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Abstract

In several subfields of data science, the term “review” refers to the activity, carried out by a human
annotator (also called reviewer), of assigning the correct class labels to unlabelled data items in a
dataset, possibly replacing wrong labels assigned by an automatic process (a classifier). Review
might have different goals. For instance, the aim could be that of labelling data to be used for
training a classifier. In other cases, the aim of the review process might be that of finding the set
of “relevant” documents of the dataset: this is the case, e.g., in e-discovery, an important part of
the civil litigation process in the US and other countries, where the goal of the producing party is
to find all the items (e.g., emails, or other digitally stored documents) relevant to the object of the
litigation. Another example is the production of a “systematic review” in evidence-based medicine,
i.e., a comprehensive survey of all the medical literature relevant to a specific research question.

In many cases, the amount of documents to review may be enormous, which means that manually
labelling the entire collection is an infeasible and extremely expensive operation. For this reason,
the review process is usually supported by human-in-the-loop machine learning algorithms, which
go under the name of Technology-Assisted Review (TAR). The goal of TAR algorithms should be
that of ultimately improving the cost-effectiveness of the review process, i.e., to minimize the time
and money spent on reviewing, while maximizing the accuracy and quality of the review. More
specifically, reviews are carried out via an active learning (AL) algorithm, i.e., an iterative process
which prioritizes documents for the human to review (usually via a classifier). At every iteration,
the newly labelled documents are fed back to the classifier and the process repeats until a stopping
condition is met (e.g., a target recall has been achieved).

However, the AL algorithms typically used in TAR naturally tend to generate prior probability
shift (PPS), i.e., the fact that the prior probabilities PrL(y) on the labelled set (greatly) diverge from
those on the unlabelled set PrU (y). This phenomenon can significantly compromise the performance
of the classifier, potentially jeopardizing the quality of the review itself.

One of the most well-known procedures to adjust both the prior and posterior probabilities in
PPS scenarios is the Saerens-Latinne-Decaestecker algorithm (SLD), an instance of expectation-
maximization. In this thesis, we try to leverage the SLD algorithm to improve both the prior and
posterior probabilities of a classifier trained in PPS scenarios: our goal is that of (i) improving the
posteriors fed as input to a risk-minimization framework for e-discovery called MINECORE, and
(ii) improving the prevalence estimates in order to halt the review process as soon as a target recall
is achieved.

Regarding (i), we first give a thorough and comprehensive analysis of the SLD algorithm in simu-
lated PPS scenarios, based on extensive experimental results. We then try to improve MINECORE
performance, first by using an AL algorithm to generate the training set used by the framework,
and later by applying SLD to its classifier posteriors.
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Regarding (ii), we first give an analysis of the shortcomings of SLD, previously found in our
MINECORE optimization work. We then attempt to solve these issues (albeit targeting prevalence
estimation), proposing a novel modification to the SLD algorithm, called SALτ : the experimental
results show that SALτ is able to stop the TAR process well in advance of the current state-of-the-art
algorithms, while still reaching the given target recall.

Finally, we also study and explore the portability of machine learned models in TAR, as well as
the employment of recent deep learning architectures in these scenarios.
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Chapter 1

Introduction

In the past two decades, machine and deep learning algorithms have become increasingly popular.
They have not only pervaded and integrated with many disciplines, but also gained a primary role
in several areas of society: machine learning models have been extensively and increasingly used in
social networks, telephony, medicine, security and even art.

In the literature, machine learning algorithms are usually categorized based on the level of
supervision a model can rely on. Two of these categories are supervised and unsupervised learning:
in the former, we rely on the availability of labelled data (a training set) to train a model which
later generalizes to unseen (and unlabelled) data; in the latter, the model is trained on data where
labels, when needed, can be somehow automatically crafted. While it could be argued that much
of the success of recent unsupervised models (such as Bert (Devlin et al., 2019) and GPT (Brown
et al., 2020)) is due to the enormous amount of readily available data on the internet, in many
real-world applications training datasets are not available for supervised algorithms. In-domain
experts are usually required to undertake an annotation effort to label a (often limited) number of
data items. The expert annotating the data sample is often called the “annotator” or “reviewer”,
and we refer to the process of assigning a label to an item either as “labelling”, “reviewing” or
“annotating”. Clearly, having a human expert reviewing a data sample is an expensive operation,
both in terms of time and costs: the number of data items that can be annotated are usually limited
by either the availability of the reviewer, the time available, or the money one is willing to invest
in the process (the annotation budget). Rather than annotating a uniform random sample of the
data (which might be suboptimal), machine learning practitioners usually rely on a plethora of
techniques which goes under the name of “Active Learning” (Dasgupta, Hsu, 2008; Huang et al.,
2014; Lewis, Gale, 1994) (or AL for short): by active learning we mean an iterative process whose
goal is that of prioritizing documents for review. More precisely, at every iteration the AL algorithm
selects (usually via an automated classifier) a batch of documents for the reviewer to label: the
newly labelled documents are fed back to the learning algorithm, and the process repeats until a
stopping condition is met.

In several cases, the reviewing process is not aimed at simply building a training set for later use
(e.g., labelling images to eventually build a classifier): the user commissioning or carrying out the
review might be looking for some specific items (documents, in the case of textual data) in order to
answer a specific research question. In these scenarios, the human-in-the-loop annotation workflow
is usually referred to as Technology-Assisted Review (TAR) (Cormack et al., 2010; Grossman,

1
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Cormack, 2011b; Kanoulas et al., 2019): TAR algorithms are mostly relevant in e-discovery in
the legal domain, systematic reviews in empirical medicine, and online content moderation. The
common ground in all the different TAR fields of application is that users need to review a large
number of textual documents, in order to find those which are relevant to a specific information
need (e.g., finding hate speech in user-generated online content). Moreover, users usually have
a requirement to reach high or very high recall levels (i.e., the fraction of relevant documents
annotated with respect to the total number of relevant documents).1 Furthermore, as anticipated,
users are limited by time or money: their goal is thus to maximize the review cost-effectiveness, that
is, to make sure that review costs are kept to a minimum, while guaranteeing that most relevant
documents have been found/annotated.

In these scenarios, reviews are usually conducted in two or more stages (multi-stage review),
often requiring the combined effort of multiple review teams.

Multi-stage reviews: By multi-stage review we mean a labelling effort carried out in N stages,
where each stage n may be conducted with: (i) a different information need, i.e., the concept of
what is relevant in stage n might change in stage n + 1; (ii) a different review team, possibly with
different hourly (or per document) rate, making each stage more or less expensive with respect to
the others; (iii) a different depth and width of the analysis of the data, e.g. reading (and labelling)
many short abstracts vs reading the entirety of fewer articles/papers. These are all critical aspects
that should be taken into consideration when estimating the costs of a multi-stage review (we will
see how the recent literature approached this in Section 2.5.2).

Finally, we should notice that multi-stage reviews are still conducted with one common end-goal:
in the fields of application we have mentioned, this might be the production of a systematic review
relevant to a certain research question, or the production of documents relevant to a certain litigation
matter in e-discovery. That is, there usually is a consequentiality between the different stages of
the review: the purpose of stage n might be that of quickly filtering out irrelevant documents, so
that stage n + 1 can afford more time (and money) on fewer important items; likewise, documents
may be passed on to stage n + 1 only if they are deemed relevant in stage n.

1.1 Technology-Assisted Review applications

1.1.1 E-discovery

E-discovery is an important aspect of the civil litigation in many (but not only) common law coun-
tries: in e-discovery a large number of documents (which we call the pool P )2 need to be reviewed
in order to find all items “responsive” (i.e., relevant) to the object of the litigation. The documents
labelled as responsive are “produced” by the producing party, and disclosed to the other party in
the civil litigation. However, the producing party holds the right to keep some of these documents
“hidden”: this is only allowed if the “logged” documents are deemed to contain “privileged” in-
formation (e.g., intellectual property, sensitive data). Documents can finally be assigned to one
out of three categories: Produce, when a document is responsive and not privileged, Log, when a
document is responsive and privileged, and Withhold, when a document is not responsive. Follow-
ing Oard et al. (2018)’s notation, we use cP , cL and cW to indicate the produce, log and withhold

1It is not uncommon to have recall requirements of 100%, transforming the task in a “total recall” one.
2In Table 1.1 we show the mathematical notation that we use throughout this thesis.
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Notation Meaning

p(y) prevalence of class y
Pr(y|x) posterior prob. of y given x
Pr(⊕|x) posterior prob. of positive class given x
Pr(⊖|x) posterior prob. of negative class given x
Pr(y) prior probability of y
y(x) true class of a document/item x
Y the set of possible labels
L training (labelled) set
U test (unlabelled) set
S seed set (initial training for active learning)
P documents pool (active learning document pool)
D a set of documents
Dr the relevant subset of D (also used with Lr or Ur)
R target recall

R̂ estimated recall
Rs recall at stopping (for a TAR process)
ϕ a classifier
B set of documents in a batch
b batch size
βi binned set of items (i.e., the ith bin)
cP , cL, cW Privilege, Log and Withhold class (e-discovery/MINECORE)
ϕr classifier for responsiveness (or relevant items)
ϕp classifier for privilege
λa
p, λ

a
r annotation costs for privilege/responsiveness

λm
ij misclassification costs of assigning ci to a document d ∈ cj (ci, cj ∈ {cP , cL, cW })

Q set of tasks (e.g. for systematic reviews)
q single task
R(q) target recall for task q
Ψ Number of documents necessary to reach a target recall

Table 1.1: Notational conventions used throughout the thesis.
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classes respectively. Making different misclassification errors usually brings about different costs
for the producing party, based on the severity of the error committed: for instance, producing (i.e.,
assigning class cP ) a document which is responsive and yet contains privileged information (i.e.,
should have been logged cL) is usually a more serious mistake than producing a document which is
not responsive (i.e., belonging to class cW ). It is worth noticing, however, that there are only few
works which really take e-discovery costs into consideration (to the best of our knowledge, Oard
et al. (2018); Yang et al. (2021b); see also Section 2.5.2).

Usually, the review happens in two stages: (i) documents are first reviewed by responsiveness
(i.e., relevancy) by a team of junior reviewers; (ii) the documents judged as responsive are then
passed on to a second team of senior reviewers (with an hourly rate which can be several times
higher than the junior team’s), who mainly re-review the documents by privilege. As it can be
inferred, annotating documents by privilege is usually a much more costly and delicate operation
than annotating by responsiveness (see e.g., Oard et al. (2018); Yang et al. (2021b)).

1.1.2 Production of systematic reviews

In empirical medicine, a systematic review discusses (ideally) all medical literature relevant to a
given research question. The production of a systematic review is usually carried out by one or
more physicians, over the course of (possibly) years and can cost hundreds of thousands of U.S.
dollars (Michelson, Reuter, 2019; Shemilt et al., 2016). A systematic review usually collects a
large set of documents by issuing a boolean query on a (medical literature) search engine, such as
PubMed.3 Then, similarly to e-discovery, systematic reviews are usually conducted in two stages: (i)
a first one, where the abstracts of the documents are reviewed in order to determine their probable
relevance and (ii) a second one, where documents which passed the first phase are reviewed in
their entirety. One critical aspect in the production of systematic reviews is the so-called “risk
of bias” (ROB) (Viswanathan et al., 2017; Whiting et al., 2016), i.e., the fact that missing many
relevant documents may jeopardize the quality of the review itself, bringing to (or reporting) biased
results and conclusions: for instance, if the identification and selection of studies are not properly
formalized, the document pool might be too homogenous, possibly causing the review to miss other
relevant key works in the literature. Notice, however, that the risk of bias is extremely difficult to
formalize and/or quantify: as such, to the best of our knowledge, there is no current work in the
information retrieval literature that has taken ROB into consideration.

That said, the production of systematic reviews has recently attracted the interest of the IR
community (Callaghan, Müller-Hansen, 2020; Lease et al., 2016; O’Mara-Eves et al., 2015; Wang
et al., 2022), which has focused on several aspects of the process, from improving the query formu-
lation issued to search engines, to finding the optimal stopping criterion, reducing the annotation
costs (and the time spent on a systematic review). More in details, given a research question, a
systematic review is conducted in the following way:

1. The reviewer prepares a query which is issued on one or more search engines (for medical
literature);

2. An initial pool of documents P (based on the search engine ranking) is retrieved;

3. The reviewer reads P abstracts. Only the subset of documents Lr which are deemed relevant
is kept;

3https://pubmed.ncbi.nlm.nih.gov/

https://pubmed.ncbi.nlm.nih.gov/
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4. The Lr documents are now read and reviewed in their entirety. Again, we filter out all the
non-relevant documents;

5. Finally, the remaining documents will form the set of documents included in the systematic
review.

TAR algorithms are usually involved in step 3 and 4 (but the literature has also targeted steps 1
and 2). More specifically, the TAR process is structured in the following manner:4

1. An initial set of labelled documents S is provided. This set should contain at least one positive
(and it often consists exclusively of this single positive) document;

2. A machine learning algorithm is trained on S and outputs scores (or probabilities) on the
remaining P \ S documents;

3. An active learning policy (e.g. Continuous Active Learning, see Section 2.1.2 and Sec-
tion 2.3.1) chooses, based on these scores, which and how many documents to show to the
reviewer;

4. The reviewer reads the selected documents abstracts, deciding whether they are relevant or
not;

5. The set S (which we may call now the labelled set L) is augmented with the new labelled
documents and the process starts again, until a review budget is exhausted or a stopping rule
condition is met.

We give a graphical representation of the process in Figure 1.1.

1.2 What this thesis is about

The main focus of this thesis is on improving a posteriori and a priori (posteriors and priors)
probabilities estimates in TAR workflows. The motivations behind this work are: (i) having higher
quality posteriors is particularly important when our decisions are entirely based on these estimates,
as it is for the risk-minimization framework for e-discovery called MINECORE (Oard et al. (2018),
which we will see in Section 2.3.3); (ii) having better priors (prevalence) estimates trivially means
that we can better quantify the achieved recall, possibly stopping the annotation process as soon
as we reach a target recall R.

More in details, this thesis studies, analyzes and proposes improvements to the Saerens-Latinne-
Decaestecker algorithm (SLD, Saerens et al. (2002)), applied in TAR contexts: SLD is an instance
of expectation maximization whose goal is that of adjusting prior and posterior probabilities in
prior probability shift scenarios (PPS, see Section 2.1.1 and 2.4). Our decision to focus particularly
on this algorithm originates from our master thesis work (Molinari, 2019b), of which this PhD thesis
is a follow-up. There, we highlighted how, despite being seemingly suited for such a task, the SLD
algorithm failed to deliver consistent results when applied to the input posterior probabilities of the
MINECORE framework, actually deteriorating its performance.

The thesis is structured as follows: in Chapter 2 we give an overview of the TAR state of the
art for one-phase and two-phase workflows, as well as a detailed explanation of the SLD algorithm;

4Notice that this process is substantially similar to the one for e-discovery, where we review documents for
responsiveness first and privilege afterwards. See also Lease et al. (2016).
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Figure 1.1: Diagram of a technology-assisted systematic review process.
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in Chapter 3 we give an in-depth analysis of the SLD algorithms for posterior improvements under
prior probability shift. Our analysis shows that the algorithm is capable of improving the classifier
probabilities for binary classification tasks. In Chapter 4, we analyze and evaluate which active
learning procedure is best in order to minimize MINECORE costs, and whether SLD can bring
improvements in this regard. Our results show that active learning can indeed bring to a better
training set for the MINECORE framework; regarding the SLD algorithm, we show that its usage
in active learning scenario brings to a consistent deterioration of the classifier probabilities. In
Chapter 5, we propose our own adjustment to the SLD algorithm, a new method called SALτ ,
which enables the usage of SLD in active learning procedures: we show that SALτ is able to stop
the TAR process well before the other baselines, while still reaching the target recall. Furthermore,
in Chapter 6 we study whether transfer learning can be successful in TAR for systematic reviews: we
analyze transformer-like architectures, their capability to do zero-shot classification and ranking in
this context, and whether they can be continuously trained in an active learning procedure. We show
that, while models such as BioBERT can have interesting zero-shot performance, the difficulties
of continuously train these models in active learning scenarios make their adoption challenging for
TAR tasks. Finally, in Chapter 7 we conclude this work.

1.3 List of publications

We list below the papers we published throughout the PhD, i.e., since late 2019 to early 2023:

• Esuli, Andrea, Alessio Molinari, and Fabrizio Sebastiani. “A critical reassessment of the
Saerens-Latinne-Decaestecker algorithm for posterior probability adjustment.” ACM Trans-
actions on Information Systems (TOIS) 39.2 (2021): 1-34 (Esuli et al., 2021);

• Molinari, Alessio, Andrea Esuli, and Fabrizio Sebastiani. “Active learning and the Saerens-
Latinne-Decaestecker algorithm: an evaluation.” Proceedings of the 2nd Joint Conference
of the Information Retrieval Communities in Europe (CIRCLE 2022), Samatan, France.
2022 (Esuli et al., 2022);

• Molinari, Alessio, Andrea Esuli, and Fabrizio Sebastiani. ”Improved Risk Minimization
Algorithms for Technology-Assisted Review.” Intelligent Systems with Applications (2023):
200209 (Molinari et al., 2023);

• Molinari, Alessio, and Andrea Esuli. “SALτ : Efficiently Stopping TAR by Improving Priors
Estimates.” Submitted to Data Mining and Knowledge Discovery, currently under review;

• Molinari, Alessio, and Evangelos Kanoulas. “Transferring knowledge between topics in sys-
tematic reviews.” Intelligent Systems with Applications 16 (2022): 200150 (Molinari, Kanoulas,
2022).
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Chapter 2

Background

Technology-Assisted Review algorithms and frameworks mostly find their application in three dif-
ferent fields: e-discovery, in the legal domain, systematic reviews in empirical medicine, and finally
online content moderation. IR literature has mostly focused on the e-discovery domain, and re-
cently on systematic reviews, proposing a plethora of methods that cover the whole pipeline, from
the query formulation to the different annotation stages usually present in TAR tasks. In this chap-
ter, we will give an overview of the background and the previous works in TAR application context,
as well as of key algorithms and phenomena, whose understanding is fundamental for the following
chapters. Regarding the TAR application contexts, we will exclusively focus on e-discovery and sys-
tematic reviews. We will also explain the difference between the so-called one-phase and two-phase
TAR algorithms/frameworks. Finally, we will give an overview of the different evaluation metrics
proposed in the literature over the years, especially focusing on those we employ in Chapters 3, 4, 5
and 6.

2.1 Preliminaries

2.1.1 Dataset shift

Dataset shift is a key phenomenon in TAR, due to TAR algorithms/frameworks heavily relying on
some active learning policy to label the documents pool P (see next section). As a matter of fact,
AL procedures may generate several types of shift, such as prior probability shift (PPS) or covariate
shift. In order to distinguish different types of dataset shift, Moreno-Torres et al. (2012) distinguish
(along with Fawcett, Flach (2005)) between “X → Y problems” and “Y → X problems”.

Problems of type X → Y are ones in which it is the values of the features in x that stochastically
determine the class y = t(x) to which x belongs. An example of a X → Y learning problem is
weather forecasting, since it is a number of climatic conditions (for instance, pressure, temperature,
humidity, etc., that can be represented in a feature vector x) that determine whether it is going to
snow or not (a fact that can be represented by a binary dependent variable y). In these cases, it is
useful to write the joint distribution Pr(x, y) as

Pr(x, y) = Pr(y|x) Pr(x) (2.1)

9
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Equation 2.1 suggests that there are two phenomena (or, of course, a combination of both) that
can cause Pr(y) to vary across L and U , i.e.,

1. Covariate shift, defined as the case in which PrL(y|x) = PrU (y|x) and PrL(x) ̸= PrU (x);

2. Concept shift, defined as the case in which PrL(y|x) ̸= PrU (y|x) and PrL(x) = PrU (x).

For instance, in the example above, if the distribution of climatic conditions change, the probability
that it is going to snow changes too; this is a case of covariate shift. Instead, if the causal relationship
between climatic conditions and snowing were to change (an admittedly unlikely case), this would
be a case of concept shift.

Problems of type Y → X are instead ones in which the class y = t(x) to which document x
belongs stochastically determines the values of the features in vector x. An example of a Y → X
learning problem is authorship attribution, i.e., the task of determining the author (from a set of
|Y | candidate authors) of a text of unknown or disputed paternity (Koppel et al., 2009). This task
is usually carried out by using as features a number of “stylistic” traits that tend to characterize
an author’s writing style. Authorship attribution is a Y → X problem, since it is the fact that a
certain text is, say, Shakespeare’s, that causes it to have certain stylistic characteristics, and not
the other way around. In these cases, the joint distribution Pr(x, y) can be usefully written as

Pr(x, y) = Pr(x|y) Pr(y) (2.2)

Here, Pr(y) can vary for independent reasons (since y is a cause, and not an effect), a phenomenon
which is usually called prior probability shift. For instance, in Stratford-upon-Avon’s municipal
library there might proportionally be more books by Shakespeare than in any other municipal
library.1

Finally, it is worth noticing that Moreno-Torres et al. (2012, §6.1) indicate sample selection
bias as one of the key reasons behind PPS. When using active learning techniques, we intentionally
introduce a sample selection bias, thus generating PPS. However, active learning also causes another
phenomenon, which some of the literature (e.g., Dasgupta, Hsu (2008); Krishnan et al. (2021)) refers
to by the name of sampling bias (we will also use this name in Chapters 4 and 5). By sampling bias,
we mean the phenomenon whereby not only our prior probabilities diverge (PrL(y) ̸= PrU (y)), but
so does the distribution of the covariates conditioned on the class label, i.e., PrL(x|y) ̸= PrU (x|y).2

In other words, when using active learning, we draw similar and uninformative examples in our
training set, possibly completely ignoring entire clusters of items (we will analyze the effects of this
phenomenon on a classifier in Chapters 4 and 5).

2.1.2 Optimizing documents revision: active learning in TAR

Having a human expert reviewing the whole set of documents P can be an extremely expensive
operation, sometimes infeasible when P consists of more than a few thousands of documents. TAR

1Notice, however, that it is not always easy to characterize with certainty a given problem as being of type X → Y
or of type Y → X; sometimes this question looks a bit akin to wondering which of chicken and egg came first. As
a result, different types of dataset shift (covariate shift, concept shift, prior probability shift) that concur in causing
dataset shift may be at play at the same time.

2Notice that this is not properly a concept shift, since the same item x would still be assigned to the same class
y, regardless of whether x ∈ L or x ∈ U . Moreover, since we also have PPS, it does not hold that PrL(y) = PrU (y).
Moreno-Torres et al. (2012, §4.4) acknowledge the existence of this shift, reporting that it is a rare and very hard to
solve situation, which has hardly been addressed in the literature.
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practitioners have thus resolved to use an active learning procedure, i.e. an iterative process where
an algorithm prioritizes, at each iteration, a batch B of documents for the reviewer to annotate,
and often attempts to stop the review once a target recall R is reached. In both the e-discovery
and the systematic reviews fields, Active Learning via Relevance Sampling (ALvRS) (Lewis, Gale,
1994; Rocchio, 1971) has established as the main active learning procedure used; TAR practition-
ers actually use a variation of ALvRS, called Continuous Active Learning (CAL), developed and
adapted for TAR by Cormack and Grossman (Cormack, Grossman, 2014, 2015a, 2016b): in CAL
based strategies, the review is usually carried on until deemed complete. Other active learning
techniques have also been used or proposed over the years, such as Active Learning via Uncer-
tainty Sampling (ALvUS, Lewis, Catlett (1994); Lewis, Gale (1994)), or more recently Callaghan,
Müller-Hansen (2020)’s procedure which alternates between ALvRS and random sampling (see Sec-
tion 2.3.4), or Li, Kanoulas (2020)’s autostop framework (see Section 2.3.5); that said, CAL has
without doubt become the standard AL algorithm for TAR.

We give an overview of ALvRS and ALvUS, as they are the key AL procedures used in TAR
(or form the basis for other AL policies, such as CAL).

Active Learning via Relevance Sampling (ALvRS): ALvRS is an interactive process which,
given a data pool of unlabelled documents P , asks the reviewer to annotate an initial “seed” set of
documents S ⊂ P , uses S as the training set L to train a binary classifier ϕ, and uses ϕ to rank
the documents in (P \ L) in decreasing order of their posterior probability of relevance Pr(⊕|x).
Then, the reviewer is asked to annotate the b documents for which Pr(⊕|x) is highest (with b
the batch size), which, once annotated, are added to the training set L. Finally, we retrain our
classifier on the new training set and repeat the process, until a predefined number of documents
(the annotation budget) have been reviewed. ALvRS is most-effective and has been mostly used
when we are interested in finding all the items relevant to a given information need, as quickly as
possible.

