
Mutant Equivalence as Monotonicity in
Parametric Timed Games

Davide Basile∗†, Maurice H. ter Beek†, Hendrik Göttmann‡ and Malte Lochau§
†ISTI–CNR, Pisa, Italy

Email: {davide.basile,maurice.terbeek}@isti.cnr.it
‡TU Darmstadt, Germany

Email: hendrik.goettmann@es.tu-darmstadt.de
§University of Siegen, Germany

Email: malte.lochau@uni-siegen.de

Abstract—The detection of faults in software systems can be en-
hanced effectively by model-based mutation testing. The efficiency
of this technique is hindered when mutants are equivalent to the
original system model, since this makes them useless. Recently, the
application of model-based mutation testing to real-time systems
modelled as timed games has been investigated, which has resulted
in guidelines for statically avoiding equivalent mutants.

In this paper, we recast this problem into the framework
of parametric timed games. We then prove a correspondence
between theoretical results for the detection of equivalent mutants
in timed games and the property of monotonicity that is known
to hold for a sub-class of parametric timed games called L/U
parametric timed games. The presented results not only simplify
the theory underlying the detection of equivalent mutants in timed
games, but at the same time they improve the expressiveness of a
known decidable fragment of parametric timed games for which
monotonicity holds.

Index Terms—parametric timed games, mutant equivalence,
model-based mutation testing

I. INTRODUCTION

Model-based testing methods automate the generation of
test cases by using formal models of the system [1]. Moreover,
they help to manage the time-sensitiveness of requirements,
which makes testing a difficult problem. Testing a formal
model rather than source code allows to detect, among others,
misinterpretations of requirements or issues arising from time-
dependent interactions of the system with its environment,
which would be harder to detect at source code level. A suite
of tests generated from a model can be translated into a set of
tests for a corresponding implementation.

To evaluate the thoroughness of test cases or to support their
generation [2], [3], one commonly uses model-based mutation
testing [4], [5]. To this aim, mutation operators that simulate
possible faults in the system are applied to the model, resulting
in a so-called mutant. Given a set of mutants, the effectiveness
of a set of test cases is evaluated according to the number of
mutants that it detects (i.e., mutants producing different output
than the original system). Test cases generated from a mutant
are capable of detecting bugs mimicked by that mutation, and
generally require to test corner cases.

∗ Corresponding author, first author

It has been shown in the literature [2] that mutation-based
testing is more effective in finding real faults than other
techniques [3], [6], [7].

Typically, a large number of mutations is required in order
to build effective test cases. In model-based mutation testing,
random applications of mutation operators may lead to many
useless mutations since they generate mutants that may exhibit
the same observable external behaviour as the original system,
thus leading to a scalability problem. Concerning model-based
mutation testing, the equivalent mutant problem generalizes to
that of detecting subsumed mutants, which have less (or equal)
behaviour than the original system model (i.e., from a tester’s
point of view, the subsumed mutant is not distinguishable from
the original system). In such cases, no test case can be generated
to differentiate the mutant from the original system, leading to
useless analyses and a waste of computational resources.

The problem of detecting equivalent mutants in (model-
based) mutation testing has recently been investigated in [4],
[8]–[12]. In several of these papers, the real-time systems are
modelled as timed games. In particular, in [11], [12] several
formal results identify specific conditions under which, by
construction, given mutations provide subsumed mutants, from
which a set of guidelines (called commandments) for avoiding
subsumed mutants was synthesised.

In this paper, we show a connection between the problem
of detecting equivalent mutants in mutation testing of real-
time models and the monotonicity property of a fragment of
parametric timed games. We adopt a symbolic approach to the
problem of detecting subsumed mutants in timed games, by
using the framework of parametric timed games.

The results presented in this paper contribute to research
on model-based mutation testing as well as to research on
parametric timed games. In particular, our contributions to
these two fields are as follows:

1) Concerning model-based mutation testing, we prove a
correspondence between the theoretical results to detect
equivalent mutants in timed games as presented in [11],
[12] and the property of monotonicity of a fragment
of parametric timed games called L/U parametric timed
games. Due to the parametric setting in which we operate,

this correspondence simplifies the theoretical results from
[11], [12]. In fact, when restricted to L/U parametric
timed games, the monotonicity property alone is respon-
sible for over half of the commandments listed in [12];

2) Concerning parametric timed games, we extend the
fragment of L/U parametric timed games originally
introduced in [13] to include parametric constraints
also on invariants. This is necessary to prove that the
above correspondence also holds for commandments that
predicate on mutations of invariants, which are in fact
imported into this fragment. We prove that monotonicity
holds for this specific fragment, thus extending and
improving the expressiveness of a known decidable
fragment of parametric timed games. This fragment is
now capable of expressing parametric invariants, a crucial
ingredient for timed specifications [14] (e.g., without
invariants it is not possible to specify that an event
must occur at a precise instant of time, because it is
the invariants that provide control over time).

As a further contribution, the presented results pave the way
to the usage of tools developed in the area of parametric timed
games, such as [15], [16], for the problem of model-based
mutation testing, and we will identify some future research
goals in this direction.

A. Structure of the Paper

We start with a discussion of related work in Section II.
We provide some background on timed games and parametric
timed games in Section III. The extension of the fragment
of L/U parametric timed games and the monotonicity proof
are presented in Section IV. The correspondence between the
monotonicity property and the violation of the commandments
from [11], [12] is presented in Section V. Finally, conclusions
and future work are provided in Section VI.

II. RELATED WORK

Guidelines or commandments for statically detecting sub-
sumed mutants have originally been introduced in [11], [12],
together with a proof-of-concept implementation applied to
various case studies, showing an improvement in mutant genera-
tion with respect to randomly applying mutations. In [11], [12],
a theoretical result on timed games refinement is associated to
each commandment. We, instead, propose a compact theory
that expresses many of these results as instances of a single
monotonicity property of a duly extended fragment of L/U
parametric timed games, by exploiting the symbolic reasoning
of parametric timed games.

The subclass called L/U parametric timed games is discussed
in [13], [17] as a decidable fragment of the class of parametric
timed games for the synthesis of reachability properties for
safety games. The proof of decidability relies upon the property
of monotonicity of L/U parametric timed games. Here we
extend the fragment of L/U parametric timed games in [13]
to include also parametric constraints on invariants while,
previously, parametric constraints were only allowed on guards.

We prove that the monotonicity property holds for this extended
fragment, thus retaining decidability of strategy synthesis [17].

The experiments conducted in [11], [12] have been validated
by using as control the refinement checking provided by Uppaal
TIGA [18]. This refinement checking is internally implemented
using the (non-parametric) strategy synthesis algorithm in [14].
An algorithm for strategy synthesis of parametric timed games
has recently been studied in [19] and it has been implemented in
the tool Romeo [15], which uses Timed Petri Nets models [20].
The results we present here could be exploited, by using a
suitable extension of the above mentioned techniques and tools,
to perform refinement checking of parametric timed games.

In [21], so-called configurable parametric timed au-
tomata [22] are used to generate a test-suite with full coverage
using min/max delays parameters. Configurable parametric
timed automata extend parametric timed automata with config-
urations. In [11], [12], also the mutations are organised into a
product line of mutants, called featured mutant model [8]. We
do not consider the extension to a product line of mutations
here, but leave this for future work (cf. Section VI).

We exploit monotonicity of L/U parametric timed games to
detect subsumed mutants. In [23], the converse approach is
used: given a timed automaton failing some tests, mutations
are introduced to search for mutants that fix the model. Similar
to our approach, an initial timed automaton is abstracted into
a parametric timed automaton to allow symbolic reasoning,
using decidability results on problems for parametric timed
automata introduced in [24]. A generic algorithm for program
repair using mutations was published at FormalISE 2017 [25].

At last year’s FormaliSE 2022 [26], an algorithm for
generating test-suites satisfying Boolean coverage criteria was
presented, in which no mutation testing was used to evaluate the
generated test-suites. A methodology using mutation analysis
to quantify the strength of software contracts was presented at
FormaliSE 2021 [27], but the problem of equivalent mutants
was not addressed.

