

Accuracy H0 H1 H0 +H1 (fused) H0 +H1 (concat)

Run 1 0.844 (PI) 0.750 (PI) 0.844 (PI) 0.844 (PI)

Run 2 1.000 (PI) 1.000 (PS) 1.000 (PI) 1.000 (PI)

Run 3 0.946 (BC) 0.595 (PL) 0.973 (BC) 0.973 (BC)

Run 4 1.000 (PI) 1.000 (PI) 1.000 (PI) 1.000 (PI)

Run 5 1.000 (BC) 1.000 (PI) 1.000 (PI) 1.000 (BC)

Run 6 1.000 (PI) 1.000 (PI) 1.000 (PI) 1.000 (PI)

Run 7 1.000 (PI) 1.000 (PI) 1.000 (PI) 1.000 (PI)

Run 8 1.000 (PI) 1.000 (PI) 1.000 (PI) 1.000 (PI)

Run 9 1.000 (PI) 1.000 (PI) 1.000 (PI) 1.000 (PI)

Run 10 1.000 (PI) 1.000 (PI) 1.000 (PI) 1.000 (PI)

Mean: 0.978± 0.048 0.934± 0.136 0.982± 0.047 0.982± 0.047

Table 8.  Best method with 2 labels (EC vs. CS) and a leave-one-patient-out cross-validation approach.

Homology Accuracy Vectorization Classifier

H0 0.808 PI SVC

H1 0.799 PL RFC

H0 +H1 (fused) 0.814 BC SVC

H0 +H1 (concat) 0.810 PS RFC
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Moreover, it is clear how insignificant these results are, e.g., by looking at the case with 4 labels, where we have 
a variance greater than the accuracy value itself. Hence, we conclude that TDA increases both accuracy and, 
notably, consistency.

Unsupervised clustering. For completeness, we also performed an unsupervised study on the vectors 
obtained from the pipeline. That is, instead of feeding the vectorizations of the PDs to a machine learning clas-
sifier, we used them as input to a clustering algorithm. Following the extensive machine learning literature, 
we used the following clustering algorithms, all from the Scikit-learn library: Affinity  propagation35, Agglom-
erative  clustering36,  BIRCH37,  DBSCAN38, K-Means39, Mini batch K-Means40, Mean-shift41,  OPTICS42, Spectral 
 clustering43 and Gaussian  mixtures44. We report the accuracy results for the experiment with 4 labels, 3 labels, 2 
labels with class EC vs. CS and 2 labels with classes EC, CS G1 vs. CS G2, G3 in Tables 12, 13, 14 and 15 respec-
tively. The most interesting aspect of these results is that decreasing in the number of labels does not produce an 
increase in accuracy, suggesting that indeed the features extracted by the TDA are sufficiently separated.

Comparison with CLARA 11. “Introduction” section highlights that the results we should compare to those 
described in the  papers8,11, which achieve remarkable performances in classifying the same 400 Raman spectra. 

Table 9.  Accuracy of the pipeline with 2 labels (EC, CS G1 vs. CS G2, G3) and a leave-one-patient-out cross-
validation approach.

Accuracy H0 H1 H0 +H1 (fused) H0 +H1 (concat)

Run 1 1.000 (PS) 0.906 (PI) 1.000 (PI) 0.969 (BC)

Run 2 1.000 (PI) 1.000 (PI) 1.000 (PI) 1.000 (PI)

Run 3 1.000 (BC) 1.000 (PL) 1.000 (PI) 1.000 (BC)

Run 4 1.000 (BC) 0.875 (PI) 1.000 (PI) 0.958 (BC)

Run 5 1.000 (PI) 0.947 (BC) 1.000 (PI) 1.000 (PI)

Run 6 1.000 (PI) 0.526 (PI) 1.000 (PI) 1.000 (PI)

Run 7 1.000 (PI) 1.000 (PI) 1.000 (PI) 1.000 (PI)

Run 8 0.260 (PI) 0.620 (PL) 0.300 (PL) 0.380 (PL)

Run 9 1.000 (PI) 1.000 (PI) 1.000 (PI) 1.000 (PI)

Run 10 0.980 (PI) 1.000 (PS) 0.922 (PI) 1.000 (PI)

Mean: 0.924± 0.221 0.887± 0.164 0.922± 0.201 0.931± 0.184

Table 10.  Best method with 2 labels (EC, CS G1 vs. CS G2, G3) and a leave-one-patient-out cross-validation 
approach.

Homology Accuracy Vectorization Classifier

H0 0.772 BC SVC

H1 0.669 BC SVC

H0 +H1 (fused) 0.763 BC SVC

H0 +H1 (concat) 0.770 BC SVC

Table 11.  Mean accuracy and best classifier accuracy for supervised learning without TDA.