Active Learning via Uncertainty Sampling (ALvUS): The ALvUS policy is a variation of
ALvRS, where we review the documents not in decreasing order of Pr(⊕|x) but in increasing order
of |Pr(⊕|x) − 0.5|, i.e., we top-rank the documents which the classifier is most uncertain about.
ALvUS can be useful when we want to build a high-quality training set to later train a machine
learning model on it.

We illustrate an AL workflow with a stopping condition in Algorithm 1.

2.1.3 The Rand policy: A pseudo-oracle sampling-bias-free policy

As we will later see in Chapter 4 and 5, ALvRS and ALvUS are affected by what is called sampling
bias (Dasgupta, Hsu, 2008; Krishnan et al., 2021), i.e. the fact that, due to the document selection
policy and the initial seed S, the two active learning policies tend to draw very similar (and thus
uninformative) documents from the pool P (see also Section 2.1.1): this will in turn cause the
labelled set L to be anything but a representative set of the underlying data distribution, diverging
both from U and P .3 Sampling bias can cause several issues, such as bringing to an overly confident
classifier, which we will analyze in Chapter 4 and, more in details, in Chapter 5. In order to better
understand and study the effects of this bias, we introduced in Esuli et al. (2022) a pseudo-oracle

3Notice, for completeness, that U also diverges from P .
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Algorithm 1: Schema of an AL process.

Input : Pool of documents P to be reviewed; Batch size b = 100; budget t = |P |; target recall R;
AL policy pol;

1 i← 0 ;
2 S ← initial seed() ;
3 L← S ;
4 U ← P \ L ;
5 do
6 i← i+ 1 ;
7 ϕi ← train clf(L);
8 Bi ← select via pol(pol, ϕi, U, b) ;
9 L← L ∪ Bi ;

10 U ← P \ L ;

11 while should not stop(ϕi, Bi, L, U, t, R);

policy called Rand, whose goal is that of generating a random sample of P , while keeping the
labelled and unlabelled set prevalences as generated by ALvRS or ALvUS. More in details, the
Rand policy observes the prevalence of labels in the L set and in the U set generated by either
ALvRS or ALvUS, and draws two random samples LRand and URand, of size |L| and |U |, where
the prevalences pLRand(y) and pURand(y) are identical to pL(y) and pU (y); we call Rand(RS) and
Rand(US) the controlled random samples generated from ALvRS and ALvUS respectively.

The Rand policy should allow us to understand whether some specific classifier behaviours
are due to the document selection policy or rather to the prior probability shift (PPS), which we
naturally generate with active learning techniques. More specifically, ALvRS and ALvUS generate
a type of dataset shift where PrL(y) ̸= PrU (y) and PrL(x|y) ̸= PrU (x|y). With the Rand policy,
instead, we only generate PPS, i.e., PrL(y) ̸= PrU (y) but PrL(x|y) = PrU (x|y).

2.2 Using supervised machine learning

The human-in-the-loop, machine learning aided review, has been used in civil litigation since the
mid-2000s (Baron et al., 2007). While early works were mainly focusing on the query formulation
(replacing the classical boolean query with text classifiers), a pervasive usage of machine learning
across the whole TAR pipeline has been advised (and evaluated as superior) by Cormack and
Grossman (Cormack, Grossman, 2014; Cormack, Mojdeh, 2009) since 2009.

TAR workflows are typically characterized by some active learning strategy, which usually also
comprises a stopping methodology, i.e., the TAR framework is also responsible to stop the review
process once a target recall R (known beforehand) is achieved. TAR algorithms are usually divided
into one-phase and two-phase workflows: despite part of the literature has promoted the usage of
one-phase workflows as superior (Cormack, Grossman, 2014, 2016b, 2020; Cormack, Mojdeh, 2009),
or defined two-phase workflows as “TAR 1.0” (Tredennick, 2015), we argue together with Yang
et al. (2021b) that the superiority of one of the two types of workflows is dependent on the type
and costs of the review (see Section 2.5.2). Moreover, the US Department of Justice Antitrust
Division suggests a two-phase workflow, where the responsiveness decisions in phase two are taken
exclusively by an automated classifier (Yang et al., 2021b); Keeling et al. (2020) have reaffirmed the
need for human supervision, but their argument was later rejected by Grossman, Cormack (2020).
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2.2.1 Assuming infallible reviewers: a common simplifying assumption,
and a limitation of this thesis

In this thesis, and in many of the works we present in this Chapter, the reviewers emulated in the
in vitro experiments are assumed to be infallible: that is, it is assumed that the human reviewer
always assigns the correct label to each document. Of course, in reality this assumption cannot
hold, and human reviews are subject to many mistakes.

Concerning this thesis, this simplifying assumption is made by the MINECORE framework,
which is the framework we study and experiment with in Chapter 4: as a result, we also make this
assumption in that chapter. Furthermore, we also rely on infallible reviewers in our works presented
in Chapter 5 and 6, making, in fact, this assumption an underlying limitation of our thesis.

That said, however, the infallible reviewer assumption is a common one, made by many of the
works we present here, such as Callaghan, Müller-Hansen (2020); Cormack, Grossman (2016a); Li,
Kanoulas (2020); Oard et al. (2018); Yang et al. (2021a). Nonetheless, Cormack and Grossman have
been raising awareness on this since 2011 (Grossman, Cormack, 2011a), as well as presenting one of
the few works, to the best of our knowledge, which deals with the infallibility of reviewers (Cormack,
Grossman, 2017).

2.3 One-phase and two-phase TAR workflows

By one-phase TAR we mean a workflow where we employ an active learning strategy in order to find
the highest number of relevant documents in the least amount of time possible, hopefully stopping
the review once a target recall R is reached. The classifier trained in the active learning process
is discarded and not re-used for subsequent tasks:4 our focus is then not on creating/training the
best classifier possible, but rather on finding the best possible strategy to achieve the target recall
as soon as possible.

On the other hand, in two-phase TAR workflows we first collect a training set (first phase) via an
active learning process (or via random sampling) from the pool P . This labelled data will then be
used (second phase) to train a classifier ϕ, which should help reviewers finding relevant documents
in the pool. The review team labelling documents in the first phase is often a different team than
the one in the second phase (also, with different hourly rates).

Yang et al. (2021b) argued that when the review costs are uniform (i.e., positive and negative
documents are equally expensive, regardless of the review stage) a one-phase TAR workflow is
optimal. Two-phase workflows might instead achieve better results (and lower costs) when reviewing
documents (and especially positives) is more expensive in the first phase than in the second phase.
Recent and notable algorithms which work inside a one-phase workflow are the Knee and the Budget
methods (Cormack, Grossman, 2016a), the Callaghan, Müller-Hansen (2020)’s (CMH) method, Li,
Kanoulas (2020)’s autostop method and Yang et al. (2021a)’s QuantCI. Despite literature has
focused much more on one-phase workflows, an important and recent framework for two-phase
TAR, that we will see in Section 2.3.3, is Oard et al. (2018)’s MINECORE.

4As a matter of fact, in e-discovery review by privilege is usually not carried out via active learning. One of the
main exceptions is MINECORE (Oard et al., 2018).
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Figure 2.1: The knee detection method by Satopaa et al. (2011), as reported by Cormack, Grossman
(2016a).

2.3.1 The Continuous Active Learning (CAL) strategy

The standard active learning strategy used in most one-phase TAR workflows is based on the so-
called Relevance Feedback (Rocchio, 1971) and on ALvRS. This strategy has been further elaborated
and adapted to TAR by Cormack and Grossman, and goes under the name of Continuous Active
Learning (CAL) (Cormack, Grossman, 2015a, 2016b). The Knee, the Budget and the QuantCI
methods all work inside a CAL process. Continuous Active Learning (CAL) characteristics are:

• an initial seed set S consisting of a single positive instance (which can often be the query
text), and a number n of randomly sampled instances, temporarily labelled as negative;

• the batch size b can be incrementally defined as b = b + ⌈ b
m⌉, where m is a constant value

(e.g., m = 10).

Nonetheless, other sampling strategies have been proposed over the years: in the recent litera-
ture, the previously mentioned CMH (Callaghan, Müller-Hansen, 2020), which combines CAL with
random sampling, and Li and Kanoulas’ autostop framework (Li, Kanoulas, 2020).

2.3.2 The Knee and the Budget methods

The Knee method was first proposed by Cormack, Grossman (2016a). The method is based on a
gain curve for a one-phase TAR workflow, i.e., a plot of how the number of positive documents
increases as more documents are reviewed during the AL process. The method, based on Satopaa
et al. (2011), empirically finds “knees” in the plot, ideally stopping the process when the effort of
continuing to review documents is not supported by the retrieval of a sufficient amount of positive
documents. We reproduce Cormack, Grossman (2016a)’s knee plot in Figure 2.1. The Budget
method (Cormack, Grossman, 2016a) is a heuristic variant of the knee method, where the process
is stopped no earlier than when at least 70% of the document collection has been reviewed. This
follows the observation that, if we were to review by random sampling, we would expect to achieve
a recall of 0.7 when reviewing 70% of the collection; by using an AL technique, we expect the
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recall to be much higher. After the 70% threshold has been reached, the Budget method stops the
review if a knee test passes (detailed in Cormack, Grossman (2016a); Yang et al. (2021a)), and if
the number of relevant items found |Lr| is somewhat large, i.e.: |L| ≥ 10 P

|Lr| . Finally, notice that

both methods do not allow users to specify a target recall.

2.3.3 The MINECORE framework

MINECORE (Oard et al., 2018) is a recently proposed two-phase decision-theoretic algorithm for
technology-assisted review that attempts to minimize the expected cost (i.e., the risk) of review for
responsiveness and privilege in e-discovery. MINECORE is a notable exception in the TAR world
for two main reasons:

1. MINECORE is, to the best of our knowledge, the only TAR framework which treats e-
discovery costs as first-class citizens: that is, its risk-minimization approach, as well as its
stopping condition, are entirely based on estimates of the expected costs of review. More
recently, e-discovery costs have also been addressed by Yang et al. (2021b), who formalized
the IC metric (see Section 2.5.2).

2. MINECORE is also the only e-discovery framework which jointly addresses review by re-
sponsiveness and privilege (as a matter of fact, most TAR algorithms only deal with the
responsiveness stage).

Given a set P (the pool) of documents that must each be assigned to a class in {cP , cL, cW } (where
the meaning of these three classes is as discussed in the introduction), the goal of MINECORE is
to determine, for each document x ∈ P , whether manually reviewing x for responsiveness and/or
privilege is expected to be cost-effective or not. This determination is based

1. on the (“posterior”) probabilities of class membership (written as Pr(cr|x) and Pr(cp|x))
returned by automated classifiers ϕr (that classifies documents by responsiveness) and ϕp

(that classifies documents by privilege);

2. on the costs of manually reviewing a document for responsiveness (λa
r) or for privilege (λa

p),
where superscript a stands for “annotation”;

3. on the costs λm
ij incurred when assigning class ci to a document which should be assigned

class cj , where ci, cj ∈ {cP , cL, cW } and superscript m stands for “misclassification”.

Concerning Bullet 2, the fact that costs λa
r and λa

p are different is due to the fact that, as previ-
ously mentioned, annotation by responsiveness can usually be assigned to junior personnel, while
annotation by privilege requires more subtle expertise, and is usually entrusted to senior lawyers.
Concerning Bullet 3, the fact that costs λm

ij are different for different ci, cj ∈ {cP , cL, cW } is due
to the fact that, in e-discovery, not all misclassifications are equally serious; for instance, inadver-
tently disclosing a privileged document to the other party is typically a very serious mistake, while
inadvertently disclosing a nonresponsive nonprivileged document is usually a less serious one.

We assume that our pool P is partitioned into a set L of labelled (i.e., manually reviewed for
both responsiveness and privilege) documents and a set U of unlabelled documents.

The MINECORE workflow is articulated in three steps, which we summarize below.
In Step 1 we train from L the two classifiers ϕr and ϕp described in Bullet 1 above, and use them

to generate, for each document x ∈ U , the two posteriors Pr(cr|x) and Pr(cp|x) mentioned in Bullet



16 CHAPTER 2. BACKGROUND

1. We can reasonably assume cr and cp to be stochastically independent, which implies that we
may assume Pr(cP |x) = Pr(cr|x) Pr(cp|x), Pr(cL|x) = Pr(cr|x) Pr(cp|x), and Pr(cW |x) = Pr(cr|x).
MINECORE takes a risk minimization approach, i.e., it assigns each document x ∈ U to the class

ϕ(x) = arg min
ci∈{cP ,cL,cW }

R(x, ci)

= arg min
ci∈{cP ,cL,cW }

∑
j∈{P,L,W}

λm
ij Pr(cj |x)

(2.3)

where R(x, ci) is the risk associated with assigning x to class ci ∈ {cP , cL, cW }. In other words,
MINECORE assigns to each document x the class that brings about the minimum misclassification
risk, thus avoiding assignments which would bring about a high expected misclassification cost.
The function for measuring the global misclassification cost (that derives from an assignment of
labels in {cP , cL, cW } to the documents in U) is thus

Km(U) =
∑
x∈U

Km(x)

=
∑
x∈U

∑
i,j∈{P,L,W}

λm
ij · 1[x ∈ Uij ]

(2.4)

where 1[·] is the characteristic function that returns 1 if its argument is true and 0 if it is false, and
Uij is the set of documents x ∈ U that are assigned to ci and whose true class (which we denote
by t(x)) is cj . Note that Km(x) is the misclassification cost brought about by document x, and
that the global misclassification cost is simply the sum of document-wise misclassification costs,
i.e., MINECORE assumes that misclassification costs are linear.5

Step 2 is based on the consideration that, if τr documents are manually reviewed for respon-
siveness and τp documents are manually reviewed for privilege, the overall cost Ko(U) of the entire
process is

Ko(U) = Km(U) + Ka(U)

=
∑
x∈U

Km(x) +
∑
x∈U

Ka(x)

=
∑
x∈U

Km(x) + λa
rτr + λa

pτp

(2.5)

where by Ka(U) we indicate the global annotation cost. Similarly to the above, note that Ka(x)
is the annotation cost brought about by document x, and that the global annotation cost is simply
the sum of document-wise annotation costs, i.e., MINECORE is based on linear annotation costs.
Since both misclassification costs and annotation costs are linear, overall costs are also linear, i.e.,

Ko(U) =
∑
x∈U

Ko(x) (2.6)

5This simplifying assumption is probably a limitation, since in many e-discovery contexts a few mistakes of a
certain kind might be without any consequence while more mistakes of the same kind might give rise to major
negative consequences, with the relationship between number of mistakes of this type and consequences of these
mistakes not being linear. However, dealing with this problem is not within the scope of this thesis, and is a
potential topic of future research.
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If document x ∈ U is reviewed for, say, responsiveness, this has the effect of removing (assuming
infallible reviewers) any uncertainty about whether x is responsive or not. In other words, if by
subscript (n) ∈ {(1), (2), (3)} we indicate the value of a given quantity after Step n has been carried
out (so that, e.g., ϕ(2) and Pr(2)(y|x) will indicate the classifier ϕ and the posterior Pr(y|x) resulting
from the completion of Step 2), reviewing x for responsiveness during Step 2 means that Pr(2)(cr|x)
will be either 0 or 1. As a result, if during Step 2 document x ∈ U is reviewed for responsiveness, it
will in general hold that Pr(1)(cr|x) ̸= Pr(2)(cr|x), ϕ(1)(x) ̸= ϕ(2)(x) (where ϕ is the cost-sensitive
classifier of Equation 2.3), and Km

(1)(x) ≥ Km
(2)(x). Since reviewing x for responsiveness brings

about an annotation cost λa
r , it is worthwhile to annotate x only if, as a result of the annotation,

Ko
(2)(x) ≤ Ko

(1)(x), i.e., Km
(2)(x) + λa

r ≤ Km
(1)(x); in other words, the additional annotation cost

λa
r must be offset by a reduction (Km

(1)(x) − Km
(2)(x)) in misclassification cost of greater or equal

magnitude. Of course, computing precisely whether annotating x by responsiveness is going to
bring about such a reduction is not possible, because at the time of deciding whether x should
be annotated by responsiveness or not we do not know the value of yr(x) (a binary variable that
indicates whether the reviewer will annotate x as responsive or not), and we do not know the true
label t(x) of x. However, it is possible to compute an expectation of this reduction over the yr(x)
and t(x) variables; when this expected value exceeds λa

r , MINECORE decides that x should be
annotated by responsiveness. Since MINECORE computes the expectation of this reduction for all
documents in U , this means that MINECORE

• can rank the documents in U (where the top-ranked document is the one with the highest
expected reduction), so that by proceeding from the top downwards the annotator reviews
first the documents whose annotation brings about the highest expected benefit;

• provides the annotator with a stopping criterion, which coincides with the position in the
ranked list when the reduction (Km

(1)(x)−Km
(2)(x)) (actually: its expected value) has become

smaller than λa
r .

We refer the reader to (Oard et al., 2018, §3) for details on how the above expected value is
computed, and for a full mathematical specification of MINECORE.

Step 3 is essentially identical to Step 2, the only difference being that, while Step 2 focuses on
responsiveness, Step 3 focuses on privilege and uses the posteriors Pr(2)(cr|x) resulting from Step
2. Note that responsiveness is tackled first because we assume that λa

r < λa
p; should it be the case

that λa
r > λa

p, MINECORE would deal with privilege in Step 2 and with responsiveness in Step 3.
This concludes the MINECORE workflow. Notice that, in addition to what we highlighted

earlier, one further difference between MINECORE and most one-phase TAR systems is that, in
the latter, only documents that have been manually annotated are produced to the other party;
for this reason, these systems lead the annotator to identify as many relevant (i.e., responsive and
nonprivileged) documents as early as possible. In MINECORE, instead, the documents that are
produced to the other party may or may not have been manually annotated; unlike the above
systems, MINECORE leads the annotator to annotate as early as possible the documents that, if
not manually annotated, bring about the highest expected misclassification cost.

2.3.4 Callaghan Müller-Hansen method

Callaghan, Müller-Hansen (2020) proposed a stopping heuristic based on an estimation of the
probability of having reached the target recall, which is then compared against a confidence level.
The CMH method consists of two phases:
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1. first, documents are screened and reviewed via an ALvRS policy until the target recall is
achieved with a given confidence level. Once this confidence level is reached, the process
stops and the second phase starts;

2. in the second phase, the review is carried out via random sampling and a higher confidence
level. This should give stronger guarantees of having actually reached the required target
recall.

CMH heuristic treats batches of previously screened documents as if they were random sam-
ples (an assumption somewhat similar to the one we make in Section 5.4.1); for subsets Ai =
{dNseen−1, ..., dNseen−i} of these documents they compute p = Pr(X ≤ k), where
X ∼ Hypergeometric(N,Ktar, n): n is the size of the subsample, N is the total number of doc-
uments and Ktar = ⌊ρseen

R − ρAL + 1⌋ represents the minimum number of relevant documents
remaining at the start of sampling. This is done for all sets Ai with i ∈ Nseen − 1...1; pmin is the
value where the null-hypothesis (i.e., recall being below target) is lowest. The review of documents
proceeds with AL until pmin < 1 − α; α is a confidence level, which is set to 95%.

2.3.5 The autostop framework

Li, Kanoulas (2020) proposed a new TAR framework (mainly aimed to systematic reviews, but
perfectly suitable for other TAR applications as well). The framework is based on an active learning
process and an estimator: the review process is stopped when the estimator deems the target recall
R to be achieved; we reproduce Li, Kanoulas (2020, Fig. 1) in Figure 2.2, which gives an overview
of the autostop framework.

The framework starts with an initial document seed set S, which consists solely of the description
of the systematic review topic. However, S is augmented with k documents randomly sampled
(without replacement) from the pool P , which are temporarily labelled as non-relevant (similarly
to Cormack, Grossman (2015a)): this forms the training set at iteration 0, L0. A classifier ϕ is
trained on L0 and produces a ranking of all the documents in P : a sampling distribution P0 is
built based on the ranking (the AP Prior distribution, see Li, Kanoulas (2020, §3.2)). A batch
B0 of documents are sampled with replacement from P0, and reviewed by the human annotator.
Once the reviewer’s assessments are collected, the total number of relevant documents |L̂r| (and
its variance) is estimated via the Horvitz-Thompson and the Hansen-Hurwitz estimators (see Li,
Kanoulas (2020, §3.3,3.4)). A more or less optimistic (i.e., with higher or lower confidence) strategy
is then employed to decide whether to stop or not the reviewing process, which otherwise goes on
to the next iteration.

2.3.6 Quant and QuantCI

The QuantCI method proposed by Yang et al. (2021a) leverages the classifier predictions (a logistic
regression) to estimate the current recall, computes a confidence interval based on variance in the
predictions, and finally stops the reviewing process when the lower bound of the confidence interval
reaches the target recall.

More specifically, the estimated recall R̂ is computed as:

R̂ =
|̂Lr|
|̂Pr|

=

∑|L|
x Pr(⊕|x)∑|P |
x Pr(⊕|x)

(2.7)
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Figure 2.2: Li and Kanoulas autostop framework (Li, Kanoulas, 2020, Figure 1).

This estimate is based on modeling the relevance of a document i as the outcome of a Bernoulli
random variable Di ∼ Bernoulli(Pr(⊕|x)). Equation 2.7 can then also be written as:

R̂ = E
[
DL

DP

]
(2.8)

Yang et al. (2021a) propose to estimate this quantity using a Taylor series truncated to the first
order. The 95% confidence interval (CI) is then computed as:

±2

√√√√ 1

|̂Pr|
2V ar(DL) +

|̂Lr|
2

|̂Pr|
4 (V ar(DL) + V ar(DU )) (2.9)

Where with U we indicate the set of unlabelled documents (i.e. P \L). We refer the reader to Yang
et al. (2021a, §4) for a more detailed explanation of the QuantCI baseline.

The authors tested their method with and without the confidence interval (i.e., using the recall
estimate as is) resulting in two stopping techniques, called QuantCI and Quant.

2.4 The SLD algorithm

As previously mentioned, most of our work focuses on the Saerens-Latinne-Decaestecker (SLD)
algorithm, deeply analyzing its possible usage for technology-assisted review. We give hereby an
overview of the algorithm.
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We assume a training set L of labelled examples and a set U = {(x1, y(x1)), . . . , (x|U |, y(x|U |))}
of unlabelled examples, i.e., examples whose true labels y(xi) ∈ Y = {y1, . . . , y|Y |} are unknown to
the system.

SLD, proposed by Saerens et al. (2002), is an instance of Expectation Maximization (Dempster
et al., 1977), a well-known iterative algorithm for finding maximum-likelihood estimates of param-
eters (in our case: the class prior probabilities) for models that depend on unobserved variables (in
our case: the class labels). Pseudocode of the SLD algorithm is here included as Algorithm 2.

Algorithm 2: The SLD algorithm Saerens et al. (2002).

Input : Class priors PrL(yj) on L, for all yj ∈ Y ;
Posterior probabilities Pr(yj |xi), for all yj ∈ Y and for all xi ∈ U ;

Output: Estimates P̂rU (yj) of class prevalences on U , for all yj ∈ Y ;
Updated posterior probabilities Pr(yj |xi), for all yj ∈ Y and for all xi ∈ U ;

1 // Initialization

2 s← 0;
3 for yj ∈ Y do

4 P̂r
(s)

U (yj)← PrL(yj); // Initialize the prior estimates

5 for xi ∈ U do

6 Pr(s)(yj |xi)← Pr(yj |xi); // Initialize the posteriors

7 end

8 end

9 // Main Iteration Cycle

10 while stopping condition = false do
11 s← s+ 1;
12 for yj ∈ Y do

13 P̂r
(s)

U (yj)←
1

|U |
∑
xi∈U

Pr(s−1)(yj |xi); // Update the prior estimates

14 for xi ∈ U do

15 Pr(s)(yj |xi)←

P̂r
(s)

U (yj)

P̂r
(0)

U (yj)
· Pr(0)(yj |xi)

∑
yj∈Y

P̂r
(s)

U (yj)

P̂r
(0)

U (yj)
· Pr(0)(yj |xi)

// Update the posteriors

16 end

17 end

18 end

19 // Generate output

20 for yj ∈ Y do

21 P̂rU (yj)← P̂r
(s)

U (yj) ; // Return the prior estimates

22 for xi ∈ U do

23 Pr(yj |xi)← Pr(s)(yj |xi) // Return the adjusted posteriors

24 end

25 end

Essentially, SLD iteratively updates (Line 13) the class priors by using the posterior probabilities
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computed in the previous iteration, and updates (Line 15) the posterior probabilities by using the
class priors computed in the present iteration, in a mutually recursive fashion. The main goal is to
adjust the posteriors and re-estimate the priors in such a way that they are consistent with each
other, where this “mutual consistency” means that they should be such that

PrU (yj) =
1

|U |
∑
xi∈U

Pr(yj |xi) (2.10)

In Section 3.6 we show that Equation 2.10 is a necessary (albeit not sufficient) condition for the
posteriors Pr(yj |xi) of the documents xi ∈ U to be calibrated. SLD may thus be viewed as making
a step towards calibrating these posteriors (regarding calibration, see Section 3.1).

