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Abstract. Native language identification (NLI) is the task of training
(via supervised machine learning) a classifier that guesses the native lan-
guage of the author of a text. This task has been extensively researched
in the last decade, and the performance of NLI systems has steadily im-
proved over the years. We focus on a different facet of the NLI task,
i.e., that of analysing the internals of an NLI classifier trained by an
explainable machine learning algorithm, in order to obtain explanations
of its classification decisions, with the ultimate goal of gaining insight
into which linguistic phenomena “give a speaker’s native language away”.
We use this perspective in order to tackle both NLI and a (much less
researched) companion task, i.e., guessing whether a text has been writ-
ten by a native or a non-native speaker. Using three datasets of different
provenance (two datasets of English learners’ essays and a dataset of so-
cial media posts), we investigate which kind of linguistic traits (lexical,
morphological, syntactic, and statistical) are most effective for solving
our two tasks, namely, are most indicative of a speaker’s L1. We also
present two case studies, one on Spanish and one on Italian learners of
English, in which we analyse individual linguistic traits that the classi-
fiers have singled out as most important for spotting these L1s. Overall,
our study shows that the use of explainable machine learning can be
a valuable tool for the scholar who investigates interlanguage facts and
language transfer.

Keywords: Native Language Identification · Second Language Acquisi-
tion · Language Transfer · Interlanguage · Text Classification · Machine
Learning · Explainable Machine Learning

? Corresponding author

ar
X

iv
:2

20
8.

01
46

8v
1 

 [
cs

.C
L

] 
 2

 A
ug

 2
02

2



2 Barbara Berti, Andrea Esuli, Fabrizio Sebastiani

1 Introduction

The idea that facts about the acquisition of a second language (L2) can be
learnt by investigating the traces of a speaker’s mother tongue (L1) has been
central to research in applied linguistics for a long time. Already more than
70 years ago, Fries (1945) understood that the interference of a learner’s L1
constituted a major issue in the learning process, and that comparing the native
and the target language was necessary for theoretical as well as for pedagogical
purposes. A few years later, Lado (1957) endorsed the view that learners of
an L2 display a tendency to transfer forms and meanings of their linguistic
and cultural background to the foreign language. Contrastive analysis (Lado,
1957; Wardhaugh, 1970) centred precisely upon identifying the similarities and
differences between the native and the target language, as well as upon the
role they play in second language acquisition (SLA) processes. Drawing upon
Corder’s (1967) research, Selinker (1972) proposed the notion of interlanguage,
a mutable and transitory linguistic system based on rules dissimilar from the
ones characterising either L1 or L2. In Selinker’s view, at every stage of the
learning process, the rules governing the interlanguage are updated in ways that
make it unique to each learner. In this sense, every learner follows a different
learning path.

In general, language transfer (Aarts and Granger, 1998; Altenberg and Tap-
per, 1998; Odlin, 1989; Swan and Smith, 2001) refers to the idea that, irrespec-
tive of their level of competence, speakers of an L2 have a tendency to transfer
features of their mother tongue to the foreign language, both in reception and
production tasks. Naturally, such features pertain to all the linguistic subsystems
that make up a speaker’s competence, i.e., pragmatics and rhetoric, semantics,
syntax, morphology, phonology, phonetics, and orthography (Odlin, 2003).

Although one could instinctively liken language transfer to a hurdle that
affects the learning process, its influence is not necessarily negative. Negative
transfer (or interference) occurs when L1 and L2 diverge, and the footprint of the
former over the latter generates errors; conversely, when L1 and L2 converge, the
learning process is facilitated, thus leading to positive transfer (Bardovi-Harlig
and Sprouse, 2018; Schachter, 1983).

Although negative transfer generally results in the production of errors, it
nonetheless represents a functional strategy reflecting the natural attitude of
learners to cope with linguistic challenges and communicate in spite of the ex-
isting gaps (Jarvis and Crossley, 2012). Indeed, thanks to interpolation and
flexibility in the construction of meaning, the interlocutor can, to some extent,
arrive at making sense of an L1-driven, ill-formed input.

Even though some scholars fail(ed) to recognise the role of language transfer
(e.g., (Krashen, 1983; Meisel et al., 1981)), the influence exerted by the mother
tongue has been vastly demonstrated by a wealth of studies aimed at analysing
learners’ production errors across different educational as well as proficiency
levels (see, amongst others, Carrió Pastor (2012); Köhlmyr (2001); Miliander
(2003); Rosén (2006); Xia (2015); Ye (2004); Zhang (2010)). Indeed, such studies
have shown that “even advanced L2 speakers continue to be influenced by their
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L1 in a range of domains” (Gullberg, 2011, 146). Some L1 traces appear to be
indelible and are, therefore, detectable in the linguistic production.

Naturally, language transfer has been tackled with the qualitative and quan-
titative tools of applied linguistics. Studies range from in-depth analysis of the
production of a restricted sample of learners (e.g., Beare (2000); Mu and Car-
rington (2007)) to the analysis of specific transfer patterns in large collections
of L2 texts (e.g., Aijmer and Altenberg (2013)).

In very much the same vein as corpus studies, we aim to exploit the wealth of
data available from L2 corpora, this time through the application of techniques
from (supervised) machine learning (ML – (Jordan and Mitchell, 2015)) and
(computational) native language identification (NLI – (Malmasi, 2016)). ML is
a branch of computer science that investigates methods for training algorithms
to solve a certain problem. These algorithms learn from experience, i.e., learn
to solve a problem from exposure to instances of this problem in which the
correct solution is known. In ML approaches to NLI, the problem is that of
correctly identifying the L1 of the author of a (spoken or written) text. Of
particular interest is the reasoning that leads the algorithm to choose a particular
L1 over others. The machine’s reasoning can, to some extent, be inspected (using
techniques from explainable machine learning – (Belle and Papantonis, 2021)),
thus producing (hopefully new) knowledge on language transfer.

Indeed, in this paper we aim to show how insight into interlanguage facts
emerging from usage data can be gained through the application of techniques
from explainable ML.We perform computational NLI by applying a high-accuracy
ML algorithm (support vector machines – SVMs (Zhang, 2011)) to three publicly
available corpora of English texts in which the L1 of the author (or the nation-
ality of the author, which we take as a proxy of their L1) is known. Inspecting
the native language identifiers trained by the SVM allows us to determine which
linguistic phenomena the latter deemed the most revealing of the author’s L1.
This, in turn, provides the linguist with intuitions about the transfer-related
phenomena that can be detected in these corpora. We supplement the NLI ex-
periments by additional experiments on a much less researched companion task,
i.e., predicting if a text has been written by a native or a non-native speaker.

The rest of this paper is organised as follows. In Section 2, we introduce, for
the benefit of the non-expert, the machine learning approach to text classifica-
tion and to native language identification. The reader who is already familiar
with this approach may skip to Section 3, which is instead devoted to describing
our approach to discovering interlanguage facts that emerge in second-language
acquisition by analysing the parameters of the native language identifier re-
turned by the machine learning process. In Section 4, we describe in detail our
experimental setting, including the datasets we run our experiments on, and our
experimental protocol for investigating both NLI and native vs. non-native clas-
sification. In Section 5, we present the results of our experiments, discussing the
accuracy that our classifiers have obtained, analysing which types of linguistic
traits turn out to be most relevant for NLI and native vs. non-native classifica-
tion, and presenting the interlanguage facts and the intuitions about language
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transfer that emerge from these experiments. Section 6 concludes, pointing at
avenues for future research.

2 Machine learning and native language identification

NLI belongs to a large family of tasks that collectively go under the name
of computational authorship analysis (AA), a small branch of computer sci-
ence that investigates methodologies and techniques for formulating hypothe-
ses regarding the characteristics or identity of the author(s) of a text of un-
known or controversial paternity. Computational authorship analysis is a dis-
cipline with a fifty-year history (see for example the fundamental study of
Mosteller and Wallace (1964)), which however has its roots in the (obviously
non-computational) late nineteenth-century pioneering studies of Mendenhall
(1887) and Lutosławski (1898), who first tackled authorship through quantita-
tive stylometry techniques, according to what, following Ginzburg (1989), can be
called an “evidential paradigm”. AA comprises various sub-tasks, among which
– authorship verification (AV): given a text and a candidate author, determine

whether the latter is the author of the former (Stamatatos, 2016);
– closed-set authorship attribution: given a set of candidate authors assumed

to contain the true author of the text under study, identify that author
amongst them (Stamatatos, 2009);

– same-author verification: given two texts, determine whether they were writ-
ten by the same author (Koppel and Winter, 2014);

– author profiling: identify characteristics of the author of a text, such as their
gender or age group (Tetreault et al., 2012). NLI is a special case of author
profiling, in which the characteristics under study is the L1 of the author.

AA and its sub-tasks have several areas of application, amongst which cyberse-
curity (i.e., the prevention of crimes that could be committed by digital means)
and computational forensics (i.e., the computational analysis of traces of crimes
that have already been committed). Both of these areas of application address
contemporary texts that generally have no cultural value, such as threatening
messages, anonymous letters, or correspondence between suspects. However, AA
has also been applied to literary or historical texts, proving to be a valuable aid
to the work of philologists.1

Similarly to all other computational AA tasks, NLI rests upon stylometry, i.e.,
the quantitative study of the relative frequencies with which certain linguistic
traits are present in the text. Yet, whilst AA attempts to capture the stylistic
footprints unconsciously left by an author, NLI relies on the author’s L1-related
footprints. It must be pointed out that computational NLI, as discussed in this
paper, does not take into account the events narrated, the concepts expressed,
and/or their truthfulness or plausibility, and solely analyses linguistic patterns.

2.1 Native language identification and text classification

NLI is based on ML, the sub-discipline of computer science that deals with
the design of methods for training algorithms to complete tasks by exposing
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them to examples in which these tasks were successfully accomplished. The most
important task among those addressed by ML is data classification. Classification
is concerned with assigning a data item to a class chosen from a finite and
predefined set of classes. Classification deals with scenarios in which such a task
is non-deterministic,2 and is based on an analysis of the content of the data item
itself.

NLI can also be formulated in terms of classification, since it consists of clas-
sifying an L2 text into one of m available classes, with m being the number of
possible L1s. Specifically, NLI is an instance of text classification, a task where
ML meets automatic text analysis (Sebastiani, 2002). Automatic text classifica-
tion may concern any of several dimensions of the text (e.g., classification based
on the topic the text is about, according to its literary genre, etc.), all indepen-
dent of each other. In NLI, we perform text classification according to the L1 of
the author of the text.