III. BACKGROUND

In this section, we recall the notions of timed games and
parametric timed games.

A. Timed Games

Timed games are transition systems which can remain in a
certain location only for a specific amount of time, can execute
a transition only within a certain time interval, and distinguish
between controllable and uncontrollable actions. Timed games
are based on timed (game) automata [28], [29].

In reactive systems, one usually distinguishes between
uncontrollable and controllable actions, which traditionally
are assigned to inputs and outputs, respectively, whenever
the environment is uncontrollable and vice versa otherwise.
Concerning model-based testing, the point of view of the tester
is considered. The inputs to the system are controllable whilst
the outputs from the system are uncontrollable.

Time is represented by clocks whose values evolve continu-
ously. Clocks can be regarded as chronometers: their value can

be inspected and reset, but not modified arbitrarily. Conditions
over clock values are called clock constraints.

Definition 1 (Clock constraint): Let C be a set of clocks on
a clock value domain ∆. Then the set ΦC of clock constraints
φ on C is inductively defined as:

φ ::= ⊤ | c ∼ n | φ ∧ φ | ¬φ

where c ∈ C, ∼∈ {<,≤,≥, >}, and n ∈ ∆.

We denote by JφK the set of clock valuations that satisfy
clock constraint φ, i.e., the set of total functions v : C → ∆ that
assign a value to every clock. In timed games, a clock constraint
can label either a location or a transition. In case it labels a
location, the constraint is a location invariant, which defines the
interval of time in which the system can remain in the location.
In case it labels a transition, it is a transition guard specifying
the interval of time during which the system can execute the
transition. Note that the domain of the numeric constants in
clock constraints is limited to the natural numbers. Without
loss of generality, we could use real numbers. However, natural
numbers facilitate the implementation of clock constraints by
allowing efficient data structures.

Definition 2 (Timed game): A timed game is a sextuple
(L, ℓ0,Σ, C, I, E), where

• L is a set of locations,
• ℓ0 ∈ L is the initial location,
• Σ is a set of actions, partitioned into controllable ac-

tions Σc and uncontrollable actions Σu,
• C is a set of clocks,
• I : L → ΦC assigns location invariants, and
• E ⊆ L× ΦC × Σ× 2C × L is a set of transitions.

Let TG denoted the set of timed games.

For a transition t = (ℓ, φ, α,R, ℓ′), ℓ is the starting location,
φ is the transition guard (clock constraint), α is the action
triggering the transition, R is the subset of clocks to reset, and
ℓ′ is the target location. We may also write t as ℓ

φ,α,R−−−−→ ℓ′

and omit φ and/or R when immaterial, and instead of {x}
for a reset of clock x, we may also write x := 0 and use the
transitive closure −→∗.

Example 1: Figure 1 shows an example of a timed game tg
modeling a basic tea machine, which accepts a euro coin D as
input and waits at most four time units before providing tea
as output. Controllable transitions are depicted by solid lines
while uncontrollable transitions are depicted by dotted lines.

Formally, the semantics of a timed game is commonly
defined as an infinite transition system, whose states consist
of a location and a valuation of the clocks, and transitions are
alternating between two types. Delay transitions do not change
the location of the system, but only represent the passing of time.
They may occur only if the invariant of the current location is
still satisfied after the delay modelled by the transition. Discrete
transitions, instead, occur when the system moves from one

s0 s1
D, x := 0

x ≤ 4,

Fig. 1. A timed game tg

location to another without passage of time. They may occur
only if the current clock values satisfy both the guard of the
executed transition and the invariant of the target location. After
the execution of such transitions, clock values can be reset.

Definition 3 (Timed games semantics): The semantics of a
timed game tg = (L, ℓ0,Σ, C, I, E) is defined as the set of
traces [[tg]] = {w | w ∈ (Σ∪∆)∗, (ℓ0, v0)

w−→
∗
(ℓ′, v′) } of the

transition system (Loc × JφK, (ℓ0, v0),Σ ∪∆,ΦC , E
′), where

v0 = { v(c) = 0 | c ∈ C }.

The notion of timed refinement is based on [30] and it
coincides with the timed input-output conformance for input-
enabled models [9], [31], where inputs (outputs, respectively)
are controllable (uncontrollable, respectively).

Informally, a timed game tg1 is a refinement of a timed
game tg2 (denoted as tg1 ⪯ tg2) when the refined model tg1

is able to mimic all controllable transitions of the original
system model tg2, while tg2 is able to mimic all uncontrollable
transitions and delays of tg1.

Definition 4 (Timed games refinement): Let tg1 =
(L1, ℓ01 ,Σ1, C1, I1, E1) and tg2 = (L2, ℓ02 ,Σ2, C2, I2, E2)
be timed games. Then tg1 is a refinement of tg2, denoted
as tg1 ⪯ tg2, with JφiK : Ci 7→ ∆, if there exists a
binary relation R ⊆ (L1, Jφ1K) × (L2, Jφ2K) that contains
s = ((ℓ01, v01), (ℓ02, v02)) and which is such that for each
pair of locations ((ℓ1, v1), (ℓ2, v2)) ∈ R, the following holds:

• whenever (ℓ2, v2)
α−→(ℓ′2, v2) for some ℓ′2 and α ∈ Σc

2,
then (ℓ1, v1)

α−→(ℓ′1, v1) for some ℓ′1, α ∈ Σc
1, and

((ℓ′1, v1), (ℓ
′
2, v2)) ∈ R

• whenever (ℓ1, v1)
α−→(ℓ′1, v1) for some ℓ′1 and α ∈ Σu

1 ,
then (ℓ2, v2)

α−→(ℓ′2, v2) for some ℓ′2, α ∈ Σu
2 , and

((ℓ′1, v1), (ℓ
′
2, v2)) ∈ R

• whenever (ℓ1, v1)
δ−→(ℓ1, v

′
1) for some v′1 and

δ ∈ R≥0, then (ℓ2, v2)
δ−→(ℓ2, v

′
2) for some v′2, and

((ℓ1, v
′
1), (ℓ2, v

′
2)) ∈ R

The proposed notion of refinement is slightly different from
the standard one. Indeed, in Definition 4 the two systems are
not forced to share the same alphabet. We show that this new
definition of refinement is still a preorder.

Lemma 1: Timed games refinement is a preorder.

Proof: Reflexivity of ⪯ is trivial. Concerning transitivity,
assume by hypothesis that tg1 ⪯ tg2 and tg2 ⪯ tg3 for three
timed games tg1, tg2, and tg3 and let R1 and R2 be the
relations proving, respectively, that tg1 ⪯ tg2 and tg2 ⪯ tg3.

We prove that R = { ((ℓ1, v1), (ℓ3, v3)) | ((ℓ1, v1), (ℓ2, v2)) ∈
R1, ((ℓ2, v2), (ℓ3, v3)) ∈ R2, (ℓ2, v2) ∈ Loctg2 × Jφtg2K } is
a relation that shows that tg1 ⪯ tg3.

First, by construction, ((ℓ0tg1 , v0tg1), (ℓ0tg3 , v0tg3)) ∈ R.
Then, for all ((ℓ1, v1), (ℓ3, v3)) ∈ R, by construction we
have that for some (ℓ2, v2) ∈ Loctg2 × Jφtg2K, it holds
that ((ℓ1, v1), (ℓ2, v2)) ∈ R1 and ((ℓ2, v2), (ℓ3, v3)) ∈ R2.
Moreover:

• Whenever (ℓ3, v3)
α−→(ℓ′3, v3), with α ∈ Σc

tg3 , by
tg2 ⪯ tg3, it follows that (ℓ2, v2)

α−→(ℓ′2, v2), with
α ∈ Σc

tg2 , and ((ℓ′2, v2), (ℓ
′
3, v3)) ∈ R2. By tg1 ⪯

tg2, it follows that (ℓ1, v1)
α−→(ℓ′1, v1), with α ∈

Σc
tg1 and ((ℓ′1, v1), (ℓ

′
2, v2)) ∈ R1. By construction,

((ℓ′1, v1), (ℓ
′
3, v3)) ∈ R.