The algorithm iterates until convergence, i.e., until the class priors become stable and Equa-
tion 2.10 is satisfied. The convergence of SLD may be tested by computing how the distribution of
the priors at iteration (s−1) and that at iteration s still diverge; this can be evaluated, for instance,
in terms of absolute error, i.e.,

AE(p̂
(s−1)
U , p̂

(s)
U ) =

1

|Y |

|Y |∑
j=1

|P̂r
(s)

U (yj) − P̂r
(s−1)

U (yj)| (2.11)

In the experiments for most of the work presented here, we decree that convergence has been

reached when AE(p̂
(s−1)
U , p̂

(s)
U ) < 10−6; we stop SLD when we have reached either convergence or

the maximum number of iterations (that we set to 1000).
At each iteration of the algorithm, all the posteriors relative to class yj are multiplied by the

same amount P̂r
(s)

U (yj)/P̂r
(0)

U (yj). As a consequence, the net effect of SLD is to multiply all these

posteriors by the same amount P̂rU (yj)/P̂r
(0)

U (yj) so that the resulting posteriors Pr(yj |xi) are

consistent with the resulting class prior P̂rU (yj), i.e., so that Equation 2.10 is satisfied; in other
words, SLD is an iterative rescaling algorithm. The posteriors for different classes, though, do not
get multiplied by the same amount; this is somehow obvious, since at the end of the process the
posteriors for document xi must all sum up to 1, which means that if the posteriors for a class y′

all end up increasing, there must be at least a class y′′ whose posteriors all end up decreasing.
SLD, as proposed by Saerens et al. (2002) and as described here, addresses single-label clas-

sification, i.e., the task in which exactly 1 out of |Y | classes must be assigned to each document.
This means that SLD can be used for binary classification (which is single-label classification with
|Y | = 2), for single-label multiclass classification (which is single-label classification with |Y | > 2),
and for multi-label classification (which is the task in which any number of classes in Y can be
assigned to a document), since multi-label classification can be trivially recast into |Y | independent
binary classification tasks.

It is worth pointing out something which Saerens et al. (2002) did not observe, i.e., that the
combination of (i) a learner that trains classifiers to return posterior probabilities, and (ii) the
SLD algorithm that improves the quality of the posterior probabilities for a given set of unlabelled
documents U , might be called a transductive algorithm (Vapnik, 1998), since it uses training doc-
uments to infer posterior probabilities only for a specific, finite set of unlabelled documents known
at training time. This is different from standard inductive algorithms, that use training documents
to infer a general-purpose hypothesis that can later be applied to the entire domain. One aspect of
this transductive nature is that SLD must operate “holistically”, i.e., on entire sets of unlabelled
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documents, and cannot, for instance, update the posteriors of individual unlabelled documents in
isolation of each other; another aspect is that, as (Saerens et al., 2002, p. 35) put it, “the model
has to be completely refitted each time it is applied to a new data set”.

Interestingly enough, SLD was originally designed with the goal of improving the posteriors, so
as to improve the accuracy of classification (by means of Equation 3.1) in the presence of PPS. The
fact that it also allows estimating the priors in a more accurate way than by just “classifying and
counting” was considered a by-product by its authors. However, in the years that followed, thanks
to increased interest in the “quantification” task (i.e., the task of estimating the prevalence of a
class), SLD became a popular baseline for algorithms whose goal was the estimation of the priors.

In Saerens et al. (2002), the quality of the posteriors generated by means of SLD was measured
in terms of error rate, i.e., the fraction of classification decisions that are wrong. However, a
major difference between error rate and the measures we will instead use for the same purpose (see
Section 3.3.1) is that the former, unlike the latter, evaluates not the posterior probabilities per se
but the classification decisions that are based on them. Error rate is thus only an “indirect” measure
of the quality of the posteriors, and a coarse one too. To see this, let us assume we are dealing with
binary classification, and let us consider a document xi such that its true class is y1. According
to Equation 3.1, posteriors Pr(y1|xi) = .51 and Pr(y2|xi) = .49 would lead to xi being correctly
classified into y1, and so would posteriors Pr(y1|xi) = .99 and Pr(y2|xi) = .01. The former set of
posteriors is equivalent to the latter set as far as error rate is concerned; however, we intuitively
consider the latter set “better” than the former set, and the measures we discuss in Section 3.3.1
indeed consider it as such. Note also that classification (as implemented by means of Equation 3.1),
is just a downstream application of the posteriors, and there are many such potential applications,
such as (as already recalled in the introduction) ranking and cost-sensitive classification; rather than
evaluating the posteriors by evaluating one of their potential applications, it seems more sensible
to evaluate them directly, which can be done by means of the measures of Section 3.3.1.

Finally, notice that in parallel with our work (Esuli et al., 2021), here presented in Chapter 3,
two papers affirmed the key and central role played by calibration in SLD:6 Alexandari et al.
(2020) showed that the maximum likelihood function optimized by SLD is concave and that SLD
thus converges to a global maximum; Garg et al. (2020) proved instead that calibration brings
consistency to SLD results. Both Alexandari et al. (2020) and Garg et al. (2020) independently
explored the use SLD with calibrated and uncalibrated posteriors, and other priors estimation
methods, in the context of neural network classifiers, finding that SLD with proper calibration
consistently obtains better results.

2.4.1 Quantification: estimating class priors

While most chapters in this thesis are concerned with the posterior probabilities’ adjustment
capabilities of SLD, the algorithm has often been used for its adjusted prior probabilities. Indeed,
a classifier trained in a prior probability shift scenario (see Section 2.1.1) can be heavily biased on
the training set class priors PrL(y). In order to estimate the class priors on the test set PrU (y),
a simple “classify and count” (CC) methodology, i.e., by simply counting the items predicted to
be in y, might not output the best result: the SLD algorithm has instead shown to output better
quality prior estimates.

The task of estimating the class priors (or prevalence) is called “quantification”, and we will
propose our own modified version of SLD (called SALτ ) in Chapter 5 in order to estimate the

6We will see what calibration is in Chapter 3.
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class priors. Many quantification algorithms have been proposed over the years: we will here briefly
discuss some of them, i.e., Probabilistic Classify and Count (PCC, Bella et al. (2010); Lewis (1995)),
Adjusted Classify and Count (ACC, Forman (2005)), Probabilistic Adjusted Classify and Count
(PACC, Bella et al. (2010)), and HDy (a method based on the Hellinger Distance, González-Castro
et al. (2013)).

In PCC, the class prior PrU (y) is computed using the classifier posterior probabilities (we might
call this “soft classification”), rather than using “hard” decision as in CC; in other words, PrU (y) =
1
U

∑
x∈U Pr(y|x).

ACC is instead based on the observation that (let us consider the binary case for simplicity):

Pr(Ŷ = ⊕) = Pr(Ŷ = ⊕|Y = ⊕) · Pr(⊕) + Pr(Ŷ = ⊕|Y = ⊖) · Pr(⊖) (2.12)

This can be rewritten as:

P̂r
CC

(⊕) = tprϕ · Pr(⊕) + fprϕ · Pr(⊖), (2.13)

where tprϕ and fprϕ are the true and false positive rates. ACC then computes the new PrACC(⊕)
with:

PrACC(⊕) =
PrCC(y1) − ˆfprϕ

ˆtprϕ − ˆfprϕ
(2.14)

PACC, as it could be inferred, substitutes PrPCC to PrCC in ACC.
Finally, HDy is a method based on comparing two distributions with the Hellinger distance

(HD):

P̂r
HDy

U (⊕) = HDy(fL
⊕, f

L
⊖, f

U )

= arg min
0≤α≤1

{HD(αfL
⊕ + (1 − α)fL

⊖, f
U )} (2.15)

where fL
⊕ and fL

⊖ are the probability density functions of scores for the positive and negative samples
of L; fU is the distribution of scores obtained for U by the classifier trained on L. For a more in-
depth explanation of all the methods presented here we refer the reader to the original works, and
to the recently published book on quantification by Esuli et al. (2023).

2.5 Evaluation measures for TAR

Technology-Assisted Review applications deal with a wide range of different sub-tasks:

1. As previously mentioned, the first step in many TAR workflows is the collection of the data
pool via the formulation of a query. This step is not too different from a classical information
retrieval task, albeit the user and the researcher/engineer usually has no control over the
search engine;

2. The second step is usually to review the highest number of relevant documents from the pool
P (this does not necessarily hold for two-phase workflows, see Section 2.3). This is usually
done via an active learning algorithm, and can be evaluated on:
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(a) the recall Rs achieved when the process is stopped, which usually has to match an input
target recall R provided by the user;

(b) the work saved with the active learning process with respect to annotating a random
sample of the pool P ;

(c) the annotation and misclassification costs brought about by the review process. This is an
important aspect of TAR applications, as their main goal should be a joint minimization
of both costs (or in other words, the maximization of cost-effectiveness).

3. The third and final step, when present, is a second review stage: the difference with the second
step is that the review team usually changes (e.g., second step is fulfilled by junior reviewers
and third step by seniors), and so do their hourly rates. When this third step is present,
evaluating the algorithm on its capability to jointly minimize annotation and misclassification
costs become even more crucial.

Given this, it is clear that TAR applications should be evaluated with a diverse range of metrics,
targeting each of the aspects we have just illustrated. That said, however, most research works
usually focus on one or two steps of the TAR pipeline (and are thus evaluated accordingly);7

moreover, despite a few works have recently raised attention on the importance of TAR costs (Oard
et al., 2018; Yang et al., 2021b), this aspect has been often overlooked in the literature.

2.5.1 Evaluating the review method: Recall matching and work saved
over sampling

TAR tasks are usually defined, by the one-phase TAR literature, as high recall retrieval tasks,
i.e. the goal is to review most (if not all) relevant documents in P . While reviewing the whole
pool of documents would certainly guarantee the recall target (assuming infallible reviewers, see
Section 2.2.1), this is often not feasible as P can consist of several thousands of documents. For
this reason, one-phase TAR algorithms focus on reviewing relevant documents as soon as possible,
and on stopping the review process once the target recall R has been achieved.

Hence, TAR algorithms need to be evaluated on their capability of properly stopping the review
process once the recall goal is reached. The most used metrics in the literature are:

• the Mean Squared Error (MSE) between the recall at stopping Rs and the target recall R;

• similarly, the Relative Error (RE) between Rs and R is also often used;

• the Work Saved over Sampling (WSS) metric is another standard metric used in most of the
TAR related literature;

• for total recall tasks (i.e., R = 1), lossre has been proposed in Cormack, Grossman (2016a)
and used, for instance, by Li, Kanoulas (2020);

• finally, the reliability metric was proposed by Cormack, Grossman (2016a), and it can be used
to evaluate very high recall targets.

7In this thesis, we exclusively focus on the second and third steps.
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Mean Squared Error (MSE) and Relative Error (RE) in TAR applications: The Mean
Squared Error (MSE) is a metric used in many machine learning applications, often even used as a
loss function in deep learning. MSE is computed as:

MSE = (R−Rs)
2 (2.16)

together with the Relative Error (RE) metric, its goal is to measure how distant the recall at
stopping Rs is from the target recall R, equally penalizing algorithms which stop too early or too
late.

Relative error is computed as:

RE =
|R−Rs|

R
(2.17)

and has been recently used to evaluate TAR algorithms in Li, Kanoulas (2020). We will use both
metrics in Chapter 5 to evaluate our SALτ method.

Work Saved over Sampling (WSS): Work Saved over Sampling (WSS) was first proposed
in Cohen et al. (2006) in the context of systematic review screening, and it measures the reduction
in human workload by using automation tools (i.e., whether it is beneficial to use TAR algorithms
with respect to annotating a random sample). WSS is usually measured at a target recall in
percentage t% (WSS@t%, t stands for threshold); in other words, since we often have a target
recall to achieve, we are interested in measuring how much work we have saved by using a specific
algorithm over using random sampling. WSS@t% is defined as:

WSS@t% =
TN + FN

|P |
− (1 − t), (2.18)

where TN is the number of true negatives and FN the number of false negatives.

lossre metric for total recall tasks: A metric proposed in Cormack, Grossman (2016a) for
total recall tasks is lossre:

lossre = (1 −Rs)
2 +

(
r

P

)2( |L|
|Lr| + r

)2

, (2.19)

where |Lr| indicates the number of relevant documents annotated in the training set. This metric
was recently used by Li, Kanoulas (2020). For better comprehension, we can break down the metric
in several parts: (1 −Rs)

2 is the squared error between the total recall and the recall at stopping.

The second part of the equation is heuristic: |L|
|Lr|+r indicates how much of the annotation effort

was actually spent annotating relevant documents, where r represents the maximum amount of

non-relevant documents we are willing to annotate in the process (due to classifier mistakes);
(
r
P

)2
decides how much weight to give to this second part of the equation. As it may be inferred, r has
to be set heuristically: Cormack, Grossman (2016a) suggest a value of r < 1000, and Li, Kanoulas
(2020) use a value of 100.
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The reliability metric: The reliability metric was proposed in Cormack, Grossman (2016a)
and measures the percentage of fulfilled target recalls by a method across different tasks Q (e.g.,
different systematic review topics). More formally, reliability is expressed as:

reliability =
|{q|Rs(q) ≤ R(q), q ∈ Q}

|Q|
, (2.20)

where q is a specific topic/task, while Rs(q) and R(q) are the recall at stopping and the target
recall for task q, respectively. This metric was recently used by Li, Kanoulas (2020), but was
rejected by Yang et al. (2021a) as the metric has no formal penalty for algorithms, which, in an
extreme case, would never stop the review (thus reaching the total recall). The metric should thus
be complemented with a cost-aware one: a method which achieves a higher recall with respect to
another should be of course considered better, costs being equal.

2.5.2 Evaluating annotation and misclassification costs

As previously mentioned, the review cost is one of the most critical aspects to analyze in order
to understand whether a proposed TAR algorithm is truly effective or not: the review effort can
in fact span over many years (Michelson, Reuter, 2019; Shemilt et al., 2016) and, in the case of
systematic reviews in empirical medicine, each review can cost about $141,194.80 U.S. dollars,
according to Michelson, Reuter (2019). Beside annotation costs, misclassification errors can also
play a critical role: in e-discovery, for instance, producing a document which actually had to be
logged can have much worse consequences than producing a document that had to be withdrawn
(see Section 1.1 and 2.3.3); similarly, in systematic reviews missing too many relevant documents
can jeopardize the quality of the review itself.

Despite the primary role that review costs should have when assessing a TAR algorithm (or
framework), literature has often overlooked this aspect. The two rare exceptions, to the best of
our knowledge, are Oard et al. (2018); Yang et al. (2021b) (Yang and Lewis would then later
evaluate one of their methods (Yang et al., 2021a) based on their metric illustrated in Yang et al.
(2021b)). In Oard et al. (2018), the authors propose an evaluation of TAR algorithms, along with
their novel MINECORE framework (see Section 2.3.3), based on several cost structures that they
elicited from e-discovery experts. Yang et al. (2021b) propose instead an “idealized” cost metric
suited to evaluate any type of technology-assisted review, albeit not giving an expert-elicited cost
structure like Oard et al. (2018) did (which is reasonable, as they target multiple TAR domains
with their metric).

Cost structures, annotation and misclassification costs for e-discovery: In Section 1.1,
we illustrated the different categories to which each document can be assigned: Produce (cP ), Log
(cL) and Withdraw (cW ). Different types of misclassification errors bring about different costs:
for instance, disclosing highly confidential intellectual property to the other party (i.e., assigning a
document to cP instead of cL) is usually the worst case scenario.

In Section 2.3.3, we have seen how Oard et al. (2018) defined the linear costs assumed by
their MINECORE framework. These cost metrics are not, however, exclusively exploitable by
MINECORE. Indeed, any TAR framework can be flawlessly evaluated with the same metric. As
anticipated, Oard et al. (2018) define a cost matrix Λm for misclassification costs (Table 2.1):
any λm

ij is the misclassification cost of assigning class ci to a document actually belonging to cj .
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actual
cP cL cW

p
re

d

cP 0 λm
PL λm

PW

cL λm
LP 0 λm

LW

cW λm
WP λm

WL 0

Table 2.1: the cost matrix Λm defined in Oard et al. (2018).

λa
r λa

p λm
PL λm

PW λm
LP λm

LW λm
WP λm

WL

CostStructure1 1.00 5.00 600.00 5.00 150.00 3.00 15.00 15.00
CostStructure2 1.00 5.00 100.00 0.03 10.00 2.00 8.00 8.00
CostStructure3 1.00 5.00 1000.00 0.10 1.00 1.00 1.00 1.00

Table 2.2: Cost structures defined in Oard et al. (2018), as elicited from different experts. Costs
are expressed in US$.

Annotation costs are instead defined as unit costs λa
r and λa

p, the cost of annotating a document
by responsiveness or privilege respectively.

Oard et al. (2018) elicited three cost structures from TAR and e-discovery experts, which we
report in Table 2.2. Let us assume we have reviewed the subsets Dr of documents for responsiveness,
and Dp for privilege (usually, Dp ⊂ Dr). Our labelled set L is then L = Dr ∪ Dp. The total
annotation and misclassification costs can then be computed as:

Ka(L) = λa
r |Dr| + λa

p|Dp| (2.21)

Km(L) =
∑

i,j∈{P,L,W}

λm
ij |Dij |, (2.22)

where with |Dij | we indicate the number of documents assigned to class ci, when in truth belonging
to class cj . The overall cost is then simply defined as Ko(L) = Ka(L) + Km(L).

An idealized cost structure for TAR: The Idealized Cost (IC) was recently proposed by Yang
et al. (2021b) as a cost-based metric to evaluate any TAR algorithm. As previously mentioned,
TAR algorithms cannot be evaluated solely on their ability to find relevant documents or to stop
the review at a given target recall: a very crucial aspect is to be able to quantify the expected
costs of the application of a TAR algorithm/framework over another. Considered this, Yang et al.
(2021b) propose a new metric similar, in principle, to Oard et al. (2018)’s. The IC metric is defined
as follows: it uses a cost structure, a four-tuple s = (αr, αn, βr, βn). Subscript r and n indicate
the cost of reviewing positive (relevant) and negative (non-relevant) documents; α and β represents
the costs of reviewing a document in a first or second phase (see Section 2.3): in a one-phase TAR
process, this “second” phase is referred to as the failure penalty. That is, it would be the cost of
continuing the review with an optimal second phase, by ranking documents with the model trained
in the first one.

Let Ψ be the minimum number of documents to review to reach the recall target R. Say we
review batches of size b and we stop at iteration t: let Lr be the number of positive (relevant)
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documents we reviewed before the method stopped the review. If Lr < Ψ, we have a deficit of
Ψ−Lr positive documents; let ρt be the minimum number of documents that need be reviewed to
find the additional Ψ − Lr positive documents. The total cost of our review is then:

IC = αrLr + αn(bt− Lr) + I[Lr < Ψ] (βr(Ψ − Lr) + βn(ρt − Ψ + Lr)) (2.23)

Where I[Lr < Ψ] is 0 if Ψ documents were found in the first t iterations and 1 otherwise.
As anticipated, Yang et al. (2021b) do not propose cost structures elicited from experts like Oard

et al. (2018) did. Nonetheless, they still defined different cost structures for different situations that
often occur in TAR applications. Following both Yang et al. (2021b) and Oard et al. (2018), we
use (in Chapter 5) three cost structures for the IC metric:

• a uniform cost structure, where s = (1, 1, 1, 1), which we call Costu. This assumes that there is
no difference between the different phases of review, and that reviewing positive and negative
documents have the same cost (we keep this latter assumption in all our cost structures). As
argued by Yang et al. (2021b, §4.1), this cost structure is common in many review scenarios;

• the expensive training cost structure, where s = (10, 10, 1, 1), which we call Coste. This
assumes that reviewing a document in the first phase is 10 times more expensive than in the
second phase. According to Yang et al. (2021b, §4.2) this is fairly common in systematic
reviews in empirical medicine (see Section 1.1);

• a MINECORE-like cost structure that we propose, where s = (1, 1, 5, 5), which we call Costm.
This cost structure reflects MINECORE cost structure 2 (see Table 2.2), where it is assumed
that reviewing in the second stage is 5 times as expensive as in the first stage.8

Notice that Yang et al. (2021b) defined several other cost structures (which we are not going to
use in our evaluations), where reviewing positives is more expensive than reviewing negatives:
intuitively, this makes sense since positive items usually require more time to be assessed.9 For this
scenario, Yang et al. propose an additional cost v for each positive document. The structure is
then s = (α + v, α, β + v, β). The cost function when Lr ≤ Ψ is defined as:

Cost(t) = ((α + v) − α− (β + v) + β)Lr+

+ αbt + βρt + ((β + v) − β)Ψ

= αbt + βρt + vΨ

(2.24)

which becomes αbt + vΨ + v(Lr − Ψ) when Lr ≥ Ψ. We refer the reader to (Yang et al., 2021b,
§4.3) for a more comprehensive explanation of the different cost structures.

2.6 Datasets for e-discovery and systematic reviews

In e-discovery, the producing party is legally required to find and assign to either cP , cL or cW all
documents in the pool P . Real e-discovery datasets are usually not publicly available, as privileged

8Notice, however, that in Yang et al. (2021b) the two “phases” refer to the one-two phase TAR workflows (see
Section 2.3), whereas in Oard et al. (2018) they refer to review by responsiveness and privilege. Nonetheless, we
believe adding this cost structure allows to consider all possible scenarios (i.e., uniform costs, a more expensive first
phase, and a more expensive second phase).

9Moreover, in e-discovery, “positive documents may require review for factors (e.g., attorney-client privilege) not
applicable to negative documents.” (Yang et al., 2021b, §4.3.1).
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information would then be public for everyone to download. Recently, however, Sayed et al. (2020)
published an e-discovery dataset, an annotation of the Avocado Research Email Collection dis-
tributed by the Linguistic Data Consortium, on a restricted research license. Due to the restricted
availability, however, we do not use this dataset in the experiments run for this thesis: we rather
fall back to emulating the responsiveness and privilege annotations on the RCV1-v2 dataset (this
was also used with the same purpose in, e.g., Oard et al. (2018); Yang et al. (2021a)).

Regarding the production of systematic reviews in empirical medicine, real-case datasets are
instead available, albeit only for the first reviewing stage (i.e., the abstract screening): as a matter
of fact, full-length articles are often under a paywall and thus not freely available to download. In
our experiments for Chapters 5 and 6, we employ the CLEF 2019 EMED dataset.

2.6.1 RCV1-v2

RCV1-v2 (Lewis et al., 2004) is a publicly available collection of 804,414 news stories from the
late nineties, published on the Reuters website. RCV1-v2 is integrated and easily accessible from
the Scikit-Learn Python library (Pedregosa et al., 2011). RCV1-v2 is a multi-label multi-class
collection, i.e., every document can be assigned to one or more classes from a set C of 103 classes.
Since for our experiments we need binary classification datasets (i.e., a document can either be
relevant or not), for each class c ∈ C we consider each document d as either belonging to c or
not, thus obtaining 103 binary datasets. Moreover, for text classification purposes, RCV1-v2 is
traditionally split into a training set consisting of the (chronologically) first 23,149 documents (the
ones written in Aug 1996), and a test set consisting of the last 781,265 documents (the ones written
from Sep 1996 onwards). Throughout the experiments of this thesis, we use different subsets of
RCV1-v2, which will be explained in detail in the respective sections.