In text classification, a general-purpose learning algorithm (the trainer ; in
this paper, a support vector machine) “trains” an automatic system (the classi-
fier, or classification model ; in this paper, a native language identifier) to cor-
rectly assign texts to the classes of interest (which in this paper represent the
possible L1s) by exposing it to a set of texts (the training set) whose true class
is revealed to the classifier. Such techniques are also referred to as supervised
learning, since, during the learning phase, the trainer plays the role of a super-
visor. In other words, by examining the training examples, the classifier learns
the linguistic traits that characterise the texts of each class of interest, and will
thus be able to apply this knowledge when asked to classify previously unseen
texts, whose membership in the classes of interest is unknown. In fact, what the
classifier learns is the statistical correlation between language traits and classes.
In particular, the classifier learns which traits are strongly correlated with one
of the classes (and are thus useful in the classification process) and which ones
do not show any significant correlation with any of the classes (and are thus of
little or no use).

2.1.1 Linguistic traits and feature vectors. When building an NLI sys-
tem, there are two main factors that must be taken into account owing to the
effect they exert on classification accuracy (i.e., on the ability of the classifier
to guess the right class as frequently as possible): the first concerns the type of
training algorithm to be used (in this paper: a support vector machine), while
the second concerns the language traits that the algorithm must examine. Whilst
the choice of the former is important, it is probably less so than the choice of the
latter. In fact, while there is a wide range of ML algorithms, and while each of
them displays a different degree of accuracy on a given dataset, it is a well-known
fact that some of these algorithms (among which SVMs) perform very well in
almost all contexts of application.

Conversely, in applications of text classification, it is the choice of which
language traits (“features”, in ML terminology) to base the analysis upon, that
must be carefully pondered. For example, it is clear that choosing semicolons as
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Fig. 1. Representation of texts in a Cartesian plane.

a linguistic trait would not be of much help if we were to perform classification by
topic, since the frequency with which punctuation marks are used bears virtually
no relation to the topic of a text. On the contrary, punctuation could be useful
in an NLI task (for the L2s that do use punctuation marks), because different
L1s make use of punctuation in different ways, and this might interfere with L2
production. Thus, when building an NLI system, one must choose the linguistic
features that, aside from being easy to analyse algorithmically, one hypothesises
to be correlated with L1 transfer.

Once the linguistic features have been chosen, it is possible to extract from
each text a set of relative frequencies of these features. For each chosen feature,
the extraction algorithm will simply count the occurrences of this feature in
the text, divide this number by the total number of occurrences of any feature,
and store the resulting relative frequency into a data structure called a vector.
This is necessary because any data item submitted for consideration to an ML
algorithm must be submitted not in raw form but in vector form. A vector is an
ordered collection of data, in this case numbers representing relative frequencies
of linguistic features. Each vector representing a text can be viewed as a point in
a Cartesian plane, as in Figure 1. Each linguistic feature (in Figure 1: t1 and t2)
corresponds to an axis of the plane, and the relative frequency of that feature
in a text corresponds to the coordinate that the point representing this text
has for that axis. In Figure 1, the points represent the texts by authors of two
different L1s (L1a and L1b), where the symbols “#” and “@” indicate the points
corresponding to training texts by L1a authors and L1b authors, respectively.
For ease of illustration, we here assume that only two linguistic traits (t1 and
t2) are extracted by the extraction algorithm; in this way, we can generate the
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familiar two-dimensional Cartesian plane. For example, for the highlighted point
of type “@”, the relative frequency of feature t1 in the text is 0.21, whilst the
relative frequency of feature t2 in the text is 0.03. Evidently, texts with similar
relative frequencies of occurrence of the same traits are represented by points
which are close to each other in the Cartesian plane. If the linguistic traits have
been chosen well (i.e., if they are good markers of native language), texts by
authors with the same L1 will also be represented by points that are close to
each other in the Cartesian plane.

Figure 1 represents a drastic simplification of the actual NLI process. In
fact, tens of thousands of features (instead of two) are usually considered in
a real NLI endeavour; for example, all words that appear at least once in at
least one training document are usually made to correspond to one feature each.
The resulting vector space is thus highly multidimensional, and whilst it can
be treated mathematically on a par with a two-dimensional space, it cannot be
easily displayed in a two-dimensional figure.

With reference to the simple example of Figure 1, for the machine learning
algorithm, training an NLI classifier means, at a first approximation, finding a
line in the Cartesian plane that separates the training examples of L1a from
those of L1b; this line corresponds to the classifier / native language identifier.
Figure 1 shows two potential lines that have this property: a straight and a
curved one. Different learning algorithms choose different lines amongst the many
possible ones. In mathematical terms, any of those lines is identified by (i) a
parametric equation, and (ii) parameter values for this equation. A learning
algorithm is characterised by a certain parametric equation (e.g., t2 = a · t1 + b,
that represents all straight lines in the Cartesian plane of Figure 1); during
the training phase, it observes the distribution of training examples in order to
determine the parameters of the equation (for the above equation: its slope and
its distance from the origin) so that the resulting line best separates the “#” and
“@” examples.

When a document written by an author of unknown L1 needs to be classified,
the algorithm converts it to a point in the same Cartesian space (in Figure 1,
the point indicated by a small red dot), using the same conversion process used
for the training documents. Depending on where it is located on the plane, it
will end up either on one side or on the other side of the line that represents the
classifier; this determines whether the classifier decrees it an L1a text or an L1b
text. The distance of this point from the line can be interpreted as the degree of
certainty that the classifier has in determining the class to which the document
belongs; a greater distance corresponds to a greater certainty that the classifier
has in its own classification decision.

In the more general case in which the vector space is k-dimensional (instead
of 2-dimensional, as in Figure 1), instead of a line the classifier is a hyperplane,
i.e., a surface of (k− 1) dimensions. In the more general case in which there are
n possible L1s (instead of 2, as in Figure 1), the classifier is composed of (n− 1)
separating surfaces.
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3 Native language identification, second language
acquisition, and explainable machine learning

NLI has been investigated fairly extensively in the last decade. Two main factors
have contributed to such increased attention. The first is the fact that datasets
of texts annotated by author’s L1, which could serve as training data and test
data for NLI systems, have become available: these include ICLE (Granger et al.,
2009), LANG8 (Brooke and Hirst, 2011), ToEFL11 (Blanchard et al., 2013),
EFCamDat2 (Geertzen et al., 2013), and REDDIT-L2 (Rabinovich et al.,
2018). The second is the fact that NLI “shared tasks” (i.e., evaluation cam-
paigns) have been organized (Anand Kumar et al., 2018, 2017; Malmasi et al.,
2017; Tetreault et al., 2013), and these competitive settings have driven many
researchers to develop increasingly better methods that could measure up with,
or beat, the state of the art.

However, these two factors have mostly pushed researchers to optimize sheer
performance, and have not necessarily incentivised them to interpret their sys-
tems’ output in terms of the linguistic phenomena that underlie NLI. In this
respect, it has often been pointed out (Malmasi and Dras, 2015; Tetreault et al.,
2012) that one of the potential outcomes of NLI is the possibility of gaining in-
sight into the L1-related factors that shape language transfer. Although in recent
years the number of publications in the field of NLI has been growing in a bid to
improve the accuracy of NLI software, a qualitative post-hoc inspection and fur-
ther reflection on the results obtained from an SLA perspective, is lacking. First
attempts at exploiting the insights provided by machine-learning-based NLI to
unravel facts about language transfer were made by Jarvis and Crossley (2012)
and Jiang et al. (2014), but not many have followed in the same tradition.

The present work sets out to bridge this gap by analysing the classifiers
produced by the machine learning algorithms, according to the tenets of ex-
plainable machine learning (EML – see e.g., (Belle and Papantonis, 2021)). In
the traditional ML approach to text classification, the classifier produced as the
output of a machine learning process is usually a “black box”, i.e., a function
that observes a document and assigns to it a class label without providing any
explanation as to the reasons that led to such an assignment. On the contrary,
in EML the classifier that has led to a certain decision, and the route it has
taken to reach it, can be inspected, making explicit (in human-readable form)
the rules/patterns/correlations that were exploited by the classifier in order to
perform this class label assignment. In this study, we aim to inspect the algo-
rithm’s rules/patterns/correlations in order to gain insights into the processes
at work in SLA.

More specifically, we use a support vector machine to train a classifier to per-
form native language identification, using a training set of texts whose authors’
L1s are known. The classifier generated by an SVM is a vector of parameters,
one for each feature. Once the training phase is completed we inspect the param-
eters of the classifier. The numerical value of a parameter is the information that
determines how the value of the corresponding feature’s relative frequency in a
document contributes to form the classification decision for that document. A
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high absolute value for a parameter denotes a strong contribution of the feature
associated to it in determining the classification decision (i.e., it indicates that
the SVM believes that this feature has a high discriminative power), whereas
the sign of the value determines if the contribution is toward choosing a specific
L1 or against choosing it. This means that, e.g., a feature to which the SVM
has associated a positive value of high magnitude, corresponds to a footprint that
speakers of the L1 considered often leave in their L2 production.

The reliability of the insights that we can thus obtain depend, of course, on
the accuracy of the classifier. The parameters of an inaccurate classifier are of
little use for our purposes since they do not actually contribute to making correct
classification decisions. Conversely, the parameters of an accurate classifier carry
valuable information, being the key elements in making correct classification
decisions.

It must be pointed out that the processes at work in SLA need not give
rise to errors. For instance, learners belonging to a certain L1 community might
be inclined to overuse a legitimate L2 structure if it literally translates a fre-
quently used pattern in their mother tongue. Albeit correct, excessive reliance
on a certain pattern turns into a distinctive trait for a specific L1 group. At the
other end of the spectrum is avoidance (Dušková, 1969), a consequence of L1
and L2 divergence; accordingly, learners tend to steer clear of the structures that
are not typical of their L1, whilst, at the same time, they rely upon the ones
they are familiar with, thus making their L2 production distinctive. Indeed, one
aim of our investigation is to detect patterns of overuse (indicated by a positive
value of high magnitude) and/or underuse (indicated by a negative value of high
magnitude) common to speakers of the same community.

