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MINECORE is a recently proposed decision-theoretic algorithm for technology-assisted review that attempts 
to minimise the expected costs of review for responsiveness and privilege in e-discovery. In MINECORE, 
two probabilistic classifiers that classify documents by responsiveness and by privilege, respectively, generate 
posterior probabilities. These latter are fed to an algorithm that returns as output, after applying risk 
minimization, two ranked lists, which indicate exactly which documents the annotators should review for 
responsiveness and which documents they should review for privilege. In this paper we attempt to find out 
if the performance of MINECORE can be improved (a) by using, for the purpose of training the two classifiers, 
active learning (implemented either via relevance sampling, or via uncertainty sampling, or via a combination of 
them) instead of passive learning, and (b) by using the Saerens-Latinne-Decaestecker algorithm to improve the 
quality of the posterior probabilities that MINECORE receives as input. We address these two research questions 
by carrying out extensive experiments on the RCV1-v2 benchmark. We make publicly available the code and 
data for reproducing all our experiments.
1. Introduction

In several subfields of data science the term “review” refers to 
the activity, carried out by human annotators (also called reviewers, 
or coders), of assigning a textual document 𝐱 to a class 𝑦, where this 
class belongs to a finite, predefined set  = {𝑦1, ..., 𝑦𝑛} of classes. How-

ever, in several application scenarios, such as e-discovery (Degnan, 
2011, Grossman & Cormack, 2011, Oard & Webber, 2013, Roitblat 
et al., 2010), online content monitoring (Yang et al., 2021a), and the 
production of systematic reviews (Callaghan & Müller-Hansen, 2020, 
Lease et al., 2016, O’Mara-Eves et al., 2015), the amount of documents 
that must be reviewed may be extremely large; as a result, a number 
of computerized, technology-assisted review (TAR) methods (Grossman 
& Cormack, 2011, Kanoulas et al., 2019, Yang et al., 2021b), most 
of them based on some form of supervised learning, have emerged 
whose goal is to help maximise the cost-effectiveness of the annotators’ 
work.

In e-discovery, an important part of the civil litigation process in 
many countries (including the US, China, Canada, India, and others), 
each textual document belonging to a (usually very large) pool  of 
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documents needs to be reviewed for “responsiveness”, i.e., the review-

ers must decide if it is relevant or not to a topic of interest; in this 
case, the set of classes of interest is thus  = {𝑦𝑟, 𝑦𝑟}, with 𝑦𝑟 the class 
of responsive documents and 𝑦𝑟 its complement. E-discovery, though, 
is usually a two-stage review setting since, after review for responsive-

ness has been carried out, a document deemed responsive needs to be 
further reviewed for privilege, i.e., the reviewers must decide if it con-

tains sensitive material; in this case, the set of classes of interest is thus 
 = {𝑦𝑝, 𝑦𝑝}, with 𝑦𝑝 the class of privileged documents and 𝑦𝑝 its com-

plement. Documents that are in both 𝑦𝑟 and 𝑦𝑝 are placed in the class 
𝑦𝑃 of documents that need to be produced to the other party involved 
in the litigation; documents that are in both 𝑦𝑟 and 𝑦𝑝 are logged (and 
thus placed in class 𝑦𝐿) into a so-called “privilege log”, while docu-

ments that are in 𝑦𝑟 are withheld from production (and thus placed in 
class 𝑦𝑊 ).

In order to reduce the workload of the annotators, a TAR system 
often uses (for both responsiveness and privilege) some form of super-

vised learning, which involves the manual annotation of some of the 
documents in  , training a classifier ℎ by using the manually annotated 
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documents as training examples, and automatically classifying the other 
documents in  (or ranking them in terms of estimated degree of mem-

bership in the class of interest).1

The task of a TAR system is to tell the annotators which documents 
they should manually review and which other documents they should 
not, since manually reviewing all documents in  would be too expen-

sive and would defy the purpose of deploying a TAR system. In doing 
this, a TAR system should pursue the goal of “getting the job done” 
(i.e., making sure that the reviewers perform the review process to the 
satisfaction of the parties involved in the litigation) while at the same 
time minimising the expected cost that the party carrying out the review 
must incur. There are two types of cost involved in the process: (a) the 
cost of annotating the documents by responsiveness and by privilege, 
and (b) the cost that might derive from performing the review process 
inaccurately (e.g., by unnecessarily producing sensitive material to the 
other party, or by failing to produce to the other party the necessary 
material, which might result in a sanction). As far as we know, the only 
TAR method that explicitly models both types of costs in order to jointly 
minimise the overall expected cost (i.e., the overall risk) of the process 
is the MINECORE algorithm presented in Oard et al. (2018). This paper 
adopts the risk minimization approach proposed in Oard et al. (2018), 
and attempts to explore avenues that allow the performance of MINE-

CORE to be improved.

The rest of this paper is organized as follows. After giving a brief 
introduction to MINECORE in Section 2, in Sections 3.1 and 3.2 we 
discuss the two research questions that we tackle in this paper, and 
that both concern potential ways of improving the performance of 
MINECORE with respect to the basic setup of the method as presented 
in Oard et al. (2018). In Section 4 we describe the experimental set-

ting that we have used in order to answer these two questions, while in 
Section 5 we present and discuss the results of these experiments. Sec-

tion 6 presents related work on active learning in TAR. Section 7 draws 
some conclusions and points at avenues for further research. The code 
and data for reproducing all our experiments is available at https://

github .com /levnikmyskin /improved _risk _min _tar.

2. An overview of the MINECORE framework

MINECORE (Oard et al., 2018) is a recently proposed decision-

theoretic algorithm for technology-assisted review that attempts to min-

imise the expected cost (i.e., the risk) of review for responsiveness and 
privilege in e-discovery.

Given a set  (the pool) of documents that must each be assigned to 
a class in {𝑦𝑃 , 𝑦𝐿, 𝑦𝑊 } (where the meaning of these three classes is as 
discussed in the introduction), the goal of MINECORE is to determine, 
for each document 𝐱 ∈  , whether manually reviewing 𝐱 for respon-

siveness and/or privilege is expected to be cost-effective or not. This 
determination is based

1. on the (“posterior”) probabilities of class membership (written as 
Pr(𝑦𝑟|𝐱) and Pr(𝑦𝑝|𝐱), hereafter called the posteriors) returned by au-

tomated classifiers ℎ𝑟 (that classifies documents by responsiveness) 
and ℎ𝑝 (that classifies documents by privilege);

2. on the costs of manually reviewing a document for responsiveness 
(𝜆𝑎

𝑟
) or for privilege (𝜆𝑎

𝑝
), where superscript 𝑎 stands for “annota-

tion”;

1 In this paper we will assume that the task of a TAR system is to help 
maximise the cost-effectiveness of the annotators’ work when reviewing for re-

sponsiveness and when reviewing for privilege. In practice, many TAR systems 
only deal with review for responsiveness, based on the assumption that review 
for privilege is too important a task to be left to a machine. Our work, and the 
work of Oard et al. (2018), tries instead to lay the foundations for addressing 
by automatic means also review for privilege, a task whose automation has re-

ceived scarce attention in the literature so far (Chhatwal et al., 2020, Vinjumur, 
2

2018, Zhao et al., 2021).
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3. on the costs 𝜆𝑚
𝑖𝑗

incurred when assigning class 𝑦𝑖 to a document 
which should be assigned class 𝑦𝑗 , where 𝑦𝑖, 𝑦𝑗 ∈ {𝑦𝑃 , 𝑦𝐿, 𝑦𝑊 } and 
superscript 𝑚 stands for “misclassification”.

Concerning Bullet 2, the fact that costs 𝜆𝑎
𝑟

and 𝜆𝑎
𝑝

are different is due to 
the fact that annotation by responsiveness can usually be delegated to 
junior personnel, while annotation by privilege requires more subtle ex-

pertise, and is usually entrusted to senior lawyers. Concerning Bullet 3, 
the fact that costs 𝜆𝑚

𝑖𝑗
are different for different 𝑦𝑖, 𝑦𝑗 ∈ {𝑦𝑃 , 𝑦𝐿, 𝑦𝑊 } is 

due to the fact that, in e-discovery, not all misclassifications are equally 
serious; for instance, inadvertently disclosing a privileged document to 
the other party is typically a very serious mistake, while inadvertently 
disclosing a nonresponsive nonprivileged document is usually a less se-

rious one.

We assume that our pool  is partitioned into a set  of labelled (i.e., 
manually reviewed for both responsiveness and privilege) documents 
and a set  of unlabelled documents.2

The MINECORE workflow is articulated in three steps, which we 
summarise below. In Step 1 we train from  the two classifiers ℎ𝑟 and 
ℎ𝑝 described in Bullet 1 above, and use them to generate, for each docu-

ment 𝐱 ∈ , the two posteriors Pr(𝑦𝑟|𝐱) and Pr(𝑦𝑝|𝐱) mentioned in Bullet 
1. We can reasonably assume 𝑦𝑟 and 𝑦𝑝 to be stochastically indepen-

dent, which implies that we may assume Pr(𝑦𝑃 |𝐱) = Pr(𝑦𝑟|𝐱) Pr(𝑦𝑝|𝐱), 
Pr(𝑦𝐿|𝐱) = Pr(𝑦𝑟|𝐱) Pr(𝑦𝑝|𝐱), and Pr(𝑦𝑊 |𝐱) = Pr(𝑦𝑟|𝐱). MINECORE takes a 
risk minimization approach, i.e., it assigns each document 𝐱 ∈ to the 
class

ℎ(𝐱) = arg min
𝑦𝑖∈{𝑦𝑃 ,𝑦𝐿,𝑦𝑊 }

𝑅(𝐱, 𝑦𝑖)

= arg min
𝑦𝑖∈{𝑦𝑃 ,𝑦𝐿,𝑦𝑊 }

∑
𝑗∈{𝑃 ,𝐿,𝑊 }

𝜆𝑚
𝑖𝑗
Pr(𝑦𝑗 |𝐱) (1)

where 𝑅(𝐱, 𝑦𝑖) is the risk associated with assigning 𝐱 to class 𝑦𝑖 ∈
{𝑦𝑃 , 𝑦𝐿, 𝑦𝑊 }. In other words, MINECORE assigns to each document 𝐱
the class that brings about the minimum misclassification risk, thus 
avoiding assignments which would bring about a high expected misclas-

sification cost. The function for measuring the global misclassification 
cost (that derives from an assignment of labels in {𝑦𝑃 , 𝑦𝐿, 𝑦𝑊 } to the 
documents in  ) is thus

𝐾𝑚( ) =
∑
𝐱∈

𝐾𝑚(𝐱)

=
∑
𝐱∈

∑
𝑖,𝑗∈{𝑃 ,𝐿,𝑊 }

𝜆𝑚
𝑖𝑗
⋅ 𝟏[𝐱 ∈𝑈𝑖𝑗 ]

(2)

where 𝟏[⋅] is the characteristic function that returns 1 if its argument 
is true and 0 if it is false, and 𝑈𝑖𝑗 is the set of documents 𝐱 ∈  that 
are assigned to 𝑦𝑖 and whose true class (which we denote by 𝑡(𝐱)) is 
𝑦𝑗 . Note that 𝐾𝑚(𝐱) is the misclassification cost brought about by doc-

ument 𝐱, and that the global misclassification cost is simply the sum 
of document-wise misclassification costs, i.e., MINECORE assumes that 
misclassification costs are linear.3

Step 2 is based on the consideration that, if 𝜏𝑟 documents are man-

ually reviewed for responsiveness and 𝜏𝑝 documents are manually re-

viewed for privilege, the overall cost 𝐾𝑜( ) of the entire process is

2 In this paper we will assume, for simplicity, that the same subset of doc-

uments  ⊂  is used for training both ℎ𝑟 and ℎ𝑝 . In reality this need not be 
the case, and two different subsets 𝑟, 𝑝 ⊂  can be used within MINECORE; 
this would give rise to two different subsets 𝑟 ≡  ⧵ 𝑟 and 𝑝 ≡  ⧵ 𝑝 of 
unlabelled documents.