2.6.2 CLEF EMED

The CLEF EMED datasets were made publicly available10 for the TAR in EMED tasks ran from
2017 to 2019. The goal of the task was to assess TAR algorithms aimed at supporting the pro-
duction of systematic reviews in empirical medicine. For the 2019 dataset, three different type of
reviews were made available: Diagnostic Test Accuracy (DTA) reviews, also available in previous
years; Intervention, Prognosis and Qualitative reviews. Following Li, Kanoulas (2020), we use the
Diagnostic Test Accuracy (DTA) reviews part of the dataset, working with the abstract relevance
assessments (i.e., the first phase of the review, where the physician only assesses abstracts): the
dataset consists of 72 “Training” topics and 8 “Testing” topics.

The texts of the reviewed documents are not available for download on the GitHub platform:
they must be downloaded from PubMED,11 an online search engine with more than 34 million
citations for biomedical literature. While an HTTP API is available, the full text of documents
are often under a paywall: hence the choice of focusing on the abstract reviews only. Moreover,
we have encountered several issues in downloading some of the abstracts (that is, API errors),
thus being unable to retrieve the whole dataset: in total we have retrieved abstracts for 60 topics
(between “Training” and “Testing”), downloading a collection of 264,750 documents. We published
the dataset at (Molinari, 2022).

10https://github.com/CLEF-TAR/tar
11https://pubmed.ncbi.nlm.nih.gov/

https://github.com/CLEF-TAR/tar
https://pubmed.ncbi.nlm.nih.gov/
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Chapter 3

A reassessment of the SLD
algorithm for posterior
probabilities improvement

As explained in Chapters 1 and 2, TAR workflows usually rely on an active learning strategy
to train a classifier, which aids the reviewer in labelling the document pool P . Active learning
strategies naturally generate high prior probability shift (PPS), i.e. the phenomenon for which
the prior probability PrL(yj) of a class yj ∈ Y in the training set is (more or less) different than
the prior probability PrU (yj) for the same class in the test set (see Section 2.1.1). The Saerens-
Latinne-Decaestecker (SLD) algorithm, here illustrated in Section 2.4, was proposed in 2002 as
a methodology to improve both prior and posterior probabilities estimates in PPS scenarios: in
this chapter, we conduct an extensive analysis of the SLD algorithm for posterior probabilities
adjustment, with the end-goal of leveraging this procedure to improve both our prior and posterior
estimates in TAR workflows (which we will attempt in Chapter 4 and 5). This work was published
in Esuli et al. (2021).

3.1 Introduction

Single-label text classification is the task of training a text classifier ϕ : X → Y that labels each
document xi ∈ X with a class ϕ(xi) ∈ Y ; X is a (possibly infinite) set of documents (the domain),
while Y = {y1, ..., y|Y |} is a finite set of classes (the codeframe, or classification scheme).

The classifiers trained by means of modern machine learning methods usually return, together
with the class assigned to the document, a vector (s(xi, y1), ..., s(xi, y|Y |)) of confidence scores,
where s(xi, yj) by and large represents the confidence (or the strength of belief) that the classifier
has in the fact that xi belongs to yj ; the class ϕ(xi) assigned to document xi is thus the one with
the highest confidence score, i.e.,

ϕ(xi) = arg max
yj∈Y

s(xi, yj) (3.1)

Classifiers that return confidence scores are sometimes called scoring classifiers (Fawcett, 2006).
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Without loss of generality1 we may assume that these confidence scores are actual probabilities (if
so, these are called posterior probabilities, or simply posteriors), i.e., we may assume that the vector

being returned has the form (Pr(y1|xi), ...,Pr(y|Y ||xi)), where
∑|Y |

j=1 Pr(yj |xi) = 1 and Pr(yj |xi)
represents the probability that the classifier “subjectively” attributes to the fact that xi belongs to
class yj . Rather than simple classifiers, these models are full-blown probability estimators.

The posteriors play an important role in several tasks, a role that goes beyond allowing to take
a classification decision by means of Equation 3.1. One of these tasks is document ranking, as
when the documents are ranked in decreasing order of the probability Pr(yj |xi) that they belong
to a certain class yj ; ranking is useful, for instance, when performing active learning by means of
relevance sampling (Lewis, Gale, 1994), or when one needs to choose the best k documents for a
certain class, or when one needs to choose the best k classes for a certain document. Another such
task is cost-sensitive classification, where classification is performed in such a way that

ϕ(xi) = arg min
yj∈Y

∑
yl∈Y

λjl · Pr(yl|xi) (3.2)

where λjl represents the “cost” of classifying a document in class yj when it should have been
classified in class yl (this cost is equal to 0 when j = l and higher than 0 when j ̸= l); in other
words, xi is assigned to the class such that the expected cost (i.e., the risk) of assigning xi to it is
minimum. Example applications of cost-sensitive text classification may be found, for instance, in
spam filtering (Cormack, 2008), or in technology-assisted review, as we have seen with the MINE-
CORE framework (Oard et al., 2018).

Of course, in order to guarantee that single-label multiclass classification, ranking, cost-sensitive
classification, and other such tasks, are executed with high accuracy, the posteriors must be accurate
too. An intuition of what “accurate posteriors” means can be provided by the following example.
For instance, if 10% (resp., 90%) of all the documents xi for which Pr(yj |xi) = 0.5 indeed belong
to yj , we can say that the classifier has overestimated (resp., underestimated) the probability that
these documents belong to yj , and that their posteriors are thus inaccurate. Indeed, we say (see for
instance Flach (2017)) that the posteriors Pr(yj |xi), where xi belongs to a set Υ = {x1, ...,x|Υ|},
are (perfectly) calibrated (i.e., accurate) when, for all a ∈ [0, 1], it holds that2

|{xi ∈ Υ ∩ yj |Pr(yj |xi) = a}|
|{xi ∈ Υ|Pr(yj |xi) = a}|

= a (3.3)

The classifiers trained by means of some learners (such as logistic regression) are known to return
reasonably well calibrated probabilities. Those trained by means of some other learners (such as
Näıve Bayes) return probabilities which are known to be not well calibrated (Domingos, Pazzani,
1996). Yet other learners (such as SVMs or AdaBoost) train classifiers that return confidence scores
that are not probabilities (i.e., that do not range on [0,1] and/or that do not sum up to 1). In order
to address these two latter cases, probability calibration mechanisms exist (see e.g., Niculescu-Mizil,
Caruana (2005a,b); Platt (2000); Wu et al. (2004); Zadrozny, Elkan (2002)) that convert the outputs
of these classifiers into well calibrated probabilities.

However, even when using text classifiers that tend to return well calibrated probabilities, or even
when using the probability calibration methods mentioned above, the accuracy of the posteriors

1See the discussion on probability calibration mechanisms later in this section.
2Perfect calibration is usually unattainable on any non-trivial dataset; however, calibration comes in degrees (and

the quality of calibration can indeed be measured – see Section 3.3.1), so efforts can be made to obtain posteriors
which are as close as possible to their perfectly calibrated counterparts.
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tends to be low if the problem setting exhibits dataset shift (see e.g., Quiñonero-Candela et al.
(2009) and Section 2.1.1). To see why this is the case, take the probabilistic classifier

Pr(yj |xi) =
Pr(xi|yj) Pr(yj)

Pr(xi)
(3.4)

and note that the posterior Pr(yj |xi) on the left-hand side directly depends on the prior Pr(yj) on
the right-hand side. Since the prior Pr(yj) has been estimated on the training set (i.e., its value
has been set to PrL(yj), which is distributed as pL(y)), if PrL(yj) is higher (resp., lower) than
PrU (yj) (which is distributed as pU (y)), then the posteriors Pr(yj |xi) of the documents in U will
be overestimated (resp., underestimated).3 Ideally, in order to have well calibrated posteriors even
in the presence of dataset shift, we would need to set Pr(yj) in Equation 3.4 to PrU (yj), and not to
PrL(yj). But this is impossible, since PrU (yj) is unknown at training time. The only known way out
of this conundrum is provided by the Saerens-Latinne-Decaestecker algorithm4, an algorithm that
iteratively re-estimates the priors PrU (yj) of the unlabelled set and adjusts the posteriors Pr(yj |xi),
in a mutually recursive way (Saerens et al. (2002), see Section 2.4). This algorithm is essentially
unique in its kind, and, to the best of our knowledge, no other algorithm that attempts to adjust
the posteriors in the presence of prior probability shift has been proposed since its publication.
An exception is the algorithm described in Sun, Cho (2018); in Section 3.2 we discuss why we do
not consider it as a contender. As a result, SLD has become a standard, and is frequently used in
scenarios characterized by PPS, either when the goal is improving the accuracy of the posteriors,
or when the goal is obtaining estimates of the priors more accurate than can be obtained by the
trivial “classify and count” method (the latter task is known as supervised prevalence estimation,
or quantification González et al. (2017)).

However, in recent experiments aimed at improving the quality of cost-sensitive text classifi-
cation in technology-assisted review (Molinari, 2019a,b), SLD has not delivered any measurable
improvement in the quality of the posteriors. Since these experiments were limited in scope, we
have then decided to engage in a large-scale experimentation of SLD, with the goal of reassessing its
true ability at (i) accurately re-estimating the priors PrU (yj) of the unlabelled set, and (ii) improv-
ing the quality of the posteriors Pr(yj |xi) of the unlabelled documents. Note that goal (ii) is more
important than goal (i), since the ability of SLD at estimating the priors has been systematically
tested in previous works (e.g., Esuli et al. (2018)), and since (as mentioned before) SLD is essentially
the only known algorithm for improving the quality of already calibrated posteriors, while there
are many alternatives to it (see the extensive review by González et al. (2017)) when it comes to
estimating the priors. We thus present systematic experiments involving different learners, different
datasets, and different amounts of PPS, in which we try to assess the real benefits of using SLD.
Notice that in Saerens et al. (2002), SLD was subjected to a small-scale experimentation, which
involved the binary case only. The experiments we conduct in this chapter are instead carried out
on a very large scale, and involve both binary and multiclass classification.

The rest of the chapter is structured as follows. In Section 3.3 we present the systematic
experimentation to which we have subjected SLD, and in Section 3.4 we present its results, while in

3In other words, that prior probability shift brings about a low quality of the posteriors is due to the fact that
PPS, as all types of dataset shift, invalidates the iid assumption (according to which the training examples and the
unlabelled examples are drawn from the same distribution), on which probability calibration methods rely.

4In a number of other publications (Esuli et al., 2018; Gao, Sebastiani, 2016; Molinari, 2019a,b) the same algorithm
was called EMQ, standing for “Expectation Maximization for Quantification”; in yet other publications (Bequé et al.,
2017) it is called RS, standing for “rescaling algorithm”.
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Section 3.5 we discuss exactly which kinds of dataset shift we target in our experiments. Section 3.2
discusses some related work, while Section 3.7 concludes.

3.2 Related work

Despite having been proposed more than 15 years ago, SLD remains an algorithm unique in its
kind, since at the same time it updates the posterior probabilities and the class prior probability
estimates returned by the classifier.

As discussed in the previous sections (and, later, in Section 3.6), SLD bears strong relations to
probability calibration. While several calibration methods have been proposed in the last 20 years
(e.g., Alasalmi et al. (2020); Bequé et al. (2017); Coussement, Buckinx (2011); Naeini et al. (2015)),
none of them actually deals with calibrating the posterior probabilities of the unlabelled set in the
presence of prior probability shift.

As already mentioned, dataset shift (and PPS in particular) is central to SLD’s concerns.
Dataset shift is a multifaceted phenomenon and a largely unexplored territory, and only in the last
ten years or so the machine learning community has started to address it systematically (Quiñonero-
Candela et al., 2009). The task of estimating class prior probabilities in the presence of PPS has,
since about 2005, evolved as a task of its own, called quantification (González et al., 2017), and
many algorithms alternative to SLD have been proposed (see Esuli et al. (2020); Fernandes Vaz
et al. (2019); Pérez-Gállego et al. (2019); Spence et al. (2019) for a few recent examples). However,
while these algorithms are interesting alternatives to SLD as far as estimating class prior prob-
abilities goes, there are no current alternatives to SLD when it comes to adjusting the posterior
probabilities in the presence of PPS. To the best of our knowledge, the only alternative to SLD
that has ever been proposed for adjusting the posterior probabilities in the presence of PPS is the
algorithm in Sun, Cho (2018), based on the idea of binning the unlabelled documents based on an
invariance property of ROC curves. However, this algorithm assumes that the true class priors in
the unlabelled set are known; this is an assumption which is not verified in practice (because, in
the presence of distribution shift, these class priors are different from the ones in the training set),
which means that this algorithm cannot be used in practice.5

3.3 Experiments

In this section we report systematic experiments in which, using a variety of datasets, learners, and
amounts of PPS, we compare the quality of the priors and (above all) of the posteriors before the
application of SLD, with that after the application of SLD. This allows us to see when and in what
conditions the application of SLD is beneficial.

3.3.1 Evaluation measures

We evaluate SLD in terms of two main criteria, i.e., (i) the ability to improve the accuracy of the
estimated class priors with respect to the trivial “Classify & Count” estimator, and (ii) the ability

5Indeed, the experiments reported in Sun, Cho (2018) use an oracle that provides to the algorithm the true class
priors of the unlabelled set; but this oracle, as all oracles, is not available in practice, so the utility of this algorithm
is extremely questionable.
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to improve the accuracy of the posterior probabilities with respect to the ones originally returned
by the classifier.

Evaluating the Priors

For evaluating the quality of the estimated class priors we use normalized absolute error (NAE) (see
e.g., Sebastiani (2020, §4.2)), defined as

NAE(pU , p̂U ) =

∑|Y |
j=1 |PrU (yj) − P̂rU (yj)|
2(1 − min

yj∈Y
PrU (yj))

(3.5)

where pU and p̂U indicate the true class distribution and the predicted class distribution, resp., on
the set U of unlabelled documents. The reason we use NAE is that, besides its simplicity, it is also
(as argued in Sebastiani (2020)) one of the theoretically most satisfying measures for evaluating
the quality of class priors; NAE ranges between 0 (best) and 1 (worst). In all the tables of results
that we include in Section 3.4, we compare the estimates of the class priors before applying SLD,
computed by “classifying and counting”, i.e., as

P̂rU (yj) =
1

|U |
|{xi ∈ U, ϕ(xi) = yj}|

with the same estimates after applying SLD (which are the values of P̂rU (yj) resulting from Line 21
of Algorithm 2).

Evaluating the Posteriors

For evaluating the quality of the posterior probabilities, the measure we use is the Brier score (Brier,
1950). Given a set U = {(x1, t(x1)), . . . , (x|U |, t(x|U |))} of unlabelled documents to be labelled
according to codeframe Y , the Brier score is defined as

BS =
1

|Y | · |U |

|Y |∑
j=1

|U |∑
i=1

(I(t(xi) = yj) − Pr(yj |xi))
2 (3.6)

where I(·) is a function that returns 1 if its argument is true and 0 otherwise. The Brier score
ranges between 0 (best) and 1 (worst), i.e., it is a measure of error, and not of accuracy. It rewards
classifiers that return a high posterior for the true class of xi and low posteriors for all classes
other than the true class of xi. The Brier score is an example of so-called strictly proper scoring
rules (Gneiting, Raftery, 2007), defined as loss functions which are minimized only when Pr(yj |xi)
equals 1 for yj = t(xi).

It is useful to analyze the Brier score in a more fine-grained way. For class yj , let the [0,1]
interval be partitioned into an ordered sequence of ξ intervals I1j , ..., Iξj , and let us define bins
β1j , ..., βξj such that xi ∈ βkj iff Pr(yj |xi) ∈ Ikj . (DeGroot, Fienberg, 1983, §4) show6 that the

6The formulation of the Brier score originally given in DeGroot, Fienberg (1983, §4) is slightly different since the
authors assume that a posterior may only take up one of a small, fixed number of values, which makes intervals
and bins not necessary for the formulation of BS. While this assumption is reasonable when posteriors are returned
by human beings, this is not when they are returned by automatic probabilistic classifiers; as a result, we here
reformulate BS by using intervals and bins.
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Brier score can be written as

BS = CE + RE (3.7)

with

CE =
1

|Y | · ξ

|Y |∑
j=1

ξ∑
k=1

ν(βkj , U) · (π(βkj) − ρ(yj , βkj))
2 (3.8)

RE =
1

|Y | · ξ

|Y |∑
j=1

ξ∑
k=1

ν(βkj , U) · ρ(yj , βkj) · (1 − ρ(yj , βkj)) (3.9)

where

• ν(βkj , U) is the prevalence of βkj in U , i.e., the fraction
|βkj |
|U | of documents xi in U that are

in βkj ;

• π(Bkj) is the expected value 1
|Bkj |

∑
xi∈Bkj

Pr(yj |xi) of the posteriors for the documents in

Bkj ;

• ρ(yj , Bkj) is the prevalence of yj in Bkj , i.e., the fraction 1
|Bkj |

∑
xi∈Bkj

I(t(xi) = yj) of

documents xi in Bkj that belong to class yj .

Here, CE is a measure of the calibration error of the posterior probabilities; in fact, it is easy to see
that its value is 0 if and only if Equation 3.3 is verified for each S ∈ {B1j , ..., Bbj}. RE is instead
a measure of what DeGroot, Fienberg (1983) call the refinement error of the classifier, i.e., of the
lack of confidence of its predictions; its value is 0 if and only if all the posteriors it returns have a
value of 0 or 1, while its value is 1 if and only if the classifier always “sits on the fence”, i.e., if all
the posteriors it returns have a value equal to the prevalence of yj in U .7

As an example, in a binary setting consider a perfectly balanced unlabelled set U , consider a
(“perfect”) classifier ϕ′ that returns Pr(yj |xi) = 1 for all xi whose true class is yj and Pr(yj |xi) = 0
for all xi whose true class is not yj , and consider a classifier ϕ′′ that returns Pr(yj |xi) = .50 for all
xi ∈ U . Classifiers ϕ′ and ϕ′′ are equivalent as far as CE is concerned (they both get a score of 0),
but they are not for RE, which is equal to 0 for ϕ′ and to .50 for ϕ′′. Conversely, consider the same
set U and the same (“perfect”) classifier ϕ′ of the previous example, and consider a (“perverse”)
classifier ϕ′′′ that returns Pr(yj |xi) = 0 for all xi whose true class is yj and Pr(yj |xi) = 1 for all xi

whose true class is not yj . Classifiers ϕ′ and ϕ′′′ are equivalent as far as RE is concerned (they both
get a score of 0), but they are not for CE, which is equal to 0 for ϕ′ and to 1 for ϕ′′. Prediction power
(which, in this case, manifests itself in the form of good-quality posteriors) thus requires calibration
and refinement. Another way of saying this is that BS measures the classifier’s knowledge, which is
a combination of the classifier’s introspection, or self-awareness (which is measured by CE), and of
the classifier’s confidence (which is measured by RE).

In this chapter we define and use two variants of the Brier score, i.e.,

7The decomposition of BS into CE and RE was originally introduced by Murphy (1973), who actually used the
terms reliability and resolution to denote CE and RE, respectively; the terminology we use in this chapter is the one
now current.
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• the Isometric Brier Score (here shortened as BSL, where L stands for “length”), which is
obtained by partitioning U into intervals I1j , ..., Iξj of equal length; for instance, if ξ = 10
then I1j = [.0, .1), I2j = [.1, .2),..., Iξj = [.9, 1.0];

• the Isomerous Brier Score (here shortened as BSN , where N stands for “number”), which
is obtained by partitioning U into intervals I1j , ..., Iξj such that the corresponding bins
β1j , ..., βξj have equal size, i.e., are such that (a) x′ ∈ βsj and x′′ ∈ βtj with s < t im-
plies that Pr(yj |x′) ≤ Pr(yj |x′′), and (b) |βsj | = |βtj | for any s, t ∈ {1, ..., ξ}. Note that, when
partitioning U this way, ν(βkj , U) is the same for all 1 ≤ k ≤ ξ.

The advantage of BSN over BSL is that all bins are guaranteed to have a high enough number of
elements, which reduces the risk that the difference between ρ(yj , βkj) and π(βkj) is extreme due to
sparsity. In this chapter we use the BSL variant for compatibility with previous literature (which
mostly uses the BSL variant – e.g., Bequé et al. (2017); Stephenson et al. (2008)), and the BSN

variant because, as argued, it seems to have superior formal properties.
In the experiments reported in this chapter we use ξ = 10.

3.3.2 Dataset

As explained in Section 2.6, RCV1-v2 is multi-label, i.e., a document may belong to several classes
at the same time; since in this chapter we are interested in single-label classification, we select its
“single-label fragment”, i.e., the subset of RCV1-v2 documents that have exactly 1 label. In order
to do so, (a) we remove all “derived” labels, leaving only “primitive” labels8, and (b) we remove
from the collection all documents that do not have exactly one “primitive” label.

For reasons that will be clear in the next paragraph, in our experiments we consider only the
37 classes with at least 2000 (training or test) positive examples; of these, 31 are “leaf” classes
while the remaining 6 classes correspond to internal nodes of the hierarchy.9 We also remove all
documents that do not belong to any of these 37 classes, which leaves us with 517,978 documents.

Generating samples with controlled amounts of PPS

RCV1-v2 exhibits very little PPS between training set and test set. In fact, if we compute the
normalized absolute error between pL (the class distribution in the training set) and pU (the class
distribution in the unlabelled documents), i.e.,

NAE(pL, pU ) =

∑|Y |
j=1 |PrL(yj) − PrU (yj)|
2(1 − min

yj∈Y
PrL(yj))

(3.10)

for RCV1-v2 we obtain NAE = .0026, which is an extremely low value (since NAE always ranges
between 0 – indicating no shift – and 1 – indicating maximum shift).

We instead want to test the SLD algorithm on a variety of distribution shift values, thus simu-
lating a variety of possible application scenarios. In order to do so, by using the protocol described

8The RCV1-v2 codeframe has a hierarchical structure. As a result, when a document is labelled with class yj , it
is also labelled with all classes that are ancestors of yj in the RCV1-v2 tree. Whenever a document has two labels
y′ and y′′ such that y′ is an ancestor of y′′, we remove this “derived” label y′ from its labels; we are thus left with
“primitive” labels (i.e., labels yj such that the document has no label which is a descendant of yj).

9Each of these latter 6 classes has at least 2000 positive examples “of its own”, i.e., such that none of its descendant
classes has any of these examples.
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below we extract from RCV1-v2 k different samples, each consisting of a training set and a test
set sampled from different class distributions; all the results of our experiments will thus be average
values across these k samples.

We run binary, “one-against-the-rest” classification experiments, i.e., experiments in which, for
each class yj , all the examples not belonging to yj are considered negative examples of yj . For these
experiments:

1. We generate two random vectors ΠL = (πL
1 , π

L
2 ) and ΠU = (πU

1 , π
U
2 ) of class priors, i.e., two

vectors such that 0 ≤ πL
j , π

U
j ≤ 1 for each 1 ≤ j ≤ 2 and such that

∑2
j=1 π

L
j =

∑2
j=1 π

U
j = 1;10

2. We generate a training set σL by drawing mL = |σL| different documents (with mL a pa-
rameter to be fixed beforehand), where at each draw we pick with probability πL

j a random

document among those belonging to class yj , and with probability (1 − πL
j ) a random docu-

ment among those not belonging to yj . We then generate a test set σU by first removing from
the pool the documents drawn for σL, and then by drawing mU = |σU | different documents
(with mU a parameter to be fixed beforehand), where at each draw we pick with probability
πU
j a random document among those belonging to class yj , and with probability (1 − πU

j ) a
random document among those not belonging to yj . We thus obtain a sample σ = (σL, σU )
with which we run a train-and-test experiment.

3. We repeat the two steps above k times for each class yj ∈ Y and average the results across
these 37 × k train-and-test experiments.

We also run single-label multiclass classification experiments, using varying number of classes. For
these experiments

1. given a desired number n of classes, we randomly choose n of our 37 RCV1-v2 classes, thus
obtaining codeframe Y , with |Y | = n;

2. we generate two random vectors ΠL = (πL
1 , ..., π

L
|Y |) and ΠU = (πU

1 , ..., π
U
|Y |) of class priors,

i.e., two vectors such that 0 ≤ πL
j , π

U
j ≤ 1 for each 1 ≤ j ≤ |Y | and such that

∑|Y |
j=1 π

L
j =∑|Y |

j=1 π
U
j = 1;

3. we generate a training set σL (resp., a test set σU ) by drawing mL = |σL| (resp., mU = |σU |)
different documents (with mL and mU two parameters to be fixed beforehand), where at each
draw we pick with probability πL

j (resp., πU
j ) a document belonging to class yj . We thus

obtain a sample σ = (σL, σU ) with which we run a train-and-test experiment;

4. we repeat the three steps above k times and average the results across these k train-and-test
experiments.