NLI has always been tackled by using corpora consisting of texts (usually
essays) written in a common L2 (usually English) by L2 learners belonging to
many L1 groups. In machine learning, this corresponds to a single-label multi-
class classification task, since each text must be assigned to exactly one (“single-
label”) of n > 2 (“multiclass”) possible L1s. In this work we go one step further,
and also analyse binary (i.e., n = 2) corpora containing texts not necessar-
ily written by L2 learners. In other words, we will consider corpora consisting
of texts written in a common language (in our case: English), some of which
have been written by native speakers of this language and some of which have
been written by L2 speakers; while in the multiclass case the set of classes is,
say, {Italian,French,Chinese, ...}, in the binary class it is {Native,Non-Native}.
We decided to experiment with corpora containing native texts too in a bid to
extract further discriminant features. The rationale for this choice is that a com-
parison between native and non-native texts might bring to the surface patterns
that are not only shared amongst speakers with the same linguistic background,
but that also mark their output as non-native. In fact, inspection of the pro-
cesses at work in a multiclass classification task only provides insight into the
patterns that distinguish a specific L1 from all other L1s, whilst it does not
disclose information about how the output deviates from the (native) “norm”.
Conversely, by comparing native to non-native texts, we aim to extract more
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and different patterns that mark L2 speakers, thus gathering further knowledge
on L2 production.

4 Experimental analysis

4.1 The corpora

In this section, we present in detail the corpora we have used in order to carry
out our experimental analysis, starting (Section 4.1.1) from the ones we have
used for the multiclass classification task (i.e., detecting the L1 of the author of
the text), and carrying on (Section 4.1.2) with the ones we have used for the
binary task (i.e., detecting whether the author of the text is or is not a native
speaker).

4.1.1 Multiclass classification. In order to carry out a standard, multiclass
NLI task, one needs a corpus consisting of writings of foreign authors whose L1 is
known and manifest. To this aim, we utilised three publicly available corpora of
English as a foreign language, i.e., ToEFL113 (Blanchard et al., 2013), EFCam-
Dat24 (Geertzen et al., 2013; Huang et al., 2018), and REDDIT-L25 (Goldin
et al., 2018; Rabinovich et al., 2018). ToEFL11 and EFCamDat2 are learner
corpora consisting of writings produced by learners of English, whilst REDDIT-
L2 is a collection of posts written in English by non-native Reddit.com users.

ToEFL11 (standing for “Test of English as a Foreign Language – 11 L1s”)
is a publicly available dataset that was compiled in 2013 to support studies in
natural language processing and, in particular, in NLI. It aims to overcome some
shortcomings of its predecessor, i.e., ICLE (Granger et al., 2009), namely the
uneven distribution of topics across the various L1s. Indeed, the problem of topic
distribution is particularly relevant in NLI, since a corpus characterised by such
an unbalanced distribution could turn the task into topic identification rather
than L1 detection.6 ToEFL11 consists of 12,100 essays written by learners of
English from 11 L1s (derived from the learners’ nationality) and collected on
the occasion of the TOEFL exam sessions held in different countries between
the years 2006 and 2007. The language families covered are Romance (French
(FRE), Italian (ITA), Spanish (SPA)), Germanic (German (GER)), Indo-Iranian
(Hindi (HIN)), Altaic (Japanese (JPN), Korean (KOR), Turkish (TUR)), Sino-
Tibetan (Chinese (CHI)), Afro-Asiatic (Arabic (ARA)), and Dravidian (Telugu
(TEL)). Each language is represented by 1,100 essays evenly sampled from eight
prompts (see Table 1 from (Blanchard et al., 2013)). As to the length of the
essays, on average, it varies between 300 and 350 words.

EFCamDat2 (standing for “EF-Cambridge Open Language Database ver-
sion 2”) is a publicly available 83-million-word collection of writing tasks sub-
mitted to Englishtown (the online school of EF Education First7) by about
174,000 learners from 188 countries and autonomous territories. As is the case
with ToEFL11, in EFCamDat2 too nationality was used as an approximation
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Table 1. Number of documents per language per prompt (all columns but last) and
total number of tokens per language (last column) in the ToEFL11 dataset.

L1 P1 P2 P3 P4 P5 P6 P7 P8 # of tokens
ARA 138 137 138 139 136 133 138 141 309,995
CHI 140 141 126 140 134 141 139 139 362,176
FRE 158 160 87 156 160 68 151 160 354,978
GER 155 154 157 151 150 28 152 153 377,801
HIN 161 162 163 86 156 53 158 161 385,040
ITA 173 89 138 187 187 12 173 141 324,793
JPN 116 142 140 138 138 142 141 143 312,571
KOR 140 133 136 128 137 142 141 143 336,799
SPA 141 133 54 159 134 157 160 162 362,720
TEL 165 166 167 55 169 41 166 171 360,353
TUR 169 145 90 170 147 43 167 169 352,808

of the learners’ L1. The learners span across 16 levels of proficiency, thus repre-
senting the entire range of language proficiency aligned with common standards
such as TOEFL, IELTS, and the Common European Framework of Reference
for languages (CEFR). The writings are mostly narrative and cover 128 top-
ics, such as “Introducing yourself by email” or “Writing a movie review”. The
length of texts ranges from very few words to short narratives or articles, the
mean being 6 sentences. This makes EFCamDat2 rather similar to ToEFL11.
Unlike ToEFL11, however, in EFCamDat2 the distribution of topics is not
balanced, since the corpus was not especially compiled to support NLI tasks.
Although EFCamDat2 offers a wide range of L1s, for consistency, we restricted
our attention to the 11 L1s collected in ToEFL11, i.e., Arabic (ARA), Chinese
(CHI), French (FRE), German (GER), Hindi (HIN), Italian (ITA), Japanese
(JPN), Korean (KOR), Spanish (SPA), Russian (RUS), Turkish (TUR). For
each of the selected L1s we randomly sampled 2,000 scripts, in order to have a
balanced distribution of L1 labels, similarly to ToEFL11. Table 2 reports the
distribution of writings across the 11 L1s.

The REDDIT-L2 corpus is a publicly available collection of Reddit.com
posts in English. Reddit.com is a social news aggregation, web content rating,
and discussion website which hosts over 450 million users (as of early 2022).
The content is organised into subcategories, also known as subreddits, by area
of interest. As stated above, the REDDIT-L2 corpus differs from the ones dis-
cussed above in that, whilst the previous ones are collections of written tasks
carried out in educational settings, REDDIT-L2 is composed of short texts
produced by non-native speakers of English in a recreational setting. Moreover,
Reddit non-native users are highly proficient and possess near-native command
of the language. Conversely, the proficiency levels of ToEFL11 and EFCam-
Dat2 learners are more diversified. The selection of the posts for inclusion in
the corpus was operated on the basis of the information available on the users.
Only posts from users whose provenance could be retrieved as a metadatum
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Table 2. Number of documents per language in the EFCamDat2 dataset. The 1st
column indicates the number of documents in the original dataset, the 2nd column
indicates the number of documents in the subsets we use for our experiments, while
the 3rd column indicates the number of tokens in these subsets.

L1 # docs # docs # tokens
(original) (our subsets) (our subsets)

ARA 3,562 2,000 153,007
CHI 165,162 2,000 168,207
FRE 41,626 2,000 193,768
GER 54,597 2,000 198,447
HIN 29,569 2,000 156,097
ITA 45,249 2,000 181,974
JPN 21,374 2,000 166,133
KOR 5,433 2,000 164,271
SPA 8,187 2,000 189,502
RUS 70,208 2,000 184,893
TUR 14,199 2,000 154,380

were selected. Specifically, the country of origin of a user was extracted from the
country “flair”, a metadatum that users (optionally) specify in some European
subreddits (e.g., r/europe). For this reason the REDDIT-L2 corpus mostly ad-
dresses European languages. The rationale of using the country of residence is
as for other learner corpora, i.e., in the absence of an explicit specification of the
mother tongue of the speaker, the country of residence is used as a proxy for it.
The size of the entire dataset amounts to 3.8 billion tokens, resulting from over
250 million sentences produced by approximately 45,000 users. The topics are
extremely varied as the corpus spans over 80,000 different subreddits, and are not
equally distributed across languages. We selected the texts associated with the
11 most popular L1s, i.e., Finnish (FIN), French (FRE), German (GER), Ital-
ian (ITA), Dutch (NED), Norwegian (NOR), Polish (POL), Portuguese (POR),
Rumanian (ROM), Spanish (SPA), Swedish (SWE), randomly sampling 10,000
posts, among those longer than 300 characters, for each language. See Table 3
for summary statistics about REDDIT-L2.

4.1.2 Binary classification. As stated in Section 3, aside from the more
traditional NLI task in which only datasets of non-native speakers are utilised,
we set out to investigate the differences between native vs. non-native texts,
focusing on native vs. non-native speakers of English.

Since there exist no ready-made datasets with the above characteristics, we
create binary datasets of native vs. non-native texts by pairing a non-native
dataset (one of those discussed in Section 4.1.1) with a native dataset containing
texts of a similar type. For every L1 in the three non-native datasets, we create
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Table 3. Number of documents per language in the REDDIT-L2 dataset (all lines
except last) and in the REDDIT-UK dataset (last line); we use the former for the
multiclass experiments and the binary experiments, and the latter for the binary ex-
periments only. The 1st column indicates the number of documents in the original
datasets, the 2nd column indicates the number of documents in the subsets we use for
our experiments, while the 3rd column indicates the number of tokens in these subsets.

L1 # docs # docs # tokens
(original) (our subsets) (our subsets)

GER 5,882,569 10,000 1,430,132
NED 4,896,785 10,000 1,395,062
SWE 3,185,234 10,000 1,401,137
FRE 2,253,954 10,000 1,400,692
FIN 2,209,668 10,000 1,451,496
POL 1,827,281 10,000 1,410,382
NOR 1,554,218 10,000 1,380,917
SPA 1,399,016 10,000 1,444,177
POR 1,374,597 10,000 1,456,318
ROM 1,175,844 10,000 1,488,857
ITA 1,031,113 10,000 1,519,165
ENG 13,310,178 10,000 1,439,863

also a native vs. non-native binary dataset by pairing the portion of a dataset
relative to the specific L1 with a dataset of native documents.

We pair both ToEFL11 and EFCamDat2 with the LOCNESS corpus
(Granger, 1998).8 LOCNESS is a 324,304 word-long collection of 1,933 argu-
mentative essays written by English native speakers, i.e., American and British
students. In particular, LOCNESS is composed of British pupils’ A-level es-
says (224 essays, for a total of 60,209 words), British university students’ essays
(889 essays, 95,695 words), and American university students’ essays (820 es-
says, 168,400 words). These pairings are reasonable, since ToEFL11 and EF-
CamDat2 too are collections of students’ writings produced in an educational
setting. The result is two L1-vs-EN corpora, that we call ToEFL11/LOCNESS
and EFCamDat2/LOCNESS, respectively.