3 This simplifying assumption is probably a limitation, since in many e-

discovery contexts a few mistakes of a certain kind might be without any 
consequence while more mistakes of the same kind might give rise to major 
negative consequences, with the relationship between number of mistakes of 
this type and consequences of these mistakes not being linear. However, deal-

ing with this problem is not within the scope of the present paper, and is a 

potential topic of future research.
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𝐾𝑜( )=𝐾𝑚( ) +𝐾𝑎( )

=
∑
𝐱∈

𝐾𝑚(𝐱) +
∑
𝐱∈

𝐾𝑎(𝐱)

=
∑
𝐱∈

𝐾𝑚(𝐱) + 𝜆𝑎
𝑟
𝜏𝑟 + 𝜆𝑎

𝑝
𝜏𝑝

(3)

where by 𝐾𝑎( ) we indicate the global annotation cost. Similarly to 
the above, note that 𝐾𝑎(𝐱) is the annotation cost brought about by 
document 𝐱, and that the global annotation cost is simply the sum of 
document-wise annotation costs, i.e., MINECORE is based on linear an-

notation costs. Since both misclassification costs and annotation costs 
are linear, overall costs are also linear, i.e.,

𝐾𝑜( ) =
∑
𝐱∈

𝐾𝑜(𝐱) (4)

If document 𝐱 ∈ is reviewed for, say, responsiveness, this has the ef-

fect of removing (assuming infallible reviewers) any uncertainty about 
whether 𝐱 is responsive or not. In other words, if by subscript (𝑛) ∈
{(1), (2), (3)} we indicate the value of a given quantity after Step 𝑛
has been carried out (so that, e.g., ℎ(2) and Pr(2)(𝑦|𝐱) will indicate 
the classifier ℎ and the posterior Pr(𝑦|𝐱) resulting from the comple-

tion of Step 2), reviewing 𝐱 for responsiveness during Step 2 means 
that Pr(2)(𝑦𝑟|𝐱) will be either 0 or 1. As a result, if during Step 2 doc-

ument 𝐱 ∈  is reviewed for responsiveness, it will in general hold 
that Pr(1)(𝑦𝑟|𝐱) ≠ Pr(2)(𝑦𝑟|𝐱), ℎ(1)(𝐱) ≠ ℎ(2)(𝐱) (where ℎ is the cost-sensitive 
classifier of Equation (1)), and 𝐾𝑚

(1)(𝐱) ≥ 𝐾𝑚
(2)(𝐱). Since reviewing 𝐱 for 

responsiveness brings about an annotation cost 𝜆𝑎
𝑟
, it is worthwhile to 

annotate 𝐱 only if, as a result of the annotation, 𝐾𝑜
(2)(𝐱) ≤ 𝐾𝑜

(1)(𝐱), i.e., 
𝐾𝑚

(2)(𝐱) + 𝜆𝑎
𝑟
≤𝐾𝑚

(1)(𝐱); in other words, the additional annotation cost 𝜆𝑎
𝑟

must be offset by a reduction (𝐾𝑚
(1)(𝐱) −𝐾𝑚

(2)(𝐱)) in misclassification cost 
of greater or equal magnitude. Of course, computing precisely whether 
annotating 𝐱 by responsiveness is going to bring about such a reduc-

tion is not possible, because at the time of deciding whether 𝐱 should 
be annotated by responsiveness or not we do not know the value of 
𝑦𝑟(𝐱) (a binary variable that indicates whether the reviewers will an-

notate 𝐱 as responsive or not), and we do not know the true label 
𝑡(𝐱) of 𝐱. However, it is possible (see Oard et al., 2018, §3) to com-

pute an expectation of this reduction over the 𝑦𝑟(𝐱) and 𝑡(𝐱) variables; 
when this expected value exceeds 𝜆𝑎

𝑟
, MINECORE decides that 𝐱 should 

be annotated by responsiveness. Since MINECORE computes the ex-

pectation of this reduction for all documents in  , this means that 
MINECORE

• can rank the documents in  (where the top-ranked document is 
the one with the highest expected reduction), so that by proceeding 
from the top downwards the annotators first review (by responsive-

ness) the documents whose annotation again, by responsiveness) 
brings about the highest expected benefit;

• provides the annotators with a stopping criterion, which coincides 
with the position in the ranked list when the reduction (𝐾𝑚

(1)(𝐱) −
𝐾𝑚

(2)(𝐱)) (actually: its expected value) has become smaller than 𝜆𝑎
𝑟
.

We refer the reader to Oard et al. (2018, §3) for details on how the 
above expected value is computed, and for a full mathematical specifi-

cation of Step 2.

Step 3 is essentially identical to Step 2, the only difference being 
that, while Step 2 focuses on responsiveness, Step 3 focuses on privi-

lege and uses the posteriors Pr(2)(𝑦𝑟|𝐱) resulting from Step 2. Note that 
responsiveness is tackled first because we assume that 𝜆𝑎

𝑟
< 𝜆𝑎

𝑝
; should it 

be the case that 𝜆𝑎
𝑟
> 𝜆𝑎

𝑝
, MINECORE would deal with privilege in Step 

2 and with responsiveness in Step 3.

This concludes the MINECORE workflow. Note that MINECORE en-

forces a so-called two-phase TAR workflow (see e.g. Yang et al., 2021c, 
3

§2), i.e., a workflow that consists of
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1. a phase in which reviewers annotate, for responsiveness and for 
privilege, a subset of documents  ⊂  that are then used to train a 
classifier for responsiveness ℎ𝑟 and a classifier for privilege ℎ𝑝, and

2. a phase in which, after the two classifiers have automatically classi-

fied all the documents in  ≡ ⧵, the reviewers annotate some of 
the latter documents with the goal of correcting possible erroneous 
labels attributed by the classifiers.

Other TAR systems enforce instead a one-phase TAR workflow, where 
annotators are led to annotate / identify as many responsive / nonpriv-

ileged documents (i.e., documents that are candidates for production 
to the other party) as possible by a process in which a classifier is 
repeatedly trained, using the documents thus annotated, via some ac-

tive learning mechanism (typically: using relevance sampling (Lewis & 
Gale, 1994), a.k.a. “continuous active learning” (Cormack & Grossman, 
2015a)). The process is thus akin to searching relevant documents (as in 
information retrieval) by repeatedly using relevance feedback (Rocchio, 
1971).

One further difference between MINECORE and most one-phase TAR 
systems is that, in the latter, only documents that have been manually 
annotated are produced to the other party; for this reason, these systems 
lead the annotators to identify as many relevant (i.e., responsive and 
nonprivileged) documents as early as possible. In MINECORE, instead, 
the documents that are produced to the other party may or may not 
have been manually annotated; unlike the above systems, MINECORE 
leads the annotators to annotate as early as possible the documents that, 
if not manually annotated, bring about the highest expected misclassi-

fication cost.

3. Research questions

We next formulate our two research questions. Interestingly enough, 
both questions have to do with how to improve Step 1, i.e., how to generate 
the input to Step 2 in such a way that the entire process is most risk-

effective.

3.1. Research question # 1: how should we label the training set?

The MINECORE experiments that were presented in Oard et al. 
(2018) used passive learning (PL), i.e., the labelled set  that was used 
for training the classifiers ℎ𝑟 and ℎ𝑝 was (conceptually) a random sam-

ple of the pool  . This is somehow at odds with the standard practice 
of the TAR field, according to which the labelled set  is usually anno-

tated via active learning (AL) (Settles, 2012). Active learning is a class 
of techniques whereby the machine takes an active role in choosing 
the examples that should be part of the training set ; the most pop-

ular such class (and the only class we will consider here) is that of 
pool-based AL techniques, whereby the machine chooses the examples 
from an available pool  of unlabelled examples (rather than, say, gen-

erating artificial examples with pre-specified properties) and asks the 
annotators to label them. Here we will consider two popular forms of 
pool-based AL, active learning via uncertainty sampling (ALvUS) (Lewis 
& Gale, 1994) and active learning via relevance sampling (ALvRS) (Lewis 
& Gale, 1994); we describe both more in detail in Section 4.3, along 
with a new ALvRUS (active learning via relevance/uncertainty sampling) 
policy, which, as its name suggests, tries to strike a balance between un-

certainty sampling and relevance sampling. We choose ALvUS because 
it is probably the most widely used AL technique in machine learning at 
large, while we choose ALvRS (which is essentially a form of relevance 
feedback) because it is probably the most widely used AL technique in 
TAR, under the name of continuous active learning (Cormack & Gross-

man, 2015a).

In this paper we want to answer the following research question:

RQ1: Assuming we use MINECORE as the TAR system, how 

should we annotate the training set ? Is it advantageous to 
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annotate it via passive learning or via an active learning pol-

icy?

The question is non-trivial since the three policies (a) typically give 
rise to classifiers that, for the same number || of training examples, 
are characterised by different levels of accuracy, and (b) typically give 
rise to different sets  ≡  ⧵  of unlabelled sets that the probabilistic 
classifiers need to rank. This means that one policy may generate a 
better training set  (i.e., one that delivers a better classifier) but also 
generate a set  ≡ ⧵ harder to rank accurately, and the interactions 
between these two factors are difficult to predict.

Note that past results showing that AL delivers more accurate clas-

sifiers than PL are usually based on testing the two techniques on the 
same test set  . This is not representative of our scenario, where the set 
 that the classifiers need to classify changes when the training set 
changes, because  ≡  ⧵. More in detail, we may expect the ALvUS 
policy to produce, as the AL literature suggests, the best classifiers (see 
e.g., Esuli et al., 2019). However, we may expect the PL policy to gen-

erate the easiest unlabelled set  to rank, since when using PL the sets 
 and  are independently and identically distributed (IID), which is 
not the case when using US or RS. Concerning the RS policy, we may 
expect it to lead to a high number of relevant (i.e., responsive / privi-

leged) documents being manually (i.e., correctly) labelled, which helps 
increase recall (and high recall is an important goal in TAR); however, 
the RS policy is usually the worst of the three in terms of deviation from 
the IID condition, which means that we may expect it to generate a set 
 of documents which is very hard to rank.