In the experiments we run in this chapter we use mL = mU = 1000, and k = 500. The fact that,
as previously specified, we only consider classes with at least 2000 positive examples allows us to
use mL = mU = 1000, i.e., there would be enough positive training examples even if, in some of

10The method we use for generating each such vector is to pick two random real numbers in [0,1] and normalizing
them so that they sum to 1. We have specified this since different methods to generate random vectors of class priors
(for instance, picking a random number x in [0,1] and using (x, (1 − x)) as the vector) are possible, and may yield
different results. The same method is also used in Step 2 of the analogous process for multiclass experiments that
we are going to describe next, of course using vectors with dimensionality equal to the number of classes considered.
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the k draws, πL
j and πU

j were both 1 for some yj .
11 We run multiclass experiments for all values of

|Y | ∈ {5, 10, 20, 37}.
Thanks to the use of randomly generated drawing probabilities, the class distributions of both

the training set and the test set of each sample are random, each class distribution is equiprobable,
and the value of PPS (as measured by NAE) between the training set and the test set of each
sample we generate is also random. The set of samples that we generate with this method is, since
k is large enough, fairly representative of the entire spectrum of shift values.

Note that this strategy for generating samples characterized by random values of PPS is radically
different from the one adopted, for instance, in Esuli et al. (2018); Forman (2008). In these latter
works there is no random component in picking class distributions or PPS values, and an equal
number of samples is generated for all possible class distributions such that each class prior belongs
to a finite set of values (e.g., {.00, .01, ..., .99, 1.00}). However, those works deal only with the binary
case, where the number of all possible such class distributions is small. In the general multiclass case
(i.e., when |Y | > 2) this number is much higher, since it grows exponentially with |Y |; therefore,
even generating a single sample for all possible class distributions such that each class prior is in
{.00, .01, ..., .99, 1.00}, would be prohibitive even for small numbers of |Y |. The random strategy
we adopt in this chapter thus allows us to avoid this pitfall.

3.3.3 Representing text

We preprocess text by using stop word removal and no stemming. As the weighting criterion we
use a version of the well-known tfidf method, expressed as

tfidf (f,xi) = log #(f,xi) × log
|L|

|x ∈ L : #(f,x) > 0|
(3.11)

where #(f,xi) is the raw number of occurrences of feature f in document xi; weights are then
normalized by means of cosine normalization.

3.3.4 Learners

In our experiments we use four different learners, i.e., support vector machines (SVMs), logistic
regression (LR), multinomial naive Bayes (MNB), and random forests (RFs). For all of them we
rely on the implementations available from the scikit-learn package.12 For all of them we use the
default parameters of the scikit-learn implementation, since the possible accuracy improvements
resulting from a parameter optimization based on k-fold cross-validation would be obtained at the
expense of a very large computational cost.13 This possible accuracy improvement would bring
about no evident benefit to our study, since the goal of this work is not squeezing every possible
drop of accuracy from our classifiers, but comparing the pre-SLD results with the post-SLD results
in the same experimental conditions. The default values are as follows:

• SVMs: we use soft-margin SVMs with linear kernel, L2 regularization with C = 1;

11Note that documents are drawn from RCV1-v2 in its entirety, disregarding the “traditional” split of RCV1-v2
into 23,149 training documents and 781,265 test documents.

12https://scikit-learn.org/stable/index.html
13No parameter has been optimized because it would have been too expensive to do it individually for each of the

500 samples per dataset mentioned in Section 3.3.2, and because doing it on just one of the 500 samples and using
the obtained parameter values for the other 499 would have been of dubious utility.
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• LR: we use L2 regularization with a regularization coefficient C = 1;

• MNB: We use Laplace smoothing, with a = 1 as the additive factor;

• RFs: we use 100 trees per forest, Gini impurity as the splitting function, no max depth, no
pruning.

For each of these learners but SVMs we use two versions, one with post-calibration of the posteriors
that the learner returns (Calib), and the other without calibration (NoCalib). SVMs are an
exception because, as is well-known, the confidence scores they return are not probabilities, and
the only way to have SVMs return probabilities in scikit-learn is to invoke a calibration routine;
as a result, the only version of SVMs we experiment with is one with post-calibration.

We perform calibration using the method proposed by Platt (2000), sometimes known as “Platt
scaling”.14 Given a confidence score s(xi, yj) produced by a classifier, either in the form of a non-
probabilistic score or of a non-calibrated probability, we transform it into a calibrated probability
Pr(yj |xi) by applying the logistic transformation

Pr(yj |xi) =
1

1 + exp(α · s(xi, yj) + β)
(3.12)

where the parameters α and β are determined by fitting a maximum-likelihood model on a set
of scores SCalib = {s(x, yj)|x ∈ TrCalib} produced by the classifier on some training documents
TrCalib. If the same training documents that are used to train the classifier are also used for
calibration, overfitting may happen. Held-out documents may be used, but this requires additional
labelled documents. To avoid overfitting without requiring held-out documents, Platt suggests
to collect the set of scores SCalib by performing cross-validation on the training documents. We
have implemented this k-fold cross-validation procedure, performing 10-fold cross-validation on
the training documents, using the same learning algorithm that is separately used on the entire
training set in order to learn the actual classifier. We obtain the scores Sf

Calib for each validation
fold f ∈ [1, . . . , 10] and then optimize the parameters of Equation 3.12 on the resulting set of scores

SCalib =
⋃

f S
f
Calib. We then apply the optimized Equation 3.12 to the scores of the classifier trained

on the entire training set; we refer to this process as the Calib version of the learner.

3.4 Results

This section presents the results of our experiments. The code for reproducing them is avail-
able at https://github.com/HLT-ISTI/SLD-reassessment. At https://hlt-isti.github.io/

SLD-visualization/ we also make available a visualization tool that shows, for various combina-
tions of (number of classes, sample, learner, class) from our experiments,

1. how the prior of the chosen class as estimated by SLD evolves as a function of the number of
iterations;

2. as the values of the four evaluation metrics (as computed on this sample only) evolve as a
function of the number of iterations.

14We have implemented Platt scaling ourselves since the version available from scikit-learn turns out to be not
a faithful implementation of Platt’s algorithm; see https://github.com/scikit-learn/scikit-learn/issues/16145
for a discussion. The code of our implementation is available at https://github.com/aesuli/scikit-learn/tree/

platt

https://github.com/HLT-ISTI/SLD-reassessment
https://hlt-isti.github.io/SLD-visualization/
https://hlt-isti.github.io/SLD-visualization/
https://github.com/scikit-learn/scikit-learn/issues/16145
https://github.com/aesuli/scikit-learn/tree/platt
https://github.com/aesuli/scikit-learn/tree/platt
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Figure 3.1 shows sample plots as generated by our visualization tool.

Figure 3.1: Plots from the visualization tool at https://hlt-isti.github.io/

SLD-visualization/, showing the evolution, as a function of the number of SLD itera-
tions, (top) of the prior of a chosen class as estimated by SLD, (center) of NAE, and (bottom) of
BS, CE and RE. The plots on the left show a successful application of SLD (3 of the 4 metrics
improve and the 4th stays constant), and the distance between the prior generated by SLD and
the true prior in the unlabelled set U diminishes, while the plots on the right show an unsuccessful
such application (all 4 metrics worsen, and the distance between the prior generated by SLD and
the true prior in the unlabelled set U increases).

3.4.1 Results of binary classification experiments

The upper half of Table 3.1 reports, for our binary classification experiments, the values of NAE
and of the isometric variants of BS, CE, RE, before (“Pre-SLD”) and after (“Post-SLD”) the
application of SLD. In other words, Pre-SLD indicates the values computed directly on the outputs
of the classifier, while Post-SLD indicates the values after these outputs have been updated by
SLD. Since NAE, BS, CE, RE are all error measures, differences between Pre-SLD and Post-SLD
are indicated in terms of relative error reduction RE = B−A

B , where E ∈ {NAE,BS,CE,RE} is the
specific error measure, B and A are the Pre-SLD and Post-SLD values of E, respectively, and where
the values of RE are reported (for simplicity) as percentages instead of as fractions.15 Note that

15In this table and in all the other tables in this chapter, some values of RE might not appear to be completely
justified; for instance, when the transition from a Pre-SLD value of .001 to a Post-SLD value of .000 is indicated to
correspond to a value RE = +79.3%. Of course, this value of RE derives from using the real Pre-SLD and Post-SLD
values in much higher precision. We use the standard notation (e.g., .027) rather than the more precise E notation
(e.g., 2.7E-3) for higher legibility.

https://hlt-isti.github.io/SLD-visualization/
https://hlt-isti.github.io/SLD-visualization/


42 CHAPTER 3. SLD FOR POSTERIORS IMPROVEMENT

Priors Posteriors

N
A

E

B
S

C
E

R
E

P
re

-S
L

D

P
o
st

-S
L

D

E
rr

o
r

R
ed

u
ct

io
n

P
re

-S
L

D

P
o
st

-S
L

D

E
rr

o
r

R
ed

u
ct

io
n

P
re

-S
L

D

P
o
st

-S
L

D

E
rr

or
R

ed
u

ct
io

n

P
re

-S
L

D

P
o
st

-S
L

D

E
rr

o
r

R
ed

u
ct

io
n

Is
o
m

et
ri

c

N
o
C
a
l
ib LR .005 .013 -136.9% .011 .011 -4.2% .008 .006 +21.4% .003 .005 -68.8%

MNB .116 .186 -60.3% .020 .025 -26.0% .013 .015 -15.6% .007 .011 -44.4%
RF .016 .039 -142.1% .010 .007 +26.2% .006 .003 +46.9% .003 .004 -12.1%
Avg .046 .079 -72.7% .013 .015 -7.8% .009 .008 +9.6% .005 .006 -41.8%

C
a
l
ib

SVM .005 .004 +21.5% .003 .002 +31.7% .001 .000 +79.3% .002 .002 +8.6%
LR .008 .002 +78.2% .004 .003 +29.1% .001 .000 +75.8% .002 .002 +7.6%
MNB .023 .014 +39.1% .009 .006 +35.3% .004 .001 +72.8% .005 .005 +8.3%
RF .002 .002 +17.5% .005 .003 +32.7% .002 .000 +81.6% .003 .003 +7.7%
Avg .009 .005 +43.5% .005 .004 +33.0% .002 .000 +76.1% .003 .003 +8.1%

Is
om

er
ou

s N
o
C
a
l
ib LR .005 .013 -136.9% .012 .012 -3.0% .009 .009 -4.1% .003 .003 +0.0%

MNB .116 .186 -60.3% .022 .028 -26.5% .017 .023 -35.3% .005 .005 -0.0%
RF .016 .039 -142.1% .011 .008 +28.0% .007 .004 +44.4% .004 .004 +0.0%
Avg .046 .079 -72.7% .015 .016 -7.0% .011 .012 -9.8% .004 .004 +0.0%

C
a
l
ib

SVM .005 .004 +21.5% .004 .003 +23.7% .001 .000 +90.1% .003 .003 +0.0%
LR .008 .002 +78.2% .004 .003 +22.8% .001 .000 +86.5% .003 .003 +0.0%
MNB .023 .014 +39.1% .010 .007 +33.1% .004 .001 +73.5% .005 .005 -0.0%
RF .002 .002 +17.5% .006 .004 +28.0% .002 .000 +86.8% .004 .004 +0.0%
Avg .009 .005 +43.5% .006 .004 +28.4% .002 .000 +80.3% .004 .004 -0.0%

Table 3.1: Values of NAE, BS, CE, RE, before and after the application of SLD, for binary classi-
fication experiments.

for RE a positive value indicates an improvement (i.e., that SLD had a beneficial effect) while a
negative value indicates a deterioration. The rows of the table each correspond to one of the learners
of Section 3.3.4, grouped into learners with post-calibration of the posteriors that the learner returns
(Calib) and ones without such calibration (NoCalib). As indicated in Section 3.3.2, every row of
this table is the result of 37×500=18,500 train-and-test runs; given that each of the 7 rows accounts
for a different learner, this is a total of 18,500×7=129,500 train-and-test runs.

There are a number of observations that can be derived from the top part of Table 3.1:

• In terms of the quality of the estimated priors (as measured by NAE), there is a very sub-
stantial difference between the performance of non-calibrated learners and that of calibrated
learners: for the former, the application of SLD brings about an extremely large deterioration
(an average of 72.7% across all tested learners), while it brings about a very good improvement
(an average of 43.5% across all tested learners) for the latter.16 This adds to the fact that
calibrated learners have, on average, a much better NAE right from the start (.009, instead of

16This confirms an observation of Saerens et al. (2002), according to whom “In order to obtain good a priori
probability estimates [by means of SLD], it is necessary that the a posteriori probabilities relative to the training set
are reasonably well approximated (i.e., sufficiently well estimated by the model)”.
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.046 for the non-calibrated ones); this means that calibrating one’s learner is a win-win move,
given that it brings about much better posterior probabilities and that these posteriors have
much larger margins of improvement by means of the application of SLD.17

• The very large magnitude of these improvements / deteriorations is not mirrored by analogous
magnitudes when it comes to the quality of the posteriors. It is still true that deteriorations
are observed in the case of non-calibrated classifiers (7.8% on average) and improvements are
instead observed for the calibrated classifiers (33.0% on average), but the magnitudes of these
variations are smaller.

• SLD seems to have a much more beneficial effect in terms of calibration than in terms of
refinement; in fact improvements in BS, when present, are largely the responsibility of CE,
while deteriorations in BS, when present, are largely the responsibility of RE.

• While there are (even substantial) quantitative differences among learners belonging to the
same category (non-calibrated or calibrated), there are very few qualitative differences, i.e.,
when a learner exhibits a deterioration in one of the measures, all other learners (with few
exceptions) also exhibit a deterioration for the same measure. This seems to indicate that the
results derive from inherent properties of the SLD algorithm, rather than from peculiarities
of the individual learning algorithms.

The lower half of Table 3.1 presents the analogous results for the isomerous variants of BS, CE, RE.
(The results for NAE are the same as in the upper half, since the distinction isometric/isomerous
does not apply to NAE.) The observations that can be made by looking at the lower half the table
are essentially the same as those derived from the upper half, since the results are qualitatively
similar. There is one important difference, though, i.e., the fact that, when measured by means
of the isomerous variant, RE is always 0 or very close to 0, which is far from being the case when
using isometric RE. That this should be so is an obvious consequence of the definition of RE, as
from Equation 3.9. In fact, since all bins are equally populated, it is clear from Equation 3.9 that
RE only depends, for all bins βkj (1 ≤ k ≤ b) and for all classes yj ∈ Y , on the fraction ρ(yj , βkj) of
documents in the bin that belong to the class. However, for all bins, that fraction is the same in the
Pre-SLD and Post-SLD distributions, because, as observed in Section 2.4, SLD is just a rescaling
algorithm, that multiplies all the posteriors for a given class for the same constant but does not
change the composition of the bins. That RE is not 0 when using the isometric variant is thus
due to the fact that rescaling changes the compositions of the bins; for instance, a document that
was in the bin corresponding to the [.9, 1.0] interval before the application of SLD, after SLD has
been applied might be in the [.8, .9) bin if SLD has multiplied all the posteriors for that class by a
factor smaller than 1. In this case, rescaling not only changes the composition of the bins, but also
changes the number of documents they contain, thus potentially generating also very sparse bins.

Interestingly, the fact that SLD could not reduce RE is reminiscent of an observation by DeGroot,
Fienberg (1983):

17Niculescu-Mizil, Caruana (2005b) state that “For learning methods that make well calibrated predictions such
as neural nets, bagged trees, and logistic regression, neither Platt Scaling nor Isotonic Regression yields much
improvement in performance even when the calibration set is very large. With these methods calibration is not
beneficial, and actually hurts performance when the calibration sets are small.” Our large-scale experimentation
indicates that, while this might be true in the absence of PPS, when PPS is present any calibrated learner works
better than its non-calibrated counterpart. In fact, note that the Pre-SLD values of NAE, BS and CE for the
calibrated learners are always substantially better than the values of the corresponding non-calibrated learners, and
this also includes logistic regression, a learner that is known to return well calibrated probabilities.
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We then study the question of when an observer can use a forecaster’s predictions to
obtain a better score than the forecaster himself, and show that such an improvement
can be achieved by the observer essentially if and only if the forecaster is not well
calibrated.

Here, the forecaster is the classifier and the observer is SLD, who tries to obtain a better score (in
terms of Brier score) than the classifier by “piggybacking” on the classifier’s predictions. DeGroot,
Fienberg (1983) state that what SLD can at most hope for, is to improve on the classifier’s cali-
bration error, but not on its refinement error. This shows that SLD is, in essence, a re-calibration
algorithm, i.e., an algorithm for re-calibrating the posterior probabilities of documents belonging to
an unlabelled set U , where these posteriors have been returned by a classifier already calibrated on
a training set L, and where the re-calibration is made necessary by the fact that a prior probability
shift between L and U has occurred.

3.4.2 Results of multiclass classification experiments
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N
o
C
a
l
ib LR .007 .003 +50.1% .005 .007 -33.9% .004 .004 -25.2% .002 .003 -49.3%

MNB .022 .030 -36.7% .009 .012 -36.9% .005 .006 -25.3% .004 .006 -49.6%
RF .014 .036 -154.9% .005 .005 +11.0% .003 .002 +31.9% .002 .003 -22.4%
Avg .014 .023 -61.6% .007 .008 -22.9% .004 .004 -8.6% .003 .004 -42.7%

C
a
l
ib

SVM .009 .006 +37.5% .003 .003 +2.6% .001 .001 -2.5% .002 .002 +5.0%
LR .004 .009 -133.0% .002 .002 -31.6% .001 .001 -48.2% .001 .001 -22.4%
MNB .015 .017 -15.1% .005 .004 +21.7% .002 .001 +40.1% .003 .003 +10.7%
RF .005 .005 -4.8% .003 .002 +24.4% .001 .000 +53.5% .002 .002 +9.7%
Avg .008 .009 -12.7% .003 .003 +9.5% .001 .001 +19.9% .002 .002 +3.8%

Is
om

er
ou

s N
o
C
a
l
ib LR .007 .003 +50.1% .006 .008 -28.2% .004 .006 -42.5% .003 .003 -5.7%

MNB .022 .030 -36.7% .010 .014 -35.4% .006 .009 -51.7% .004 .004 -10.7%
RF .014 .036 -154.9% .006 .006 +12.8% .004 .003 +29.2% .003 .003 -6.9%
Avg .014 .023 -61.6% .008 .009 -19.8% .005 .006 -27.8% .003 .003 -8.2%

C
a
l
ib

SVM .009 .006 +37.5% .004 .004 -0.5% .001 .001 +4.2% .003 .003 -2.0%
LR .004 .009 -133.0% .003 .004 -20.2% .001 .001 -88.9% .002 .002 -1.8%
MNB .015 .017 -15.1% .006 .005 +18.4% .002 .001 +43.8% .004 .003 +4.7%
RF .005 .005 -4.8% .004 .003 +16.5% .001 .000 +60.6% .003 .003 +2.7%
Avg .008 .009 -12.7% .004 .004 +6.4% .001 .001 +19.7% .003 .003 +1.3%

Table 3.2: As Table 3.1, but for multiclass classification (5 classes).

Tables 3.2 to 3.5 report the results of our experiments on multiclass classification. As indicated in
Section 3.3.2, we run multiclass experiments with varying number of classes, starting from |Y | = 5
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Priors Posteriors
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N
o
C
a
l
ib LR .014 .030 -107.5% .005 .007 -61.0% .002 .004 -55.1% .002 .004 -67.4%

MNB .014 .035 -143.5% .006 .009 -51.8% .002 .004 -59.9% .004 .005 -46.5%
RF .018 .068 -281.6% .004 .004 +0.3% .002 .001 +26.3% .002 .003 -24.7%
Avg .016 .044 -185.4% .005 .007 -40.2% .002 .003 -32.7% .003 .004 -46.7%

C
a
l
ib

SVM .015 .022 -41.3% .002 .004 -43.1% .001 .001 -97.5% .002 .002 -21.9%
LR .018 .026 -45.1% .002 .004 -93.6% .001 .002 -173.3% .001 .002 -58.7%
MNB .017 .020 -19.3% .003 .004 -18.1% .001 .001 -38.0% .002 .003 -9.9%
RF .008 .020 -143.7% .002 .003 -22.4% .001 .001 -52.3% .002 .002 -12.3%
Avg .015 .022 -50.4% .003 .003 -39.6% .001 .001 -83.3% .002 .002 -22.4%

Is
om

er
ou

s N
o
C
a
l
ib LR .014 .030 -107.5% .005 .008 -52.0% .003 .006 -93.7% .003 .003 -4.8%

MNB .014 .035 -143.5% .007 .010 -48.6% .003 .006 -87.0% .004 .004 -14.2%
RF .018 .068 -281.6% .005 .005 +3.0% .002 .002 +16.5% .003 .003 -6.6%
Avg .016 .044 -185.4% .006 .008 -34.9% .003 .004 -63.4% .003 .003 -9.1%

C
a
l
ib

SVM .015 .022 -41.3% .003 .005 -31.5% .001 .002 -158.8% .003 .003 -1.8%
LR .018 .026 -45.1% .003 .005 -58.8% .000 .002 -319.4% .002 .003 -6.1%
MNB .017 .020 -19.3% .004 .005 -14.0% .001 .002 -65.0% .003 .003 +1.4%
RF .008 .020 -143.7% .003 .004 -16.1% .001 .001 -102.1% .003 .003 +0.3%
Avg .015 .022 -50.4% .003 .004 -28.2% .001 .002 -142.3% .003 .003 -1.3%

Table 3.3: As Table 3.2, but with 10 classes.

classes (Table 3.2) and moving up to |Y | = 10 (Table 3.3), |Y | = 20 (Table 3.4), and |Y | = 37
(Table 3.5), which is the total number of classes in our dataset. For |Y | ∈ {5, 10, 20}, the classes
are randomly sampled from the entire set of 37 RCV1-v2 classes. As indicated in Section 3.3.2,
every row of these 4 tables is the result of 500 train-and-test runs; given that each of the 7 rows
accounts for a different learner, this is a total of 4×500×7=14,000 train-and-test runs.

There are several observations we can make by looking at these tables:

• The main fact that emerges is that all quality indicators of SLD (i.e., the values of error
reduction, for each of the four error measures we consider) drastically deteriorate when |Y |
grows, for all learners, calibrated or not. Table 3.5, that reports results for |Y | = 37, indicates
disastrous performance on the part of SLD on all counts.

• Concerning SLD’s impact on the priors, while the binary experiments had indicated a very
positive impact (at least: for the calibrated learners), the multiclass experiments indicate a
negative impact for |Y | = 5 (12.7% average deterioration across all calibrated learners) and
an even more negative impact for |Y | ∈ {10, 20, 37}, with the average deterioration across all
calibrated learners reaching up to 251.0% for |Y | = 37.