ToEFL11/LOCNESS is composed of 11 L1-vs-EN binary classification
datasets, each consisting of 1,100 native and 1,100 non-native documents. The
LOCNESS corpus contains 1,933 documents; in order to work with balanced
native/non-native datasets we randomly sample 1,100 documents from it in or-
der to define the native portion of each ToEFL11/LOCNESS dataset. All the
resulting 11 binary datasets use the same sample of 1,100 LOCNESS docu-
ments.9

EFCamDat2/LOCNESS is composed of 11 L1-vs-EN binary classification
datasets, each consisting of 1,933 native documents and 2,000 non-native docu-
ments. Given the small difference in size between the native and the non-native
portions of EFCamDat2/LOCNESS datasets, we have not performed under-
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sampling on the majority label, and we consider the EFCamDat2/LOCNESS
datasets to be balanced.

Concerning REDDIT-L2, we create the native vs. non-native datasets us-
ing REDDIT-UK, an addendum to the REDDIT-L2 corpus that comprises
Reddit.com posts produced by native British English speakers only. We call
REDDIT-L2/REDDIT-UK the resulting L1-vs-EN dataset; it is composed of
11 L1-vs-EN binary classification datasets, each consisting of 10,000 native and
10,000 non-native documents. All the resulting 11 binary datasets use the same
sample of 1,100 REDDIT-UK documents.

Table 4 summarizes the characteristics of all the datasets we use in our
experimentation.

Table 4. Corpora used in this work, and their characteristics. All these datasets contain
documents in 11 L1 languages.

Dataset Type # of texts # of tokens
ToEFL11 Non-native 12,100 3,840,034

EFCamDat2 Non-native 22,000 1,910,679
REDDIT-L2 Non-native 110,000 15,778,335

ToEFL11/LOCNESS Native vs. Non-native 13,200 4,026,257
EFCamDat2/LOCNESS Native vs. Non-native 23,933 2,234,983

REDDIT-L2/REDDIT-UK Native vs. Non-native 120,000 17,218,198

4.2 Features

We decided to examine the contribution of different types of features to the NLI
endeavour: lexical, morphological, syntactic, and statistical.

4.2.1 Lexical features. We start by considering as lexical features the tokens
(i.e., words as they appear in the text, which we call “type T” features) or
the lemmas (i.e., every token is reduced to its corresponding lemma, giving
rise to what we call “type L” features).10 In both cases we consider unigrams,
bigram, and trigrams (i.e., sequences of one / two / three tokens / lemmas), thus
generating the six sets of features T1, T2, T3, L1, L2, L3.

We also test a “masked” version of the above features in which named enti-
ties (NE) are replaced by a placeholder.11 NEs denote real-world objects such as
organisations, locations, persons, etc., and represent an issue in NLI, since they
are clues that the classifier could heavily rely upon in order to classify the texts.
For instance, ToEFL / EFCamDat2 assignments that prompt the candidates
to describe personal habits are likely to favour the use of terms such as geo-
graphical locations (e.g., Italy, Tuscany, Rome, etc.), languages (e.g., Finnish,
Norwegian, Swedish, etc.), proper nouns (e.g., Javier, Pilar, Rocío, etc.), organ-
isations (e.g., Peugeot, Sorbonne, Paris Saint-Germain, etc.), currencies (e.g.,
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Yuan, Yen, Ruble, etc.), and so on. As a consequence, the classifier could end up
assigning the correct label to a document solely in virtue of the NEs it contains.
For this reason, we define sets of features from which NEs are masked out (we
call the resulting feature sets TN1, TN2, TN3, LN1, LN2, LN3).

We also test the use of a different form of masking that masks out all terms
belonging to some specific POS classes; the POS classes that are masked are
ADD (email address), FW (foreign word), NN (noun, singular or mass), NNP
(noun, proper singular), NNPS (noun, proper plural), NNS (noun, plural), XX
(unknown). The masked terms are replaced with their POS tags (e.g., “Reach
me at john.doe@gmail.com” becomes “Reach me at ADD”). We call the resulting
feature sets TP1, TP2, TP3, LP1, LP2, LP3.

4.2.2 Morphological features. We also study the role of morphological suf-
fixes, by mapping tokens into pairs consisting of a POS tag and a morphological
suffix. Such a mapping would transform, e.g., the sentence “the election of the
president is heating quickly” into the sequence “DET NN-ction IN DET NN-ent
VB VB-ing RB-ly”, from which features could be extracted as usual (e.g., “DET”
would be a unigram and “DET NN-ction” would be a bigram). We call the re-
sulting feature sets MS1, MS2, MS3. The hypothesis we want to test here is that
speakers of different L1s might have a tendency to choose different English terms
based on their morphological similarity with terms in their respective L1s.

4.2.3 Syntactic features. As for the syntactic part, we map all the words
in the text into

– their respective parts of speech (e.g., “I run fast” becomes “PRP VBP RB”);
this gives rise to the P1, P2, P3 feature sets;

– the respective labels obtained from syntactic dependency parsing, which as-
signs a syntactic label to each token (e.g., “adverbial modifier”, “clausal sub-
ject”, etc.); this gives rise to the D1, D2, D3 feature sets. The rationale behind
our use of syntactic parsing is that speakers of different L1s may structure
their sentences differently, and we may thus expect syntactic parsing to cap-
ture these habits.

4.2.4 Statistical features. Finally, we define three sets of statistical features,
by analysing word lengths (WL), sentence lengths (SL), and dependency depths
(DD).

Analysing word lengths means mapping a text into a list of numbers that
denote the lengths of the words that make up the text (e.g., “I have lived in France
all my life” would be encoded as “1 4 5 2 6 3 2 4”, which can be represented by
features 1 2 3 4 5 6).

Analysing sentence lengths is similar, but is performed at the sentence level,
i.e., means mapping a text into a list of numbers that denote the lengths of the
sentences that make up the text.
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Analysing dependency depths means measuring the number of hops that are
necessary to “jump” from the root of the dependency parse tree to the node of the
tree that represents the specific token. For instance “I like cookies that contain
butter” would be encoded as “1 0 1 3 2 3”, given that “like” is the root verb, “I” and
“cookies” are directly linked to it, “contain” is linked to “cookies”, and “that” and
“butter” are linked to “contain”. Dependency depths are correlated with sentence
length, but provide specific information concerning syntactic complexity.

After extracting all these features, we filter out all lexical, morphological, and
syntactic features that occur only once in a given dataset, since these features
cannot possibly have an impact on the classification process (if a feature occurs
in the training set but not in the test set, no test document will be impacted by
it; if a feature occurs in the test set but not in the training set, no knowledge
about its correlation with the class labels has been gained during the training
phase).

Table 5 reports how many distinct features of each type remain in each
dataset after the above-mentioned filtering step. Features of type 2 and 3 (bi-
grams and trigrams) show a combinatorial growth in number with respect to
features of type 1 (unigrams), as expected. Conversely, part-of-speech (P1),
dependency-depth (D1), and statistical features (WL SL DD), are few. We can-
not expect these small-sized feature sets to bring about a high classification
accuracy by themselves, but it will be interesting to inspect which features from
these sets are the most informative for the machine learning algorithm.

4.3 Experimental protocol

We run experiments of two types, i.e., (i) multiclass experiments on ToEFL11,
EFCamDat2, and REDDIT-L2, aimed at determining the L1 of the author
of the text, and (ii) binary experiments on ToEFL11/LOCNESS, EFCam-
Dat2/LOCNESS, and REDDIT-L2/REDDIT-UK, aimed at determining whether
the author of the text is a native or non-native speaker of English.

As previously mentioned, the learning algorithm we use for our experiments
is support vector machines (SVMs)12. SVMs were devised for training binary
classifiers, so they are natively fit for running the binary experiments. For the
multiclass experiments, though, a workaround, i.e., the well-known “one-vs-all”
approach, was necessary. This approach comes down to training one binary clas-
sifier for each of the n L1s considered; for each such classifier, the training doc-
uments written by speakers of the L1 considered are used as positive training
examples, while the training documents written by speakers of all the other
(n− 1) L1s are used as negative training examples. We then independently “cal-
ibrate” each of the resulting n binary classifiers (via “Platt calibration” – see
(Platt, 2000)), i.e., we tune them in such a way (i) that each of them outputs,
for a test document, a posterior probability (representing the probability that
the classifier subjectively assigns to the fact that the document was written by
a speaker of the corresponding L1), and (ii) that the posterior probabilities re-
turned by the n classifiers for the same test document are comparable. The set of
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Table 5. Number of features extracted from each dataset.
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Lexical

T1 25,074 19,369 104,721 28,550 23,946 109,575
T2 186,418 106,775 814,017 209,404 135,311 873,251
T3 328,578 159,226 1,194,267 358,245 188,701 1,301,792
L1 19,542 15,722 88,901 22,255 19,097 93,224
L2 148,110 89,016 681,563 167,523 113,222 729,723
L3 308,919 149,001 1,140,693 338,838 179,960 1,240,682
TN1 23,712 16,328 85,183 26,576 20,387 89,021
TN2 184,608 99,357 749,645 206,224 126,524 802,801
TN3 330,170 155,540 1,217,103 360,332 185,426 1,325,138
LN1 18,189 12,606 68,676 20,264 15,425 71,923
LN2 146,124 81,231 612,688 164,051 104,006 654,319
LN3 310,343 144,542 1,154,485 340,745 175,948 1,253,926
TP1 9,187 6,074 28,412 10,223 7,596 29,832
TP2 79,184 43,886 282,027 87,483 55,312 299,864
TP3 210,196 102,120 794,618 229,087 124,785 854,377
LP1 5,928 3,986 17,742 6,502 4,768 18,681
LP2 53,946 30,717 190,470 59,676 38,737 201,825
LP3 172,577 83,354 644,229 188,877 103,865 689,800

Morphological
MS1 9,335 6,199 28,600 10,376 7,743 30,021
MS2 100,182 54,326 334,674 110,281 68,357 355,830
MS3 285,928 130,648 1,016,853 311,470 159,616 1,096,187

Syntactic

P1 50 50 50 50 50 50
P2 1,677 1,656 2,160 1,754 1,751 2,174
P3 18,417 16,144 42,420 20,437 18,567 43,341
D1 45 45 45 45 45 45
D2 1,534 1,402 1,802 1,553 1,465 1,814
D3 16,658 12,712 29,815 17,409 14,301 30,542

Statistical
WL 21 38 41 28 42 39
SL 159 111 192 161 115 196
DD 28 21 65 29 29 65
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n calibrated binary classifiers can thus be used to perform multiclass classifica-
tion of a test document, by (a) classifying the document with all the n classifiers,
and (b) assigning as its predicted L1 the one associated with the classifier that
has returned the highest classification score. We can then inspect each binary
classifier, using the methodology described in Section 3, so as to determine which
features give the strongest contribution towards assigning the L1 label and which
features give the strongest contribution towards not assigning it, independently
for every L1.

