
Evaluating a Language Workbench: from Working
Memory Capacity to Comprehension to Acceptance
Giovanna Broccia∗, Alessio Ferrari∗, Maurice ter Beek∗, Walter Cazzola†, Luca Favalli†, Francesco Bertolotti†

∗ ISTI–CNR, Pisa, Italy
{giovanna.broccia,alessio.ferrari,maurice.terbeek}@isti.cnr.it

†University of Milan, Italy
{walter.cazzola,luca.favalli,francesco.bertolotti}@unimi.it

Abstract—Language workbenches are tools that enable the
definition, reuse and composition of programming languages
and their ecosystem. This breed of frameworks aims to make
the development of new languages easier and more affordable.
Consequently, the comprehensibility of the language used in
a language workbench (i.e., the meta-language) should be an
important aspect to consider and evaluate. To the best of
our knowledge, although the quantitative aspects of language
workbenches are often discussed in the literature, the evaluation
of comprehensibility is typically neglected.

Neverlang is a language workbench that enables the definition
of languages with a modular approach. This paper presents a
preliminary study that intends to assess the comprehensibility of
Neverlang programs, evaluated in terms of users’ effectiveness
and efficiency in a code comprehension task. The study also
investigates the relationship between Neverlang comprehensibility
and the users’ working memory capacity. Furthermore, we intend
to capture the relationship between Neverlang comprehensibility
and users’ acceptance, in terms of perceived ease of use, perceived
usefulness, and intention to use. Our preliminary results on 10
subjects suggest that the users’ working memory capacity may
be related to the ability to comprehend Neverlang programs. On
the other hand, effectiveness and efficiency do not appear to be
associated with an increase in users’ acceptance variables.

Index Terms—Program comprehension, Language workbench,
Users study, Working memory capacity, Technology acceptance
model

I. INTRODUCTION

Language workbenches [1] are tools that support the devel-
opment of general-purpose and domain-specific programming
languages, their implementation, and their ecosystem includ-
ing but not limited to a dedicated IDE. This breed of tools
exploits the concepts of language feature and component [2]
to modularise the specification and implementation of both the
language and its ecosystem. Such a modularisation makes the
definition and development of new languages easier and more
affordable by reusing existing language components [3].

Most language workbenches are academic products that
must be evaluated for comprehensibility, before being released
to a wider public. However, while such instruments have been
studied from a quantitative point of view [3]–[5], we are not
aware of any literature that investigates the comprehensibility
of language workbenches’ meta-languages. This is important
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though, since language comprehension plays an essential role
in the usage of the language itself, and it has an impact on user
performance—-the time software developers spend on code
comprehension is 30%–70% of their daily work time [6], [7].

This paper presents the first, preliminary study on the
comprehensibility of a language workbench named Never-
lang [8]. We select this tool as a representative case, as
it shares most of the standard features of the other work-
benches, it is a full-fledged framework with native support
for language product lines [9], and it has been quite well
analysed from a quantitative point of view [10]. We aim to
analyse the comprehensibility of Neverlang from four main
perspectives: 1) the effectiveness and efficiency of novice
users in a code comprehension test; 2) the relation between
effectiveness/efficiency and the working memory capacity of
users, measured through standard tasks [11]—typically, users’
performance is jeopardised when the mental effort required to
comprehend the program exceeds their mental capacity [12];
3) the extent to which users consider Neverlang acceptable, in
terms of ease of use, usefulness and intention to use, following
the Method Evaluation Model (MEM) [13]; 4) the relation
between effectiveness/efficiency and degree of acceptance of
the language. To this end, we conduct a pilot study with 10
subjects. The subjects first perform a test of their memory
capacity, followed by a test of code comprehension, based on
the template from Kosar et al. [14]. Finally, they are asked to
fill out a questionnaire to evaluate acceptance-related variables.