• Concerning SLD’s impact on the posteriors, while the binary experiments had indicated a
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Priors Posteriors
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N
o
C
a
l
ib LR .017 .081 -382.2% .003 .006 -72.3% .001 .002 -95.6% .002 .003 -59.2%

MNB .021 .075 -260.7% .004 .006 -64.6% .001 .002 -130.9% .003 .004 -39.0%
RF .025 .118 -379.4% .003 .003 -11.0% .001 .001 +17.0% .002 .002 -27.4%
Avg .021 .091 -340.5% .003 .005 -52.2% .001 .002 -71.3% .002 .003 -42.6%

C
a
l
ib

SVM .030 .062 -110.5% .002 .004 -86.3% .001 .001 -175.3% .002 .002 -54.4%
LR .024 .047 -96.7% .002 .003 -114.5% .000 .001 -230.7% .001 .002 -74.7%
MNB .015 .047 -205.2% .002 .004 -85.2% .000 .002 -234.7% .002 .002 -38.4%
RF .015 .040 -162.8% .002 .003 -87.2% .000 .001 -265.7% .001 .002 -40.7%
Avg .021 .049 -133.4% .002 .004 -92.3% .000 .001 -222.4% .001 .002 -50.9%

Is
om

er
ou

s N
o
C
a
l
ib LR .017 .081 -382.2% .004 .006 -61.8% .002 .004 -149.6% .002 .002 -3.7%

MNB .021 .075 -260.7% .004 .007 -58.9% .001 .003 -144.7% .003 .003 -13.6%
RF .025 .118 -379.4% .003 .004 -6.1% .001 .001 -9.8% .003 .003 -4.8%
Avg .021 .091 -340.5% .004 .006 -44.1% .001 .003 -115.7% .003 .003 -7.6%

C
a
l
ib

SVM .030 .062 -110.5% .003 .005 -57.3% .000 .002 -395.2% .002 .003 -1.4%
LR .024 .047 -96.7% .003 .004 -62.9% .000 .002 -502.6% .002 .002 -4.3%
MNB .015 .047 -205.2% .003 .005 -56.2% .000 .002 -407.9% .003 .003 -0.6%
RF .015 .040 -162.8% .003 .004 -52.1% .000 .002 -491.1% .002 .002 -1.0%
Avg .021 .049 -133.4% .003 .004 -57.0% .000 .002 -441.6% .002 .002 -1.8%

Table 3.4: As Table 3.2, but with 20 classes.

very positive impact (at least: for the calibrated learners), the multiclass experiments indicate
that this impact is still mildly positive for |Y | = 5 but becomes negative for |Y | = 10 and
deteriorates even more for |Y | ∈ {20, 37}. For instance, BS in the isomerous variant has,
thanks to SLD, an average improvement across the calibrated learners by 28.0% for |Y | = 2
and 6.4% for |Y | = 5, but this improvement becomes a deterioration for |Y | = 10 (28.2%)
and for |Y | ∈ {20, 37} (e.g., 72.2% for |Y | = 37). This trend is even more marked for CE,
and indicates an improvement for |Y | = 2 (80.3%, average across the calibrated learners) and
|Y | = 5 (19.7%) but a deterioration for higher values of |Y |, with the amount of deterioration
reaching up to 937.2% for |Y | = 37.

3.4.3 Analyzing the results by amount of shift

In this section we analyze the relations between error and PPS. Our goal is that of highlighting,
in the results of the experiments discussed in Sections 3.4.1 and 3.4.2, any noteworthy correlation
between error reduction, for any of our four measures, and PPS.

In our analysis of the results, we have not been able to detect any significant correlation between
NAE and PPS, or between RE and PPS. As a result, from here onwards we only concentrate on
discussing BS and CE. Figure 3.2 plots the values of relative error reduction for the BS and CE
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N
o
C
a
l
ib LR .014 .137 -913.5% .002 .003 -50.5% .000 .001 -149.9% .002 .002 -25.6%

MNB .022 .115 -411.6% .002 .004 -67.8% .000 .002 -326.1% .002 .002 -19.2%
RF .028 .159 -458.5% .002 .002 -19.6% .000 .000 +3.7% .001 .002 -28.4%
Avg .021 .137 -537.7% .002 .003 -47.9% .000 .001 -140.3% .002 .002 -23.9%

C
a
l
ib

SVM .031 .091 -193.1% .002 .003 -115.1% .000 .001 -278.9% .001 .002 -67.9%
LR .026 .067 -160.4% .001 .003 -112.8% .000 .001 -269.0% .001 .002 -69.5%
MNB .015 .071 -368.2% .001 .003 -135.0% .000 .002 -447.1% .001 .002 -56.9%
RF .016 .080 -398.3% .001 .003 -138.2% .000 .001 -501.4% .001 .002 -62.1%
Avg .022 .077 -251.0% .001 .003 -125.2% .000 .001 -363.9% .001 .002 -64.0%

Is
om

er
ou

s N
o
C
a
l
ib LR .014 .137 -913.5% .002 .004 -45.7% .001 .002 -184.1% .002 .002 -1.7%

MNB .022 .115 -411.6% .003 .004 -64.3% .001 .002 -271.6% .002 .002 -7.5%
RF .028 .159 -458.5% .002 .003 -12.8% .000 .001 -83.0% .002 .002 -2.4%
Avg .021 .137 -537.7% .002 .003 -41.9% .000 .001 -196.4% .002 .002 -3.9%

C
a
l
ib

SVM .031 .091 -193.1% .002 .004 -74.0% .000 .002 -803.6% .002 .002 -0.7%
LR .026 .067 -160.4% .002 .003 -57.9% .000 .001 -790.7% .002 .002 -1.1%
MNB .015 .071 -368.2% .002 .004 -79.7% .000 .002 -1009.1% .002 .002 -0.9%
RF .016 .080 -398.3% .002 .004 -76.8% .000 .002 -1206.9% .002 .002 -0.9%
Avg .022 .077 -251.0% .002 .004 -72.2% .000 .002 -937.2% .002 .002 -0.9%

Table 3.5: As Table 3.2, but with 37 classes.

measures (we here use the isomerous variants; the isometric variants return similar results) for the
same experiments as discussed in Sections 3.4.1 and 3.4.2, for each of our 4 calibrated classifiers,18

but with the samples binned into four quartiles according to how much PPS between the training set
and test set the sample exhibits. The 1st quartile contains the samples characterized by the lowest
amounts of PPS, and the 4th contains the samples characterized by the highest such amounts. The
actual values of PPS (expressed in terms of NAE) that characterize the samples in each quartile
are reported in Table 3.6. Each result reported in the plots is the average across all samples that
belong to the bin.

A clear pattern emerges from the analysis of BS and CE values: for both measures, for both
the binary and multiclass cases, and for all numbers of classes considered in the multiclass experi-
ments (|Y | ∈ {5, 10, 20, 37}), performance tends to improve monotonically with the amount of PPS.
(Exceptions do exist for individual classifiers, but the average values across the 4 classifiers exhibits
strict monotonicity). This happens both for the cases (binary case + multiclass case with |Y | = 5)
in which SLD has a positive impact (i.e., error diminishes as a result of its application), and for the
cases (multiclass case with |Y | > 5) in which the impact of SLD is negative (i.e., error increases as
a result of its application); in the former cases the magnitude of error reduction increases with the

18We omit discussing the non-calibrated classifiers since the experiments of Sections 3.4.1 and 3.4.2 have clearly
indicated that SLD requires, in order to perform well, calibrated classifiers.
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2 classes 5 classes 10 classes 20 classes 37 classes
Min Max Min Max Min Max Min Max Min Max

1st quartile .000 .168 .063 .253 .116 .274 .177 .297 .224 .311
2nd quartile .168 .343 .254 .334 .274 .329 .297 .335 .311 .342
3rd quartile .343 .557 .334 .413 .329 .387 .336 .373 .342 .372
4th quartile .557 .993 .414 .746 .387 .644 .374 .534 .372 .483

Table 3.6: Values of PPS (expressed in terms of NAE) for the samples in each of the four quartiles
in which all samples are binned; for each quartile we indicate minimum shift and maximum shift
of the samples the quartiles actually contain.

increase in shift, while in the latter cases the magnitude of error amplification diminishes with the
increase in shift. Case |Y | = 5 seems the threshold here, with SLD yielding a decrease in error for
the two quartiles representing low shift and an increase in error for the two quartiles representing
high shift.

Together with the analyses presented in Sections 3.4.1 and 3.4.2, this observation suggests that
SLD should be used to improve the quality of the prior probability estimates and of the posterior
probabilities, only (a) when the classifier has been calibrated, and (b) the number of classes in the
codeframe Y is low (say, |Y | ≤ 5), and (c) when the amount of distribution shift is high enough.19

3.4.4 Analyzing the distributions produced by SLD

In the previous sections we have evaluated, among other things, the impact of SLD on the differ-
ence between the predicted class distribution and the true class distribution, by using the NAE
measure. In this section we instead look at the impact of SLD on two intrinsic characteristics of
class distributions, i.e., their entropy and their shape. In order to do so we compare, for a given
train-and-test run, the four class distributions involved: (a) the true class distribution of L, (b)
the true class distribution of U , (c) the class distribution of U predicted by the classifier (which
SLD receives as input), and (d) the class distribution of U returned by SLD. This allows us to
better understand the impact of SLD, and the reasons behind some of the patterns highlighted in
Sections 3.4.1 through 3.4.3.

Average entropy of class distributions

For each of the 129,500+14,000=143,500 train-and-test runs we have discussed in Sections 3.4.1
and 3.4.2, we measure the entropy

E(Y ) = −
|Y |∑
i=1

Pr(yi) log|Y | Pr(yi) (3.13)

of the four class distributions (a) to (d) mentioned in the previous paragraph. In each case we
set the base of the logarithm to the number |Y | of classes of the distribution being observed, so
that entropy values always range between 0 and 1. A low entropy value means that most of the

19Statistical tests are indeed available that allow to detect how much PPS there is between the training documents
and the unlabelled documents; one such test (a likelihood ratio test) is presented in Saerens et al. (2002, §3).
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documents in the sample belong to one or few classes, while a high entropy value means that the
documents are spread fairly evenly across the entire set of classes.

Table 3.7 shows the average value of the entropy of the four class distributions (a) to (d) (which
in this and in the following tables will be indicated as L, U , Pre-SLD, and Post-SLD, respectively)
across all the 143,500 train-and-test runs.

L U Pre-SLD Post-SLD

Entropy .902 .902 .906 .638

Table 3.7: Values of the entropy of the four class distributions, averaged across all train-and-test
runs.

From this table we can observe that the values for L and U are the same. This is intuitive, since,
even though the training set and the test set of a given sample have in general two different class
distributions, the sampling method for generating training sets and test sets is the same and the
pool of documents from which to sample is the same, so training sets and test sets will exhibit, on
average, the same class distribution. In the following we will not report the entropy values for L,
since those for U are always practically identical.

The average entropy value of Pre-SLD class distributions is slightly higher than those for L and
U , but not substantially so. However, what immediately jumps to the eye is that the average entropy
value for Post-SLD is much lower than the values for L, U , and Pre-SLD. Similar distributions
exhibit similar entropy values, so a difference in entropy values is a clear indicator of a dissimilarity
between the two observed distributions. The sharp difference between the Pre-SLD and Post-
SLD average entropy values thus unequivocally indicates that SLD substantially alters the Pre-SLD
class distribution, and the sharp difference between the U and Post-SLD values indicates that this
alteration is detrimental. Since a high entropy value indicates a highly uniform distribution, the
above results indicate that SLD has a tendency to sharply diminish this uniformity, and label most
of the documents with one or few classes.

Table 3.8 reports again entropy values of class distributions, but averaged across all runs char-
acterized by the same number of classes in the codeframe. An analysis of this table shows that

# of classes U Pre-SLD Post-SLD

2 .821 .819 .704
5 .894 .891 .787
10 .919 .917 .721
20 .935 .935 .574
37 .943 .946 .405

Table 3.8: Values of the entropy of the four class distributions, averaged across all train-and-test
runs with the same number of classes in the codeframe.

values for U tend to increase as the number |Y | of classes in the codeframe increases. This is due to
the sampling method, that generates prior probabilities with mean equal to 1

|Y | and variance equal

to 1
|Y |2 (as will also be evident from Figures 3.4 to 3.7). The values for Pre-SLD follow the same

trend as values for U , but the values for Post-SLD have an almost opposite trend: as the number



50 CHAPTER 3. SLD FOR POSTERIORS IMPROVEMENT

|Y | of classes in the codeframe increases, SLD decreases the uniformity of class distributions.
Table 3.9 reports again entropy values of class distributions, but averaged across all runs that use

the same learning algorithm. The application of SLD following the use of the No-Calib learners

U Pre-SLD Post-SLD

N
o
-C

a
l
ib LR .902 .925 .501

MNB .902 .802 .395
RF .902 .923 .751
Avg .902 .883 .549

C
a
l
ib

SVM .902 .914 .698
LR .902 .919 .719
MNB .902 .906 .687
RF .902 .921 .719
Avg .902 .915 .706

Table 3.9: Values of the entropy of the four class distributions, averaged across all train-and-test
runs obtained by means of the same learning algorithm.

brings about an even stronger divergence between the U values and the Post-SLD values than the
corresponding Calib versions, thus confirming that non-calibrated classifiers are not fit for use
with SLD. The application of SLD drastically reduces the average entropy for all learners, thus
indicating that the decrease in uniformity of the distributions is less related to the chosen learning
algorithm than to the number |Y | of classes in the codeframe (see also Section 3.4.4).

Table 3.10 shows the average entropy values of the class distributions for all the possible com-
binations of number of classes and learners. From this table we can identify the very few cases in
which the U class distributions have an average entropy value closer to the Post-SLD value than to
the Pre-SLD value: this happens only for |Y | = 2 with calibrated SVMs, MNB, and RF.

Histogram-based representations of class distributions

In this section we display and comment on histograms that indicate how class prevalences are
distributed in U , Pre-SLD, and Post-SLD class distributions resulting from the use of specific
learners and with specific numbers of classes. Figure 3.3 does this for |Y | = 2, i.e., the binary
classification case. As an example, the histogram in its left bottom subfigure (“Pre-SLD - Random
Forests”) shows that, if we pool together all the 37×500=18,500 train-and-test runs where RF was
used as the learner, the results returned by the classifier (i.e., Pre-SLD) are such that a high number
of classes have a prevalence of about 50% (i.e., Pr(y) = .5), a slightly lower number of classes have a
prevalence of 40%, ..., and a very small number of classes have a prevalence of 0%. Every subfigure
of Figure 3.3 is, of course, bilaterally symmetric, since we are in the binary case, in which Pr(y) = α
entails Pr(y) = (1−α). The top row of the figure (orange colour) refers to the U class distributions
(the left and right histograms are the same); the other histograms in the left column refer to Pre-
SLD class distributions, one for each of the 7 learning algorithms, while the other histograms in
the right column refer to Post-SLD class distributions for the same algorithms. Figures 3.4 to 3.7
do the same for |Y | ∈ {5, 10, 20, 37}; these histograms are, of course, not bilaterally symmetric.20

20Note that, for higher legibility, the X axis displays a shorter interval than [0,1] when there are no classes with
prevalence outside that interval.
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# of No-Calib Calib
classes LR MNB RF SVM LR MNB RF

2
U .821 .821 .821 .821 .821 .821 .821

Pre-SLD .866 .631 .868 .840 .828 .846 .851
Post-SLD .577 .409 .693 .815 .799 .820 .813

5
U .894 .894 .894 .894 .894 .894 .894

Pre-SLD .921 .772 .922 .905 .913 .896 .909
Post-SLD .708 .567 .804 .858 .851 .854 .869

10
U .919 .919 .919 .919 .919 .919 .919

Pre-SLD .939 .821 .934 .931 .940 .914 .938
Post-SLD .552 .479 .789 .809 .780 .798 .842

20
U .935 .935 .935 .935 .935 .935 .935

Pre-SLD .947 .874 .943 .946 .953 .932 .951
Post-SLD .351 .321 .762 .635 .657 .614 .678

37
U .943 .943 .943 .943 .943 .943 .943

Pre-SLD .953 .912 .949 .951 .959 .942 .958
Post-SLD .318 .198 .705 .370 .507 .346 .393

Table 3.10: Values of the entropy of the four class distributions, averaged across all train-and-test
runs with the same number of classes and obtained by means of the same learning algorithm.

Figure 3.3 shows that all the methods produce class prevalences that are distributed more
uniformly than the true ones, i.e., many Pre-SLD or Post-SLD distributions generate many class
prevalences with very low or very high values. What is more important, though, is that for each
learning method the difference between the U histogram and the Post-SLD histogram is larger than
the difference between the U histogram and the Pre-SLD histogram; in other words, this confirms
that SLD alters the Pre-SLD class distribution, and that this alteration is detrimental. However,
what we learn from these histograms, and that we had not learned from the entropy study of the
previous section, is how SLD alters this distribution: it does so by generating fewer class priors
with mid values, i.e., close to 50%, and more class priors with extreme values, i.e., close to 0% or
1% (to see this better, note that the Y axes of the left subfigure and the right subfigure are often
not on the same scale).

It is evident from Figure 3.3 that SLD’s impact in altering the distribution is substantial for
each of the four calibrated learners (4th to 8th rows), and it is even more for the non-calibrated
ones (2nd to 4th rows). When SLD is run on the posteriors generated by these latter learners, all
class priors except 0 and 1 become much more frequent, and class priors equal to 0 and 1 increase
dramatically with respect to the Pre-SLD case.

In Figures 3.4 to 3.7, which represent the multiclass case with |Y | ∈ {5, 10, 20, 37}, these trends
are increasingly evident, and the deterioration introduced by SLD reaches disastrous levels for
|Y | = 37. Post-SLD average class distribution become increasingly skewed when |Y | grows, and
this concerns both calibrated and non-calibrated learners (although the latter are impacted to a
much higher degree). While for the |Y | = 2 case class priors equal to 0 and class priors equal
to 1 were both prevalent, in the multiclass cases class priors equal to 1 are practically absent
and, as |Y | grows, the histogram becomes increasingly skewed and class priors equal to 0 become
the overwhelming majority. Overall, what all these histograms show, aligns very well with our
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experimental findings of Sections 3.4.1 and 3.4.2, i.e., with the facts that SLD works better with
calibrated than with non-calibrated classifiers, and with the fact that it works better for small
values of |Y | and (much) worse for high values of |Y |. They also show something more, i.e., that
the reason of the bad behaviour is the fact that SLD has, especially when |Y | is high and/or when
classifiers are non-calibrated, a tendency to return many class priors equal to 0 and few class priors
different from 0.

The fact that the SLD algorithm can bring to an extremisation of the posterior and prior
probabilities, e.g., that most class priors are 0, will be central to most analyses of the algorithm in
this thesis. As a matter of fact, this phenomenon was first noticed by Du Plessis, Sugiyama (2014),
who showed (Du Plessis, Sugiyama, 2014, §3.3) that SLD is indeed solving a convex problem, but
that it is not guaranteed to converge to a unique optimal value. Rather, the authors show that SLD
can get “stuck” in a degenerate fixed point. That said, notice that the extremisation phenomenon
which we will see and discuss in Chapters 4 and 5 is mainly due to the active learning policy which
builds the training set, rather than to the phenomenon discussed here.

3.4.5 On the speed of convergence of SLD

As indicated in Section 2.4, in our experiments we stop SLD when we have reached either conver-

gence (which we take to mean that AE(p̂
(s−1)
U , p̂

(s)
U ) < 10−6) or the maximum number of iterations

(that we set to 1000). Table 3.11 reports, for each learner and for each number |Y | of classes,

2 classes 5 classes 10 classes 20 classes 37 classes
# % # % # % # % # %

N
o
-C

a
l
ib LR 60.86 0.18% 138.92 0.20% 476.69 12.40% 939.06 77.60% 999.62 99.80%

MNB 29.27 0.00% 53.74 0.00% 136.46 0.60% 296.92 5.80% 469.28 14.00%
RF 32.38 0.01% 83.65 0.20% 223.70 1.40% 446.88 5.80% 636.25 14.80%
Avg 40.84 0.06% 92.10 0.13% 278.95 4.80% 560.95 29.73% 701.72 42.87%

C
a
l
ib

SVM 9.29 0.00% 29.02 0.00% 109.75 0.00% 288.73 0.80% 353.37 1.40%
LR 9.39 0.00% 27.68 0.00% 95.87 0.00% 249.06 1.00% 368.32 4.00%
MNB 35.69 0.82% 58.95 0.40% 162.36 1.00% 308.40 4.20% 507.15 20.60%
RF 12.66 0.00% 26.85 0.00% 86.00 0.00% 223.57 1.20% 432.19 11.00%
Avg 16.76 0.20% 35.62 0.10% 113.49 0.25% 267.44 1.80% 415.26 9.25%

Table 3.11: Average number of iterations needed to reach convergence (“#”) and percentage of
cases in which convergence was not reached (“%”) for all combinations of learner and number |Y |
of classes.

• the average number of iterations (column “#”) SLD required to reach convergence (when
convergence was actually reached – the value 1000 is used whan convergence was not reached),
where the average is computed across all the train-and-test runs we have performed;

• the percentage of cases (column “%”) in which convergence was not reached, and processing
had to be stopped after 1000 iterations.

There are three conclusions that can be reached from this table, i.e.,

1. For a given number of classes, convergence tends to be quicker when the Pre-SLD posteriors
have been obtained by calibrated learners; this is always true for LR and RF, although it is
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always false for MNB. The difference between the two versions (non-calibrated and calibrated)
of LR is somehow surprising, since LR is often presented as an algorithm that naturally
returns calibrated probabilities, i.e., a classifier which does not need post-calibration; our
results throughout this chapter instead show that post-calibration is beneficial for LR too.

2. For a given learner, the number of iterations required to reach convergence grows monotoni-
cally with the number |Y | of classes considered.

3. For a given learner, the percentage of cases in which convergence is not reached grows mono-
tonically with the number |Y | of classes considered.

These findings constitute yet another argument in favour of calibrated learners, and yet another
reason why the use of SLD should be contemplated only when the number |Y | of classes is small.

3.5 What kind of dataset shift do we simulate in our exper-
iments?

In Section 3.3.2 we stated that, in extracting from RCV1-v2 a number of samples with training
sets and test sets characterized by random class distributions, our goal is to test the SLD algorithm
on a variety of PPS values (see Section 2.1.1). But what kind of dataset shift are we simulating,
exactly?

If our dataset is from a X → Y problem, we are certainly simulating covariate shift but not
concept shift; in fact, we are selectively removing documents (which means that Pr(x) changes) but
we are not making the causal relationship between X and Y change (which means that Pr(y|x) does
not change), since the documents that are not removed still have the same class label. Conversely,
if our dataset is from a Y → X problem, we are simulating prior probability shift, because by
selectively removing documents we are making Pr(y) change.

So, what we are simulating with the sampling strategy of Section 3.3.2 is covariate shift and/or
prior probability shift, but not concept shift.

There are two reasons for this:

• While a strategy that also simulates concept shift might have been better, since it would have
allowed us to test the SLD algorithm in a broader set of challenging situations, it is not clear
how concept shift should be simulated, since this would involve changing the class labels of
documents that are included in a sample, and it is unclear whether there are sensible policies
for doing it.

• SLD was conceived for handling not concept shift but prior probability shift; it would thus
probably make no sense to simulate situations for which SLD is intentionally unequipped.21

21Saerens et al. (2002) explicitly assume

“that the generation of the observations within the classes, and thus the within-class densities, p(x|y),
does not change from the training set to the new data set (only the relative proportion of measurements
observed from each class has changed). This is a natural requirement; it supposes that we choose the
training set examples only on the basis of the class labels y, not on the basis of x.”

Our method to generate samples, detailed in Section 3.3.2, is indeed based on choosing the training set examples
only on the basis of the class labels.
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3.6 On SLD and the mutual consistency of the posteriors
and priors of U

We here show that SLD may be viewed as an attempt to enforce a necessary condition for the
posteriors Pr(yj |xi) of the documents xi ∈ U to be calibrated. In order to show this, let us define

• Ua to be the set of documents xi ∈ U such that Pr(yj |xi) = a;

• U j to be the set of documents xi ∈ U such that xi ∈ yj ;

• U j
a to be the set of documents xi ∈ Ua ∩ U j .

Recall from Section 3.1 that the posteriors Pr(yj |xi), with xi ∈ U , are perfectly calibrated when,

for all a ∈ [0, 1], it holds that
|U j

a |
|Ua|

= a. If so, then it holds that

|U j
a | = |Ua| · a

=
∑

xi∈Ua

a

=
∑

xi∈Ua

Pr(yj |xi)

(3.14)

Since U is finite, there is a finite set A of values that the posteriors of the documents in U take.
From Equation 3.14 it follows that∑

a∈A

|U j
a | =

∑
a∈A

∑
xi∈Ua

Pr(yj |xi) (3.15)

which can be rewritten as

|U j | =
∑
xi∈U

Pr(yj |xi) (3.16)

By multiplying both sides by 1
|U | we obtain

PrU (yj) =
1

|U |
∑
xi∈U

Pr(yj |xi) (3.17)

which is exactly the condition on the “mutual consistency” of priors and posteriors that SLD tries
to enforce (see Equation 2.10 and Step 13 of Algorithm 2), and that holds after SLD has converged.