• Whenever (ℓ1, v1)
α−→(ℓ′1, v1), with α ∈ Σu

tg1 , by
tg1 ⪯ tg2, it follows that (ℓ2, v2)

α−→(ℓ′2, v2), with
α ∈ Σu

tg2 and ((ℓ′1, v1), (ℓ
′
2, v2)) ∈ R1. By tg2 ⪯

tg3, it follows that (ℓ3, v3)
α−→(ℓ′3, v3), with α ∈

Σu
tg3 and ((ℓ′2, v2), (ℓ

′
3, v3)) ∈ R2. By construction,

((ℓ′1, v1), (ℓ
′
3, v3)) ∈ R.

• Whenever (ℓ1, v1)
δ−→(ℓ1, v

′
1), with δ ∈ R≥0, by

tg1 ⪯ tg2, it follows that (ℓ2, v2)
δ−→(ℓ2, v

′
2) and

((ℓ1, v
′
1), (ℓ2, v

′
2)) ∈ R1. By tg2 ⪯ tg3, it follows

that (ℓ3, v3) δ−→(ℓ3, v3′) and ((ℓ2, v
′
2), (ℓ3, v

′
3)) ∈ R2. By

construction, ((ℓ1, v′1), (ℓ3, v
′
3)) ∈ R.

Refinement checking is solved as a two-player alternating
timed game, where one player (playing the “whenever” tran-
sitions of Definition 4) wins if it proves that timed game tg1

is not a refinement of timed game tg2 and the other player
(playing the “then” transitions of Definition 4) wins if it proves
that tg1 is a refinement of tg2 [14]. If there exists a non-empty
strategy for the “whenever” player to reach a winning state,
then we know that tg1 is not a refinement of tg2, where a
winning state for the “whenever” player is a state where the
“then” player is deadlocked (it cannot mimic the action). If a
strategy exists, it can be represented as a set of traces, each
one providing a counterexample to disprove tg1 ⪯ tg2 (cf.
Definition 9).

The tool Uppaal TIGA [18] implements the refinement
checking for (non-parametric) timed games, which is internally
implemented as a strategy synthesis problem. For the parametric
case, the tool Romeo [15] allows to perform strategy synthesis
for reachability games of timed Petri nets, but it does not
primitively support refinement checking, which we conjecture
could be encoded manually into a strategy synthesis problem
as described above (cf. Section VI).

B. Parametric Timed Games

We now define an extension of timed games called parametric
timed games. We start by defining parametric clock constraints.
These enhance Definition 1 with the possibility of expressing
parameters instead of constants.

Definition 5 (Parametric clock constraint): Let C be a set
of clocks and let P be a set of parameters on a clock value

s0 s1
D, x := 0

x ≤ p,

Fig. 2. A parametric timed game ptg

domain ∆. Then the set ΦC,P of parametric clock constraints
φ on C and P is inductively defined as:

φ ::= ⊤ | c ∼ p | c ∼ n | φ ∧ φ | ¬φ

where c ∈ C, ∼∈ {<,≤,≥, >}, and n ∈ ∆.

We can now define parametric timed games as timed games
with parametric clock constraints on both guards and invariants.

Definition 6 (Parametric timed game): A parametric timed
game is a septuple (L, ℓ0,Σ, C, P, I, E), where

• L is a set of locations,
• ℓ0 ∈ L is the initial location,
• Σ is a set of actions, partitioned into controllable ac-

tions Σc and uncontrollable actions Σu,
• C is a set of clocks,
• P is a set of parameters,
• I : L → ΦC,P assigns parametric location invariants, and
• E ⊆ L× ΦC,P × Σ× 2C × L is a set of transitions.

Let PTG denoted the set of parametric timed games. Finally,
let π : ∆P × PTG 7→ TG be the projection function that maps
a parameter evaluation σP such that ∀ϕ ∈ ΦC,P . σP ∈ JϕK
and a parametric timed game ptg ∈ PTG into the timed game
π(σP , A) ∈ TG that is obtained by instantiating the parameters
in ptg with σP .

Example 2: Continuing Example 1, Figure 2 displays a
parametric timed game ptg such that tg = π(σP , ptg), with
σP = {(p, 4)}.

The notion of refinement is extended to the parametric
setting by universally quantifying on all parameter evaluations.
Refinement is generally undecidable for parametric timed
games [17], [24], whereas it is decidable for a fragment of
parametric timed games [13]. In the next section, we introduce
an extension of this fragment.

IV. MONOTONICITY OF L/U PARAMETRIC TIMED GAMES

In this section, we present the first contribution of this
paper: we introduce an (extended) fragment of parametric
timed games, called L/U parametric timed games, and we
prove that a property called monotonicity holds.

We start by introducing a novel extended notion of L/U
parametric timed game. In L/U parametric timed games,
parametric constraints can only appear as upper bound or
lower bound (thus the name L/U). In the literature, L/U
parametric timed game were defined in [17, Definition 3.3]
without permitting parameters in clock constraints of invariants,

s0 s1

p ≤ x

D

x ≤ p, , x := 0

Fig. 3. An (extended) L/U parametric timed game luptg

which is what we do allow in the extension we introduce below,
while still preserving decidability of refinement. We underline
the importance of having a decidable fragment capable of
expressing parameters also on invariants, because these are an
essential ingredient to impose a form of control over time [14].

Given a parametric timed game ptg, parameter p is an upper
(or lower, respectively) bound in ptg if for each conjunct of
each parametric clock constraint in the guards and invariants of
ptg, c ∼ p is either of the form ∼∈ {<,≤} (or ∼∈ {>,≥},
respectively).

Definition 7 ((Extended) L/U parametric timed games): A
parametric timed game ptg is an extended L/U parametric
timed game if every parameter is either an upper bound or a
lower bound in ptg and the following holds:

• P is partitioned into P− and P+.
• Each parameter p ∈ P− occurs only as lower bound

(upper bound, respectively) in the guards of controllable
(uncontrollable, respectively) transitions, and as upper
bound (lower bound, respectively) in Inv(ℓ) whenever all
incoming transitions of ℓ are uncontrollable (controllable,
respectively), with ℓ ∈ L;

• Each parameter p ∈ P+ occurs only as upper bound
(lower bound, respectively) in the guards of controllable
(uncontrollable, respectively) transitions, and as lower
bound in Inv(ℓ) whenever all incoming transitions of ℓ
are uncontrollable, with ℓ ∈ L.

From now on we refer to extended L/U parametric timed games
as L/U parametric timed games.

Example 3: According to Definition 7, the parametric timed
game ptg depicted in Figure 2 is an L/U parametric timed
game because the only constraint is an upper bound on the
uncontrollable transition (thus p ∈ P−).

The parametric timed game in Figure 3 is an (extended) L/U
parametric timed game. Indeed, the parameter p ∈ P− appears
as a lower bound in the invariant Inv(s1) = p ≤ x, and the
location s1 has only incoming controllable transitions. Note
that the invariant imposes control over time: tea can only
be output by the machine precisely at the instant of time p.

In Section III, we discussed the refinement of parametric
timed games, which is undecidable in the general case. Below
we show that refinement is decidable for specific L/U parametric
timed game models. Indeed, decidability is strictly related to the
property of monotonicity [13], [17]. We are now ready to state

the main result of this section: the property of monotonicity
holds for the extended fragment of L/U parametric timed games.