Our preliminary results show that 1) Neverlang is over-
all comprehensible for users (average effectiveness is 79%);
2) the users’ memory capacity could be a factor influencing
the predisposition to language comprehension; 3) Neverlang
is overall accepted by users (average scores of acceptance
variables are all significantly higher than the median); 4) there
is a negative relationship between the efficiency of users in the
comprehension test and the acceptance variables.

This first comprehensibility study targeting language work-
benches establishes an analysis framework that can be used
to further evaluate Neverlang and other meta-languages. We
make our replication package available [15].

II. BACKGROUND AND STATE OF THE ART

a) Neverlang: Neverlang [8] is a language workbench
for the modular development of programming languages.



Language components, called slices, embody the concept of
language features and are developed as separate units that can
be independently compiled, tested, and distributed, enabling
developers to share and reuse the same units across different
language implementations. Each slice is composed of several
modules. A module may contain a syntax definition and/or
some roles. Each role defines a compilation phase by declaring
semantic actions that should be executed when some syntax
is recognised. Syntactic definitions and semantic roles are tied
together using slices, which are composed to form a language.

Neverlang has been evaluated in the study of Cazzola et
al. [10] by applying several metrics, like such as coupling and
cohesion, to assess its ease of use in supporting variability in
the production of families of domain-specific languages. To the
best of our knowledge, no literature studies evaluate language
workbenches in terms of meta-language comprehensibility, as
most compare workbenches or define a taxonomy [3]–[5].

b) Working Memory Capacity: Working Memory is a
cognitive system with limited capacity (referred to as WM span
or capacity) responsible for the transient holding and process-
ing of information necessary to complete a task [16]. WM
capacity was proven to be highly predictive of performance in
a number of different activities [17]–[21] and it is an important
individual variable in general intellectual ability [22]–[24]. To
measure such a capacity, one uses specific tasks, referred to as
WM span tasks (WMST) [11]. These tasks entail performing
two concurrent activities: one mnemonic which imposes the
memorisation and recall of a set of elements (usually digits)
and one processing which imposes the evaluation of elements
(e.g., sentences or equations). Usually, to avoid bias and to
assess the users’ WM span more precisely, two different
WMSTs are administered to users diversifying the processing
activities (e.g., one task entailing mathematical processing and
one entailing linguistic processing). The evaluation of the tasks
is generally performed only for the mnemonic activity [25],
[26], and a score is associated with the evaluation. In our study,
we use the partial-credit unit (PCU) scoring method, favoured
by empirical results [11]. PCU ranges from 0 to 1, an average
PCU of 0.8 is considered high.

Regarding the evaluation of the cognitive aspects connected
to program comprehension, Gonçales et al. [27], [28] propose
a systematic mapping study of methods used to measure
software developers’ cognitive load (CL). They focus on CL
measurement through sensors and study which kind of sensors
are adopted, what metrics are used, and what algorithms are
employed to classify CL. CL is the load imposed on the WM
by a certain task [12]. For what concerns the methods, the eye
tracker seems to be the more prominent one [29]–[33].

The measurement of CL through sensors during the ex-
ecution of tasks, next to being invasive, also requires the
presence of a moderator. On the contrary, we employ a non-
invasive method to measure the WM capacity of users before
performing the comprehension tasks, i.e., using WMSTs [11].
This allows us to classify users according to their cognitive
performance, without the need to carry out the tests in presence
of a moderator and thus allowing users to take the test when

they prefer and when their cognitive abilities are at their best.
c) Technology Acceptance & Method Evaluation Models:

The Technology Acceptance Model (TAM) [34] is a model to
evaluate information technologies. According to the model, the
users’ usage of new technology is influenced by their perceived
usefulness (PU) and their perceived ease of use (PEOU).
These perception measures are combined with performance
measures within the Method Evaluation Model (MEM) [13],
for evaluating information systems design methods. The MEM
incorporates the actual and the perceived success. The actual
success is measured through two performance-based variables:
effectiveness and efficiency; the perceived success, conversely,
is measured through the combination of PU, PEOU, and a third
perception-based variable, intention to use (ITU).