In sum, for the posteriors Pr(yj |xi) of the documents xi ∈ U to be calibrated, Equation 3.17
must hold. While SLD is not a full-fledged attempt to calibrate the posteriors in U (which would
be impossible, since we do not know the label of any document in U), it may nevertheless be seen
as a step in that direction.
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3.7 Discussion

We present a thorough reassessment of SLD, a well-known algorithm that, given a machine-learned
single-label classifier and a set of unlabelled documents characterized by prior probability shift
with respect to the labelled documents the classifier has been trained on, adjusts the posterior
probabilities and class prior probability estimates returned by the classifier, in an iterative, mutually
recursive way, with the goal of making both more accurate. Since its publication more than 15 years
ago, SLD has become the standard algorithm for improving the quality of posterior probabilities,
and is still considered a contender when it comes to estimating the class prior probabilities on
unlabelled sets. However, its real effectiveness at improving the quality of posterior probabilities
has been questioned. Studying SLD is thus not just an academic exercise, and is still important,
since no other algorithm for adjusting the posterior probabilities returned by a classifier in the
presence of PPS is known, and since the quality of posterior probabilities is of key importance
for a number of document management tasks, including document ranking and cost-sensitive text
classification.

We here present the results of a large scale experimentation that uses multiple learners and a
very large, publicly available dataset for text classification, on which multiple amounts of PPS have
been simulated. In total, the experimentation consists of 129,500 train-and-test runs for the binary
case and 14,000 such runs for the multiclass case. In these experiments we are especially interested
in SLD’s ability at improving the quality of posterior probabilities, something which Saerens et al.
(2002) evaluated only indirectly, i.e., in terms of the accuracy of (cost-insensitive) classification that
results from using the posteriors SLD generates.

Our study allows three main conclusions. The first conclusion is that SLD is ineffective, and
often detrimental, when the classifier has not been previously calibrated; in this latter case, an
additional disadvantage is that the speed of convergence of SLD is slower, and the probability
that the computation does not even converge is higher. The second conclusion is that, in any
situation, the improvements that SLD brings about are higher (or the deterioration it brings about
is lower) when PPS is higher. The third conclusion is that the improvements that SLD brings
about are higher (or the deterioration it brings about is lower) when the number of classes in the
codeframe is small; binary classification is thus the most apt context for the use of SLD, which
should instead be used with prudence in multiclass classification with small numbers of classes,
and completely avoided in multiclass classification with high numbers of classes. An additional
disadvantage of working with a high number of classes is that, as for non-calibrated classifiers, the
speed of convergence of SLD is much slower, and the probability that the computation does not
even converge is much higher.

Our results also show that, concerning the improvements in the quality of the posteriors that have
been found in the binary case (and, to a lesser extent, in the multiclass case when the codeframe
is small), these are due to a reduction of the calibration error, and not to a reduction of the
refinement error. This shows that SLD is, in essence, a re-calibration algorithm, i.e., an algorithm
for re-calibrating the posterior probabilities of documents belonging to an unlabelled set U , where
these posteriors have been returned by a classifier already calibrated on a training set L and where
the re-calibration is made necessary by the presence of prior probability shift. For this kind of use,
and when the number of classes |Y | is small and the classifiers have been calibrated beforehand,
the use of SLD is still recommended.

Given this, in the next chapter we will attempt to use the SLD algorithm in order to improve the
posterior probabilities of a classifier trained in the active learning scenario typical of TAR workflows:
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the end goal is that of using the new posteriors to help the MINECORE framework (Oard et al.,
2018) (see also Section 2.3.3) make better informed decisions.
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Figure 3.2: Error reduction for the isomerous variants of Brier Score (left) and Calibration Error
(right) for the four different quartiles into which samples have been binned; in each of the ten
subfigures, quartiles are arranged with low-shift quartiles on the left and high-shift quartiles on the
right. Subfigures are sorted top-to-bottom as a function of the number of classes considered, from
|Y | = 2 (top) to |Y | = 37 (bottom).
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Figure 3.3: Histograms showing various distributions of the class priors for |Y | = 2 experiments.
The two top subfigures show the true distribution in the unlabelled set U ; the other subfigures
show, for different classifiers, the distribution of predicted class priors before SLD is applied (i.e., as
computed on the classifier output) and the distribution of predicted class priors after the application
of SLD.
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Figure 3.4: As in Figure 3.3 but with |Y | = 5.
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Figure 3.5: As in Figure 3.3 but with |Y | = 10.
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Figure 3.6: As in Figure 3.3 but with |Y | = 20.
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Figure 3.7: As in Figure 3.3 but with |Y | = 37.



Chapter 4

Improving MINECORE posterior
probabilities

The quality of the classifier posterior probabilities estimates is one of the key elements, in MINE-
CORE framework, to assess and minimize the risk brought by a misclassification error (see Sec-
tion 2.3.3). In this chapter, we will analyze which active learning technique, among ALvRS, ALvUS
(two of the most well-known and used active learning strategies) and a newly proposed ALvRUS
policy, builds the best training set, thus delivering better probability estimates.

Building a training set via an AL policy inevitably generates a more or less substantial Prior
Probability Shift (PPS): given the evaluations and analysis of Chapter 3, we might then expect the
SLD algorithm to further improve our posterior probabilities, resulting in even more accurate risk
assessments by the MINECORE framework.

This chapter tries to answer these two research questions (i.e., which AL policy is better for
MINECORE, and whether SLD brings improvements or not) with an extensive experimental pro-
tocol, and a thorough analysis of the results; the code to reproduce our experiments is publicly
available at https://github.com/levnikmyskin/improved_risk_min_tar. Finally, the work pre-
sented in this chapter was published in Molinari et al. (2023).

4.1 Research question # 1: How should we label the training
set?

The MINECORE experiments that were presented in Oard et al. (2018) used passive learning
(PL), i.e., the labelled set L that was used for training the classifiers ϕr and ϕp was (conceptually)
a random sample of the pool U . This is somehow at odds with the standard practice of the TAR
field, according to which the labelled set L is usually annotated via active learning. Active learning
is a class of techniques whereby the machine takes an active role in choosing the examples that
should be part of the training set L; the most popular such class (and the only class we will
consider here) is that of pool-based AL techniques, whereby the machine chooses the examples from
an available pool P of unlabelled examples (rather than, say, generating artificial examples with
pre-specified properties) and asks the annotators to label them. We will consider two popular forms
of pool-based AL here, active learning via uncertainty sampling (ALvUS) and active learning via
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relevance sampling (ALvRS), along with a new ALvRUS (active learning via Relevance/Uncertainty
sampling policy; see Section 2.1.2 and 4.3.3 for a more detailed explanation). We choose ALvUS
because it is probably the most widely used AL technique in machine learning at large, while we
choose ALvRS (which is essentially a form of relevance feedback (Rocchio, 1971)) because it is
probably the most widely used AL technique in TAR, under the name of continuous active learning
(Cormack, Grossman (2015b), see also Section 2.3.1).

In this chapter we want to answer the following research question:

RQ1: Assuming we use MINECORE as the TAR system, how should we
annotate the training set L? Is it advantageous to annotate it via passive
learning or via an active learning policy?

The question is non-trivial since the three policies (a) typically give rise to classifiers that, for the
same number |L| of training examples, are characterized by different levels of accuracy, and (b)
typically give rise to different sets U ≡ P \L of unlabelled sets that the probabilistic classifiers need
to rank. This means that one policy may generate a better training set L (i.e., one that delivers a
better classifier) but also generate a set U ≡ P \ L harder to rank accurately, and the interactions
between these two factors are difficult to predict.

Note that past results showing that AL delivers more accurate classifiers than PL are usually
based on testing the two techniques on the same test set U . This is not representative of our
scenario, where the set U that the classifiers need to classify changes when the training set L
changes, because U ≡ P \ L. More in detail, we may expect the ALvUS policy to produce, as the
AL literature suggests, the best classifiers (see e.g., Esuli et al. (2019)). However, we may expect
the PL policy to generate the easiest unlabelled set U to rank, since when using PL the sets L and
U are independently and identically distributed (IID), which is not the case when using US or RS.
Concerning the RS policy, we may expect it to lead to a high number of relevant (i.e., responsive
/ privileged) documents being manually (i.e., correctly) labelled, which helps increase recall, which
is an important goal in TAR; however, the RS policy is usually the worst of the three in terms
of deviation from the IID condition, which means that we may expect it to generate a set U of
documents very hard to rank.

When the training set L has been obtained from P via active learning, the fact that L and U
may not be IID is usually true, since in these cases L is anything but a random sample of P (i.e.,
it is a biased sample, suffering from sample selection bias), which means that U ≡ P \L is also not
a random sample of P . As a consequence, the relationship between L and U is one of dataset shift
(Moreno-Torres et al., 2012; Quiñonero-Candela et al., 2009), and in particular of prior probability
shift (see Section 2.1.1 and the discussion in Chapter 3). As a result, a classifier trained on L is
unlikely to perform well on U .

All in all, this says that it is not easy to predict which of the three methodologies is the most
beneficial for MINECORE, and that our research question is an interesting one.

4.2 Research question # 2: Should we try to improve the
posteriors via SLD?

MINECORE receives as input the posteriors Pr(yr|x) and Pr(yp|x) returned by the two probabilistic
classifiers ϕr and ϕp (see Section 2.3.3). The quality of these posteriors is thus of key importance
for the performance of MINECORE. In order to ensure this quality, Oard et al. (Oard et al.,
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2018) subject ϕr and ϕp to a calibration step so that they return well-calibrated probabilities.
Calibration routines use k-fold cross-validation, i.e., they tune the classifier in such a way that,
when classifying the training documents x ∈ L, the classifier returns posterior probabilities Pr(y|x)
that are well-calibrated. In reality, what we are really interested in is that the posteriors of the
unlabelled documents in U , and not those of the labelled documents in L, are calibrated; if the
sets L and U are IID, though, if the posteriors of the documents in L are calibrated, those of
the documents in U are too. Indeed, virtually all probability calibration routines, including the
one used in Oard et al. (2018), assume that L and U are IID. If L and U are not IID, though,
the fact that the posteriors of the documents in U are well-calibrated is not guaranteed even after
the intervention of these routines; in particular, if L and U suffer from prior probability shift, the
posteriors of the documents in U will not be calibrated.1 ALvUS and (especially) ALvRS generate
substantial PPS (Settles, 2012);2 this means that, if we had to use one of them for generating our
training sets L, the quality of the posteriors we would obtain from the resulting classifiers would
be a concern.

The SLD algorithm is a well-known algorithm (and the only known algorithm) that attempts to
improve the quality of the posteriors returned by probabilistic classifiers. The reassessment of SLD
we conducted in Chapter 3 has shown that SLD may be very effective at improving the quality of
the posteriors in situations in which binary classification is performed under high PPS. This would
suggest using SLD to improve the quality of the posteriors that are to be fed to MINECORE.
However, it should be remarked that the experimentation of Chapter 3 never used active learning
for generating the training sets L; this means that it is not clear how SLD might perform in our
scenario if we had to use an active learning policy.

In addition to RQ1, in this chapter we want to answer the following research question:

RQ2: Assuming we use MINECORE as the TAR system, can we obtain
benefits from using SLD for updating the posterior probabilities that MINE-
CORE receives as input from the two probabilistic classifiers?

The above question may have different answers depending on the answer to RQ1, i.e., depending on
whether we annotate the labelled set L via PL, via ALvUS, via ALvRS, or via ALvRUS, because
PL generates no PPS while ALvUS and (especially) ALvRS (and ALvRUS) generate high dataset
shift.

4.3 Experiments

4.3.1 The dataset

We will use RCV1-v2 as the only dataset for our experiments (see Section 2.6.1). For computational
reasons, however, we will only use the first 100,000 documents of RCV1-v2 collection, which also
comprises the 23,149 documents used for training in Lewis et al. (2004) In Oard et al. (2018) a

1This is a direct consequence of Equation 3.3.
2The reason why ALvUS generates PPS is that it encourages the annotators to annotate documents that are close

to the decision threshold; when the dataset is imbalanced, this means that the annotators end up annotating a fairly
large proportion of members of the minority class, which means that the prevalence of the minority class in L ends
up being larger that its prevalence in U . Instead, the reason why ALvRS generates PPS is that it encourages the
annotators to annotate documents belonging to the minority class; this means that the prevalence of the minority
class in L ends up being much larger than its prevalence in U .
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subsample of RCV1-v2 class pairs was chosen to simulate the classes of responsive documents (cr)
and privileged documents (cp). More specifically, every pair (cr, cp) was selected such that the
prevalence (i.e., relative frequency) of cr in the entire RCV1-v2 collection is in the [0.03,0.07]
interval and the prevalence of cp in the responsive documents is in [0.01,0.20]. This broad range is
actually seen in e-discovery practice, with some classification tasks run in “needle in a haystack”
conditions, and others run on collections that have been prescreened when they were acquired to
have as high a responsiveness prevalence as can be achieved (Oard, Webber, 2013). For each of
the 24 responsiveness classes that meet the prevalence criterion, the authors of Oard et al. (2018)
randomly selected 5 privilege classes that meet the respective prevalence criterion: this gives rise
to 120 class pairs. The experiments described in this chapter are run on the very same set of class
pairs as used in Oard et al. (2018).

4.3.2 The active learning methods

In our experiments we test MINECORE on training sets generated by three active learning policies
(see Section 2.1.2), i.e., Active Learning via Uncertainty Sampling (ALvUS), Active Learning via
Relevance Sampling (ALvRS) and a middle-ground policy which we present in the next subsection,
called Active Learning via Relevance/Uncertainty Sampling (ALvRUS). Other, more recent, active
learning algorithms such as those presented in Dasgupta, Hsu (2008); Huang et al. (2014) were
explored and dismissed due to unfeasibly expensive computational costs (see Section 4.3.6 for more
on this).

4.3.3 Active learning via relevance/uncertainty sampling

The ALvRUS policy asks the reviewer to annotate, at each iteration, the b/2 documents in U for
which Pr(yi|x) is closest to 0.5 and the b/2 documents in U for which Pr(yi|x) is highest. In other
words, this policy is a mix of ALvUS and ALvRS (hence its name), since it attempts to satisfy both
goals at the same time, i.e., providing feedback on the regions of the instance space in which the
classifier is weakest (as in ALvUS) and adding many examples from the minority class to L (as in
ALvRS).

4.3.4 Passive learning

By Passive Learning (or PL) we mean a simple strategy that generates a training set by uniformly
sampling from the data pool. This was the technique used in Oard et al. (2018) to emulate the
annotated training sets and, as such, we use it as a baseline.

4.3.5 The Rand(RS), Rand(US), and Rand(RUS) policies

We add to our experiments three “oracle-like” policies (Rand(RS), Rand(US), Rand(RUS)), which
will serve as testing grounds for the other algorithms run for RQ1 and RQ2. The goal of a Rand
policy is that of building a training set L and a test set U , from the same pool P where the other
AL policies operate, by performing a “controlled” random sampling of the documents. That is,
controlled in such a way that it yields the same prevalence value of the positive class that we would
have obtained had we used one of the AL policies (i.e., ALvRS, ALvUS or ALvRUS). For more
details on the Rand policy, we refer the reader to Section 2.1.3.
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4.3.6 Exploring other policies

Motivated by the advances in the active learning literature, we decided to explore other more
recent and sophisticated AL policies. Unfortunately, the ones we considered were computationally
expensive or prohibitive to run, and we eventually decided not to use them in our experiments. The
following is an overview of the two policies we considered and of the reasons why they proved too
challenging to run.

Active Learning by Querying Informative and Representative Examples (QUIRE).
QUIRE (Huang et al., 2014) is a recent (with respect to ALvUS and ALvRS) active learning
algorithm whose goal is not only to annotate documents for which the classifier exhibits the strongest
uncertainty (as in ALvUS), but also to maximise representativeness (i.e., diversity) of the examples
annotated at every iteration. For more technical details we refer the reader to Huang et al. (2014).3

However, this technique is problematic since it requires (a) the computation of an m×m kernel
matrix K, where m is the number of documents in pool P , and (b) the storage of another m×m
matrix L = (K + λI)−1 (where I is the identity matrix). This is clearly unfeasible in our case,
where m=100,000 (assuming one byte for each element of each matrix, just storing K and L would
require approximately 160GB); note also that, in real e-discovery scenarios, P may contain many
more documents than the 100,000 documents we use in our experiments.

Active Learning via Hierarchical Sampling (ALvHS). ALvHS was first presented in Das-
gupta, Hsu (2008). The goal of this algorithm is to avoid sampling bias, i.e., the fact that the set
of labelled documents L may not be representative of the remaining set of unlabelled documents
U , which happens when using AL strategies such as ALvRS, ALvUS or ALvRUS. The basic step of
this policy consists of partitioning the data into hierarchical clusters and later sampling from them
(for a more in-depth presentation of the algorithm, see Dasgupta, Hsu (2008)).

However, given m items to be clustered, hierarchical clustering algorithms have a complex-
ity of O(m3), which can be reduced to O(m2) or O(m2 logm) only in some specific cases (Patel
et al., 2015). In any case, the algorithm results in unfeasibly expensive computation costs in our
application scenario.

4.3.7 The experimental setup

In order to answer RQ1, we compare our different active / passive learning policies for training the
two classifiers ϕr and ϕp used in Step 1 of MINECORE.

For these experiments, we take the first 100,000 documents of the RCV1-v2 collection as the
pool of documents P to which MINECORE is applied. As already mentioned in Section 2.6, for
higher consistency with the experiments carried out in Oard et al. (2018), we use the same RCV1-
v2 pairs of classes used in Oard et al. (2018) to play the role of the responsive class yr and the
privileged class yp; this is a set of 120 pairs of RCV1-v2 classes (see Section 2.6 and Oard et al.
(2018, §4.1) for details).

For each active / passive learning policy we test, we run different experiments in which we
vary the size s of the training set that the process eventually creates; we test all sizes s ∈
{2000, 4000, 8000, 16000, 23149}; the reason why we use the fairly peculiar size s = 23149 is that
this is the size used in Oard et al. (2018).

We seed all the active learning processes with a set S of 1000 initial training documents randomly
sampled from our pool P , train (for each y ∈ {yr, yp}) an SVM classifier on S, calibrate it, and

3An implementation of this algorithm is available at https://libact.readthedocs.io/en/latest/libact.query_
strategies.html#module-libact.query_strategies.quire.

https://libact.readthedocs.io/en/latest/libact.query_strategies.html#module-libact.query_strategies.quire
https://libact.readthedocs.io/en/latest/libact.query_strategies.html#module-libact.query_strategies.quire
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apply it to all the remaining unlabelled documents in U ≡ P \ S to obtain posterior probabilities
Pr(y|x) for each of them.4 We constrain this initial training set S to have at least 2 positive
instances, which are the bare minimum in order to calibrate the classifier.

We then iterate the active learning process on the remaining unlabelled documents with a batch
size b = 1000. The active learning process simulates the work of infallible reviewers, i.e., at each
iteration the unlabelled documents are ranked based on their assigned posteriors, the b unlabelled
documents which are ranked highest are added to the training set together with their true label
(which simulates the infallible reviewer’s annotation) and removed from the unlabelled set U , the
classifier is retrained, recalibrated, and applied again to all the remaining unlabelled documents to
obtain updated posterior probabilities for each of them.

As mentioned in Section 4.3.5, for each training set size s ∈ {2000, 4000, 8000, 16000, 23149}
we also generate training sets of size s via the Rand(US), Rand(RS), Rand(RUS) and PL policies;
for each such policy all sets are obtained each time anew via random sampling (constrained for
Rand(US), Rand(RS), Rand(RUS) – see Section 4.3.5 and 2.1.3, unconstrained for PL), i.e., it is
not the case that, for a given policy, the smaller training sets are contained in the larger ones. Here
too, the classifier is trained, calibrated, and applied to all the remaining unlabelled documents,
after which these latter are ranked based on their newly obtained posterior probabilities.

For any of these policies, the finally obtained posterior probabilities for each of the remaining
unlabelled documents are fed to Step 2 of the MINECORE workflow. We run Steps 2 and 3 of the
MINECORE workflow for any of the above policies and for each cost structure (Table 2.2), and
evaluate MINECORE as explained in Section 2.3.3 and 2.5.2, so as to ascertain which policy brings
about the smallest overall cost. We will show and comment these results in Section 4.4.1.

In order to answer RQ2, instead, we run SLD on the posterior probabilities (here indicated as
PrPre−SLD(y|x)) obtained from each of the above policies, thus obtaining PrPost−SLD(y|x) posterior
probabilities, and we compare, for each policy and each cost structure, the overall cost resulting
from using Pre-SLD posteriors with the overall cost resulting from using, in place of them, Post-SLD
posteriors. These results are commented on in Section 4.4.2.

4.4 Results

In this section we show and analyse our results for RQ1 (Section 4.4.1) and RQ2 (Section 4.4.2).
For RQ1 we present our results in Tables 4.2 and 4.3. For RQ2 we illustrate our results in Ta-
bles 4.4, 4.5, 4.7, 4.8, 4.9, and 4.10. Finally, we show some insightful plots concerning the AL
policies in Figures 4.1 and 4.2, and other plots concerning the effects of SLD on the distribution of
the posterior probabilities in Figures 4.3 to 4.5.

4.4.1 RQ1

The goal of our first research question (RQ1) is that of understanding which among the policies
described in Sections 4.3.2 to 4.3.5 generates the best training sets on which to train our two
classifiers. ALvRS (in its CAL incarnation) is the standard active learning methodology used in
one-phase TAR systems. In these contexts, we are given an unlabelled pool of documents and our
goal is to find the highest number of relevant (i.e., positive class) documents in the least possible

4Since we use SVMs as the base learner, calibration is strictly necessary, since SVMs return confidence scores that
are not probabilities; our calibration step thus maps these confidence scores into calibrated posterior probabilities.
In all of our experiments we use Platt’s calibration method (Platt, 2000).
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|L| Recall PrL(y) PrU (y)

ALvRS

2,000 0.240 ± 0.113 0.698 ± 0.056 0.080 ± 0.099
4,000 0.509 ± 0.218 0.762 ± 0.113 0.064 ± 0.100
8,000 0.766 ± 0.231 0.637 ± 0.203 0.045 ± 0.095

16,000 0.894 ± 0.158 0.427 ± 0.252 0.028 ± 0.077
23,149 0.936 ± 0.107 0.336 ± 0.254 0.019 ± 0.061

ALvUS

2,000 0.099 ± 0.044 0.300 ± 0.047 0.088 ± 0.099
4,000 0.196 ± 0.074 0.308 ± 0.068 0.083 ± 0.099
8,000 0.431 ± 0.161 0.337 ± 0.072 0.071 ± 0.101

16,000 0.597 ± 0.186 0.251 ± 0.089 0.062 ± 0.102
23,149 0.670 ± 0.183 0.204 ± 0.091 0.059 ± 0.102

ALvRUS

2,000 0.135 ± 0.060 0.408 ± 0.067 0.086 ± 0.099
4,000 0.381 ± 0.176 0.560 ± 0.057 0.073 ± 0.100
8,000 0.699 ± 0.249 0.551 ± 0.129 0.052 ± 0.100

16,000 0.863 ± 0.197 0.388 ± 0.181 0.036 ± 0.091
23,149 0.914 ± 0.150 0.307 ± 0.191 0.027 ± 0.081

Table 4.1: Average recall and training/test class prevalence values at different training set sizes for
the three active learning policies.

amount of time; given this goal, relevance sampling is usually preferred to uncertainty sampling, as
it encourages the annotators to review documents that are likely to be relevant (see Section 2.3).

However, MINECORE operates according to a two-phase TAR workflow, where in the 1st phase
we create a training set which is later used to train the classifier, and where the posteriors returned
by this classifier are then used as input by MINECORE in the 2nd phase in order to prioritize the
documents that the annotator should review. That is, in this case ALvRS might be less effective
than ALvUS, since, by repeatedly improving the classifier in the regions of instance space on which
the classifier is most uncertain, ALvUS might eventually obtain higher-quality posteriors. Moreover,
we might expect the ALvRUS policy, which stands as a middle ground between ALvRS and ALvUS,
to also improve MINECORE’s results by building a higher quality classifier than ALvRS.

In Table 4.1 we report the average recall5 and the average class prevalence in the training
set L and in the set of unlabelled documents U as deriving from the application of the different
AL policies, where the averages are computed across yr and yp. All these figures are reported at
different training set sizes (i.e., 2000, 4000, 8000, 16000, 23149); this should give a clearer picture
of the overall scenarios generated by the different active learning policies.