Theorem 1 (Monotonicity of L/U parametric timed games):
Let ptg = (L, ℓ0,Σ, C, P, I, E) be an L/U parametric timed
game, let σP , σ

′
P be such that ∀p+ ∈ P+, p− ∈ P−.σ′

P (p+) ≥
σP (p+) and σ′

P (p−) ≤ σP (p−). Then the following holds:

π(σ′
P , ptg) ⪯ π(σP , ptg)

Proof: Let tg = π(σP , ptg) and tg′ = π(σ′
P , ptg) be

two timed games. We will prove that an enabled controllable
transition of tg is never disabled in tg′ and that a disabled
uncontrollable transition of tg is never enabled in tg′. We
proceed by cases on lower-bound/upper-bound parameters and
on controllable/uncontrollable actions. We start from lower
bounds p− ∈ P−. For each transition t and invariant ℓ we
have the following:

• t has action α ∈ Σc. By Definition 7, its parametric clock
constraint (if any) is of the form p− ≤ c, where c ∈ Ctg .
From σ′

P (p−) ≤ σP (p−) it follows that σP (p−) ≤ c →
σ′
P (p−) ≤ c, hence t is never disabled in tg′ if it is

enabled in tg.
• t has action α ∈ Σu. By Definition 7, its parametric clock

constraint (if any) is of the form p− ≥ c, where c ∈ Ctg .
From σ′

P (p−) ≤ σP (p−) it follows that σP (p−) ̸≥ c =
σP (p−) < c → σ′

P (p−) < c = σ′
P (p−) ̸≥ c, hence t is

never enabled in tg′ if it is disabled in tg.
• ℓ ∈ L has an invariant p− ≥ c, where c ∈ Ctg and all

incoming transitions are uncontrollable. From σ′
P (p−) ≤

σP (p−) it follows that σP (p−) ̸≥ c = σP (p−) < c →
σ′
P (p−) < c = σ′

P (p−) ̸≥ c, hence it is never the case
that delaying is enabled in tg′ if it is disabled in tg. All
states (ℓ, v) that are reachable in tg but not in tg′ by
delaying time are out of the refinement relation R by
Definition 4. Concerning incident transitions of ℓ, it is
never the case that a controllable transition is enabled
in tg if it is disabled in tg′ and that an uncontrollable
transition is enabled in tg′ if it is disabled in tg.

• ℓ ∈ L has an invariant p− ≤ c, where c ∈ Ctg and all
incoming transitions are controllable. From σ′

P (p−) ≤
σP (p−) it follows that σP (p−) ≤ c → σ′

P (p−) ≤ c,
hence it is never the case that delaying is enabled in tg′

if it is disabled in tg (when in ℓ). Concerning incident
transitions of ℓ, it is never the case that a controllable
transition is enabled in tg if it is disabled in tg′ and that an
uncontrollable transition is enabled in tg′ if it is disabled
in tg.

Next we consider upper bounds p+ ∈ P . For each transition t,
we now have the following:

• t has action α ∈ Σc. By Definition 7, its parametric clock
constraint (if any) is of the form p+ ≥ c, where c ∈ Ctg .
From σ′

P (p+) ≥ σP (p+) it follows that σP (p+) ≥ c →
σ′
P (p+) ≥ c, hence t is never disabled in tg′ if it is

enabled in tg.

s0 s1

2 ≤ x

D

x ≤ 2, , x := 0

t0 t1

4 ≤ x

D

x ≤ 4, , x := 0

Fig. 4. Two timed games tg1 = π(σ′
P , luptg) [left] and tg2 = π(σP , luptg)

[right], where σP = {(p, 4)}, σ′
P = {(p, 2)}, and luptg is given in Figure 3

• t has action α ∈ Σu. By Definition 7, its parametric clock
constraint (if any) is of the form p+ ≤ c, where c ∈ Ctg .
From σ′

P (p+) ≥ σP (p+) it follows that σP (p+) ̸≤ c =
σP (p+) > c → σ′

P (p+) > c = σ′
P (p+) ̸≤ c, hence t is

never enabled in tg′ if it is disabled in tg.
• ℓ ∈ L has an invariant p+ ≤ c, where c ∈ Ctg. From

σ′
P (p+) ≥ σP (p+) it follows that σP (p+) ̸≤ c =

σP (p+) > c → σ′
P (p+) > c = σ′

P (p+) ̸≤ c, hence it
is never the case that delaying is enabled in tg′ if it is
disabled in tg. All states (ℓ, v) that are reachable in tg
but not in tg′ by delaying time are out of the refinement
relation R by Definition 4. Moreover, by Definition 7, all
incoming transitions are uncontrollable. Thus, it is never
the case that a controllable transition is enabled in tg if it
is disabled in tg′ and that an uncontrollable transition is
enabled in tg′ if it is disabled in tg.

Example 4: Continuing Examples 1 and 2, and recalling tg
and ptg in Figures 1 and 2, now consider a different parameter
evaluation σ′

P = {(p, 2)}. According to Theorem 1, since
σ′
P (p) ≤ σP (p), it holds that tg′ ⪯ tg, where tg′ = π(σ′

P , ptg).

We now illustrate how the refinement game can be played
on L/U parametric timed games.

Example 5: Consider the L/U parametric timed game luptg
depicted in Figure 3. Let σP = {(p, 4)}, σ′

P = {(p, 2)}, tg1 =
π(σ′

P , luptg), and tg2 = π(σP , luptg). Figure 4 depicts both
tg1 and tg2. By Theorem 1, it holds that tg1 ⪯ tg2, and we
call tg2 the original system and tg1 the mutated system. Now
we are ready to show how the refinement game can be played.

Firstly, we have a delay from the mutated system tg1, namely,
(s0, x = 0) 2−→(s0, x = 2). The original system tg2 can mimic
the delay transition, namely, (t0, x = 0) 2−→(t0, x = 2). From
(s0, x = 2), the mutated system could fire its controllable
transition (s0, x = 2) D−→(s1, x = 2). However, by Definition 4
the mutated system only plays the uncontrollable output
transitions and the delay transitions, whereas the original
system plays the controllable input transitions. Hence, from
state (s0, x = 2), the only possibility left for the mutated
system is to delay.

Note that in timed games, time cannot be blocked. We have
(s0, x = 2) 2−→(s0, x = 4). Now the original system tg2 can
mimic this delay transition, namely, (t0, x = 2) 2−→(t0, x = 4).

Note that these two delay moves can in fact be represented
by one single play, namely (s0, x = 0) 4−→(s0, x = 4) and

(t0, x = 0) 4−→(t0, x = 4). Then, from state (t0, x = 4), there
are two possibilities. If the mutated system continues to delay
time from location s0, the original system will always be
capable of mimicking the delay. Otherwise, at some time instant,
say x = 4, the original system plays the controllable transition
(t0, x = 4) D−→(t1, x = 4). The mutated system mimics this
transition (s0, x = 4) D−→(s1, x = 4).

Note that the invariant Inv(s1) = 2 ≤ x is satisfied by
(s1, x = 4). From state (t1, x = 4), the original system
could play its uncontrollable output (t1, x = 4)−→(t0, x = 0).
However, as stated above, the original system only plays
the controllable inputs. Hence, from states (s1, x = 4) and
(t1, x = 4), the only possibility left is that the mutated
system delays time. The original system is always capable of
mimicking these delays, thus showing that tg1 is a refinement
of tg2.

V. MONOTONICITY AS EQUIVALENT MUTANTS DETECTION

In this section, we present the second contribution of this
paper: the relations between model-based mutation testing
and L/U parametric timed games, and more specifically, the
correspondence between monotonicity and subsumed mutants.

We start by defining the abstraction of a timed game into a
parametric timed game that is obtained by turning all constants
of clock constraints of transitions and invariants into distinct
parameters. This is necessary since the system under test is
modelled as a timed game, and abstracting to a corresponding
parametric timed game is thus necessary to perform symbolic
reasoning on parameter evaluations. We denote with e(i) the
projection of a tuple e on its ith element, where indices
start from zero (invariants are pairs, whereas transitions are
quintuples) and e′ = e[u′/u] is such that for all j, if e(j) = u,
then e′(j) = u′ else e′(j) = e(j).

Definition 8 (Parametric abstraction): Let tg =
(L, ℓ0,Σ, C, I, E) be a timed game and let M = { ti | ti ∈
E ∪ I, ti(1) = c ∼ n ∈ ΦC }. We denote with π−1(tg) =
(L, ℓ0,Σ, C, P, I

′, E′) the abstraction of tg into a parametric
timed game such that there exists a bijection f : M 7→ P such
that E′ = (E \M)∪{ t[c ∼ p/c ∼ n] | t ∈ M ∩E, p = f(t) }
and I ′ = (I \M) ∪ { i[c ∼ p/c ∼ n] | i ∈ M ∩ I, p = f(i) }.