When the training set  has been obtained from  via active learn-

ing, the fact that  and  may not be IID is usually true, since in these 
cases  is anything but a random sample of  (i.e., it is a biased sample, 
suffering from sample selection bias), which means that  ≡ ⧵ is also 
not a random sample of  . As a consequence, the relationship between 
 and  is one of dataset shift (Moreno-Torres et al., 2012, Quiñonero-

Candela et al., 2009), i.e., one in which the joint distribution 𝑝(𝐱, 𝑦) in 
the labelled data is different from the joint distribution 𝑝 (𝐱, 𝑦) in the 
unlabelled data. In turn, this means that a classifier trained on  may 
perform suboptimally on  .

All in all, this says that it is not easy to predict which of the three 
methodologies is the most beneficial for MINECORE, and that our re-

search question is an interesting one.

3.2. Research question # 2: should we try to improve the posteriors via 
SLD?

MINECORE receives as input the posteriors Pr(𝑦𝑟|𝐱) and Pr(𝑦𝑝|𝐱) re-

turned by the two probabilistic classifiers ℎ𝑟 and ℎ𝑝. The quality of these 
posteriors is thus of key importance for the performance of MINECORE. 
In order to ensure this quality, Oard et al. (2018) subject ℎ𝑟 and ℎ𝑝 to 
a calibration step so that they return well-calibrated probabilities.4 Cali-

bration routines use 𝑘-fold cross-validation, i.e., they tune the classifier 
in such a way that, when classifying the training documents 𝐱 ∈ , the 
classifier returns posterior probabilities Pr(𝑦|𝐱) that are well-calibrated. 
In reality, what we are really interested in is that the posteriors of the 
unlabelled documents in  , and not those of the labelled documents in 

4 We say (see e.g., Flach, 2017) that the posteriors Pr(𝑦|𝐱), where 𝐱 belongs to 
a set  , are (perfectly) calibrated (i.e., accurate) when, for all 𝑎 ∈ [0, 1], it holds 
that

|{𝐱 ∈ ∩ 𝑦 | Pr(𝑦|𝐱) = 𝑎}|
|{𝐱 ∈ | Pr(𝑦|𝐱) = 𝑎}| = 𝑎 (5)

Perfect calibration is usually unattainable for any non-trivial dataset  ; how-

ever, calibration comes in degrees (and the quality of calibration can indeed be 
measured), so the goal of classifier calibration routines is to obtain classifiers 
that return posteriors which are as close as possible to their perfectly calibrated 
4

counterparts.
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, are calibrated; if the sets  and  are IID, though, if the posteriors 
of the documents in  are calibrated, those of the documents in  are 
too.

Indeed, virtually all probability calibration routines, including the 
one used in Oard et al. (2018), assume that  and  are IID. If  and 
 are not IID, though, the fact that the posteriors of the documents 
in  are well-calibrated is not guaranteed even after the intervention 
of these routines; in particular, if  and  suffer from prior probability 
shift (PPS – (Storkey, 2009)), a form of dataset shift characterized by the 
fact that the class prevalence values (a.k.a., “class relative frequencies”, 
or “class prior probabilities”, or simply “priors”) Pr(𝑦) and Pr (𝑦) are 
substantially different for the classes 𝑦 of interest, the posteriors of the 
documents in  will not be calibrated.5 ALvUS and (especially) ALvRS 
generate substantial PPS (Settles, 2012)6; this means that, if we had to 
use one of them for generating our training sets , the quality of the 
posteriors we would obtain from the resulting classifiers would be a 
concern.

The Saerens-Latinne-Decaestecker algorithm (hereafter: SLD)

(Saerens et al., 2002) is a well-known algorithm (and the only known 
algorithm) that attempts to improve the quality of the posteriors of the 
unlabelled documents returned by calibrated probabilistic classifiers in 
scenarios characterised by PPS. SLD is an iterative algorithm that re-

ceives as input the posteriors Pr(𝑦|𝐱) of the documents 𝐱 ∈ returned 
by the probabilistic classifier. If  and  are affected by PPS, it is likely 
the case that

1
| |

∑
𝐱∈

Pr(𝑦|𝐱) = Pr (𝑦) (6)

does not hold. However, it follows from Equation (5) that Equation (6)

is a necessary (though not sufficient) condition (see Esuli et al., 2021, 
Appendix A) for the posteriors of the documents 𝐱 ∈ to be calibrated. 
SLD is an algorithm that iteratively (i) updates the posteriors Pr(𝑦|𝐱), 
and (ii) re-estimates the priors Pr (𝑦), until convergence, i.e., until 
Equation (6) holds. In other words, while it is not true that SLD cali-

brates tout court the posteriors of the documents belonging to a set 
affected by PPS (because Equation (6) is a necessary but not a sufficient 
condition for these posteriors to be calibrated), it is true that SLD goes 
a step in that direction. See Appendix A for a detailed presentation of 
SLD.

A recent study (Esuli et al., 2021) has shown that, in scenarios char-

acterised by PPS, SLD may be very effective at improving the quality of 
the posteriors generated by binary classifiers. This would suggest using 
SLD to improve the quality of the posteriors that are to be fed to MINE-

CORE. However, the experimentation of Esuli et al. (2021) never used 
active learning for generating the training set ; this means that it is 
not clear how SLD might perform in our scenario if we had to use either 
ALvUS or ALvRS.

In this paper we thus want to answer the following research ques-

tion:

RQ2: Assuming we use MINECORE as the TAR system, can 
we obtain benefits from using SLD for updating the posterior 
probabilities that MINECORE receives as input from the two 
probabilistic classifiers?

5 This is a direct consequence of Equation (5).
6 The reason why ALvUS generates PPS is that it encourages the annotators to 

annotate documents that are close to the decision threshold; when the dataset is 
imbalanced, this means that the annotators end up annotating a fairly large pro-

portion of members of the minority class, which means that the prevalence of 
the minority class in  ends up being larger than its prevalence in  . Instead, 
the reason why ALvRS generates PPS is that it encourages the annotators to 
annotate documents belonging to the minority class; this means that the preva-

lence of the minority class in  ends up being much larger that its prevalence in 

 .
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The above question may have different answers depending on the an-

swer to RQ1, i.e., depending on whether we annotate the labelled set 
 via PL, via ALvUS, via ALvRS, or via ALvRUS, because PL generates 
no PPS while ALvUS and (especially) ALvRS and ALvRUS generate high 
PPS.

4. Experiments

4.1. The dataset

There are no publicly available e-discovery datasets in which the 
documents are annotated by both responsiveness and privilege. As a re-

sult, and following (Oard et al., 2018), we use non- e-discovery data 
that simulate the above conditions. We stick to the original setup used 
in Oard et al. (2018) and run all of our experiments on the RCV1-v2 
dataset, a standard, publicly available benchmark for text classifica-

tion first presented in Lewis et al. (2004) and consisting of 804,414 
news stories produced by Reuters from 20 Aug 1996 to 19 Aug 1997.7

RCV1-V2 ranks as one of the largest corpora currently used in text 
classification research. RCV1-V2 is multi-label, i.e., a document may 
belong to several classes at the same time. In Lewis et al. (2004) the 
collection is partitioned into a training set of 23,149 documents and a 
test set of 781,265 documents. For computational reasons, for our ex-

periments we only use the first 100,000 documents of the collection, 
which include the 23,149 documents used for training in Lewis et al. 
(2004).

In Oard et al. (2018), RCV1-v2 classes were chosen to simulate the 
classes of responsive documents (𝑦𝑟) and privileged documents (𝑦𝑝), re-

spectively. More specifically, the authors of Oard et al. (2018) chose 
all pairs (𝑦𝑟, 𝑦𝑝) of RCV1-v2 classes such that the class prevalence value 
Pr (𝑦𝑟) of 𝑦𝑟 is in the [0.03,0.07] interval and the class prevalence value 
Pr (𝑦𝑝|𝑦𝑟) of 𝑦𝑝 in the set of responsive documents 𝑦𝑟 is in [0.01,0.20], 
where class prevalence values are computed on the entire pool  . This 
broad range is actually seen in e-discovery practice, with some clas-

sification tasks run on very imbalanced data, and others run on data 
that have been prescreened at acquisition time to have as high a preva-

lence value for the responsive class as can be achieved (Oard & Webber, 
2013). For each of the 24 RCV1-v2 classes that meet the class preva-

lence value criterion for simulating 𝑦𝑟, the authors of Oard et al. (2018)

randomly selected 5 classes that meet the class prevalence value crite-

rion for simulating 𝑦𝑝: this gives rise to 120 class pairs. The experiments 
described in this paper were run on the very same set of class pairs as 
used in Oard et al. (2018).

4.2. The evaluation measure

In order to evaluate the performance of MINECORE under the differ-

ent setups, we employ the same cost structures (i.e., sets of actual values 
for the 𝜆𝑎

𝑟
, 𝜆𝑎

𝑝
, and 𝜆𝑚

𝑖𝑗
costs that MINECORE relies on) Λ = (Λ𝑎, Λ𝑚) as 

used in Oard et al. (2018); the three cost structures were originally 
elicited from three different e-discovery experts. We employ the origi-

nal notation as used in Oard et al. (2018), where:

• Λ𝑎 = (𝜆𝑎
𝑟
, 𝜆𝑎

𝑝
), where 𝜆𝑎

𝑟
denotes the cost of annotating a single doc-

ument for responsiveness and 𝜆𝑎
𝑝

denotes the cost of annotating a 
single document for privilege, and where the 𝑎 superscript stands 
for “annotation”;

• Λ𝑚 = {𝜆𝑚
𝑖𝑗
} (for 𝑖, 𝑗 ∈ {𝑃 , 𝐿, 𝑊 }), where each entry 𝜆𝑚

𝑖𝑗
represents 

the cost incurred when misclassifying an element of 𝑦𝑗 into 𝑦𝑖 (the 
𝑚 superscript stands for “misclassification”).
5

7 http://trec .nist .gov /data /reuters /reuters .html.
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Table 1

Cost structures used in our experiments, as elicited by the authors of Oard 
et al. (2018). Each individual cost is expressed in USD.