For the native vs. non-native binary classification experiments, instead, we
use the SVM to train a single L1-vs-EN classifier for every L1. We do not compare
a L1-vs-EN classifier for a given L1 against the analogous classifiers for the other
L1s, as this classification task focuses on each L1 independently of the others.

For training our classifiers we use the default values for the SVM hyper-
parameters (in particular, we use the linear kernel), for three reasons: (a) in
preliminary experiments , explicitly optimising these hyperparameters returned
only very marginal improvements; (b) hyperparameter optimisation does not
impact on the values assigned to the most informative features, which are the
goal of our study, but on the long tail of the least informative ones; (c) given
the many combinations we test, our experiments are computationally expensive,
and engaging in hyperparameter optimisation would make them unmanageable.
Concerning computational cost, we stress that, despite the enormous amount
of features at play (e.g., more than 11 million features are used in the “All”
experiment of Table 7 for REDDIT-L2/REDDIT-UK), we have performed
no feature selection, in order not to remove any information that might prove
interesting in the analysis we will carry out in Section 5.

This difference among the multiclass tasks and the binary tasks highlights the
difference in the insights one can derive from the inspection of the classification
models. The features in the multiclass classification models are meant to separate
an L1 from the other L1s, while the features in the binary L1-vs-EN classification
models are meant to separate a specific L1 from native English.

As the mathematical function for measuring the quality of our classifiers
we use the so-called “vanilla accuracy” (hereafter: accuracy) measure, which is
simply defined as the fraction of all classification decisions that are correct. More
formally,

A =

∑
λi∈L Cii∑

λi,λj∈L Cij
(1)

where L is the set of languages considered in the classification task (11 languages
in our multiclass experiments and 2 languages in our native vs. non-native exper-
iments) and Cij represents the number of documents that the classifier assigned
to λi and whose true label is λj . Accuracy values range from 0 (worst) to 1
(best).

In order to determine the accuracy of the classifiers we adopt a 10-fold cross-
validation protocol. A k-fold cross validation protocol evaluates the accuracy
of a machine learning algorithm by running multiple experiments on a given
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Fig. 2. Visual comparison among the accuracy values deriving from the various feature
sets for the NLI multi-class classification task. The exact values are reported in Table 6.

dataset. The dataset is split into k subsets of the same size. A single experiment
consists of training the learning algorithm on (k − 1) subsets and testing the
trained model on the remaining subset. This step is repeated k times, every
time using a different subset for testing. Once the k experiments are completed,
all the texts in the dataset have been tested upon, yet in a way that correctly
excludes them from the training set. The collected predictions are compared
with the true labels from the dataset, and accuracy can thus be computed. The
cross-validation protocol thus exploits the entire dataset in order to evaluate a
machine learning method, differently from a simpler train-and-test protocol in
which only a subset of the dataset is subject to evaluation.

Consistently with the rest of the NLI literature, we use tfidf weighting for
generating all the vectors that represent our documents.
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Table 6. Accuracy results for the L1 identification task, obtained by using only the fea-
tures indicated on the row on the dataset indicated in the column. The five best results
for every dataset are highlighted in bold, and the five worst results are highlighted in
italic. A visual comparison of the values is shown in Figure 2.

ToEFL11 EFCamDat2 REDDIT-L2 Average

Lexical

T1 0.766 0.541 0.361 0.654
T2 0.797 0.493 0.340 0.645
T3 0.721 0.408 0.261 0.565
L1 0.750 0.535 0.360 0.643
L2 0.801 0.497 0.335 0.649
L3 0.741 0.431 0.269 0.586
TN1 0.754 0.400 0.300 0.577
TN2 0.793 0.406 0.297 0.600
TN3 0.716 0.341 0.240 0.529
LN1 0.738 0.385 0.298 0.562
LN2 0.793 0.402 0.290 0.598
LN3 0.735 0.356 0.247 0.546
TP1 0.676 0.306 0.226 0.491
TP2 0.741 0.363 0.251 0.552
TP3 0.703 0.341 0.231 0.522
LP1 0.676 0.306 0.226 0.491
LP2 0.741 0.363 0.251 0.552
LP3 0.703 0.341 0.231 0.522

Morphological
MS1 0.681 0.306 0.230 0.494
MS2 0.739 0.354 0.248 0.547
MS3 0.679 0.321 0.220 0.500

Syntactic

P1 0.363 0.189 0.162 0.276
P2 0.535 0.263 0.197 0.399
P3 0.551 0.276 0.184 0.414
D1 0.339 0.182 0.148 0.261
D2 0.464 0.227 0.165 0.346
D3 0.495 0.231 0.153 0.363

Statistical
WL 0.211 0.132 0.122 0.172
SL 0.160 0.139 0.113 0.150
DD 0.181 0.131 0.107 0.156
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Table 7. Accuracy results for the L1 identification task, tackled by using unions of
sets of features. The two best results for every dataset are displayed in bold, and the
two worst results are displayed in italic.

ToEFL11 EFCamDat2 REDDIT-L2 Average

Lexical

T1 T2 T3 0.816 0.548 0.397 0.682
L1 L2 L3 0.817 0.552 0.394 0.685

TN1 TN2 TN3 0.809 0.447 0.342 0.628
LN1 LN2 LN3 0.812 0.446 0.338 0.629
TP1 TP2 TP3 0.759 0.392 0.277 0.576
LP1 LP2 LP3 0.759 0.392 0.277 0.576

Morphological MS1 MS2 MS3 0.762 0.388 0.278 0.575

Syntactic P1 P2 P3 0.583 0.290 0.191 0.437
D1 D2 D3 0.518 0.242 0.157 0.380

Statistical WL SL DD 0.256 0.151 0.129 0.204
(All) (All) 0.813 0.541 0.390 0.677

5 Results

5.1 Results of the multiclass experiments: Identifying the NLI of
the speaker

Table 6 reports the accuracy results we have obtained for the L1 identification
task on our three multiclass datasets. Results are displayed per feature set, since
we have run classification experiments in which only one of the 30 sets of features
we have defined in Section 4.2 has been used, so as to highlight which types of
features work best. As can be observed, even though accuracy differs considerably
across the three datasets, the trends are rather similar , i.e., if feature set x
works better than feature set y in a dataset, the same tends to happen in the
two other datasets too. As a general observation, lexical features perform better
if compared to other types of features, whilst the features associated to the worst
performance are the statistical ones (i.e., WL, SL, DD), whose figures are indeed
very similar across the datasets; but let us analyse this in more detail.

In ToEFL11 lexical features perform extremely well, particularly token and
lemma bigrams. Masking the NEs does not have a significant effect, and this is
obviously due to the fact that, since ToEFL11 was especially created for NLI
tasks, NEs had already been removed by its creators.13 In the EFCamDat2
dataset too, lexical features outperform other types of features, but this time it is
unigrams that lead to the highest accuracy. Interestingly, masking NEs leads to
poor performance. This might be a consequence of the type of essays the dataset
consists of. In fact, EFCamDat2 is made up of writing assignments which,
amongst others, prompt the author to write about their life, habits, and so on.
Therefore, resorting to NEs might be quite common practice, and, should this
be the case, removing them from the texts results in decreased performance. In
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addition, the importance of NEs is also a possible explanation of the remarkable
performance of unigrams (since NEs often consist of one word only).

Accuracy in the REDDIT-L2 dataset is much lower than in ToEFL11 and
(to a lesser degree) EFCamDat2, and the differences amongst the various types
of features are less substantial than for the two other datasets. The fact that the
native language identifier struggles with the REDDIT-L2 posts might be due
to two factors: (a) text length, and/or (b) the proficiency level of Reddit.com
authors. First, Reddit.com posts tend to be brief, and this might provide the
machine with too few significant patterns. The other possible reason has to do,
as mentioned above, with the level of proficiency in English of non-native speak-
ers who are active users of the social medium. Whilst the ToEFL11 and the
EFCamDat2 datasets rely on the production of learners of English, Reddit.com
users are generally fluent in English and interact naturally with their peers. If the
overall English level is high, it might be harder to find discriminant features that
markedly separate L1 groups, as the L2 production will be quite homogeneous
and close to that of native authors.

It is also interesting to compare the performance levels delivered by unigrams,
bigrams, and trigrams, respectively. Figure 2 makes it visually apparent that,
when it comes to lexical features, unigrams perform better than bigrams and
much better than trigrams; this indicates that learners from different L1 groups
differ in their choice of words (which is intuitive), rather than in their choice of
word groups. The opposite can be observed for syntactic features, where trigrams
work better than bigrams and much better than unigrams; this indeed makes
sense, since it indicates that different L1 groups differ in their preferred syntactic
constructions, rather than in using one part of speech more often than another.

Table 7 displays classification accuracy values averaged across unigrams, bi-
grams, and trigrams of the same type; we display the results in this way in order
to highlight the different contributions of the different types of features, irrespec-
tive of the size of the n-gram. In this table, the “All” setup refers to an experiment
in which all the features are used simultaneously .14 It is immediately evident
from this table that, in all the three datasets, the most discriminative features
for the NLI task are the lexical ones, followed by the morphological, syntactic,
and statistical features, in this order. The lexical features are so dominant that
the two best types (the T and L types) even deliver better performance than all
the features taken together; this is somehow unusual for SVMs, which are noto-
riously so robust to overfitting that, in general, “the more features, the better”.
This fact unequivocally shows that word choice is, more than anything, what
gives an L1 speaker away.

5.2 Results of the binary experiments: Predicting if the speaker is
native or non-native

Tables 8, 9, 10 show how each feature set performs in the L1-vs-EN binary tasks
on the different datasets used. Compared to the multiclass NLI task, accuracy is
much higher for every feature set on every dataset. This time, most feature sets
behave well, especially ToEFL11/LOCNESS and EFCamDat2/LOCNESS,
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Table 8. Accuracy results for the L1-vs-EN binary classification task on
ToEFL11/LOCNESS. Each cell represents the accuracy obtained when the L1 is
the one on the column, using just the features indicated on the row.