Note that since an element c ∼ n ∈ ΦC could be shared
by different invariants and transitions of the timed game, the
injection guarantees that each parameter is unique to a transition
or invariant in the abstracted parametric timed game.

Example 6: Continuing the previous examples, we have that
ptg = π−1(tg), i.e., the parametric timed game in Figure 2
can be obtained by applying the parametric abstraction on the
timed game in Figure 1.

The six mutation operators that were used in [11], [12] to
generate mutants of (featured) timed games are displayed in
Figure 5. Complex mutation functions not only decrease or
increase parameter valuations, but can also remove or add
locations and transitions. These mutations can be encoded into
a parametric timed game with further transitions, parameters,

Mutation Operators

TMI Transition MIssing operator removes a transition
TAD Transition ADd operator adds a transition between two locations
LMI Location MIssing operator removes a location (other than the initial location) and all its incident transitions
CXL Constant eXchange L operator increases the constant of a clock constraint
CXS Constant eXchange S operator decreases the constant of a clock constraint
CCN Clock Constraint Negation operator negates a clock constraint

Fig. 5. The mutation operators from [11], [12]

and guards to enable to remove or add locations and transitions
by only using these parameter valuations. However, adding such
guards is not possible for the class of L/U parametric timed
games for which Theorem 1 holds. On the other hand, mutations
CXL and CXS are suitable to be modelled as parametric
constraints ϕ, similarly to how this was done in [12].

Example 7: Continuing the previous examples, timed game
tg′ is a mutant of timed game tg that is obtained by applying the
mutation operator CXS on the parameter evaluation σP of its
abstracted parametric timed game, denoted as mCXS,p,2(σP) =
σ′
P , where mCXS,p,2 is a mutation function decreasing by 2 units

the evaluation of parameter p. In the same way, tg1 is a mutant
of tg2 depicted in Figure 4.

Note that in [11], [12], the notion of refinement was used
to characterise when a mutation yields a subsumed mutant.
Indeed, a mutation modifies the behaviour of a system. If such
mutation produces a refinement, this means that a tester cannot
distinguish the mutated system from its original counterpart
(i.e., the mutated system is subsumed). In fact, our notion of
refinement (cf. Definition 4) constrains the refined timed game
to never increase the uncontrollable behaviour, whereas the
controllable behaviour cannot be reduced. This is because for
the purpose of testing, the point of view of the environment is
considered. The refined version must still make all inputs (i.e.,
controllable actions) available to the environment, whereas its
outputs can be reduced.

For example, a beverage machine only accepting euro coins
is not a refinement of a machine accepting either euro or dollar
coins. Indeed, a test for the original machine would fail if dollar
coins would be inserted in the machine that only accepts euro
coins. In mutation testing jargon, the machine only accepting
euro coins is a mutant not subsumed by the original system
and the test not passing on the mutated system is said to be
“killing” that mutant. On the other hand, a machine that (non-
deterministically) outputs a tea or a coffee when a euro coin
is inserted can be refined into a machine that always outputs
a coffee when a euro coin is inserted. Since a test for the
less refined machine must handle both tea and coffee, the test
will not fail if coffee is returned. Moreover, in this case the
external tester of the machine cannot distinguish whether it
is interacting with the original machine, which in this case is
always deciding to output a coffee but could at some point
outputs a tea, or a refined machine that always returns a coffee.

Concerning timing behaviour, a refined timed game is not
allowed to perform slower than its unrefined version.

Below we formally define a counterexample to prove that
a refinement between two timed games does not hold, this
counterexample can be used to distinguish the refined version
from the original. When the mutated version is not subsumed,
the generated trace will be capable of detecting the mutant
as different from the original system (i.e., killing the mutant).
The generated counterexample trace is composed of a series
of inputs to the system, outputs from the system, and delays
that can be turned into a test, following model-based testing
principles [1], [32], [33]. The test will pass on the original
system and will fail on the mutant, as expected.

Definition 9 (Counterexample): Let a counterexample that
shows that tg1 ⪯ tg2 does not hold be a timed trace wα
such that w ∈ Jtg1K ∩ Jtg2K, and either (i) α ∈ Σu

2 and wα ∈
Jtg2K\Jtg1K, or (ii) α ∈ Σc

1∪∆ and wα ∈ Jtg1K\Jtg2K. Now let
Ctx(tg1, tg2) ⊆ (Σ1∪Σ2∪∆)∗ be the set of counterexamples
that show that tg1 ̸⪯ tg2, where Ctx(tg1, tg2) = ∅ if and only
if tg1 ⪯ tg2.

A. Mutation Testing with Parametric Timed Games

We now discuss the steps that are required to perform
mutation testing with parametric timed games. The starting
point is a timed game tg modelling the system (several case
studies modelled as timed games have been analysed in [12]).
To allow symbolic reasoning on mutations, the timed game
must be abstracted into a parametric timed game ptg using
Definition 8. This operation also yields the parameter evaluation
σP such that by projecting the parametric timed game on σP

the original timed game is obtained. The mutation function
can thus be applied to mutate the parameter evaluation σP ,
obtaining a mutated parameter evaluation σP ′ . At this point,
using refinement as defined in Definition 4, it is possible to
detect whether the projection of parametric timed game ptg on
σP ′ produces a mutant subsumed by the projection of ptg on
σP (i.e., the timed game tg).

Finally, after collecting a set of mutations that are not
refinements of the original system, a suite of tests capable of
“killing” all the generated mutants is computed automatically
(cf. Definition 9). Indeed, in mutation testing the strength of a
test-suite is measured as the ratio between the mutants killed
by the test-suite and the total amount of mutants generated.

Thus, by construction, the algorithm produces a test-suite with
top strength, since it is capable of killing all generated mutants.

We summarise below how to perform mutation testing
using parametric timed games. Note that the test for mutant
equivalence is emphasised in bold, and it is targeted below.
Indeed, to test whether m ̸∈ EquMut (i.e., the mutant is not
subsumed), we can exploit the monotonicity result in the
following way: if the conditions of Theorem 1 are met, then
we know by construction that the mutant is a refinement and
can be discarded.

Generating a test-suite for a timed game

1) Let tg be a timed game such that ptg = π−1(tg)
is the abstracted parametric timed game, and σP is
the parameter evaluation such that tg = π(σP , ptg).
Repeat the following steps.

2) Let m : ∆P 7→ ∆P be a mutation and let σP ′ =
m(σP) be the mutant.

3) Let π(σ′
P , tg) be subsumed by π(σP , ptg) if and only

if π(σ′
P , ptg) ⪯ π(σP , ptg), and let EquMut be the

set of mutation functions yielding subsumed mutants.
Select m /∈ EquMut.

4) Add Ctx(π(σ′
P , ptg), π(σP , ptg)) to the test-suite un-

der construction.

Example 8: Continuing the previous examples, note that it
holds that mCXS,p,2 ∈ EquMut. Next, consider a mutation
mCXL,p,2(σP) = σ′′

P , where σ′′
P = {(p, 6)}. In this case, we

obtain that tg′′ ̸⪯ tg for the timed game tg′′ = π(σ′′
P , ptg). A

counterexample wα (cf. Definition 9) is such that w = D 5
and α = . Indeed, it holds that wα ∈ Jtg′′K \ JtgK and
wα ∈ Ctx(tg′′, tg). The trace wα can be turned into a test by
construction capable of detecting the mutant.

B. Correspondence between Monotonicity and Commandments

We now prove the correspondence between monotonicity
and violation of a subset of seven commandments on model-
based mutation testing for timed games, which are reported
in Figure 6, and which have been selected from those that
have been presented in [11], [12]. A violation of such
a commandment implies that the corresponding mutant is
subsumed, as is proved in [12, Lemma 4-7]. It is worth
mentioning that by using the framework of L/U parametric
timed games, we simplify considerably the theory that has
been presented in [11], [12]. Notably, the aforementioned four
statements reported in [12, Lemmata 4-7] are all instances of
Theorem 2 below. By restricting to L/U parametric timed games,
it is possible to statically detect conditions for m that imply
m ∈ EquMut, by using Theorem 1, thus avoiding semantics
checking of the refinement relation, as proved next.