The TAM has been used in a wider set of applications: from
the evaluation of e-learning systems [35], [36] to communi-
cation platforms [37], [38], to mention a few examples. The
MEM was applied to the field of requirements engineering to
predict the understandability of requirement models [39]. As
far as we know, no previous research investigated the use of
either of the two models for program comprehension. In this
paper, we adapt both the TAM and the MEM to assess the
comprehensibility of Neverlang, studying whether there exists
a relation between users’ acceptance and comprehensibility.

III. EXPERIMENT DESIGN

Our goal is to answer the following four research questions:
RQ1. To what extent is Neverlang comprehensible in terms

of syntax and semantics of its main constructs?
RQ2. Is Neverlang more comprehensible for users with a

higher working memory capacity?
RQ3. To what extent is Neverlang accepted by users?
RQ4. Is there a relationship between Neverlang compre-

hensibility and its acceptance by users?
Comprehensibility (RQ1–RQ4) is evaluated through effec-

tiveness (number of correct answers over the number of
questions) and efficiency (effectiveness over time) [39], with
a test questionnaire. The WM capacity is evaluated through
two WMSTs: a reading span task, where users must process
the veracity of sentences while memorising a set of numbers,
and an operation span task, where users need to process the
correctness of equations while memorising a set of numbers.
User acceptance (RQ3–RQ4) is evaluated through three ques-
tionnaires aiming to assess three perception-based variables,
viz. PEOU, PU, and ITU.

The experiment is composed of the following four phases:
• WMST phase: Users are asked to perform the two

WMSTs on an online platform. The order in which the
two tasks are presented is randomly set by the platform.

• Training phase: Users are asked to watch a video about
Neverlang. The video lasts less than 15 minutes and gives
users all the necessary information to perform the test
phase. Users are asked to watch the video before the
test, preferably once. However, they can use this support
during the test in case of need, provided they report the
number of times they did so.



• Test phase: Users are asked to answer eight questions
about Neverlang on an online survey platform. The
questions are divided according to two comprehensibility
aspects: three questions for learnability and five questions
for understandability. This phase is organised according
to the study illustrated in the paper by Kosar et al. [14]
The test was defined in collaboration with two Neverlang
experts, who considered it sufficiently effective to evalu-
ate the comprehension of the language by novices. Each
question in the test phase is a multiple-choice question
and can contain a (set of) Neverlang statement(s), a
description of a (set of) statement(s), or a simple request
(e.g., select the set of Neverlang statements that satisfy a
given characteristic). Each question contains five choices
in terms of sets of statements, statements’ meanings, or
given answers. Effectiveness is computed as the average
of correct answers divided by the number of questions.
Efficiency is computed as the effectiveness divided by the
time spent answering all questions.

• Post-study phase: Users are asked to fill out an online
questionnaire containing a number of questions about
their prior knowledge (on programming and language
workbenches), personal details (age, gender, occupation),
and feedback on the test and on the training material. The
questionnaire also includes three different 5-point scale
questionnaires on PEOU, PU, and ITU, consisting of 8,
14, and 8 statements, for each variable, respectively. The
questionnaires consist of a shuffled set of positive state-
ments about Neverlang (e.g., Neverlang is easy to learn)
and their negation (Neverlang is NOT easy to learn), to
prevent systematic response bias. Each statement requires
an answer on a 5-point scale, from 1 (strongly disagree)
to 5 (strongly agree). Points for negation statements are
counted as 6 minus the point given as the answer. We
compute the value for each variable as the average of
the answer points for the statements associated with the
variable. This design follows that from Abraho et al. [39].

In order not to overload their cognitive effort, we asked
participants to perform the WMST phase and the remaining
phases on two separate days. All the material, including the
platform for WMSTs and the video, is available [15].