ARA CHI FRE GER HIN ITA JPN KOR SPA TEL TUR Average

Lexical

T1 0.992 0.997 0.997 0.998 0.997 0.998 0.999 0.997 0.997 0.999 0.995 0.997
T2 0.988 0.996 0.992 0.994 0.994 0.993 0.996 0.994 0.991 0.996 0.990 0.993
T3 0.970 0.988 0.983 0.990 0.983 0.984 0.989 0.984 0.980 0.982 0.977 0.983
L1 0.991 0.999 0.997 0.999 0.998 0.999 0.998 0.995 0.997 0.998 0.996 0.997
L2 0.986 0.997 0.994 0.996 0.998 0.997 0.996 0.996 0.991 0.998 0.992 0.995
L3 0.981 0.992 0.986 0.990 0.987 0.992 0.989 0.990 0.984 0.987 0.985 0.988
TN1 0.990 0.997 0.997 0.998 0.996 0.998 0.998 0.996 0.997 0.999 0.995 0.996
TN2 0.988 0.996 0.991 0.995 0.993 0.994 0.996 0.993 0.991 0.996 0.988 0.993
TN3 0.972 0.989 0.984 0.991 0.983 0.986 0.991 0.984 0.980 0.984 0.976 0.984
LN1 0.992 0.998 0.997 0.998 0.996 0.999 0.998 0.994 0.997 0.998 0.996 0.997
LN2 0.989 0.997 0.994 0.995 0.996 0.996 0.997 0.995 0.991 0.997 0.991 0.994
LN3 0.980 0.991 0.986 0.991 0.987 0.990 0.991 0.990 0.982 0.987 0.982 0.987
TP1 0.977 0.991 0.984 0.986 0.981 0.985 0.988 0.982 0.980 0.988 0.978 0.984
TP2 0.979 0.991 0.988 0.991 0.988 0.990 0.992 0.988 0.982 0.991 0.985 0.988
TP3 0.973 0.988 0.986 0.984 0.980 0.983 0.984 0.982 0.978 0.985 0.975 0.982
LP1 0.976 0.988 0.980 0.981 0.978 0.981 0.985 0.981 0.978 0.986 0.977 0.982
LP2 0.977 0.989 0.984 0.988 0.986 0.988 0.990 0.986 0.980 0.990 0.982 0.986
LP3 0.970 0.984 0.981 0.983 0.978 0.981 0.981 0.980 0.976 0.984 0.976 0.980

Morphological
MS1 0.984 0.991 0.987 0.989 0.986 0.991 0.989 0.986 0.983 0.993 0.984 0.988
MS2 0.979 0.990 0.990 0.989 0.989 0.991 0.991 0.987 0.984 0.990 0.985 0.988
MS3 0.965 0.983 0.973 0.980 0.974 0.976 0.986 0.978 0.968 0.979 0.971 0.976

Syntactic

P1 0.925 0.938 0.933 0.932 0.923 0.921 0.929 0.914 0.930 0.924 0.915 0.926
P2 0.980 0.995 0.991 0.985 0.986 0.984 0.989 0.992 0.990 0.988 0.986 0.988
P3 0.974 0.995 0.990 0.983 0.987 0.980 0.987 0.987 0.988 0.983 0.985 0.985
D1 0.826 0.839 0.828 0.847 0.799 0.825 0.865 0.858 0.835 0.815 0.788 0.830
D2 0.913 0.941 0.918 0.930 0.912 0.921 0.956 0.939 0.915 0.924 0.904 0.925
D3 0.923 0.957 0.930 0.938 0.924 0.940 0.968 0.953 0.928 0.940 0.925 0.939

Statistical
WL 0.713 0.693 0.656 0.652 0.624 0.650 0.680 0.662 0.675 0.623 0.594 0.657
SL 0.554 0.715 0.722 0.765 0.733 0.631 0.720 0.723 0.680 0.704 0.713 0.696
DD 0.391 0.521 0.399 0.459 0.344 0.440 0.574 0.562 0.401 0.383 0.547 0.456
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Table 9. As Table 8, but with EFCamDat2/LOCNESS in place of
ToEFL11/LOCNESS.

ARA CHI FRE GER HIN ITA JPN KOR RUS SPA TUR Average

Lexical

T1 0.990 0.992 0.993 0.990 0.992 0.993 0.991 0.990 0.994 0.989 0.993 0.992
T2 0.981 0.985 0.985 0.985 0.990 0.985 0.985 0.986 0.986 0.982 0.987 0.985
T3 0.955 0.971 0.973 0.971 0.971 0.971 0.971 0.970 0.977 0.961 0.968 0.969
L1 0.989 0.992 0.995 0.992 0.991 0.993 0.991 0.987 0.992 0.989 0.993 0.991
L2 0.984 0.987 0.986 0.990 0.991 0.988 0.987 0.985 0.988 0.982 0.987 0.987
L3 0.967 0.974 0.975 0.974 0.978 0.974 0.978 0.974 0.978 0.966 0.975 0.974
TN1 0.987 0.990 0.990 0.990 0.992 0.990 0.988 0.988 0.992 0.988 0.991 0.990
TN2 0.980 0.982 0.984 0.984 0.987 0.984 0.983 0.984 0.986 0.981 0.986 0.984
TN3 0.958 0.974 0.974 0.972 0.972 0.970 0.969 0.971 0.977 0.960 0.970 0.970
LN1 0.986 0.990 0.991 0.991 0.992 0.990 0.988 0.985 0.992 0.986 0.991 0.989
LN2 0.983 0.986 0.985 0.989 0.988 0.986 0.985 0.983 0.987 0.981 0.986 0.985
LN3 0.965 0.977 0.975 0.974 0.977 0.973 0.973 0.973 0.977 0.966 0.974 0.973
TP1 0.973 0.979 0.979 0.971 0.980 0.980 0.975 0.975 0.981 0.966 0.981 0.976
TP2 0.974 0.984 0.979 0.977 0.985 0.983 0.977 0.981 0.985 0.973 0.983 0.980
TP3 0.961 0.978 0.972 0.968 0.977 0.973 0.972 0.974 0.977 0.960 0.977 0.972
LP1 0.947 0.958 0.961 0.961 0.968 0.970 0.966 0.975 0.972 0.956 0.971 0.968
LP2 0.948 0.954 0.962 0.967 0.965 0.963 0.966 0.971 0.972 0.963 0.972 0.972
LP3 0.931 0.943 0.952 0.958 0.956 0.953 0.957 0.965 0.967 0.951 0.966 0.967

Morphological
MS1 0.975 0.980 0.981 0.974 0.986 0.984 0.976 0.980 0.981 0.970 0.985 0.979
MS2 0.974 0.982 0.980 0.982 0.987 0.980 0.979 0.982 0.983 0.973 0.985 0.981
MS3 0.954 0.969 0.966 0.963 0.970 0.962 0.967 0.971 0.974 0.959 0.972 0.966

Syntactic

P1 0.947 0.965 0.946 0.944 0.962 0.951 0.957 0.958 0.959 0.932 0.968 0.954
P2 0.961 0.975 0.970 0.968 0.975 0.971 0.967 0.970 0.973 0.955 0.975 0.969
P3 0.960 0.981 0.968 0.966 0.979 0.973 0.972 0.977 0.974 0.956 0.977 0.971
D1 0.926 0.941 0.921 0.923 0.935 0.911 0.931 0.936 0.938 0.901 0.948 0.928
D2 0.943 0.960 0.950 0.945 0.955 0.941 0.949 0.955 0.955 0.928 0.967 0.950
D3 0.946 0.967 0.954 0.947 0.962 0.946 0.953 0.963 0.960 0.937 0.972 0.955

Statistical
WL 0.863 0.893 0.867 0.847 0.892 0.873 0.880 0.885 0.885 0.843 0.887 0.874
SL 0.861 0.888 0.876 0.878 0.888 0.854 0.900 0.910 0.905 0.839 0.922 0.884
DD 0.836 0.873 0.862 0.863 0.886 0.828 0.895 0.903 0.891 0.820 0.912 0.870
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Table 10. As Table 8, but with REDDIT-L2/REDDIT-UK in place of
ToEFL11/LOCNESS.

FIN FRE GER ITA NED NOR POL POR ROM SPA SWE Average

Lexical

T1 0.764 0.784 0.786 0.758 0.739 0.749 0.774 0.774 0.771 0.757 0.758 0.765
T2 0.752 0.772 0.778 0.740 0.725 0.738 0.770 0.762 0.762 0.744 0.735 0.753
T3 0.701 0.710 0.725 0.688 0.671 0.685 0.716 0.701 0.704 0.681 0.674 0.696
L1 0.760 0.781 0.780 0.757 0.737 0.745 0.774 0.771 0.767 0.758 0.753 0.762
L2 0.758 0.774 0.780 0.739 0.726 0.741 0.768 0.760 0.765 0.744 0.739 0.754
L3 0.707 0.726 0.731 0.689 0.684 0.695 0.725 0.710 0.711 0.695 0.682 0.705
TN1 0.739 0.763 0.764 0.735 0.715 0.729 0.752 0.752 0.752 0.735 0.737 0.743
TN2 0.739 0.756 0.762 0.725 0.710 0.724 0.760 0.752 0.751 0.731 0.724 0.739
TN3 0.693 0.704 0.717 0.681 0.656 0.676 0.711 0.697 0.697 0.675 0.665 0.688
LN1 0.733 0.762 0.757 0.732 0.713 0.726 0.756 0.753 0.751 0.738 0.730 0.741
LN2 0.740 0.762 0.766 0.726 0.711 0.725 0.758 0.752 0.755 0.736 0.726 0.742
LN3 0.700 0.720 0.721 0.684 0.668 0.688 0.722 0.708 0.706 0.687 0.675 0.698
TP1 0.702 0.728 0.725 0.695 0.675 0.695 0.729 0.719 0.718 0.700 0.691 0.707
TP2 0.711 0.742 0.739 0.700 0.687 0.709 0.743 0.733 0.729 0.707 0.696 0.718
TP3 0.688 0.704 0.707 0.671 0.654 0.676 0.719 0.697 0.698 0.673 0.661 0.686
LP1 0.692 0.701 0.703 0.659 0.644 0.675 0.703 0.701 0.689 0.680 0.671 0.689
LP2 0.702 0.714 0.711 0.681 0.657 0.689 0.714 0.713 0.702 0.687 0.676 0.701
LP3 0.655 0.674 0.677 0.632 0.634 0.645 0.691 0.669 0.669 0.657 0.643 0.668

Morphological
MS1 0.706 0.733 0.727 0.701 0.681 0.695 0.724 0.724 0.720 0.699 0.692 0.709
MS2 0.705 0.732 0.739 0.699 0.681 0.704 0.735 0.726 0.723 0.698 0.691 0.712
MS3 0.674 0.691 0.699 0.663 0.644 0.666 0.706 0.683 0.685 0.661 0.651 0.675

Syntactic

P1 0.601 0.640 0.627 0.611 0.593 0.605 0.659 0.629 0.623 0.608 0.599 0.618
P2 0.638 0.677 0.663 0.642 0.622 0.643 0.688 0.678 0.665 0.645 0.627 0.653
P3 0.631 0.665 0.648 0.632 0.604 0.631 0.681 0.656 0.657 0.633 0.613 0.641
D1 0.608 0.617 0.609 0.597 0.586 0.598 0.657 0.607 0.617 0.607 0.588 0.608
D2 0.610 0.638 0.624 0.616 0.585 0.606 0.666 0.630 0.632 0.605 0.589 0.618
D3 0.603 0.629 0.618 0.602 0.578 0.608 0.646 0.616 0.621 0.605 0.585 0.610

Statistical
WL 0.576 0.587 0.557 0.564 0.563 0.571 0.588 0.588 0.588 0.550 0.571 0.573
SL 0.540 0.501 0.529 0.500 0.570 0.511 0.548 0.506 0.549 0.497 0.568 0.529
DD 0.560 0.548 0.523 0.535 0.566 0.552 0.580 0.550 0.554 0.543 0.566 0.552
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except for statistical features, which perform worse than the others on all the
datasets.