Theorem 2 (Monotonicity as Equivalent Mutants Detection):
Let tg be a timed game and let ptg be an L/U parametric
timed game obtained from tg using Definition 8 such that
tg = π(σP , ptg). Let m be a mutation of ptg, where m is either

CXL or CXS, and let σ′
P = m(σP) be the mutant. Consider

the 7 commandments in Figure 6. Then the following holds:

m violates one of the 7 commandments if and only if
∀p+∈P+, p−∈P−.σ′

P (p+)≥σP (p+) and σ′
P (p−)≤σP (p−)

Proof: The proof proceeds by cases on the two mutation
operators CXL and CXS and the corresponding commandments
reported in Figure 6:

• CXL: recall from Figure 5 that this mutation operator
increases the constant of a clock constraint of the timed
game. The corresponding commandments are as follows:

– CXL shall not be applied to controllable transitions
with guards of the form x ≤ k: by Definition 7,
parameters p ∈ P+ occur in controllable transitions
with guards of the form x ≤ p. It follows that this
commandment is violated if and only if σ′

P (p) ≥
σP (p).

– CXL shall not be applied to uncontrollable transitions
with guards of the form x ≥ k: by Definition 7,
parameters p ∈ P+ occur in uncontrollable transitions
with guards of the form x ≥ p. It follows that this
commandment is violated if and only if σ′

P (p) ≥
σP (p).

– CXL shall not be applied to invariants of the form
x ≥ k whenever all incoming transitions are un-
controllable: by Definition 7, parameters p ∈ P+

occur in invariants of the form x ≥ p whenever all
incoming transitions are uncontrollable. It follows
that this commandment is violated if and only if
σ′
P (p) ≥ σP (p).

• CXS: recall from Figure 5 that this mutation operator
decreases the constant of a clock constraint of the timed
game. The corresponding commandments are as follows:

– CXS shall not be applied to controllable transitions
with guards of the form x ≥ k: by Definition 7,
parameters p ∈ P− occur in controllable transitions
with guards of the form x ≥ p. It follows that this
commandment is violated if and only if σ′

P (p) ≤
σP (p).

– CXS shall not be applied to uncontrollable transitions
with guards of the form x ≤ k: by Definition 7,
parameters p ∈ P− occur in uncontrollable transitions
with guards of the form x ≤ p. It follows that this
commandment is violated if and only if σ′

P (p) ≤
σP (p).

– CXS shall not be applied to invariants of the form
x ≤ k whenever all incoming transitions are un-
controllable: by Definition 7, parameters p ∈ P−

occur in invariants of the form x ≤ p whenever all
incoming transitions are uncontrollable. It follows
that this commandment is violated if and only if
σ′
P (p) ≤ σP (p).

Commandments of Model-Based Mutation Testing:

CXL shall not be applied to controllable transitions with guards of the form x ≤ k

CXL shall not be applied to uncontrollable transitions with guards of the form x ≥ k

CXL shall not be applied to invariants of the form x ≥ k whenever all incoming transitions are uncontrollable
CXS shall not be applied to controllable transitions with guards of the form x ≥ k

CXS shall not be applied to uncontrollable transitions with guards of the form x ≤ k

CXS shall not be applied to invariants of the form x ≤ k whenever all incoming transitions are uncontrollable
CXS shall not be applied to invariants of the form x ≥ k whenever all incoming transitions are controllable

where x is a clock constraint and k is a constant

Fig. 6. The subset of 7 out of 10 commandments from [12] used in Theorem 2

– CXS shall not be applied to invariants of the form
x ≥ k whenever all incoming transitions are
controllable: by Definition 7, parameters p ∈ P−

occur in invariants of the form x ≥ p whenever
all incoming transitions are controllable. It follows
that this commandment is violated if and only if
σ′
P (p) ≤ σP (p).

Note that the converse of Theorem 1 does not hold: if a
mutation does not meet the hypotheses of Theorem 1 (or,
according to Theorem 2, it does not violate one of the above
commandments), then it is not always true that the mutant is
not a refinement. For example, it suffices to apply one such
mutation on a transition that is never enabled. Thus, Theorem 1
does not completely characterise the set EquMut.

Indeed, whilst it is syntactically possible to detect mutants
that are refinements, to detect mutants that are not refinements,
one in general needs additional information that is not easily re-
trievable syntactically [12]. Notwithstanding the above obstacle,
according to the literature, the number of syntactically detected
equivalent mutants (using the 10 commandments presented
in [12]), can be up to ≈ 80% of all equivalent mutants
generated by randomly applying mutations, as experimentally
validated in [12] (cf. also the experiments reproducibility
package [34]). Of course, if only mutations satisfying the
hypothesis of Theorem 1 are applied, then 100% of all mutants
are detected as subsumed.

Example 9: Continuing the previous examples, consider
the mutant σ′

P = {(p, 2)}, which mutates σP = {(p, 4)}. As
previously stated, following Theorem 1, since σ′

P (p) ≤ σP (p),
it holds that tg′ ⪯ tg, where tg′ = π(σ′

P , ptg).
This is also confirmed by applying Theorem 2, because this

mutation violates a commandment from [12]. In particular, p
occurs as guard x ≤ p of an uncontrollable (output) of the
tea machine, and p is decreased in the mutant. Hence, the
applied mutation operator is CXS (decreasing the constant of
a clock constraint). This mutation indeed violates one of the
commandment reported in [12], viz. the 5th commandment
from Figure 6:

CXS shall not be applied to uncontrollable transitions

with guards of the form x ≤ k

By Theorem 2, this is possible if and only if σ′
P (p) ≤ σP (p),

where p ∈ P−.

Remark 1: Note that, thanks to Theorem 2, the validation of
the commandments as performed in [12] (and described above)
can be imported as a validation of the approach proposed in
this paper, namely, the detection of equivalent mutants through
the monotonicity property of the extended L/U parametric
timed games fragment. Moreover, to further emphasise the
importance of expressing invariants in timed games, we note
that all the real-world benchmark case studies addressed in [12]
contain invariants in their models.

VI. CONCLUSION

We formally proved a correspondence between violations
of some commandments for detecting equivalent mutants
presented in the literature [11], [12] and the monotonicity
property for a fragment of parametric timed games. To this
aim, we extended the L/U parametric times gamed fragment to
be able to express parametric constraints on invariants, whilst
maintaining the monotonicity property that is essential for
the decidability of key problems for this fragment [17]. The
introduced invariants on parametric constraints are an essential
ingredient to impose a form of control on time [14]. These
results pave the way to the use of theories and tools created
in the framework of parametric timed games for model-based
mutation testing, allowing to detect equivalent mutants and at
the same time providing new research goals, some of which
we discuss next.

First, while tools for parametric timed games are available
(e.g., [15], [16]), none of them performs refinement checking,
which is however useful for model-based mutation testing, as
we showed in this paper. As discussed in the related work, this
could be obtained with a suitable encoding of the refinement
checking problem for parametric timed games into the problem
of strategy synthesis for reachability games, as was done in [14]
for the non-parametric case. With such an encoding, it could be
possible to reuse the algorithms and the tool Romeo as recently

presented in [15], [19], to perform refinement checking for
parametric timed games. However, since Romeo supports both
timed Petri nets and clock transition systems [35], a suitable
conversion to these formalisms becomes necessary [35], [36].

Another open research goal concerns extending parametric
timed games to include configurations. The mapping from
configurable parametric timed automata to parametric timed
automata (cf. [37, Def 3.8–3.9]) is trivially extensible to games.
Indeed, the encoding relies on a mapping from each feature
to a Boolean parameter denoting its activation/deactivation,
and by adding a new urgent initial location (i.e., in which
delays are not allowed) with only one outgoing controllable
transition to the original initial location. This added transition
will be guarded by the parametric constraint encoding the
feature model, and by adding the featured clock constraints in
conjunction with the other constraints of the other transitions.
Configurations for parametric timed games would allow to
express in a compact way all the applicable mutations, in
the style of featured mutant models [8]. This could help to
extend the presented theory to other types of mutations (e.g.,
removing transitions or locations), as well as applying strategy
synthesis all-at-once for all possible selected mutations, as
recently studied in [38] for the non-parametric case.