Λ 𝜆𝑎
𝑟

𝜆𝑎
𝑝

𝜆𝑚
𝑃𝐿

𝜆𝑚
𝑃𝑊

𝜆𝑚
𝐿𝑃

𝜆𝑚
𝐿𝑊

𝜆𝑚
𝑊 𝑃

𝜆𝑚
𝑊𝐿

Λ1 1.00 5.00 600.00 5.00 150.00 3.00 15.00 15.00

Λ2 1.00 5.00 100.00 0.03 10.00 2.00 8.00 8.00

Λ3 1.00 5.00 1000.00 0.10 1.00 1.00 1.00 1.00

The three cost structures Λ1, Λ2, and Λ3 are displayed in Table 1.8 Given 
a cost structure, we compute the overall cost of a given policy by means 
of Equation (3), and use overall cost as our evaluation function.

As we have previously remarked, every sampling policy used for 
active learning (as well as the random sampling policy used for passive 
learning) generates a different set  of annotated documents, and (as 
a consequence) a different set  ≡  ⧵  of unlabelled documents. We 
evaluate MINECORE on  only (since overall cost on  is the same for 
every tested policy),9 even if  is different for every policy we consider; 
this is justified by the fact that a given policy has to be evaluated also 
in terms of how hard to classify is the set  it generates.

4.3. The active learning methods

In our experiments we test MINECORE on training sets  gener-

ated by three active learning policies, i.e., Active Learning via Uncertainty 
Sampling (ALvUS), Active Learning via Relevance Sampling (ALvRS), and 
Active Learning via Relevance/Uncertainty Sampling (ALvRUS). Other, 
more recent active learning algorithms such as those presented by 
Huang et al. (2014) and Dasgupta and Hsu (2008) were initially ex-

plored but finally dismissed due to their unfeasibly expensive computa-

tional cost (see Section 4.6 for more on this). We here briefly describe 
the three active learning policies we use.

Active Learning via Uncertainty Sampling (ALvUS). In ALvUS, 
an interactive process asks the reviewers to annotate for responsive-

ness/privilege the 𝑏 documents in  for which Pr(𝑦𝑖|𝐱) (with 𝑖 ∈ {𝑟, 𝑝}) 
is closest to 0.5 (parameter 𝑏 is known as the batch size). The set of prob-

abilities Pr(𝑦𝑖|𝐱), for all 𝐱 ∈ , is obtained from a classifier ℎ𝑖 trained 
(and calibrated) on an initial training set , with  ≡  ∪  . The set 
of 𝑏 documents that the annotators then label is added to the training 
set  and removed from the unlabelled set  , ℎ𝑖 is retrained, and 
is classified for responsiveness/privilege again; this process is repeated 
until we have annotated a predefined number 𝑛 of documents.

Active Learning via Relevance Sampling (ALvRS). A variant of 
the previous policy is obtained when the active learning process asks 
the reviewers to annotate for responsiveness/privilege the 𝑏 documents 
in  for which Pr(𝑦𝑖|𝐱) (with 𝑖 ∈ {𝑟, 𝑝}) is highest. The rest of the pro-

cess is as in ALvUS. Both ALvUS and ALvRS were originally introduced 
in Lewis and Gale (1994).

Active Learning via Relevance/Uncertainty Sampling (ALvRUS). 
A variant of the two previous policies consists of asking the reviewers to 

8 These cost structures indicate that the three experts from which they were 
elicited have very different beliefs about misclassification costs, possibly de-

riving from having different use cases in mind. The 3rd expert (the one who 
returned cost structure Λ3) holds the most “extreme” views, since s/he believes 
that what matters overwhelmingly more than anything else is that no privi-

leged documents are inadvertently produced to the other part (𝜆𝑃𝐿 = 1000.00), 
and that no other mistake matters much. The 1st expert is also fairly extreme, in 
that s/he also believes that placing on the privilege log a document that should 
instead have been produced also has an extremely high cost (𝜆𝐿𝑃 = 150.00). The 
least extreme expert seems to be the 2nd one.

9 This derives from (i) the fact that annotating || documents has, under our 
assumption that all documents have an annotation cost of 𝜆𝑎

𝑟
or 𝜆𝑎

𝑝
, the same cost 

irrespectively of the policy used for annotating them, and (ii) the fact that, once 
annotated, these || documents have zero misclassification cost, irrespectively 

of the policy used for annotating them.

http://trec.nist.gov/data/reuters/reuters.html
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annotate, at each iteration, the 𝑏∕2 documents in  for which Pr(𝑦𝑖|𝐱)
is closest to 0.5 and the 𝑏∕2 documents in  for which Pr(𝑦𝑖|𝐱) is high-

est (with 𝑖 ∈ {𝑟, 𝑝}). In other words, this policy is a mix of ALvUS and 
ALvRS (hence its name), since it attempts to satisfy both goals at the 
same time, i.e., providing feedback on the regions of the instance space 
in which the classifier is weakest (as in ALvUS) and adding many ex-

amples from the “positive class” (i.e., 𝑦𝑟 or 𝑦𝑝) to  (as in ALvRS).

4.4. Passive learning

By passive learning (PL) we mean a simple strategy that generates a 
training set  by uniformly sampling from the data pool  . This was 
the technique used in Oard et al. (2018) and, as such, we use it as a 
baseline.

4.5. The Rand(RS), Rand(US), and Rand(RUS) policies

We add to our experiments three “oracle-like” policies (Rand(RS), 
Rand(US), Rand(RUS)), which will serve as testing grounds for the 
other algorithms that we run for answering RQ1 and RQ2. The goal 
of the Rand(RS) (resp., Rand(US), Rand(RUS)) policy is that of build-

ing a training set  and a test set  , from the same pool  where the 
other AL policies operate, by performing a “controlled” random sam-

pling of the documents, i.e., controlled in such a way that it yields the 
same prevalence value Pr(𝑦𝑖) of the positive class (with 𝑖 ∈ {𝑟, 𝑝}) that 
we would have obtained had we used ALvRS (resp., ALvUS, ALvRUS).

That is, Rand(RS) (resp., Rand(US), Rand(RUS)) builds a pair con-

sisting of a training set  and a test set  such that Pr(𝑦𝑖) (with 
𝑖 ∈ {𝑟, 𝑝}) is identical to the prevalence of 𝑦𝑖 in the training set built 
via ALvRS (resp., ALvUS, ALvRUS), even if the selection of the docu-

ments for generating  is random. In this case, it also follows that the 
prevalence value Pr (𝑦𝑖) (with 𝑖 ∈ {𝑟, 𝑝}) of the positive class in  is 
identical to that in the test set built via ALvRS (resp., ALvUS, ALvRUS). 
In terms of dataset shift, we can say that the three original active learn-

ing policies generate shift in the distribution of the class priors (i.e., 
𝑝(𝑦) ≠ 𝑝 (𝑦)) and in the distribution of the covariates conditional on 
the classes (i.e., 𝑝(𝐱|𝑦) ≠ 𝑝 (𝐱|𝑦)), while the corresponding Rand poli-

cies generate shift of the former type but not of the latter type (i.e., do 
not suffer from sampling bias).

Comparing the three original active learning policies with the corre-

sponding Rand policies should help us understand whether the results 
we are seeing are due to the prevalence values of the positive class in 
and  that the AL policies generate, or to the data selection criteria.

4.6. Exploring other policies

Motivated by the advances in the active learning literature, we de-

cided to explore other more recent and sophisticated AL policies. Un-

fortunately, the ones we considered were computationally expensive or 
prohibitive to run, and we eventually decided not to use them in our 
experiments. The following is an overview of the two policies we con-

sidered and of the reasons why they proved too challenging to run.

Active Learning by Querying Informative and Representative 
Examples (QUIRE). QUIRE (Huang et al., 2014) is a recent (with re-

spect to ALvUS and ALvRS) active learning algorithm whose goal is 
not only to annotate documents for which the classifier exhibits the 
strongest uncertainty (as in ALvUS), but also to maximise the represen-

tativeness (i.e., diversity) of the examples annotated at every iteration. 
For more technical details we refer the reader to Huang et al. (2014).10

However, this technique is problematic since it requires (a) the 
computation of an 𝑚 × 𝑚 kernel matrix 𝐾 , where 𝑚 is the number of 

10 An implementation of this algorithm is available at https://

libact .readthedocs .io /en /latest /libact .query _strategies .html #module -libact .
6

query _strategies .quire.
Intelligent Systems with Applications 18 (2023) 200209

documents in pool  , and (b) the storage of another 𝑚 × 𝑚 matrix 
𝐿 = (𝐾+𝜆𝐼)−1 (where 𝐼 is the identity matrix). This is clearly unfeasible 
in our case, where 𝑚=100,000 (assuming one byte for each element of 
each matrix, just storing 𝐾 and 𝐿 would require approximately 160GB); 
note also that, in real e-discovery scenarios,  may contain many more 
documents than the 100,000 documents we use in our experiments.

Active Learning via Hierarchical Sampling (ALvHS). ALvHS was 
first presented in Dasgupta and Hsu (2008). The goal of this algorithm is 
to avoid sampling bias, i.e., the fact that the set of labelled documents 
may not be representative of the remaining set of unlabelled documents 
 , which instead happens when using AL strategies such as ALvRS, 
ALvUS, or ALvRUS. The basic step of this policy consists of partitioning 
the data into hierarchical clusters and later sampling from them (for a 
more in-depth presentation of the algorithm see Dasgupta & Hsu, 2008).

However, given 𝑚 items to be clustered, hierarchical clustering al-

gorithms have a complexity of (𝑚3), which can be reduced to (𝑚2) or 
(𝑚2 log𝑚) only in some specific cases (Patel et al., 2015). In any case, 
the algorithm results in unfeasibly expensive computation costs in our 
application scenario.

4.7. The experimental setup

In order to answer RQ1, we compare our different active / passive 
learning policies for training the two classifiers ℎ𝑟 and ℎ𝑝 used in Step 
1 of MINECORE.

For these experiments, we take the first 100,000 documents of the 
RCV1-v2 collection as the pool of documents  to which MINECORE 
is applied. As already mentioned in Section 4.1, for higher consistency 
with the experiments carried out in Oard et al. (2018), we use the same 
RCV1-v2 pairs of classes used in Oard et al. (2018) to play the role of 
the responsive class 𝑦𝑟 and the privileged class 𝑦𝑝; this is a set of 120 
pairs of RCV1-v2 classes (see Section 4.1 for details).

For each active / passive learning policy we test, we run different ex-

periments in which we vary the size 𝑠 of the training set that the process 
eventually creates; we test all sizes 𝑠 ∈ {2000, 4000, 8000, 16000, 23149}; 
the reason why we use the fairly peculiar size 𝑠 = 23149 is that this is 
the size used in Oard et al. (2018).

We seed all the active learning processes with a set  of 1000 initial 
training documents randomly sampled from our pool  , train (for each 
𝑦 ∈ {𝑦𝑟, 𝑦𝑝}) an SVM classifier on  , calibrate it, and apply it to all the 
remaining unlabelled documents in  ≡ ⧵ to obtain posterior prob-

abilities Pr(𝑦|𝐱) for each of them.11 We constrain this initial training set 
 to have at least 2 positive instances, which are the bare minimum in 
order to calibrate the classifier.