Experiment 4 labels 3 labels EC vs. CS EC, CS G1 vs. CS G2, G3

Mean accuracy 0.377± 0.429 0.617± 0.393 0.922± 0.138 0.859± 0.288

Best classifier 0.286 (SVC) 0.494 (SVC) 0.843 (SVC) 0.791 (SVC)

Table 12.  Clusterization accuracy of the vectorized PDs with 4 labels.

Homology Accuracy Vectorization Cluster

H0 0.512 PS Affinity propagation

H1 0.400 PI Gaussian mixture

H0 +H1 (fused) 0.562 PS Affinity propagation

H0 +H1 (concat) 0.523 PS Affinity propagation
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In details, CLARA is the best-performing method to achieve the 3-label classification. For a fair comparison, we 
applied the same preprocessing steps as in the  paper11. Namely, we performed a data augmentation on Dataset 1 
and chose a specific train-test split. The steps are described below.

Data augmentation. Following the  paper11, Dataset 1 is augmented with the addition of some shifts in the spec-
tra to simulate potential inaccuracies in the wavelength calibrations and with the addition of an additive noise 
sampled from a normal distribution. More specifically, each original spectrum is passed through:

• additive Gaussian noise with mean 0 and standard deviation (std) max(spectrum)/1000;
• additive Gaussian noise with mean 0 and std 1;
• shift uniform noise in the interval [−5, 5];
• additive Gaussian noise with mean 0 and std max(spectrum)/1000 and shift uniform noise in the interval 

[−5, 5];
• additive Gaussian noise with mean 0 and std 1 and shift uniform noise in the interval [−5, 5].

In this way, the final Dataset 1 (augmented) is six times larger than the original Dataset 1.

Train‑test split. When validating our method in the previous sections, we performed a cross-validation and 
patient-stratified scheme. For a fair comparison with the  paper11, where a static split is performed, in this sec-
tion, we carry out the same division. Basically, the train set is composed of the spectra coming from patients 
1, 3, 5, 6, 8, 10 while the remaining spectra compose the test set (31, 24 and 99 spectra respectively for class EC, 
CS G1 and CS G2, G3).

Results. We point out that, having followed the same procedure of data augmentation and train-test partition-
ing as in the  paper11, the results obtained in this section are comparable in all respects to those obtained by 
CLARA. The only difference lies in the random seed used for data augmentation, but we can assume this differ-
ence is negligible. Table 16 shows the results achieved in this setting. The accuracy has improved significantly, 
and these results are in line with, if not slightly better than, those obtained in the  bibliography11.

Final test with new data. Let us now describe the last type of experiments we performed. In order to 
assess the generalization capability of the best-performing classification models found through the experimen-
tation described above, we tested the models on new data: Dataset 2. This dataset consists of 10 Raman spectra, 
one for each patient. Moreover, the acquisition of these spectra occurred at a different time than Dataset 1, 

Table 13.  Clusterization accuracy of the vectorized PDs with 3 labels.

Homology Accuracy Vectorization Cluster

H0 0.458 PS BIRCH

H1 0.330 PI Affinity propagation

H0 +H1 (fused) 0.487 PS Affinity propagation

H0 +H1 (concat) 0.462 PS BIRCH

Table 14.  Clusterization accuracy of the vectorized PDs with 2 labels (EC vs. CS).

Homology Accuracy Vectorization Cluster

H0 0.501 PS BIRCH

H1 0.338 PI DBSCAN

H0 +H1 (fused) 0.487 PS Mini batch K-Means

H0 +H1 (concat) 0.487 PS BIRCH

Table 15.  Clusterization accuracy of the vectorized PDs with 2 labels (EC, CS G1 vs. CS G2, G3).