ACKNOWLEDGMENT

The first two authors acknowledge funding from the MUR
PRIN 2020TL3X8X project T-LADIES (Typeful Language
Adaptation for Dynamic, Interacting and Evolving Systems).

REFERENCES

[1] M. Utting, A. Pretschner, and B. Legeard, “A Taxonomy of Model-Based
Testing Approaches,” Softw. Test. Verif. Reliab., vol. 22, no. 5, pp.
297–312, 2012. [Online]. Available: https://doi.org/10.1002/stvr.456

[2] J. H. Andrews, L. C. Briand, Y. Labiche, and A. S. Namin, “Using
Mutation Analysis for Assessing and Comparing Testing Coverage
Criteria,” IEEE Trans. Softw. Eng., vol. 32, no. 8, pp. 608–624, 2006.
[Online]. Available: https://doi.org/10.1109/TSE.2006.83

[3] J. Offutt, “A mutation carol: Past, present and future,” Inf. Softw.
Technol., vol. 53, no. 10, pp. 1098–1107, 2011. [Online]. Available:
https://doi.org/10.1016/j.infsof.2011.03.007

[4] B. K. Aichernig, H. Brandl, E. Jöbstl, W. Krenn, R. Schlick, and
S. Tiran, “Killing Strategies for Model-Based Mutation Testing,” Softw.
Test. Verif. Reliab., vol. 25, no. 8, pp. 716–748, 2015. [Online].
Available: https://doi.org/10.1002/stvr.1522

[5] A. Brillout, N. He, M. Mazzucchi, D. Kroening, M. Purandare, P. Rümmer,
and G. Weissenbacher, “Mutation-Based Test Case Generation for
Simulink Models,” in Proceedings of the 8th International Symposium on
Formal Methods for Components and Objects (FMCO’09), ser. LNCS,
F. S. de Boer, M. M. Bonsangue, S. Hallerstede, and M. Leuschel,
Eds., vol. 6286. Springer, 2009, pp. 208–227. [Online]. Available:
https://doi.org/10.1007/978-3-642-17071-3 11

[6] R. Baker and I. Habli, “An Empirical Evaluation of Mutation Testing
for Improving the Test Quality of Safety-Critical Software,” IEEE Trans.
Softw. Eng., vol. 39, no. 6, pp. 787–805, 2013. [Online]. Available:
https://doi.org/10.1109/TSE.2012.56

[7] B. K. Aichernig, F. Lorber, and D. Nickovic, “Time for mutants:
Model-based mutation testing with timed automata,” in Proceedings of
the 7th International Conference on Tests and Proofs (TAP’13), ser.
LNCS, M. Veanes and L. Viganò, Eds., vol. 7942. Springer, 2013, pp.
20–38. [Online]. Available: https://doi.org/10.1007/978-3-642-38916-0 2

[8] X. Devroey, G. Perrouin, M. Papadakis, A. Legay, P. Schobbens,
and P. Heymans, “Featured Model-based Mutation Analysis,” in
Proceedings of the 38th International Conference on Software
Engineering (ICSE’16). ACM, 2016, pp. 655–666. [Online]. Available:
https://doi.org/10.1145/2884781.2884821

[9] K. G. Larsen, F. Lorber, B. Nielsen, and U. M. Nyman, “Mutation-Based
Test-Case Generation with Ecdar,” in Proceedings of the 10th IEEE
International Conference on Software Testing, Verification and Validation
Workshops (ICSTW’17). IEEE, 2017, pp. 319–328. [Online]. Available:
https://doi.org/10.1109/ICSTW.2017.60

[10] M. Kintis, M. Papadakis, Y. Jia, N. Malevris, Y. L. Traon, and
M. Harman, “Detecting trivial mutant equivalences via compiler
optimisations,” IEEE Trans. Softw. Eng., vol. 44, no. 4, pp. 308–333,
2018. [Online]. Available: https://doi.org/10.1109/TSE.2017.2684805

[11] D. Basile, M. H. ter Beek, M. Cordy, and A. Legay, “Tackling
the Equivalent Mutant Problem in Real-Time Systems: The 12
Commandments of Model-Based Mutation Testing,” in Proceedings
of the 24th ACM Conference on Systems and Software Product
Lines (SPLC’20). ACM, 2020, pp. 252–262. [Online]. Available:
https://doi.org/10.1145/3382025.3414966

[12] D. Basile, M. H. ter Beek, S. Lazreg, M. Cordy, and A. Legay,
“Static detection of equivalent mutants in real-time model-based
mutation testing: An Empirical Evaluation,” Empir. Softw. Eng.,
vol. 27, no. 7, pp. 160:1–160:55, 2022. [Online]. Available:
https://doi.org/10.1007/s10664-022-10149-y

[13] A. Jovanovic, S. Faucou, D. Lime, and O. H. Roux, “Real-time
control with parametric timed reachability games,” IFAC Proc. Vol.,
vol. 45, no. 29, pp. 323–330, 2012, Proceedings of the 11th IFAC
Workshop on Discrete Event Systems (WODES’12). [Online]. Available:
https://doi.org/10.3182/20121003-3-MX-4033.00052

[14] A. David, K. G. Larsen, A. Legay, U. Nyman, L. Traonouez,
and A. Wasowski, “Real-time specifications,” Int. J. Softw. Tools
Technol. Transf., vol. 17, no. 1, pp. 17–45, 2015. [Online]. Available:
https://doi.org/10.1007/s10009-013-0286-x

[15] D. Lime, O. H. Roux, C. Seidner, and L.-M. Traonouez, “Romeo:
A Parametric Model-Checker for Petri Nets with Stopwatches,” in
Proceedings of the 15th International Conference on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS’09), ser. LNCS,
S. Kowalewski and A. Philippou, Eds., vol. 5505. Springer, 2009, pp.
54–57. [Online]. Available: https://doi.org/10.1007/978-3-642-00768-2 6

[16] É. André, “IMITATOR 3: Synthesis of Timing Parameters Beyond
Decidability,” in Proceedings of the 33rd International Conference
on Computer Aided Verification (CAV’21), ser. LNCS, A. Silva and
K. R. M. Leino, Eds., vol. 12759. Springer, 2021, pp. 552–565.
[Online]. Available: https://doi.org/10.1007/978-3-030-81685-8 26

[17] A. Jovanović, D. Lime, and O. H. Roux, “A game approach
to the parametric control of real-time systems,” Int. J. Control,
vol. 92, no. 9, pp. 2025–2036, 2019. [Online]. Available: https:
//doi.org/10.1080/00207179.2018.1426883

[18] G. Behrmann, A. Cougnard, A. David, E. Fleury, K. G. Larsen,
and D. Lime, “UPPAAL-Tiga: Time for Playing Games!” in
Proceedings of the 19th International Conference on Computer Aided
Verification (CAV’07), ser. LNCS, W. Damm and H. Hermanns,
Eds., vol. 4590. Springer, 2007, pp. 121–125. [Online]. Available:
https://doi.org/10.1007/978-3-540-73368-3 14

[19] A. Jovanovic, D. Lime, and O. H. Roux, “Control of real-time
systems with integer parameters,” IEEE Trans. Autom. Control.,
vol. 67, no. 1, pp. 75–88, 2022. [Online]. Available: https:
//doi.org/10.1109/TAC.2020.3046578

[20] W. Zuberek, “Timed Petri nets definitions, properties, and applications,”
Microelectron. Reliab., vol. 31, no. 4, pp. 627–644, 1991. [Online].
Available: https://doi.org/10.1016/0026-2714(91)90007-T

[21] L. Luthmann, T. Gerecht, and M. Lochau, “Sampling strategies for
product lines with unbounded parametric real-time constraints,” Int.
J. Softw. Tools Technol. Transf., vol. 21, no. 6, pp. 613–633, 2019.
[Online]. Available: https://doi.org/10.1007/s10009-019-00532-4