We then iterate the active learning process on the remaining unla-

belled documents with a batch size 𝑏 = 1000. The active learning process 
simulates the work of infallible reviewers, i.e., at each iteration the un-

labelled documents are ranked based on their assigned posteriors, the 𝑏
unlabelled documents which are ranked highest are added to the train-

ing set together with their true label (which simulates the infallible 
reviewer’s annotation) and removed from the unlabelled set  , the clas-

sifier is retrained, recalibrated, and applied again to all the remaining 
unlabelled documents to obtain updated posterior probabilities for each 
of them.

As mentioned in Section 4.5, for each training set size 𝑠 ∈ {2000, 
4000, 8000, 16000, 23149} we also generate training sets of size 𝑠 via 
the 𝑅𝑎𝑛𝑑(𝑈𝑆), 𝑅𝑎𝑛𝑑(𝑅𝑆), 𝑅𝑎𝑛𝑑(𝑅𝑈𝑆), and PL policies; for each such 
policy all sets are obtained each time anew via random sampling (con-

strained for 𝑅𝑎𝑛𝑑(𝑈𝑆), 𝑅𝑎𝑛𝑑(𝑅𝑆), and 𝑅𝑎𝑛𝑑(𝑅𝑈𝑆) – see Section 4.5, 
unconstrained for PL), i.e., it is not the case that, for a given policy, the 

11 Since we use SVMs as the base learner, calibration is strictly necessary, 
since SVMs return confidence scores that are not probabilities; our calibration 
step thus maps these confidence scores into calibrated posterior probabilities. 

In all of our experiments we use Platt’s calibration method (Platt, 2000).

https://libact.readthedocs.io/en/latest/libact.query_strategies.html#module-libact.query_strategies.quire
https://libact.readthedocs.io/en/latest/libact.query_strategies.html#module-libact.query_strategies.quire
https://libact.readthedocs.io/en/latest/libact.query_strategies.html#module-libact.query_strategies.quire
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smaller training sets are contained in the larger ones. Here too, the clas-

sifier is trained, calibrated, and applied to all the remaining unlabelled 
documents, after which these latter are ranked based on their newly 
obtained posterior probabilities.

For any of these policies, the finally obtained posterior probabilities 
for each of the remaining unlabelled documents are fed to Step 2 of the 
MINECORE workflow. We run Steps 2 and 3 of the MINECORE work-

flow for any of the above policies and for each cost structure (Table 1), 
and evaluate MINECORE as explained in Section 4.2, so as to ascertain 
which policy brings about the smallest overall cost. We will show and 
comment these results in Section 5.1.

In order to answer RQ2, instead, we run SLD on the posterior prob-

abilities (here indicated as PrPreSLD(𝑦|𝐱)) obtained from each of the 
above policies, thus obtaining PrPostSLD(𝑦|𝐱) posterior probabilities, and 
we compare, for each policy and each cost structure, the overall cost 
resulting from using PreSLD posteriors with the overall cost resulting 
from using, in place of them, PostSLD posteriors. These results are com-

mented on in Section 5.2.

5. Results

In this section we show and analyse our results for RQ1 (Section 5.1) 
and RQ2 (Section 5.2). For RQ1 we present our results in Tables 3 and 4. 
For RQ2 we illustrate our results in Tables 5, 6, 8, 9, 10, and 11. Finally, 
we show some insightful plots concerning the AL policies in Figs. 1

and 2, and other plots concerning the effects of SLD on the distribution 
of the posterior probabilities in Figs. 3 to 5.

5.1. RQ1

The goal of our first research question (RQ1) is that of understanding 
which among the policies described in Sections 4.3 to 4.5 generates the 
best training sets on which to train our two classifiers.

ALvRS (in its CAL incarnation) is the standard active learning 
methodology used in one-phase TAR systems. In these contexts, we 
are given an unlabelled pool of documents and our goal is to find the 
highest number of relevant (i.e., positive class) documents in the least 
possible amount of time; given this goal, relevance sampling is usu-

ally preferred to uncertainty sampling, as it encourages the annotators 
to review documents that are likely to be relevant. However, MINE-

CORE operates according to a two-phase TAR workflow, where in the 
1st phase we create a training set which is later used to train the clas-

sifier, and where the posteriors returned by this classifier are then used 
as input by MINECORE in the 2nd phase in order to prioritise the docu-

ments that the annotators should review. That is, in this case ALvRS 
might be less effective than ALvUS, since, by repeatedly improving 
the classifier in the regions of instance space on which the classifier 
is most uncertain, ALvUS might eventually obtain higher-quality pos-

teriors. Moreover, we might expect the ALvRUS policy, which stands 
as a middle ground between ALvRS and ALvUS, to also improve MINE-

CORE’s results by building a higher-quality classifier than ALvRS.

In Table 2 we report the average recall12 and the average class 
prevalence in the training set  and in the set of unlabelled documents 
 as deriving from the application of the different AL policies, where 
the averages are computed across 𝑦𝑟 and 𝑦𝑝. All these figures are re-

ported at different training set sizes (i.e., 2000, 4000, 8000, 16000, 
23149); this should give a clearer picture of the overall scenarios gen-

erated by the different active learning policies.

The results in Table 3 show that, for any given cost structure, 
ALvRUS is the most effective among the policies we have studied. 
Regarding the other policies, ALvUS appears to be the second-best pol-

icy for two cost structures out of three (Λ1 and Λ2), whereas ALvRS 

12 In this context, by recall we mean the ratio Pr(𝑦)∕ Pr (𝑦) between the num-

ber of positive documents in the training set  and the total number of positive 
7

documents in the entire pool  .
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Table 2

Average recall and training/test class prevalence values at different 
training set sizes for the three active learning policies.

|| Recall Pr(𝑦) Pr (𝑦)

ALvRS

2,000 0.240 ± 0.113 0.698 ± 0.056 0.080 ± 0.099

4,000 0.509 ± 0.218 0.762 ± 0.113 0.064 ± 0.100

8,000 0.766 ± 0.231 0.637 ± 0.203 0.045 ± 0.095

16,000 0.894 ± 0.158 0.427 ± 0.252 0.028 ± 0.077

23,149 0.936 ± 0.107 0.336 ± 0.254 0.019 ± 0.061

ALvUS

2,000 0.099 ± 0.044 0.300 ± 0.047 0.088 ± 0.099

4,000 0.196 ± 0.074 0.308 ± 0.068 0.083 ± 0.099

8,000 0.431 ± 0.161 0.337 ± 0.072 0.071 ± 0.101

16,000 0.597 ± 0.186 0.251 ± 0.089 0.062 ± 0.102

23,149 0.670 ± 0.183 0.204 ± 0.091 0.059 ± 0.102

ALvRUS

2,000 0.135 ± 0.060 0.408 ± 0.067 0.086 ± 0.099

4,000 0.381 ± 0.176 0.560 ± 0.057 0.073 ± 0.100

8,000 0.699 ± 0.249 0.551 ± 0.129 0.052 ± 0.100

16,000 0.863 ± 0.197 0.388 ± 0.181 0.036 ± 0.091

23,149 0.914 ± 0.150 0.307 ± 0.191 0.027 ± 0.081

Table 3

Average overall costs resulting from running 
MINECORE when different policies have been 
used for generating the training sets. Values in
boldface indicate the best results for the given 
cost structure. The reported values are obtained 
by averaging across the experiments run with 
different training set sizes (2000, 4000, 8000, 
16000, 23149). Superscripts † and ‡ indicate 
whether the second-best method is not statisti-

cally significantly different from the best one, 
according to a Wilcoxon signed-rank test at differ-

ent confidence levels: symbol † indicates 0.001 <
𝑝 < 0.05, while ‡ indicates 𝑝 ≥ 0.05. In this table, 
all differences are statistically significant, hence 
no instances of † and ‡ are present.

Λ PL ALvRS ALvUS ALvRUS

Λ1 38,589 39,373 32,511 19,890

Λ2 13,047 10,398 6,721 5,766

Λ3 5,318 2,742 3,749 2,129

Table 4

Same as Table 3, but with different policies 
for generating the training sets.

Λ Rand(RS) Rand(US) Rand(RUS)

Λ1 63,109 41,284 41,298

Λ2 14,708 8,397 9,819

Λ3 4,102 4,087 2,964

achieves second-best results on Λ3. Finally, the passive learning strat-

egy is the worst one in two cases out of three (Λ2 and Λ3).

Furthermore, the Rand(RS), Rand(US), and Rand(RUS) results of Ta-

ble 4 tell us that a higher prevalence value of the positive class in the 
test set, and an overall better balance between training and test class 
prevalence values (which we obtain when using uncertainty sampling), 
can steer the results in favour of ALvUS if, as with all the Rand poli-

cies,  and  do not suffer from sampling bias. Also, despite the fact 
that ALvRUS is the best policy in the results of Table 3, its correspond-

ing Rand policy does not achieve the best results for two cost structures 
out of three (Λ1 and Λ2), albeit still obtaining better results than the 
Rand(RS) policy.

That said, we conclude that the best strategy for training the ℎ𝑟 and 
ℎ𝑝 classifiers on which Step 1 of MINECORE hinges is, by a wide margin, 
ALvRUS.

We end this discussion by noting that an obvious way to try to im-
prove on ALvRUS would consist in adding to it a parameter 𝛼, so that 
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Table 5

Average overall costs resulting from running MINECORE on posterior probabilities coming from either the 
classifier (PreSLD) or the SLD algorithm (PostSLD). Notational conventions are as in Table 3. A value in
boldface indicates the best result on the given row (i.e., combination of a cost structure and a choice between 
PreSLD and PostSLD), whereas a value in underline indicates the best result for the given cost structure.

Λ PL ALvRS ALvUS ALvRUS

Λ1
PreSLD 38,589 39,373 32,511 19,890

PostSLD 38,620 +0.08% 28,694 -37.22% 25,309‡ -28.46% 33,504 +40.63%

Λ2
PreSLD 13,047 10,398 6,721 5,766

PostSLD 13,073 +0.20% 14,040 +35.03% 7,299 +8.6% 14,612 +153.42%

Λ3
PreSLD 5,318 2,742 3,749 2,129

PostSLD 5,317 -0.02% 3,735 +36.21 8,452 +125.42% 8,748 +310.90%

Table 6

Same as Table 5, but with different policies for generating the training sets.