Accuracy on the ToEFL11/LOCNESS and EFCamDat2/LOCNESS cor-
pora is very high in many cases, especially for lexical features, which often give
rise to accuracy values in the 0.96–0.99 range. In EFCamDat2/LOCNESS
even the statistical features (WL, SL, DD) give rise to high accuracy values.
We conjecture this to be caused by the differences in context and motivations
that underlie the LOCNESS documents with respect to the ToEFL11 and
EFCamDat2 documents, which makes the task of separating LOCNESS from
the other two easier.

Conversely, REDDIT-L2/REDDIT-UK uses the same source for non-
native and native documents, thus factoring out the aspects that make L1-vs-EN
classification easier for the other two datasets. Accuracy values are thus lower
than in ToEFL11/LOCNESS and EFCamDat2/LOCNESS, while still very
good. Here, the statistical features have accuracy scores that are close to those
of the random classifier (whose expected accuracy is 0.5), indicating that there
are hardly any significant differences in the phenomena they represent (i.e., word
length, sentence length, and dependency depth) between native production and
non-native production, and that any clue used by the learning algorithm to make
a correct prediction is based on lexical / morphological / syntactic features.

It is relevant to note that, for all corpora, no L1 emerges as significantly
harder or easier to recognise with respect to the others, and that no L1 shows a
different trend in the relative accuracy scored by the different types of features.

5.3 Feature analysis: Lexical, morphological, and syntactic features

In order to show the power of SVM-based explainable machine learning for char-
acterising language transfer, we analyse the results of multiclass classification for
NLI, and we draw our examples from two sample L1s, Spanish and Italian, as
emerging from two sample datasets, EFCamDat2 and ToEFL11. (We concen-
trate on EFCamDat2 and ToEFL11 because they are the two datasets on
which the best accuracy is reached, so the intuitions about feature importance
that we can draw from them are more reliable.) Similar analyses can be carried
out on other L1s, on other datasets, and on the L1-vs-EN task.

In order to gain insight into L1-specific patterns, we look at the features that
the machine deemed most discriminant for each language group. In order to
do this, we inspect the parameter values (hereafter: “coefficients”) that the SVM
assigned to each feature in the “All” experiment reported in Table 7; as explained
in Section 3, a coefficient determines how the value of the corresponding feature’s
relative frequency in a document contributes to the classification decision for that
document, with coefficients of high absolute magnitude indicating a large impact
on the decision, and with the sign of the coefficient indicating whether this value
weighs towards assigning (+) or not assigning (−) the corresponding L1. In other
words, positive coefficients identify overuse patterns, whilst negative coefficients
identify underuse patterns.
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It must be pointed out that overuse and underuse patterns emerge from a
contrastive L2-based perspective, i.e., by comparing the written output of one
linguistic group to that of all the other linguistic groups. As a consequence, the
linguistic behaviour of an L1 group must be viewed as a relative rather than an
absolute phenomenon. What can be observed are indeed discriminant linguistic
deviations that characterise specific L1 groups only with reference to the other
L1 groups. Such deviations can occasionally coincide, but not necessarily, with
errors (e.g., spelling mistakes typical of one particular L1 group).

5.3.1 Case Study 1: Spanish as L1 in EFCamDat2. In EFCamDat2,
the coefficients with the highest absolute magnitude turn out to correspond to
named entities. In view of what we said in Section 4.2.1, this is unsurprising, since
many essays of which EFCamDat2 consists of deal, as discussed in Section 4.1.1,
with everyday experiences of the speakers; as such, they are likely to contain
many named entities that refer to the local culture / environment of the speaker,
and that thus “give away” the nationality of the speaker. However, named entities
are uninteresting to our goals, and we thus do not discuss them; we thus discuss
features other than named entities, starting with lexical features that play an
important role for specific L1s.

In the case of Spanish learners, the machine identified two particularly dis-
criminant features in EFCamDat2, i.e., the use of the words *de (coefficient:
+2.74) and *diferent (coefficient: +2.49).15 By examining some usage exam-
ples (e.g., de train or de evening), we noticed that the former is a misspelling
of the determiner the, likely influenced by the phonology of Spanish. Indeed,
since Spanish does not exhibit the phoneme /ð/,16 Spanish learners of English
approximate the voiced interdental fricative to the dental sound /d/, which, con-
versely, belongs in the Spanish phonological system. Interestingly, voice prevails
over manner and place of articulation. In fact, Spanish does make use of the
phoneme /T/, which is the unvoiced counterpart of /ð/. Yet, learners instinc-
tively approximate the latter to /d/.

As to the misspelling of the adjective different, it appears to follow the
spelling of the Spanish equivalent diferente, in which the double consonant ff
is reduced to a single consonant, following its pronunciation. It must be noted
that, amongst the observed examples involving the term different, instances of
pluralisation of the adjective can be detected (e.g., *diferents areas or *diferents
types), brought about by the agreement rules of Spanish.

Although Spanish learners exhibit a distinct tendency to start a new sentence
with the adverb never (coefficient: +2.42) more often than learners from other
L1 backgrounds, e.g., never forget your family (...) or never the ball must touch
(...), this fact cannot be directly linked to language transfer. On the contrary,
overuse of the bigram because is (coefficient: +1.97) as in the examples because
is ugly or because is very strange point to the omission of the dummy pronoun,
typical of the Spanish language.

In terms of underuse patterns, the most relevant habits captured by the
machine concern the beginning of new sentences. The machine assigned the
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highest coefficients to the bigrams “. so” (coefficient: −2.34), “. but” (coefficient:
−1.74), and “. and ” (coefficient: −1.52), a sign that Spanish learners tend to
avoid starting a new sentence with so, but and and, just as they would do in
their mother tongue.

5.3.2 Case Study 2: Italian as L1 in ToEFL11. Differently from the
case study discussed in Section 5.3.1, here the coefficients with the highest ab-
solute magnitude do not belong to named entities, for the simple reason that,
as mentioned in Section 5.1, named entities were masked off from ToEFL11
directly by its creators.

The most relevant feature marking the production of Italian learners in the
ToEFL11 dataset is the trigram I think that preceded by punctuation or by
another word. The pattern appears with a coefficient of +3.84. Its presence
can be accounted for by the nature of the TOEFL exam, in which students
are often prompted to give their opinion on a variety of topics. However, if its
appearance were the sole result of following the writing instructions, it should
be evenly distributed across the different L1s, and therefore lose its importance
as a feature. Rather, its high incidence in the writings of Italian learners vouches
for its significance. Consistent resort to the above-mentioned expression could
indeed stem from the convenient and safe equivalence between the Italian penso
che and the English I think that. A further hypothesis could be that Italian
speakers simply employ (in their mother tongue) the phrase penso che with
greater frequency compared to other L1 speakers. Yet, evidence from comparable
corpora should be provided to support this thesis.

The second most discriminant feature in the ToEFL11 dataset is the bigram
“token + :” to which the machine assigned a coefficient of +3.71. The use of the
colon in English is indeed problematic for Italian learners. In fact, in Italian, the
colon can be either used to introduce a list of items or to illustrate a concept,
whilst in English only the former is allowed. By looking into the occurrences of
“token + :”, we were able to identify many examples of misuse (e.g., one thing
seems clear: long term scars or you take a risk: you change your type of ), which
can account for the high number of occurrences of the pattern.

Typical of Italian learners is the trigram “. in fact” (coefficient: +2.98) to-
gether with its misspelt alternative form *infact (coefficient: +2.94). The latter
can also be found in the EFCamDat2 dataset with a coefficient of +2.87. In
Italian, infatti is a highly occurring word. Nevertheless, despite a superficial
resemblance, in fact and infatti have different meanings and functions. The for-
mer provides more detailed information about a topic previously introduced.
The latter confirms something that was previously stated by means of a causal
relationship. Examples of misuse in ToEFL11 are he or she takes risks. In fact,
in the business world if (...) or I think in fact that a specialised worker has (...).

Particularly distinctive in ToEFL11 (coefficient: +2.69) are reporting verbs
(believe, decide, and think) followed by a that-clause and governing a subject.

From a strictly lexical point of view, two lemmas are very relevant in ToEFL11
as they mark the production of Italian learners: the adverb probably (coefficient:
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+2.59) and the noun possibility (coefficient: +2.45). The former is occasionally
misplaced in a way that can be traced back to Italian syntax, e.g., a question
that probably I will present to myself.

As regards patterns of underuse, the most discriminating feature is the verb
get which exhibits a coefficient of −3.07. Indeed, compared to other L1 speakers
of English, Italians are reluctant to use such a verb. Moreover, they seem to
rarely start a new sentence with a conjunction, a fact that can be accounted for
by the stylistic rules of written Italian, which do not allow for such a pattern.

5.4 Feature analysis: Statistical features

Although statistical features (WL, SL, DD) do not seem to be very helpful in
discriminating the different L1s, they can nonetheless be investigated in order to
gather information concerning the linguistic habits of speakers of English from
different linguistic backgrounds. In this section we compare the values taken by
the statistical features with respect to two orthogonal dimensions, i.e., the L1
and the proficiency level.