[22] L. Luthmann, A. Stephan, J. Bürdek, and M. Lochau, “Modeling
and Testing Product Lines with Unbounded Parametric Real-Time
Constraints,” in Proceedings of the 21st International Systems and
Software Product Lines Conference (SPLC’17). ACM, 2017, pp.
104–113. [Online]. Available: https://doi.org/10.1145/3106195.3106204

[23] É. André, P. Arcaini, A. Gargantini, and M. Radavelli, “Repairing
Timed Automata Clock Guards through Abstraction and Testing,”
in Proceedings of the 13th International Conference on Tests and
Proofs (TAP@FM’19), ser. LNCS, D. Beyer and C. Keller, Eds.,
vol. 11823. Springer, 2019, pp. 129–146. [Online]. Available:
https://doi.org/10.1007/978-3-030-31157-5 9

[24] É. André, “What’s decidable about parametric timed automata?” Int.

https://doi.org/10.1002/stvr.456
https://doi.org/10.1109/TSE.2006.83
https://doi.org/10.1016/j.infsof.2011.03.007
https://doi.org/10.1002/stvr.1522
https://doi.org/10.1007/978-3-642-17071-3_11
https://doi.org/10.1109/TSE.2012.56
https://doi.org/10.1007/978-3-642-38916-0_2
https://doi.org/10.1145/2884781.2884821
https://doi.org/10.1109/ICSTW.2017.60
https://doi.org/10.1109/TSE.2017.2684805
https://doi.org/10.1145/3382025.3414966
https://doi.org/10.1007/s10664-022-10149-y
https://doi.org/10.3182/20121003-3-MX-4033.00052
https://doi.org/10.1007/s10009-013-0286-x
https://doi.org/10.1007/978-3-642-00768-2_6
https://doi.org/10.1007/978-3-030-81685-8_26
https://doi.org/10.1080/00207179.2018.1426883
https://doi.org/10.1080/00207179.2018.1426883
https://doi.org/10.1007/978-3-540-73368-3_14
https://doi.org/10.1109/TAC.2020.3046578
https://doi.org/10.1109/TAC.2020.3046578
https://doi.org/10.1016/0026-2714(91)90007-T
https://doi.org/10.1007/s10009-019-00532-4
https://doi.org/10.1145/3106195.3106204
https://doi.org/10.1007/978-3-030-31157-5_9

J. Softw. Tools Technol. Transf., vol. 21, no. 2, pp. 203–219, 2019.
[Online]. Available: https://doi.org/10.1007/s10009-017-0467-0

[25] B. Khaireddine, A. Zakharchenko, and A. Mili, “A Generic
Algorithm for Program Repair,” in Proceedings of the 5th IEEE/ACM
International FME Workshop on Formal Methods in Software
Engineering (FormaliSE’17). IEEE, 2017, pp. 65–71. [Online].
Available: https://doi.org/10.1109/FormaliSE.2017.7

[26] S. Hallé, “Test Suite Generation for Boolean Conditions with
Equivalence Class Partitioning,” in Proceedings of the 10th IEEE/ACM
International Conference on Formal Methods in Software Engineering
(FormaliSE’22). ACM, 2022, pp. 23–33. [Online]. Available:
https://doi.org/10.1145/3524482.3527659

[27] A. Knüppel, L. Schaer, and I. Schaefer, “How much Specification is
Enough? Mutation Analysis for Software Contracts,” in Proceedings
of the 9th IEEE/ACM International Conference on Formal Methods
in Software Engineering (FormaliSE’21). IEEE, 2021, pp. 42–53.
[Online]. Available: https://doi.org/10.1109/FormaliSE52586.2021.00011

[28] R. Alur and D. L. Dill, “A Theory of Timed Automata,” Theoret.
Comput. Sci., vol. 126, no. 2, pp. 183–235, 1994. [Online]. Available:
https://doi.org/10.1016/0304-3975(94)90010-8

[29] E. Asarin, O. Maler, A. Pnueli, and J. Sifakis, “Controller
Synthesis for Timed Automata,” IFAC Proc. Vol., vol. 31, no. 18,
pp. 447–452, 1998, Proceedings of the 5th IFAC Conference
on System Structure and Control (SSC’98). [Online]. Available:
https://doi.org/https://doi.org/10.1016/S1474-6670(17)42032-5

[30] A. David, K. G. Larsen, A. Legay, U. Nyman, and A. Wasowski,
“Timed I/O Automata: A Complete Specification Theory for Real-time
Systems,” in Proceedings of the 13th International Conference on
Hybrid Systems: Computation and Control (HSCC’10). ACM, 2010, pp.
91–100. [Online]. Available: https://doi.org/10.1145/1755952.1755967

[31] M. Krichen and S. Tripakis, “Conformance testing for real-time systems,”
Form. Methods Syst. Des., vol. 34, no. 3, pp. 238–304, 2009. [Online].
Available: https://doi.org/10.1007/s10703-009-0065-1

[32] L. B. Briones and E. Brinksma, “Testing Real-Time Multi Input-Output
Systems,” in Proceedings of the 7th International Conference on Formal
Engineering Methods (ICFEM’05), ser. LNCS, K. Lau and R. Banach,
Eds., vol. 3785. Springer, 2005, pp. 264–279. [Online]. Available:
https://doi.org/10.1007/11576280 19

[33] M. Bouwman, D. van der Wal, B. Luttik, M. Stoelinga, and A. Rensink,
“A Case in Point: Verification and Testing of a EULYNX Interface,” Form.
Asp. Comput., 2023. [Online]. Available: https://doi.org/10.1145/3528207

[34] D. Basile, “Experiments Reproducibility package for the paper Static
Detection of Equivalent Mutants in Real-Time Model-based Mutation
Testing: An Empirical Evaluation,” December 2021. [Online]. Available:
https://doi.org/10.5281/zenodo.5749732

[35] C. Jard, D. Lime, and O. H. Roux, “Blending timed formal models
with clock transition systems,” Fundam. Inform., vol. 129, no. 1-2, pp.
85–100, 2014. [Online]. Available: https://doi.org/10.3233/FI-2014-962

[36] F. Cassez and O. H. Roux, “Structural translation from time Petri nets
to timed automata,” J. Syst. Softw., vol. 79, no. 10, pp. 1456–1468, 2006.
[Online]. Available: https://doi.org/10.1016/j.jss.2005.12.021

[37] L. Luthmann, “Specification and Analysis of Software Systems with
Configurable Real-Time Behavior,” Ph.D. dissertation, Technische
Universität Darmstadt, 2020. [Online]. Available: http://tuprints.ulb.
tu-darmstadt.de/17363/

[38] U. Fahrenberg and A. Legay, “Featured games,” Sci. Comput. Program.,
vol. 223, 2022. [Online]. Available: https://doi.org/10.1016/j.scico.2022.
102874

https://doi.org/10.1007/s10009-017-0467-0
https://doi.org/10.1109/FormaliSE.2017.7
https://doi.org/10.1145/3524482.3527659
https://doi.org/10.1109/FormaliSE52586.2021.00011
https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/https://doi.org/10.1016/S1474-6670(17)42032-5
https://doi.org/10.1145/1755952.1755967
https://doi.org/10.1007/s10703-009-0065-1
https://doi.org/10.1007/11576280_19
https://doi.org/10.1145/3528207
https://doi.org/10.5281/zenodo.5749732
https://doi.org/10.3233/FI-2014-962
https://doi.org/10.1016/j.jss.2005.12.021
http://tuprints.ulb.tu-darmstadt.de/17363/
http://tuprints.ulb.tu-darmstadt.de/17363/
https://doi.org/10.1016/j.scico.2022.102874
https://doi.org/10.1016/j.scico.2022.102874

	Introduction
	Structure of the Paper

	Related Work
	Background
	Timed Games
	Parametric Timed Games

	Monotonicity of L/U Parametric Timed Games
	Monotonicity as Equivalent Mutants Detection
	Mutation Testing with Parametric Timed Games
	Correspondence between Monotonicity and Commandments

	Conclusion
	Acknowledgment
	References