Λ Rand(RS) Rand(US) Rand(RUS)

Λ1
PreSLD 63,109 41,284 41,298

PostSLD 14,394 -77.19% 19,819 -51.99% 12,311 -70.19%

Λ2
PreSLD 14,708 8,397 9,819

PostSLD 2,586 -82.42% 4,641 -44.73% 3,065 -68.79%

Λ3
PreSLD 4,102 4,087 2,964

PostSLD 1,736 -57.68% 2,857 -30.10% 1,586 -46.49%
the reviewers are asked to annotate, at each iteration, the 𝛼 ⋅ 𝑏 doc-

uments in  for which Pr(𝑦𝑖|𝐱) is closest to 0.5 and the (1 − 𝛼) ⋅ 𝑏
documents in  for which Pr(𝑦𝑖|𝐱) is highest (with 𝑖 ∈ {𝑟, 𝑝}); optimis-

ing this parameter (say, on a held-out dataset) would allow striking the 
best possible balance between “exploration” (the US component) and 
“exploitation” (the RS component).

5.2. RQ2

The goal of our second research question (RQ2) is that of under-

standing whether the application of SLD can (i) improve the quality of 
the posterior probabilities that are input to Step 2 of the MINECORE 
algorithm, and thus (ii) generate a reduction in overall cost.

The active learning strategies that we use in this paper (and ALvUS, 
the “winner” in the previous batch of experiments, is no exception) tend 
to generate PPS between the training set and the set of unlabelled data; 
more specifically, they tend to generate situations in which the class 
prevalence value Pr(𝑦) (with 𝑦 ∈ {𝑦𝑟, 𝑦𝑝}) can be much larger than the 
class prevalence value Pr (𝑦). In such a scenario, given the findings 
of Esuli et al. (2021), we would expect the application of SLD to bring 
about substantial improvements to the quality of the posterior proba-

bilities.

The results of our experiments are displayed in Table 5. Something 
we can see from these figures is that the results of the application of 
SLD are uneven; in some cases this application brings about a reduction 
in overall cost, while in other cases overall cost increases. In particular, 
SLD always brings about a deterioration when ALvRUS (the “winning” 
policy of our previous section) has been used to generate the training 
set. In sum, there is no clear answer to RQ2.

However, it is important to notice that, for all three cost structures, 
the best result is obtained by using ALvRUS and not using SLD. We 
thus have a clear answer to RQ1 and RQ2 altogether, i.e., that the best 
course of action is to avoid using SLD and stick to the “PreSLD” posterior 
probabilities generated by classifiers trained via ALvRUS.

In case we wonder what are the reasons for the failure of SLD to 
systematically improve the quality of our posterior probabilities, the 
answer comes from examining Table 6, which presents the results of 
experiments analogous to the ones of Table 5 but using the Rand active 
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learning policies instead of the original ones. Table 6 says that, for all 
Rand policies and for all cost structures, the SLD algorithm brings about 
a drastic reduction in overall cost, unlike what happened for the original 
active learning policies. It is thus easy to conclude that SLD copes well 
with PPS (which the Rand policies generate) but not with sampling bias

(which the original active learning policies, unlike the Rand policies, 
generate). Indeed, a close examination of SLD (see Algorithm 1 in Ap-

pendix A) shows that nothing in it caters for sampling bias. Conversely, 
SLD does cater for PPS; indeed, if we assumed that there is no PPS be-

tween  and  , there would be no need to re-estimate the priors (see 
Line 11 of Algorithm 1) and, consequently, to update the posteriors (see 
Line 13), as SLD instead does.

Incidentally, the fact that Rand(RS) and Rand(RUS) are the two best 
overall algorithms confirms the observations of Esuli et al. (2021) that 
the greater the shift between training set and test set, the better the per-

formance of SLD; indeed, Rand(RS) and, to a lesser degree, Rand(RUS), 
tend to generate more PPS than Rand(US).

In order to provide a finer-grained analysis of the above results, we 
further

1. Bin the classes by class prevalence value, in order to analyse 
whether the results may depend on the prevalence value of the 
class;

2. generate a visualization of the results of the different selection 
strategies (i.e., ALvRS, ALvUS, ALvRUS, PL and Rand), so as to 
see where the documents they select are picked from the data dis-

tribution;

3. Plot the distributions of the posteriors before SLD and after SLD, 
in order to visually understand how the SLD algorithm is adjusting 
these distributions.

5.2.1. Effects of class prevalence value

Regarding Point 1, we bin the 28 classes in quartiles by preva-

lence value; we accordingly call these quartiles “Low”, “Medium-Low”, 
“Medium-High”, “High”. In Table 7 we show which bin each class be-

longs to and whether the class is used to simulate Responsiveness (R), 
Privilege (P), or both (R+P).

We show in Tables 8 and 9 the results for each of the four bins, for 
responsiveness and privilege, respectively; these results are consistent 

with those of Table 5, with the PL strategy only slightly negatively af-
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Table 7

The RCV1-v2 classes that we use in our experi-

ments, binned into quartiles according to preva-

lence value. The last column indicates whether we 
use the class to represent responsiveness (R), priv-

ilege (P), or both (R+P). We use these quartiles to 
bin our results in Tables 8, 9, 10, 11.

Class Prevalence Quartile Used for

C21 0.032 Low R+P

M12 0.032 Low R+P

M132 0.033 Low R+P

E12 0.034 Low R+P

E212 0.034 Low R+P

M131 0.035 Low R+P

C24 0.040 Medium-Low R+P

GCRIM 0.040 Medium-Low R+P

GVIO 0.041 Medium-Low R+P

C13 0.047 Medium-Low R

GDIP 0.047 Medium-Low R+P

C31 0.050 Medium-Low R+P

C17 0.052 Medium-High R+P

E21 0.054 Medium-High R+P

C181 0.054 Medium-High R+P

M141 0.059 Medium-High R+P

M11 0.061 Medium-High R+P

C18 0.066 Medium-High R+P

M13 0.067 High R+P

GPOL 0.071 High R+P

C152 0.091 High R+P

C151 0.102 High R+P

M14 0.106 High R+P

ECAT 0.149 High R+P

C15 0.189 High P

MCAT 0.255 High P

GCAT 0.297 High P

CCAT 0.474 High P

fected by SLD and the three AL strategies suffering the strongest effects. 
Notice how the bins of classes with lower prevalence values (Low and 
Medium-Low) tend to be the ones where SLD performs comparatively 
better; given that SLD works better in high-shift scenarios (Esuli et al., 
2021), this was to be expected, since the AL strategies will cause a much 
stronger PPS if the overall class prevalence value is low (since the few 
examples of the positive class tend to end up quickly in the training set). 
Also, notice how the above-described effect is stronger for ALvRS than 
for ALvUS; this was also to be expected, as ALvUS generates less ex-

treme PPS than ALvRS. Finally, the results of Table 9 indicate that the 
deterioration brought about by SLD is higher for the privilege classes 
than it was for the responsiveness classes (Table 8); again, this was to 
be expected, since the privilege class has a greater impact on the final 
cost of a review than the responsiveness class, since 𝜆𝑎

𝑝
> 𝜆𝑎

𝑟
.

As we can see from Tables 10 and 11, the situation is completely re-

versed when considering the Rand policies: SLD performs consistently 
well, across all bins and cost structures, be it for responsiveness or priv-

ilege.

In conclusion, the results of this analysis confirm that no matter the 
class prevalence value and the cost structure, SLD tends to have a clear 
negative effect on the quality of the posteriors generated by classifier 
trained via active learning techniques.

5.2.2. Visualising the behaviour of different selection strategies

Let us now move to Point 2, i.e., visualising the effects of the dif-

ferent selection strategies. As we have mentioned before, the results we 
have just commented say that the reasons behind the failure of SLD to 
improve the posteriors have to be found in the document selection cri-

teria enacted by our three original active learning strategies. In order to 
better understand how these different strategies select their documents 
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from the pool  , we provide a visualization of the first 1000 documents 
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that each policy selects: in order to do this, we remove the initial seed 
set  , use the LSA algorithm (Landauer et al., 1998) on the TF-IDF ma-

trix to reduce its dimensionality to the two largest singular values, pick 
two random classes (namely the C17 and M14 classes of RCV1-v2), and 
show the corresponding scatter plots for the two components in Fig. 1. 
(For best visualization results use the .pdf version of the present paper 
and zoom in as necessary.) The plots show, with different colours, the 
positive and negative documents of  , and the positive and negative 
documents that the given strategy selected to be included in .13

It is indeed interesting to see how the ALvRS policy selects mostly 
positive instances, and very few negative ones, and that all of these 
positive instances tend to come from the same region of the instance 
space, thereby bringing about a training set characterised by very little 
diversity; this pattern is especially evident for the C17 class, and is less 
evident but still present for the M14 class. This is a visualisation of the 
sampling bias brought about by ALvRS (see also Dasgupta & Hsu, 2008, 
§2 and Krishnan et al., 2021). The same visualisation also shows how 
the Rand(RS) policy selects instead the (same amount of) positives in 
a much more uniformly distributed and unbiased way. Similar effects, 
although less marked, can be noted for ALvRUS and ALvUS (and for the 
corresponding Rand policies).

The plots for the passive learning (PL) strategy show instead the 
intrinsic limitations of this policy in TAR contexts (also highlighted 
in Cormack and Grossman (2014) for one-phase TAR systems); given 
the substantial imbalance between the positive and negative examples, 
a raw random sampling of the data results in the selection of very few 
positive documents; this is evident for both C17 and M14.

5.2.3. Analysing the distributions of the posteriors

Let us now discuss Point 3. Despite the fact that the LSA plots can 
help us visualise the effects of the different selection strategies, they 
cannot tell us much about the consequences of each strategy and why 
these strategies cause SLD to fail in delivering better-quality posterior 
probabilities. A much more helpful insight might instead emerge by 
plotting the distributions of the PreSLD and PostSLD posteriors of the 
unlabelled documents as returned by the classifiers trained via the dif-

ferent selection strategies that we consider. For doing this we pick one 
of the two classes of our previous example (the C17 class) and plot (see 
Figs. 3 and 4) the above-mentioned distributions for classifiers trained 
on 2,000 documents and on 23,149 documents, respectively. We also 
show the CCAT class, one of the most populated RCV1-v2 classes, for 
comparison (see Fig. 5).14 We use a logarithmic scale for the Y axis as 
this helps to visualise the distributions better.

Looking at Fig. 4 we can observe that the PreSLD distributions for all 
three AL policies are extremely skewed towards zero (i.e., most of the 
mass of the probability distribution is close to the zero value), whereas 
the distributions for the respective Rand policies are more uniformly 
spread across the [0,1] interval. The hypothesis for the cause of SLD’s 
extremisation of the posteriors distribution might then arise from these 
plots. The SLD algorithm iteratively updates the posterior and prior 
probabilities using equations

P̂r(𝑠)

(𝑦) = 1



∑
𝐱∈

(𝑠−1)
Pr (𝑦|𝐱)

Pr(𝑠)(𝑦|𝐱) =
P̂r(𝑠)


(𝑦)

Pr(𝑦)
⋅
(0)
Pr(𝑦|𝐱)

∑
𝑦∈

P̂r(𝑠)

(𝑦)

Pr(𝑦)
⋅
(0)
Pr(𝑦|𝐱)

(7)

13 Notice that given the scale and the density of the documents, it may look 
as if some negative selected points are among the positive ones. This is just a 
limitation of the 2-D projection.
14 Notice that for the CCAT class we only plot the distributions for the AL 
classifiers. Distributions for the 𝑅𝑎𝑛𝑑 classifiers were fairly similar and thus not 

very interesting.
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Table 8

Average MINECORE overall costs with responsiveness classes binned by prevalence value. A positive increment indicates higher costs resulting from the 
application of SLD. Superscript † and ‡ denote whether the PostSLD results are not statistically significantly different from the PreSLD results, according 
to a Wilcoxon signed-rank test at different confidence levels: symbol † indicates 0.001 < 𝑝 < 0.05, while ‡ indicates 𝑝 ≥ 0.05.