Table 11. Average values of the statistical features for each language group on the
EFCamDat2 dataset.

avg WL avg SL avg DD
ARA 3.76 11.64 2.16
CHI 3.76 11.86 2.10
FRE 3.82 12.59 2.21
GER 3.94 13.18 2.29
HIN 3.77 11.68 2.09
ITA 3.89 14.11 2.41
JPN 3.80 11.18 2.03
KOR 3.70 10.61 1.95
SPA 3.84 13.12 2.26
RUS 3.87 11.91 2.19
TUR 3.75 10.37 1.94
(All) 3.83 12.13 2.17

Table 11 shows information on the average values of the statistical features
for each language group on the EFCamDat2 dataset.17 German learners have
a slightly higher word length average than other L1s, with Italians in second
place. Italian, German, Spanish, and French learners produce longer sentences
if compared to other L1s. Conversely, Turkish and Korean learners tend to be
more succinct, with the shorter sentence length (almost four words of difference
between Italian and Korean) also reflected by a smaller depth in the parse tree.

EFCamDat2 essays are rated by 16 proficiency levels, 1 being the lowest and
16 being the highest. We grouped essays by three ranges of proficiency levels,
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Fig. 3. Comparison of normalized distribution of word length across proficiency groups
in EFCamDat2.

thus deriving three subsets of the original EFCamDat2: low (EFCamDat2-
G1), containing essay in levels 1 to 5 included; intermediate (EFCamDat2-G2),
for levels 6 to 12; and advanced (EFCamDat2-G3), for levels 13 and higher. We
compare the frequency distribution of the statistical features across these three
proficiency groups.

If we look at word length (Figure 3) we can observe that it increases at
the increase of the proficiency level (a shift towards right, i.e., towards longer
words, of the curve of the distribution). (Average word length for documents in
EFCamDat2-G1 is 3.49, for EFCamDat2-G2 is 3.85, and for EFCamDat2-G3
is 4.12.) This is unsurprising because longer words are, on average, less common
in language use, and the use of longer words denotes higher sophistication in a
learner’s active vocabulary.

Sentence length (Figure 4) follows a similar pattern, with longer sentences
being produced, on average, by more proficient learners. Learners with a smaller
command of their L2 tend to produce shorter sentences, composed on average
of 8.9 words; this number doubles for the top proficiency group EFCamDat2-
G3, with an average length of 16.7 words, while group EFCamDat2-G2 places
almost exactly in the middle, with an average sentence length of 12.8 words.

The length of the sentence is obviously correlated with its complexity, and
thus with the depth of the dependency tree. This is confirmed by the compari-
son of the frequency distributions of feature DD (Figure 5): the lower proficiency
group contains sentences with a more shallow structure (average depth: 1.75),
and depth increases as proficiency improves (average depth: 2.18 for EFCam-
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Fig. 4. Comparison of normalized distribution of sentence length across proficiency
groups in EFCamDat2.

Dat2-G2 and 2.57 for EFCamDat2-G3). All in all, this is also unsurprising,
since more proficient learners have a higher command of the syntax of the L2,
and thus venture more often into more complex syntactic structures and, as a
consequence, into longer sentences.

6 Conclusion

Explainable machine learning (EML) can be a very powerful tool to investigate
second language acquisition, and language transfer in particular, especially when
sizeable amounts of learner data for a variety of different languages are available.
We have shown how interesting facts about language transfer emerge from the
analysis of the parameters of classifiers trained to perform native language iden-
tification or native vs. non-native classification. The classifiers we have discussed
in this paper were trained via support vector machines, but also other classifier-
learning methods, such as logistic regression, produce similarly interpretable
classifiers. Each parameter of the SVM classifier is associated to a feature, i.e.,
a linguistic trait whose frequency of occurrence in the different classes of inter-
est (i.e., native speakers, non-native speakers, non-native speakers of a specific
L1) we want to exploit in order to perform classification. Features to which the
learning algorithm has associated a value of high absolute magnitude represent
linguistic traits whose usage patterns significantly differ across the classes of
interest, with a positive value weighing towards assigning the class and a nega-
tive value weighing against assigning it. We have shown, by drawing examples
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Fig. 5. Comparison of normalized distribution of dependency depth (i.e., distance from
root of the dependency tree) across proficiency groups in EFCamDat2.

from two among the classes we have investigated (Spanish learners of English
and Italian learners of English) how the parameters that are assigned the val-
ues with the highest magnitude are indeed associated with linguistic traits that
are well-known to characterize the linguistic production of those speakers. This
shows that performing native language identification, or native vs. non-native
classification, via an EML algorithm, can be a valuable tool for the scholar who
investigates second language acquisition and language transfer.

Where could improvements to these results come from? One promising line
of research could involve new EML methods. While until a few years ago it was
generally accepted that ML algorithms could generate “black box” (i.e., hardly
inspectable) classifiers, the push towards EML has increased in the last ten years,
due to the fact that ML algorithms are more and more frequently applied to high-
stakes domains (e.g., algorithms that decide if a convict should be granted parole,
algorithms that decide if a loan application should be considered favourably or
not, etc.), and that their decisions cannot be accepted without an accompanying
justification. Unfortunately, most research on EML so far has targeted structured
(i.e., tabular) data, and many proposed solutions are hardly applicable to textual
data because of the high dimensionality of the latter. More research on EML for
text is needed, and this would hold promise for our application context.

Another factor of key importance for research on language transfer is the
quality of the available datasets. First, datasets of higher quality than the ones
we have used here could deliver more accurate classifiers, which would allow
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drawing more reliable intuitions about language transfer. An important step
towards higher-quality datasets would derive from having data in which the
mother tongue of the speaker is explicit; in the datasets we have used we can
only estimate the speaker’s L1 from its nationality / country of residence, but
these latter attributes are not always in a 1-to-1 correspondence with mother
tongue, so it is not clear how many of the inaccurate decisions that today’s
classifier return are due to mislabelled training documents or mislabelled test
documents. Another important improvement might come from having better
quality native vs. non-native datasets than ToEFL11/LOCNESS and EF-
CamDat2/LOCNESS. These latter derive from the union of two datasets (a
native dataset and a non-native dataset) consisting of two different types of text,
which makes the binary classification task easier than it should be; the availabil-
ity of more homogeneous native vs. non-native datasets (such as REDDIT-
L2/REDDIT-UK) would thus be an important step towards addressing the
(still under-researched problem) of native vs. non-native classification.
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Notes
1The application of AA techniques to contemporary oeuvres can be found in the

attempt to identify the author of the 15th Book of Oz (Binongo, 2003), in the research
of Gramscian journalistic texts originally published without signature (Basile and Lana,
2008), and in the analysis of the authenticity of Montale’s “Posthumous Diary” (Italia
and Canettieri, 2013). Examples of applications to ancient texts include the analysis on
the authenticity of Pliny the Younger’s “Letter on Christians” to Trajan (Tuccinardi,
2017), on the authenticity of Dante Alighieri’s “Epistle to Cangrande” (Corbara et al.,
2019), and others (Kabala, 2020; Kestemont et al., 2015).

2For example, assigning a natural number to one of the two classes PrimeNumbers
and NonprimeNumbers cannot be considered a classification problem, since the assign-
ment can be made deterministically, i.e., without margins of error. Conversely, assigning
a textual comment on a product to one of the two classes Positive and Negative is a
classification problem, since deciding whether a certain comment conveys a positive or
a negative sentiment requires subjective judgment.

3Downloadable at https://catalog.ldc.upenn.edu/LDC2014T06
4Downloadable at https://corpus.mml.cam.ac.uk/resources/
5Downloadable at http://cl.haifa.ac.il/projects/L2/
6In other words, a classifier set up to perform NLI might, when trained and applied

on such a dataset, perform unrealistically well, due to the fact that what it actually
recognises is the topic the text is about, rather than the L1 of its author.

https://catalog.ldc.upenn.edu/LDC2014T06
https://corpus.mml.cam.ac.uk/resources/
http://cl.haifa.ac.il/projects/L2/
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7https://www.ef.edu/
8Downloadable at https://www.learnercorpusassociation.org/resources/tools/

LOCNESS-corpus/
9We have run repeated experiments using different samples of 1,100 LOCNESS

documents without observing significant variations in the results.
10By “tokens” we mean individual words, including function words and punctuation

symbols; a punctuation symbol generates a distinct token even when it is attached to
a word. In order to perform tokenisation we use the SpaCy tool (https://spacy.io/),
which we also use to perform all the natural language processing other than tokenisation
and lemmatisation mentioned in the rest of the paper, i.e., sentence splitting, part-of-
speech (POS) tagging, named-entity recognition, extraction of morphological suffixes,
dependency parsing.

11In order to extract named entities we use the SpaCy named-entity recognition
model “en_core_web_md” (https://spacy.io/models/en), which is reported to have
a very good macro-F1 score (macro-F1 being an accuracy measure, with 0 representing
minimum accuracy and 1 representing maximum accuracy) of 0.84 on a set of 18 entity
labels.

12In some preliminary experiments we alternatively tested the use of decision-tree
and decision-forest learning algorithms, but we found the resulting classifiers difficult
to inspect in an NLI scenario, as the very high number of features produces very
complex and deep trees that do not clearly show interpretable patterns. We use the
implementation of linear SVMs from the scikit-learn Python-based package (https:
//scikit-learn.org/stable/index.html). All the code that allows to replicate the
experiments is available at https://github.com/aesuli/nli-exp22.

13“This preprocessing was fairly aggressive and expunged both named entities and
most other capitalized words, replacing them with special tags.”(Blanchard et al., 2013,
p. 4)

14Using all the features at once might give rise to unwanted interactions, since the
same feature might belong in more than one group at the same time (e.g., article “the”
belongs in T1, L1, TN1, LN1, ..., at the same time. In order to remove unwanted effects
, we prefix each feature with the corresponding feature type, so that, e.g., T1-the, L1-
the, TN1-the, LN1-the, ..., all count as different features.

15As standard in the linguistic literature, we prefix with a star (*) all incorrect uses
of English.

16The sound /ð/ exists in certain areas of the Spanish-speaking countries but only
as an allophone.

17Similar trends are observed on the other datasets.

https://www.ef.edu/
https://www.learnercorpusassociation.org/resources/tools/LOCNESS-corpus/
https://www.learnercorpusassociation.org/resources/tools/LOCNESS-corpus/
https://www.learnercorpusassociation.org/resources/tools/LOCNESS-corpus/
https://spacy.io/
https://spacy.io/models/en
https://scikit-learn.org/stable/index.html
https://scikit-learn.org/stable/index.html
https://scikit-learn.org/stable/index.html
https://github.com/aesuli/nli-exp22
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