Homology Accuracy Vectorization Cluster

H0 0.464 PS BIRCH

H1 0.256 PS Mean-shift

H0 +H1 (fused) 0.399 PS Mini batch K-Means

H0 +H1 (concat) 0.459 PS BIRCH
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with a different equipment. Hence, achieving good results on this dataset would show a very high capability of 
our model in generalization. Finally, we highlight the fact that there is no intersection between the patients in 
Dataset 1 with those in Dataset 2. The correct labels of Dataset 2 are [1, 2, 2, 1, 1, 2, 0, 3, 3, 0]. In a EC vs. CS 
classification, this translates in the labels [1, 1, 1, 1, 1, 1, 0, 1, 1, 0]. As a first approach, we directly employed the 
best classifier coming from “LOPO validation 2 labels (EC vs. CS)” section to classify Dataset 2, resulting in the 
predicted labels [0, 1, 1, 1, 1, 1, 0, 1, 1, 0]. The accuracy is 90% , but the presence of false negatives is discourag-
ing. Repeating the same experiment but retraining the classifiers on the entire Dataset 1, i.e., without a LOPO 
validation scheme, yields the labels [1, 1, 1, 1, 1, 1, 0, 1, 1, 1]. The accuracy is the same, but there are no false 
negatives, so it is definitely an improvement. Figure 7 shows the confusion matrices of both these experiments. 
As a comparison, we repeated these two procedures in the 4 label classification. The classifier trained with a 
LOPO validation performed poorly, predicting the labels [0, 3, 3, 1, 1, 3, 0, 2, 1, 0], which results in an accuracy of 
40%. We highlight that the misclassifications are in adjacent classes, except in one case. This is in agreement with 
what occurred in binary classification. Training on the entire Dataset 1 yields the labels [0, 2, 2, 1, 1, 2, 0, 0, 3, 0], 
which corresponds to an accuracy of 80%. The improvement is remarkable and, together with the limitations of 
the dataset, shows the potential of this method in large-scale applicability. Figure 8 reports the confusion matri-
ces for both of these experiments. Finally, following the great improvement achieved with data augmentation 
in “Data augmentation” section, we tried to train the classifiers on Dataset 1 (augmented) and test on Dataset 2, 

Table 16.  Results with data augmentation, 3 labels and a static train-test split.

Homology Accuracy Vectorization Classifier

H0 0.974 PS SVC

H1 0.942 BC SVC

H0 +H1 (fused) 0.972 PS SVC

H0 +H1 (concat) 0.975 PS SVC

Table 17.  Results with data augmentation on Dataset 1 and Dataset 2 and 3 labels.

Homology Accuracy Vectorization Classifier

H0 0.783 BC SVC

H1 0.667 BC SVC

H0 +H1 (fused) 0.717 PS SVC

H0 +H1 (concat) 0.700 PL SVC

Figure 7.  Confusion matrices for binary classification EC vs. CS of the best classifier coming from “LOPO 
validation 2 labels (EC vs. CS)” section (a) and the confusion matrix from the best classifier trained on all 
Dataset 1 (b).
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but the results were the same. Also, performing the same data augmentation described in “Data augmentation” 
section on Dataset 2 basically did not change the results, as can be seen in Table 17.

Discussion and conclusions
The present work is devoted to highlighting the potential of combining topological data analysis and machine 
learning in the very challenging scenario of biochemical understanding of cancer grading through Raman 
spectroscopy. In order to better appreciate the contribution of the combination of TDA and ML in the proposed 
pipeline, we performed two ablation studies:

• Supervised learning using the Raman spectra as vectors, fed to the ML part of the pipeline;
• Unsupervised clustering of the vectorizations of the topological PDs (Agglomerative clustering, BIRCH, 

DBSCAN, K-Means, Mini batch K-Means, Mean-shift, OPTICS, Spectral clustering, and Gaussian mixtures).

Regarding the first study, results show that using the TDA descriptors is much more convenient (for both accu-
racy and significance) than classifying by the Raman spectra as vectors, in all the classification tasks (4, 3 and 2 
labels). On the other hand, even when replacing the ML part of the pipeline with a standard clustering, we noted 
that the best-performing clustering method is affinity propagation, which has accuracy performances which are 
only slightly better than those achieved by the complete pipeline. Also, results are very promising with respect to 
the state of the art, as the classification accuracy outperforms the best results reported in  literature11, as shown in 
“Comparison with CLARA 11” section. Due to the size of the dataset, our results should be considered preliminary 
but, thanks to the strict validation scheme used, significant. Indeed, the classification accuracy proves to be excel-
lent also when the pipeline is applied to Dataset 2, which is made of never-seen data acquired with a hardware 
device different from the one used to acquire Dataset 1. Moreover, in every experiments even a slight widening 
of the training dataset results in a great improvement in the accuracy and specificity (e.g. training on the whole 
Dataset 1 instead of a LOPO validation), showing excellent potential, both to classify new data and to be vendor 
neutral (with respect to the RS acquisition). Regarding the applicability of our approach, the proposed pipeline 
provides a classification model that can be easily integrated into a workflow (as already done in the commercial 
workstation as for the preprocessing modules), enabling the reduction of time and cost of the grading of can-
cerous tissues. In conclusion, we are convinced that topological machine learning methods are able to support 
the classification of data from Raman spectroscopy; also, we plan to perform more conclusive experimentation 
in the near future, in order to improve not only the classification accuracy of the proposed pipeline, but more 
importantly to increase the stability of the results with respect to the choice of the best combination {vectoriza-
tion method, classifier}.

Data availability
The request for datasets, both raw and processed data, generated during the present study can be agreed and 
made directly to the corresponding author.

Received: 13 February 2023; Accepted: 30 April 2023

Figure 8.  Confusion matrices with 4 labels predicted by the best classifier coming from “LOPO validation 4 
labels” section (a) and the confusion matrix from the best classifier trained on all Dataset 1 (b).
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