IV. EXECUTION AND RESULTS

a) Subject Selection: We recruited 10 subjects from the
University of Milan. The subjects are bachelor students (5),
master students (4), and graduate students (1) in Computer
Science. Their skills in programming and in object-oriented
programming, is self-evaluated with an average score of 3.7
on a scale from 1 to 5. More than 70% of the subjects knew
neither Neverlang nor any other language workbenches before
the test. Therefore, our preliminary results apply to subjects
that have a similar background, and different outcomes may
be observed with participants with different characteristics.

b) Analysis Procedure: To answer RQ1, we evaluate the
results of the tests in terms of effectiveness and efficiency
and we compare the values with target ones established by

the Neverlang experts involved in the study. Effectiveness
greater than 0.6 (60% of the maximum value equal to 100%
of the questions correctly answered) is considered to indicate
sufficient comprehension. Since the Neverlang test is estimated
to last 18 minutes, and considering that the maximum effec-
tiveness is 1, the target efficiency is 0.06. An efficiency of 0.36,
i.e., 60% of the target, can be considered adequate. We also
check whether there is a relationship between effectiveness
and efficiency by fitting a linear model. To answer RQ2, we
fit a linear model between PCU and effectiveness, and between
PCU and efficiency. For RQ3, we perform a Wilcoxon signed-
rank test to check if PEOU, PU, and ITU are significantly
higher than the median score (i.e., 3 = neither agree nor
disagree). Finally, for RQ4, we fit linear models of PEOU,
PU, and ITU with respect to effectiveness and efficiency.

c) Results: Table II shows the descriptive statistics of
the different variables. Table I reports the linear models fitted
on each relevant variable pair, and Figure 1 shows the linear
models, together with the boxplots of PEOU, PU, and ITU.
Many of the relationships captured by the linear models are
not statistically significant. However, some general tendencies,
reported below, can be observed even at this preliminary stage.

RQ1. The effectiveness is ∼ 0.79 on average, meaning that
79% of the questions of the test are correctly answered. Based
on the 0.6 target, this suggests a more than sufficient degree of
comprehensibility, especially considering that the participants
only had a 15-minute training. The average efficiency is 0.04,
so 67% of the target efficiency value 0.06 (cf. above). Also
according to this dimension, Neverlang can be considered
sufficiently comprehensible, although there is room for im-
provement. Looking at the relationship between effectiveness
and efficiency (Fig. 1a), we see a positive linear relation,
although not significant (p-value ∼ 0.24, cf. Table I), possibly
due to the limited number of subjects.

RQ2. Concerning the relationship between the users’ WM
capacity and effectiveness/efficiency, Figs. 1b and 1c show
a positive correlation between these measures, confirming
that the WM capacity is correlated with the predisposition

TABLE I
STATISTICS FROM FITTING LINEAR MODELS CONSIDERING RELEVANT

VARIABLE PAIRS (x AND y COLUMNS).
* INDICATES THAT RESULTS ARE WEAKLY SIGNIFICANT (p-VALUE < 0.1)

** INDICATES THAT RESULTS ARE SIGNIFICANT (p-VALUE < 0.05)

y x Eq. R2 p-value

efficiency effectiveness y = 0.64 + 3.7x 0.1679 0.2395

PCU effectiveness y = 0.11 + 0.87x 0.3858 0.0553*

PCU efficiency y = −0.017 + 0.072x 0.2123 0.1802

PEOU effectiveness y = 3.4 + 0.32x 0.006676 0.8225

PU effectiveness y = 4 + 0.02x 8.91E-05 0.9794

ITU effectiveness y = 3.1 + 0.54x 0.03228 0.6194

PEOU efficiency y = 4.6− 23x 0.4295 0.039**

PU efficiency y = 4.5− 12x 0.391 0.0532*

ITU efficiency y = 4.2− 17x 0.3785 0.0583*



Fig. 1. Results charts

to language comprehension, since a high WM capacity has
an impact on both effectiveness and efficiency. Concerning
statistical significance, Table I shows that the relation between
the PCU and effectiveness is weakly significant (p-value
∼ 0.06), while the relation with efficiency is not significant.