Bin PL ALvRS ALvUS ALvRUS

Λ PreSLD PostSLD PreSLD PostSLD PreSLD PostSLD PreSLD PostSLD

Λ1

Low 26,230 26,288‡ +0.22% 25,796 12,125 -112.74% 21,395 13,106 -63.24% 10,834 14,541 +25.49%

Med-Low 40,001 40,056‡ +0.14% 44,419 23,677 -87.60% 35,639 26,164 -36.22% 20,245 25,562 +20.80%

Med-High 38,936 38,943‡ +0.02% 32,438 25,167 -28.89% 28,872 24,368 -18.48% 16,885 29,179 +42.13%

High 49,190 49,193‡ +0.01% 54,839 53,807‡ -1.92% 44,137 37,600 -17.38% 31,597 64,734 +51.19%

Λ2

Low 8,955 9,002‡ +0.53% 5,262 5,668‡ +7.16% 3,607 4,289‡ +15.90% 3,149 7,062 +55.40%

Med-Low 12,449 12,446‡ -0.03% 10,715 11,378‡ +5.82% 6,948 9,386‡ +25.97% 5,639 13,329 +57.69%

Med-High 14,426 14,433‡ +0.05% 9,638 12,689 +24.05% 6,972 6,288 -10.88% 5,641 12,642 +55.37%

High 16,357 16,412‡ +0.33% 15,976 26,426 +39.54% 9,355 9,234‡ -1.32% 8,634 25,414 +66.02%

Λ3

Low 3,181 3,195‡ +0.45% 1,383 958 -44.43% 1,951 2,050‡ +4.83% 963 1,869 +48.46%

Med-Low 4,501 4,500‡ -0.03% 2,442 1,826 -33.74% 3,087 5,097‡ +39.43% 1,674 1,840 +9.01%

Med-High 5,603 5,602‡ -0.03% 2,459 2,084 -18.02% 3,669 9,310‡ +60.59% 1,851 6,879 +73.08%

High 7,986 7,970‡ -0.19% 4,682 10,072‡ +53.51% 6,289 17,350‡ +63.75% 4,025 24,406 +83.50%

Table 9

Same as Table 8, with privilege classes binned by prevalence.

Bin PL ALvRS ALvUS ALvRUS

Λ PreSLD PostSLD PreSLD PostSLD PreSLD PostSLD PreSLD PostSLD

Λ1

Low 30,904 31,097‡ +0.62% 30,142 19,869 -51.704% 24,815 18,459 -34.426% 14,180 25,302 +43.956%

Med-Low 41,944 41,837‡ -0.26% 46,985 34,855 -34.800% 37,836 31,207† -21.240% 23,771 45,192 +47.401%

Med-High 41,004 41,159‡ +0.38% 42,307 34,937† -21.095% 33,776 23,078 -46.356% 21,788 39,309 +44.572%

High 39,971 39,921‡ -0.12% 38,626 26,842 -43.901% 33,216 27,003 -23.005% 19,935 27,806 +28.305%

Λ2

Low 11,284 11,313‡ +0.25% 8,215 9,759† +15.81% 4,385 4,698‡ +6.67% 3,833 10,025 +61.76%

Med-Low 14,111 14,148‡ +0.26% 12,914 17,108† +24.52% 7,221 7,871‡ +8.26% 6,281 17,933 +64.97%

Med-High 13,984 14,020‡ +0.26% 10,070 17,376 +42.04% 6,109 6,634‡ +7.92% 5,407 17,559 +69.21%

High 12,957 12,970‡ +0.10% 10,303 12,921 +20.26% 8,224 8,954‡ +8.16% 6,861 13,732 +50.03%

Λ3

Low 4,559 4,564‡ +0.11% 2,113 2,106† -0.31% 3,030 11,085‡ +72.66% 1,642 10,235† +83.952%

Med-Low 5,791 5,776‡ -0.25% 3,300 5,659† +41.68% 4,542 17,351‡ +73.82% 2,687 18,538 +85.50%

Med-High 5,996 6,003‡ +0.12% 3,158 6,252† +49.48% 4,362 4,219‡ -3.40% 2,578 7,388 +65.10%

High 5,119 5,119‡ -0.00% 2,546 2,120 -20.10% 3,346 3,144‡ -6.44% 1,823 2,011 +9.35%

Table 10

Same as Table 8, but with different policies for generating the training sets.

Bin Rand(RS) Rand(US) Rand(RUS)

Λ PreSLD PostSLD PreSLD PostSLD PreSLD PostSLD

Λ1

Low 40,902 7,773 -426% 28,551 11,200 -155% 26,616 6,875 -287%

Med-Low 67,945 15,605 -335% 47,435 20,328 -133% 46,674 13,261 -252%

Med-High 56,956 13,192 -332% 37,320 19,270 -94% 36,330 10,872 -234%

High 86,633 21,005 -312% 51,832 28,479 -82% 55,571 18,235 -205%

Λ2

Low 8,207 1,162 -606% 4,915 2,366 -107% 5,757 1,513 -280%

Med-Low 15,548 2,696 -476% 8,843 4,395 -101% 10,713 3,137 -241%

Med-High 14,615 2,519 -480% 8,409 4,914 -71% 9,494 3,022 -214%

High 20,463 3,969 -415% 11,420 6,887 -65% 13,312 4,588 -190%

Λ3

Low 2,218 779 -185% 2,217 1,306 -70% 1,515 721 -110%

Med-Low 3,939 1,599 -146% 3,545 2,404 -47% 2,718 1,407 -93%

Med-High 3,958 1,697 -133% 3,998 3,011 -33% 2,741 1,553 -76%

High 6,291 2,870 -119% 6,587 4,704 -40% 4,881 2,663 -83%
From these equations we notice that

lim
P̂r(𝑠)


(𝑦)→0

Pr(𝑠) = 0 (8)

That is, when the average of Pr(𝑦 = 1|𝐱) is close to 0, then we iteratively 
drag the distribution towards 0. Indeed, this would be the maximisation 
of the expectation we can make given the data: i.e., there is likely no 
10

positive item remaining (which is also not too far from the truth for the 
ALvRS and ALvRUS policies, as we can see from the test class prevalence 
value (Te prev.) in the plots). Yet, this also results in pushing an already 
skewed posteriors distribution even more toward the extreme where 
most of the probability mass already lies, producing a distribution of 
probabilities composed almost entirely of zero values.

SLD does not skew the posteriors distribution in case of more bal-

anced classes, e.g., for the C17 and CCAT classes, at least when the 

is still small, e.g., || = 2000 (see Fig. 3). In these cases SLD does not 
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Fig. 1. First 1000 items selected by the different active learning and passive learning policies (indicated in the captions above the individual plots) for the C17 and 
11

M14 RCV1-v2 classes.
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Table 11

Same as Table 9, but with different policies for generating the training sets.

Bin Rand(RS) Rand(US) Rand(RUS)

Λ PreSLD PostSLD PreSLD PostSLD PreSLD PostSLD

Λ1

Low 46,015 8,946 -414% 32,852 12,249 -168% 30,473 7,605 -301%

Med-Low 74,367 15,846 -369% 47,843 21,558 -122% 49,346 13,611 -262%

Med-High 70,036 14,447 -385% 42,347 19,984 -112% 44,094 12,380 -256%

High 62,800 16,899 -272% 41,751 23,436 -78% 41,359 14,431 -187%

Λ2

Low 8,903 1,153 -672% 5,820 2,237 -160% 6,440 1,455 -343%

Med-Low 16,300 2,445 -566% 9,509 4,443 -114% 11,479 2,941 -290%

Med-High 14,419 2,298 -527% 7,624 4,337 -76% 9,060 2,759 -228%

High 17,538 3,760 -366% 9,735 6,484 -50% 11,300 4,350 -160%

Λ3

Low 2,889 1,153 -150% 3,334 1,910 -75% 2,149 1,077 -100%

Med-Low 4,569 2,025 -126% 4,761 3,295 -44% 3,466 1,862 -86%

Med-High 4,439 1,740 -155% 4,624 3,044 -52% 3,310 1,634 -102%

High 4,385 1,917 -129% 3,827 3,070 -25% 2,963 1,703 -74%
12

Fig. 2. Same as Fig. 1, but with the Rand policies in place of the original passive and active learning policies.
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Fig. 3. Distribution of the posteriors of the unlabelled documents generated by classifiers trained with various training document selection policies (indicated in the 
captions above each subfigure), using a set of ||=2,000 training documents.
shift the distribution towards its extremes, but it is also seemingly not 
doing much (indeed, for the ALvUS the two distributions are almost in-

distinguishable from each other). Notice that CCAT is one of the most 
populated RCV1-v2 classes. This means that, even when we draw many 
positives from  , we are still not going to generate a too extreme PPS in 
the first iterations. Indeed, most of the positive documents would still 
be in the unlabelled set  . However, this also brings SLD outside of its 
main scope of application, i.e., correcting high PPS: the algorithm will 
thus bring no significant benefit.

So, if the Rand and AL strategies are working with the same train-

ing/test class prevalence values, why are the classifier output probabil-

ities so much more skewed in the latter case and not in the former? In 
order to understand this, we need to consider the sampling bias (which, 
again, is the main difference between the Rand and the AL policies): as 
a matter of fact, due to how the policies work (especially for ALvRS) 
we will tend to annotate many positive but similar items (see Fig. 1) 
and the classifier will be trained on these positive examples only. This 
in turn will result in the classifier being particularly good at classifying 
those type of positives, as well as being particularly sure of the negative 
13

label of the other documents; since the Rand policies do not suffer from 
sampling bias, this does not happen with these pseudo-oracle policies. 
This is indeed what we see in Fig. 4.

If we consider the AL strategy used and the overall prevalence value 
of the class in  we can then predict when SLD will perform a correct 
rescaling of the posterior probabilities or not15:

1. If the prevalence in  is low, and we use a strategy based on rele-

vance sampling, we will remain with a very low number of positive 
items in the unlabelled set. Plus, since our classifier is suffering 
from sampling bias, its predictions will be particularly skewed to-

wards the negative class.