RQ3. The results of the Wilcoxon signed-rank test indicate
that the average scores for PEOU, PU, and ITU are all
significantly higher than the median for α = 0.05, with p-
values ∼ 0.02, ∼ 0.003, and ∼ 0.012, respectively. Therefore,
we argue that Neverlang is positively considered by users in
terms of acceptance. From the boxplot in Fig. 1d, we see that
PU has high average values (median 4), while PEOU and ITU
are slightly lower. This suggests that the Neverlang language
requires further adjustments in terms of ease of use. In future
work, we plan to carry out interviews with users to better
understand which aspects they find most difficult to use and
to understand. To increase ITU, we argue that we need to
work more on making users understand the usage scenarios of
Neverlang and, more in general, of the language workbenches.
This was hardly feasible by means of a 15-minute video, and
a longer overview appears to be required.

RQ4. Figure 1e shows the relation between the user ac-
ceptance variables and the effectiveness. The chart shows that
there is a slightly positive relationship between the variables:
essentially, the users that performed best in the test, tend to
evaluate the language more positively in terms of acceptance.
This relationship is however not significant, as shown in
Table I. On the contrary, more efficient users show lower
acceptance, as Fig. 1f shows. This negative relationship also
shows a higher degree of significance (cf. last rows in Table I).

V. THREATS TO VALIDITY

Concerning construct validity, to measure comprehensibil-
ity we used widely used metrics of effectiveness and effi-
ciency [13], [39]. The test questionnaire was adapted from the
template of Kosar et al. [14] and revised by two Neverlang
experts, the WMSTs from Conway et al. [11], and the users’
acceptance questionnaires used in the post-study phase were
adapted from the work of Abrahao et al. [39]. We made an
effort to maximise internal validity, by evaluating different
quantitative and objective variables. Subjective opinions were
collected with the three questionnaires, which could have led
to participant response bias. However, the participants did not
meet the experimenter, as the whole study was conducted
online, thereby limiting the possible tendency of participants to
provide positive answers to please the researchers. This paper
focuses on the relationship between WMC and understandabil-
ity. Other confounding factors, like user expertise, which might
affect understandability, are not considered. However, we
highlight that this work measures correlation, not causation.

TABLE II
DESCRIPTIVE STATISTICS

Measures Median Mean Std. dev. Min. Max.
PCU 0.798 0.778 0.116 0.584 0.942

Effectiveness 0.75 0.788 0.215 0.375 1

Efficiency 0.03 0.04 0.015 0.02 0.08

PEOU 3.688 3.675 0.697 2.25 4.75

PU 4 4.057 0.318 3.357 4.786

ITU 3.563 3.55 0.51 2.5 4.375



We also underline that this is not an experiment meant to
compare two language workbenches. Therefore, we do not
investigate the understandability of Neverlang in comparison
with other platforms. Given the limited number of participants,
and the contrived nature of the experiments, external validity
is limited [40], and different results may be observed in
daily practice with Neverlang. Furthermore, here we evaluate
Neverlang in a code reading task. Different results might be
observed if a coding task were considered.

VI. CONCLUSION AND FUTURE WORK

We presented the first comprehensibility study of Neverlang,
a language workbench for modular development of program-
ming languages, by conducting a pilot test with subjects from
academia (10 computer science students of different levels).
The preliminary results are promising. In the future, next to
carrying out user interviews to grasp their difficulties, we plan
to perform the test on a larger number of subjects in order to
confirm or reject our preliminary results, check how particular
cognitive dimensions contribute to the questionnaires’ success,
and compare Neverlang with other workbenches.
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