2. If the prevalence in  is low, and we use a strategy based on 
uncertainty sampling, we expect to have less skewed distributed 
posteriors up until a certain size of annotated documents. Even-

tually, though, the number of positives will shrink and, with our 
classifier still suffering from sampling bias, we will end up in the 
previous scenario.
15 Of course this is not possible in real scenarios, where we do not know Pr(𝑦).
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Fig. 4. As Fig. 3, but with 23,149 training documents instead of 2,000.
3. Finally, if the prevalence in  is fairly high and the number of 
annotations relatively low, then we expect the posteriors from the 
ALvRS/ALvRUS policy to be not very skewed.

SLD will eventually fail in all three of these scenarios, either because 
we have no PPS between the labelled and unlabelled sets or because 
sooner or later our classifiers will suffer from a strong sampling bias, 
which paired to the shrinking number of positives, will bring to the 
“posterior extremisation” phenomenon that we witness in the plots.

We then conclude this analysis arguing that SLD cannot be used “as 
is” in contexts where the training and test sets are resulting from AL 
strategies such as ALvRS, ALvRUS and ALvUS. We propose to further 
investigate this issue in future works, to explore possible solutions that 
might enable the usage of the SLD algorithm.

6. Related work

Active learning plays a central role in technology-assisted review, 
and researchers have long agreed on the superiority (at least when 
one-phase TAR systems are concerned) of AL strategies over annotating 
14

random samples from the data pool (Cormack & Mojdeh, 2009, Cor-
mack & Grossman, 2014). The best-known and most frequently used 
strategy in one-phase TAR is Cormack and Grossman’s Continuous Ac-

tive Learning (CAL) (Cormack & Grossman, 2015b), a technique based 
on relevance feedback (Rocchio, 1971) and ALvRS. However, consis-

tently with typical e-discovery scenarios, in CAL one often assumes to 
have no training (i.e., seed) documents. The AL process can thus be kick-

started using a single positive document (which can also simply consist 
of the text of a query that specifies the topic of interest) and a few “neg-

ative” documents, which are actually random documents sampled from 
the pool to which the system automatically assigns the “non-relevant” 
label. The batch size can be variable, e.g., monotonically increasing as a 
function of the number of iterations. In the above case, the process may 
be stopped using a stopping heuristics that attempts to determine when 
a predefined level of recall has been reached. For this, a number of dif-

ferent heuristics have been proposed, such as the “Knee” and “Budget 
Knee” methods (Cormack & Grossman, 2016, Satopaa et al., 2011).

The research on stopping heuristics has intersected the research on 
sampling techniques for active learning. For instance, in Callaghan and 
Müller-Hansen’s (Callaghan & Müller-Hansen, 2020) (CMH) method an 
initial application of the ALvRS strategy (in which the goal is to keep 

reviewing documents until a target recall has been achieved with a cer-
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Fig. 5. ALvRS, ALvUS, and ALvRUS posteriors for the positive class, before and 
after the application of SLD. || = 2000.

tain confidence level) is followed by a phase of random sampling, which 
is only stopped when the estimated recall matches the target recall with 
a higher confidence level.

Another recently proposed sampling (and stopping) technique is Li 
and Kanoulas’ “autostop” framework (Li & Kanoulas, 2020); this algo-

rithm was proposed for applying TAR to supporting the production of 
systematic reviews in empirical medicine, but it is suitable for applica-

tions of TAR to e-discovery as well (see also Lease et al., 2016). The 
review process starts, as usual, with a seed set  , consisting of the tex-

tual description of the topic of the systematic review. At each iteration, 
 is augmented with 𝑘 documents randomly sampled from the pool  . 
A classifier is trained on this initial seed set, and a sampling distribution 
(in particular, the AP-prior distribution, see Li & Kanoulas, 2020, §3.2) 
is built based on the classifier’s ranking, which is then used to sample 
a batch of documents. This process continues until stopped, according 
to a more or less optimistic (i.e., higher or lower confidence) strategy; 
we refer the reader to Li and Kanoulas (2020) for a more detailed and 
15

formal explanation.
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7. Conclusions

In this work we have explored and analysed different strategies for 
improving the performance of the MINECORE risk minimisation frame-

work for technology-assisted review in e-discovery (Oard et al., 2018). 
Specifically, we have concentrated on strategies for improving the pos-

terior probabilities that Step 1 of the MINECORE workflow provides as 
input to Step 2 of the same workflow, an improvement that we mea-

sure in terms of reduction in the overall cost of the review process that 
MINECORE brings about. We have formulated two research questions 
(RQ1 and RQ2), that correspond to two possible strategies for improv-

ing these probabilities.

RQ1 poses the problem of which policy is the best for training the 
two classifiers that return these posterior probabilities; the policies we 
consider are passive learning (PL), active learning via relevance sam-

pling (ALvRS), active learning via uncertainty sampling (ALvUS), and a 
combination of the two latter policies that we call active learning via 
relevance and uncertainty sampling (ALvRUS). The results of our exper-

iments show that ALvRUS is unquestionably the best such policy, thus 
indicating that reaching a balance between “exploration” (the US com-

ponent) and “exploitation” (the RS component) proves a key step in 
generating better training sets for MINECORE. Passive learning proves 
instead the worst such policy, which confirms the analogous results ob-

tained for one-phase TAR systems (see Cormack & Grossman, 2014).

In RQ2 we instead pose the problem whether an application of the 
well-known SLD algorithm (Saerens et al., 2002), whose goal is to im-

prove the quality of the posterior probabilities in contexts affected by 
prior probability shift (PPS), could indeed prove beneficial for MINE-

CORE. Here, the results are less uniform, and show that the application 
of SLD often decreases (instead of increasing) the quality of the pos-

terior probabilities, especially when some active learning policy has 
been used to train the classifiers; unfortunately, SLD always brings 
about a deterioration in the quality of these probabilities when ALvRUS 
(that had proved the “winning” policy for RQ1) has been used to train 
the classifiers. Additional experiments that we have run unequivocally 
show that the reason why SLD tends to perform badly when the clas-

sifiers have been trained via active learning, is that active learning 
generates not only prior probability shift (which SLD has been de-

signed for) but also sampling bias (for which SLD is not equipped). This 
raises the question whether using other active learning strategies that 
attempt to maximise diversity / representativeness of the training data 
(thereby doing away with sampling bias) could allow SLD to be used 
profitably; this proves a difficult path to follow, though, since active 
learning techniques that maximise diversity tend to be too expensive, 
from a computational point of view, for the typical problem sizes en-

countered in TAR.

However, when we take RQ1 and RQ2 altogether, the answer re-

turned by our experiments is unequivocal: the best course of action 
consists of (i) using ALvRUS for training the classifiers, and (ii) not us-

ing SLD in the attempt to further improve the posterior probabilities.

In future work we would like to investigate (for RQ1) the use of 
active learning techniques that are both computationally efficient and 
diversity-preserving, as well as (for RQ2) variants of the SLD algorithm 
that are also robust to the presence of sampling bias.
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Appendix A. An overview of the SLD algorithm

Input : Class priors Pr(𝑦) on , for all 𝑦 ∈ ;

Posteriors Pr(𝑦|𝐱), for all 𝑦 ∈ and for all 𝐱 ∈ ;

Output : Estimates P̂r (𝑦) of class prevalence values on  , for all 𝑦 ∈ ;

Updated posteriors Pr(𝑦|𝐱), for all 𝑦 ∈ and for all 𝐱 ∈ ;

// Initialisation

1 𝑠 ← 0;

2 for 𝑦 ∈ do

3 P̂r(𝑠)

(𝑦) ← Pr(𝑦); // Initialize the prior estimates

4 for 𝐱 ∈ do

5 Pr(𝑠)(𝑦|𝐱) ← Pr(𝑦|𝐱); // Initialise the posteriors
6 end

7 end

// Main Iteration Cycle
8 while stopping condition = false do

9 𝑠 ← 𝑠 + 1;

10 for 𝑦 ∈ do

11 P̂r(𝑠)

(𝑦) ← 1

| |
∑
𝐱∈

Pr(𝑠−1)(𝑦|𝐱); // Update the prior estimates

12 for 𝐱 ∈ do

13 Pr(𝑠)(𝑦|𝐱) ←

P̂r(𝑠)

(𝑦)

P̂r(0)

(𝑦)

⋅ Pr(0)(𝑦|𝐱)

∑
𝑦∈

P̂r(𝑠)

(𝑦)

P̂r(0)

(𝑦)

⋅ Pr(0)(𝑦|𝐱)
// Update the posteriors

14 end

15 end

16 end

// Generate output
17 for 𝑦 ∈ do

18 P̂r (𝑦) ← P̂r(𝑠)

(𝑦) ; // Return the prior estimates

19 for 𝐱 ∈ do

20 Pr(𝑦|𝐱) ← Pr(𝑠)(𝑦|𝐱) // Return the adjusted posteriors
21 end

22 end

Algorithm 1: The SLD algorithm (Saerens et al., 2002).

Algorithm 1 reports the pseudocode for SLD. We assume a training 
set  of labelled examples and a set  = {(𝐱1, 𝑡(𝐱1)), …, (𝐱| |, 𝑡(𝐱| |))}
of unlabelled examples, i.e., examples whose true labels 𝑡(𝐱) ∈  =
{𝑦1, … , 𝑦𝑛} are unknown to the system. Essentially, SLD iteratively up-

dates (Line 11) the estimates of the class priors by using the posteriors 
computed in the previous iteration, and updates (Line 13) the posteri-

ors by using the estimates of the class priors computed in the current 
16

iteration, in a mutually recursive fashion. The main goal is to adjust 
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the posteriors and re-estimate the priors in such a way that they are 
mutually consistent, i.e., that they are such that Equation (6) holds. As 
remarked in Section 3.2, Equation (6) is a necessary (albeit not suffi-

cient – see Esuli et al., 2021, Appendix A) condition for the posteriors 
Pr(𝑦|𝐱) of the documents 𝐱 ∈ to be calibrated.

The algorithm iterates until convergence (Line 8), i.e., until the class 
priors become stable and Equation (6) is satisfied. The convergence of 
SLD may be tested by computing how the distribution of the priors 
at iteration (𝑠 − 1) and that at iteration (𝑠) still diverge; this can be 
evaluated, for instance, in terms of absolute error, i.e.,16

AE(𝜋̂(𝑠−1)


, 𝜋̂
(𝑠)

) = 1

||
∑
𝑦∈

|P̂r(𝑠)

(𝑦) − P̂r(𝑠−1)


(𝑦)| (A.1)

where 𝜋(𝑠)


represents the distribution of the classes on  at iteration 𝑠. 
Alexandari et al. (2020) have recently shown that the maximum likeli-

hood function optimised by SLD is concave, and that SLD thus converges 
to a global maximum.

While SLD is a natively multiclass algorithm, in this paper we restrict 
our analysis to the binary case, with 𝑦 equal to 𝑦𝑟 or to 𝑦𝑝.
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