The results in Table 4.2 show that, for any given cost structure, ALvRUS is the most effective
among the policies we have studied. Regarding the other policies, ALvUS appears to be the second-
best policy for two cost structures out of three (Λ1 and Λ2), whereas ALvRS achieves second-best
results on Λ3. Finally, the passive learning strategy is the worst one in two cases out of three (Λ2

and Λ3).
Furthermore, the Rand(RS), Rand(US) and Rand(RUS) results of Table 4.3 tell us that a higher

prevalence value of the positive class in the test set, and an overall better balance between training

5In this context, by recall we mean the ratio PrL(y)/PrP (y) between the number of positive documents in the
training set L and the total number of positive documents in the entire pool P.
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Λ PL ALvRS ALvUS ALvRUS

Λ1 38,589 39,373 32,511 19,890
Λ2 13,047 10,398 6,721 5,766
Λ3 5,318 2,742 3,749 2,129

Table 4.2: Average overall costs resulting from running MINECORE when different policies have
been used for generating the training sets. Values in boldface indicate the best results for the given
cost structure. The reported values are obtained by averaging across the experiments run with
different training set sizes (2000, 4000, 8000, 16000, 23149). Superscripts † and ‡ indicate whether
the second-best method is not statistically significantly different from the best one, according to a
Wilcoxon signed-rank test at different confidence levels: symbol † indicates 0.001 < p < 0.05, while
‡ indicates p ≥ 0.05. In this table, all differences are statistically significant, hence no instances of
† and ‡ are present.

Λ Rand(RS) Rand(US) Rand(RUS)

Λ1 63,109 41,284 41,298
Λ2 14,708 8,397 9,819
Λ3 4,102 4,087 2,964

Table 4.3: Same as Table 4.2, but with different policies for generating the training sets.

and test class prevalence values (which we obtain when using uncertainty sampling), can steer the
results in favour of ALvUS if, as with all the Rand policies, L and U do not suffer from sampling bias.
Also, despite the fact that ALvRUS is the best policy in the results of Table 4.2, its corresponding
Rand policy does not achieve the best results for two cost structures out of three (Λ1 and Λ2),
albeit still obtaining better results than the Rand(RS) policy.

That said, we conclude that the best strategy for training the ϕr and ϕp classifiers on which Step
1 of MINECORE hinges is, by a wide margin, ALvRUS.

We end this discussion by noting that an obvious way to try to improve on ALvRUS would
consist in adding to it a parameter α, so that the reviewers are asked to annotate, at each iteration,
the α · b documents in U for which Pr(yi|x) is closest to 0.5 and the (1 − α) · b documents in
U for which Pr(yi|x) is highest (with i ∈ {r, p}); optimising this parameter (say, on a held-out
dataset) would allow striking the best possible balance between “exploration” (the US component)
and “exploitation” (the RS component).

4.4.2 RQ2

The goal of our second research question (RQ2) is that of understanding whether the application
of SLD can (i) improve the quality of the posterior probabilities that are input to Step 2 of the
MINECORE algorithm, and thus (ii) generate a reduction in overall cost.

The active learning strategies that we use in this chapter (and ALvUS, the “winner” in the
previous batch of experiments, is no exception) tend to generate PPS between the training set and
the set of unlabelled data; more specifically, they tend to generate situations in which the class
prevalence value PrL(y) (with y ∈ {yr, yp}) can be much larger than the class prevalence value
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Λ PL ALvRS ALvUS ALvRUS

Λ1

Pre-SLD 38,589 39,373 32,511 19,890

Post-SLD 38,620 +0.08% 28,694 -37.22% 25,309‡ -28.46% 33,504 +40.63%

Λ2

Pre-SLD 13,047 10,398 6,721 5,766

Post-SLD 13,073 +0.20% 14,040 +35.03% 7,299 +8.6% 14,612 +153.42%

Λ3

Pre-SLD 5,318 2,742 3,749 2,129

Post-SLD 5,317 -0.02% 3,735 +36.21 8,452 +125.42% 8,748 +310.90%

Table 4.4: Average overall costs resulting from running MINECORE on posterior probabilities
coming from either the classifier (Pre-SLD) or the SLD algorithm (Post-SLD). Notational conven-
tions are as in Table 4.2. A value in boldface indicates the best result on the given row (i.e.,
combination of a cost structure and a choice between Pre-SLD and Post-SLD), whereas a value in
underline indicates the best result for the given cost structure.

PrU (y). In such a scenario, given the findings of Esuli et al. (2021), we would expect the application
of SLD to bring about substantial improvements to the quality of the posterior probabilities.

The results of our experiments are displayed in Table 4.4. Something we can see from these
figures is that the results of the application of SLD are uneven; in some cases this application brings
about a reduction in overall cost, while in other cases overall cost increases. In particular, SLD
always brings about a deterioration when ALvRUS (the “winning” policy of our previous section)
has been used to generate the training set. In sum, there is no clear answer to RQ2.

However, it is important to notice that, for all three cost structures, the best result is obtained
by using ALvRUS and not using SLD. We thus have a clear answer to RQ1 and RQ2 altogether,
i.e., that the best course of action is to avoid using SLD and stick to the “Pre-SLD” posterior
probabilities generated by classifiers trained via ALvRUS.

In case we wonder what are the reasons for the failure of SLD to systematically improve the
quality of our posterior probabilities, the answer comes from examining Table 4.5, which presents the
results of experiments analogous to the ones of Table 4.4 but using the Rand active learning policies
instead of the original ones. Table 4.5 says that, for all Rand policies and for all cost structures, the
SLD algorithm brings about a drastic reduction in overall cost, unlike what happened for the original
active learning policies. It is thus easy to conclude that SLD copes well with PPS (which the Rand
policies generate) but not with sampling bias (which the original active learning policies, unlike the
Rand policies, generate). Indeed, a close examination of SLD (see Algorithm 2 in Appendix 2.4)
shows that nothing in it caters for sampling bias. Conversely, SLD does cater for PPS; indeed, if
we assumed that there is no PPS between L and U , there would be no need to re-estimate the
priors (see Line 13 of Algorithm 2) and, consequently, to update the posteriors (see Line 15), as
SLD instead does.

Incidentally, the fact that Rand(RS) and Rand(RUS) are the two best overall algorithms con-
firms the observations of (Esuli et al., 2021) that the greater the shift between training set and
test set, the better the performance of SLD; indeed, Rand(RS) and, to a lesser degree, Rand(RUS),
tend to generate more PPS than Rand(US).

In order to provide a finer-grained analysis of the above results, we further
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Λ Rand(RS) Rand(US) Rand(RUS)

Λ1

Pre-SLD 63,109 41,284 41,298

Post-SLD 14,394 -77.19% 19,819 -51.99% 12,311 -70.19%

Λ2

Pre-SLD 14,708 8,397 9,819

Post-SLD 2,586 -82.42% 4,641 -44.73% 3,065 -68.79 %

Λ3

Pre-SLD 4,102 4,087 2,964

Post-SLD 1,736 -57.68% 2,857 -30.10% 1,586 -46.49%

Table 4.5: Same as Table 4.4, but with different policies for generating the training sets.

1. Bin the classes by class prevalence value, in order to analyse whether the results may depend
on the prevalence value of the class;

2. generate a visualization of the results of the different selection strategies (i.e., ALvRS, ALvUS,
ALvRUS, PL and Rand), so as to see where the documents they select are picked from the
data distribution;

3. Plot the distributions of the posteriors before SLD and after SLD, in order to visually under-
stand how the SLD algorithm is adjusting these distributions.

Effects of class prevalence value

Regarding Point 1, we bin the 28 classes in quartiles by prevalence value; we accordingly call these
quartiles “Low”, “Medium-Low”, “Medium-High”, “High”. In Table 4.6 we show which bin each
class belongs to and whether the class is used to simulate Responsiveness (R), Privilege (P), or
both (R+P).

We show in Tables 4.7 and 4.8 the results for each of the four bins, for responsiveness and
privilege, respectively; these results are consistent with those of Table 4.4, with the PL strategy
only slightly negatively affected by SLD and the three AL strategies suffering the strongest effects.
Notice how the bins of classes with lower prevalence values (Low and Medium-Low) tend to be
the ones where SLD performs comparatively better; given that SLD works better in high-shift
scenarios (Esuli et al., 2021), this was to be expected, since the AL strategies will cause a much
stronger PPS if the overall class prevalence value is low (since the few examples of the positive class
tend to end up quickly in the training set). Also, notice how the above-described effect is stronger
for ALvRS than for ALvUS; this was also to be expected, as ALvUS generates less extreme PPS
than ALvRS. Finally, the results of Table 4.8 indicate that the deterioration brought about by SLD
is higher for the privilege classes than it was for the responsiveness classes (Table 4.7); again, this
was to be expected, since the privilege class has a greater impact on the final cost of a review than
the responsiveness class, since λa

p > λa
r .

As we can see from Tables 4.9 and 4.10, the situation is completely reversed when considering
the Rand policies: SLD performs consistently well, across all bins and cost structures, be it for
responsiveness or privilege.
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Class Prevalence Quartile Used for

C21 0.032 Low R+P
M12 0.032 Low R+P
M132 0.033 Low R+P
E12 0.034 Low R+P
E212 0.034 Low R+P
M131 0.035 Low R+P
C24 0.040 Medium-Low R+P

GCRIM 0.040 Medium-Low R+P
GVIO 0.041 Medium-Low R+P
C13 0.047 Medium-Low R

GDIP 0.047 Medium-Low R+P
C31 0.050 Medium-Low R+P
C17 0.052 Medium-High R+P
E21 0.054 Medium-High R+P
C181 0.054 Medium-High R+P
M141 0.059 Medium-High R+P
M11 0.061 Medium-High R+P
C18 0.066 Medium-High R+P
M13 0.067 High R+P

GPOL 0.071 High R+P
C152 0.091 High R+P
C151 0.102 High R+P
M14 0.106 High R+P

ECAT 0.149 High R+P
C15 0.189 High P

MCAT 0.255 High P
GCAT 0.297 High P
CCAT 0.474 High P

Table 4.6: The RCV1-v2 classes that we use in our experiments, binned into quartiles according to
prevalence value. The last column indicates whether we use the class to represent responsiveness
(R), privilege (P), or both (R+P). We use these quartiles to bin our results in Tables 4.7, 4.8, 4.9,
4.10.
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Bin PL ALvRS ALvUS ALvRUS
Λ Pre-SLD Post-SLD Pre-SLD Post-SLD Pre-SLD Post-SLD Pre-SLD Post-SLD

Λ1

Low 26,230 26,288‡ +0.22% 25,796 12,125 -112.74% 21,395 13,106 -63.24% 10,834 14,541 +25.49%
Med-Low 40,001 40,056‡ +0.14% 44,419 23,677 -87.60% 35,639 26,164 -36.22% 20,245 25,562 +20.80%
Med-High 38,936 38,943‡ +0.02% 32,438 25,167 -28.89% 28,872 24,368 -18.48% 16,885 29,179 +42.13%
High 49,190 49,193‡ +0.01% 54,839 53,807‡ -1.92% 44,137 37,600 -17.38% 31,597 64,734 +51.19%

Λ2

Low 8,955 9,002‡ +0.53% 5,262 5,668‡ +7.16% 3,607 4,289‡ +15.90% 3,149 7,062 +55.40%
Med-Low 12,449 12,446‡ -0.03% 10,715 11,378‡ +5.82% 6,948 9,386‡ +25.97% 5,639 13,329 +57.69%
Med-High 14,426 14,433‡ +0.05% 9,638 12,689 +24.05% 6,972 6,288 -10.88% 5,641 12,642 +55.37%
High 16,357 16,412‡ +0.33% 15,976 26,426 +39.54% 9,355 9,234‡ -1.32% 8,634 25,414 +66.02%

Λ3

Low 3,181 3,195‡ +0.45% 1,383 958 -44.43% 1,951 2,050‡ +4.83% 963 1,869 +48.46%
Med-Low 4,501 4,500‡ -0.03% 2,442 1,826 -33.74% 3,087 5,097‡ +39.43% 1,674 1,840 +9.01%
Med-High 5,603 5,602‡ -0.03% 2,459 2,084 -18.02% 3,669 9,310‡ +60.59% 1,851 6,879 +73.08%
High 7,986 7,970‡ -0.19% 4,682 10,072‡ +53.51% 6,289 17,350‡ +63.75% 4,025 24,406 +83.50%

Table 4.7: Average MINECORE overall costs with responsiveness classes binned by prevalence
value. A positive increment indicates higher costs resulting from the application of SLD. Superscript
† and ‡ denote whether the Post-SLD results are not statistically significantly different from the
Pre-SLD results, according to a Wilcoxon signed-rank test at different confidence levels: symbol †
indicates 0.001 < p < 0.05, while ‡ indicates p ≥ 0.05.

Bin PL ALvRS ALvUS ALvRUS
Λ Pre-SLD Post-SLD Pre-SLD Post-SLD Pre-SLD Post-SLD Pre-SLD Post-SLD

Λ1

Low 30,904 31,097‡ +0.62% 30,142 19,869 -51.704% 24,815 18,459 -34.426% 14,180 25,302 +43.956%
Med-Low 41,944 41,837‡ -0.26% 46,985 34,855 -34.800% 37,836 31,207† -21.240% 23,771 45,192 +47.401%
Med-High 41,004 41,159‡ +0.38% 42,307 34,937† -21.095% 33,776 23,078 -46.356% 21,788 39,309 +44.572%
High 39,971 39,921‡ -0.12% 38,626 26,842 -43.901% 33,216 27,003 -23.005% 19,935 27,806 +28.305%

Λ2

Low 11,284 11,313‡ +0.25% 8,215 9,759† +15.81% 4,385 4,698‡ +6.67% 3,833 10,025 +61.76%
Med-Low 14,111 14,148‡ +0.26% 12,914 17,108† +24.52% 7,221 7,871‡ +8.26% 6,281 17,933 +64.97%
Med-High 13,984 14,020‡ +0.26% 10,070 17,376 +42.04% 6,109 6,634‡ +7.92% 5,407 17,559 +69.21%
High 12,957 12,970‡ +0.10% 10,303 12,921 +20.26% 8,224 8,954‡ +8.16% 6,861 13,732 +50.03%

Λ3

Low 4,559 4,564‡ +0.11% 2,113 2,106† -0.31% 3,030 11,085‡ +72.66% 1,642 10,235† +83.952%
Med-Low 5,791 5,776‡ -0.25% 3,300 5,659† +41.68% 4,542 17,351‡ +73.82% 2,687 18,538 +85.50%
Med-High 5,996 6,003‡ +0.12% 3,158 6,252† +49.48% 4,362 4,219‡ -3.40% 2,578 7,388 +65.10%
High 5,119 5,119‡ -0.00% 2,546 2,120 -20.10% 3,346 3,144‡ -6.44% 1,823 2,011 +9.35%

Table 4.8: Same as Table 4.7, with privilege classes binned by prevalence.
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Bin Rand(RS) Rand(US) Rand(RUS)
Λ Pre-SLD Post-SLD Pre-SLD Post-SLD Pre-SLD Post-SLD

Λ1

Low 40,902 7,773 -426% 28,551 11,200 -155% 26,616 6,875 -287%
Med-Low 67,945 15,605 -335% 47,435 20,328 -133% 46,674 13,261 -252%
Med-High 56,956 13,192 -332% 37,320 19,270 -94% 36,330 10,872 -234%
High 86,633 21,005 -312% 51,832 28,479 -82% 55,571 18,235 -205%

Λ2

Low 8,207 1,162 -606% 4,915 2,366 -107% 5,757 1,513 -280%
Med-Low 15,548 2,696 -476% 8,843 4,395 -101% 10,713 3,137 -241%
Med-High 14,615 2,519 -480% 8,409 4,914 -71% 9,494 3,022 -214%
High 20,463 3,969 -415% 11,420 6,887 -65% 13,312 4,588 -190%

Λ3

Low 2,218 779 -185% 2,217 1,306 -70% 1,515 721 -110%
Med-Low 3,939 1,599 -146% 3,545 2,404 -47% 2,718 1,407 -93%
Med-High 3,958 1,697 -133% 3,998 3,011 -33% 2,741 1,553 -76%
High 6,291 2,870 -119% 6,587 4,704 -40% 4,881 2,663 -83%

Table 4.9: Same as Table 4.7, but with different policies for generating the training sets.

Bin Rand(RS) Rand(US) Rand(RUS)
Λ Pre-SLD Post-SLD Pre-SLD Post-SLD Pre-SLD Post-SLD

Λ1

Low 46,015 8,946 -414% 32,852 12,249 -168% 30,473 7,605 -301%
Med-Low 74,367 15,846 -369% 47,843 21,558 -122% 49,346 13,611 -262%
Med-High 70,036 14,447 -385% 42,347 19,984 -112% 44,094 12,380 -256%
High 62,800 16,899 -272% 41,751 23,436 -78% 41,359 14,431 -187%

Λ2

Low 8,903 1,153 -672% 5,820 2,237 -160% 6,440 1,455 -343%
Med-Low 16,300 2,445 -566% 9,509 4,443 -114% 11,479 2,941 -290%
Med-High 14,419 2,298 -527% 7,624 4,337 -76% 9,060 2,759 -228%
High 17,538 3,760 -366% 9,735 6,484 -50% 11,300 4,350 -160%

Λ3

Low 2,889 1,153 -150% 3,334 1,910 -75% 2,149 1,077 -100%
Med-Low 4,569 2,025 -126% 4,761 3,295 -44% 3,466 1,862 -86%
Med-High 4,439 1,740 -155% 4,624 3,044 -52% 3,310 1,634 -102%
High 4,385 1,917 -129% 3,827 3,070 -25% 2,963 1,703 -74%

Table 4.10: Same as Table 4.8, but with different policies for generating the training sets.

In conclusion, the results of this analysis confirms that no matter the class prevalence value
and the cost structure, SLD tends to have a clear negative effect on the quality of the posteriors
generated by classifier trained via active learning techniques.

Visualising the behaviour of different selection strategies

Let us now move to Point 2, i.e., visualizing visualising the effects of the different selection strategies.
As we have mentioned before, the results we have just commented say that the reasons behind the
failure of SLD to improve the posteriors have to be found in the document selection criteria enacted
by our three original active learning strategies. In order to better understand how these different
strategies select their documents from the pool P , we provide a visualization of the first 1000
documents that each policy selects: in order to do this, we remove the initial seed set S, use the
LSA algorithm (Landauer et al., 1998) on the TF-IDF matrix to reduce its dimensionality to the
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two largest singular values, pick two random classes (namely the C17 and M14 classes of RCV1-v2),
and show the corresponding scatter plots for the two components in Figure 4.1. The plots show,
with different colours, the positive and negative documents of P, and the positive and negative
documents that the given strategy selected to be included in L.6

It is indeed interesting to see how the ALvRS policy selects mostly positive instances, and very
few negative ones, and that all of these positive instances tend to come from the same region of
the instance space, thereby bringing about a training set characterised by very little diversity; this
pattern is especially evident for the C17 class, and is less evident but still present for the M14 class.
This is a visualisation of the sampling bias brought about by ALvRS (see also (Dasgupta, Hsu,
2008, §2) and (Krishnan et al., 2021)). The same visualisation also shows how the Rand(RS) policy
selects instead the (same amount of) positives in a much more uniformly distributed and unbiased
way. Similar effects, although less marked, can be noted for ALvRUS and ALvUS (and for the
corresponding Rand policies). The plots for the passive learning (PL) strategy show instead the
intrinsic limitations of this policy in TAR contexts (also highlighted in (Cormack, Grossman, 2014)
for one-phase TAR systems); given the substantial imbalance between the positive and negative
examples, a raw random sampling of the data results in the selection of very few positive documents;
this is evident for both C17 and M14.

Analysing the distributions of the posteriors

Let us now discuss Point 3. Despite the fact that the LSA plots can help us visualise the effects of the
different selection strategies, they cannot tell us much about the consequences of each strategy and
why these strategies cause SLD to fail in delivering better-quality posterior probabilities. A much
more helpful insight might instead emerge by plotting the distributions of the Pre-SLD and Post-
SLD posteriors of the unlabelled documents as returned by the classifiers trained via the different
selection strategies that we consider. For doing this we pick one of the two classes of our previous
example (the C17 class) and plot (see Figures 4.3 and 4.4) the above-mentioned distributions for
classifiers trained on 2,000 documents and on 23,149 documents, respectively. We also show the
CCAT class, one of the most populated RCV1-v2 classes, for comparison (see Figure 4.5).7 We use
a logarithmic scale for the Y axis as this helps to visualise the distributions better.

Looking at Figure 4.4 we can observe that the Pre-SLD distributions for all three AL policies
are extremely skewed towards zero (i.e., most of the mass of the probability distribution is close
to the zero value), whereas the distributions for the respective Rand policies are more uniformly
spread across the [0,1] interval. The hypothesis for the cause of SLD’s extremisation of the posteriors
distribution might then arise from these plots. The SLD algorithm iteratively updates the posterior

6Notice that given the scale and the density of the documents, it may look as if some negative selected points are
among the positive ones. This is just a limitation of the 2-D projection.

7Notice that for the CCAT class we only plot the distributions for the AL classifiers. Distributions for the Rand
classifiers were fairly similar and thus not very interesting.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.1: First 1000 items selected by the different active learning and passive learning policies
(indicated in the captions above the individual plots) for the C17 and M14 RCV1-v2 classes.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.2: Same as Figure 4.1, but with the Rand policies in place of the original passive and
active learning policies.
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Figure 4.3: Distribution of the posteriors of the unlabelled documents generated by classifiers
trained with various training document selection policies (indicated in the captions above each
subfigure), using a set of |L|=2,000 training documents.
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Figure 4.4: As Figure 4.3, but with 23,149 training documents instead of 2,000.
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and prior probabilities using equations
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From these equations we notice that

lim
P̂r

(s)
U (y)→0

Pr(s)(y|x) = 0 (4.2)

That is, when the average of Pr(⊕|x) is close to 0, then we iteratively drag the distribution towards
0. Indeed, this would be the maximisation of the expectation we can make given the data: i.e.,
there is likely no positive item remaining (which is also not too far from the truth for the ALvRS
and ALvRUS policies, as we can see from the test class prevalence value (Te prev.) in the plots).
Yet, this also results in pushing an already skewed posteriors distribution even more toward the
extreme where most of the probability mass already lies, producing a distribution of probabilities
composed almost entirely of zero values.

SLD does not skew the posteriors distribution in case of more balanced classes, e.g., for the C17
and CCAT classes, at least when the L is still small, e.g., |L| = 2000 (see Figure 4.3). In these cases
SLD does not shift the distribution towards its extremes, but it is also seemingly not doing much
(indeed, for the ALvUS the two distributions are almost indistinguishable from each other). Notice
that CCAT is one of the most populated RCV1-v2 classes. This means that, even when we draw
many positives from P , we are still not going to generate a too extreme PPS in the first iterations.
Indeed, most of the positive documents would still be in the unlabelled set U . However, this also
brings SLD outside of its main scope of application, i.e., correcting high PPS: the algorithm will
thus bring no significant benefit.

So, if the Rand and AL strategies are working with the same training/test class prevalence
values, why are the classifier output probabilities so much more skewed in the latter case and not
in the former? In order to understand this, we need to consider the sampling bias (which, again,
is the main difference between the Rand and the AL policies): as a matter of fact, due to how
the policies work (especially for ALvRS) we will tend to annotate many positive but similar items
(see Figure 4.1) and the classifier will be trained on these positive examples only. This in turn will
result in the classifier being particularly good at classifying those type of positives, as well as being
particularly sure of the negative label of the other documents; since the Rand policies do not suffer
from sampling bias, this does not happen with these pseudo-oracle policies. This is indeed what we
see in Figure 4.4.

If we consider the AL strategy used and the overall prevalence value of the class in P we can
then predict when SLD will perform a correct rescaling of the posterior probabilities or not:8

1. If the prevalence in P is low, and we use a strategy based on relevance sampling, we will remain
with a very low number of positive items in the unlabelled set. Plus, since our classifier is

8Of course this is not possible in real scenarios, where we do not know Pr(y).
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suffering from sampling bias, its predictions will be particularly skewed towards the negative
class.

2. If the prevalence in P is low, and we use a strategy based on uncertainty sampling, we expect
to have less skewed distributed posteriors up until a certain size of annotated documents.
Eventually, though, the number of positives will shrink and, with our classifier still suffering
from sampling bias, we will end up in the previous scenario.

3. Finally, if the prevalence in P is fairly high and the number of annotations relatively low,
then we expect the posteriors from the ALvRS/ALvRUS policy to be not very skewed.

SLD will eventually fail in all three of these scenarios, either because we have no PPS between
the labelled and unlabelled sets or because sooner or later our classifiers will suffer from a strong
sampling bias, which paired to the shrinking number of positives, will bring to the “posterior
extremisation” phenomenon that we witness in the plots.

We then conclude this analysis arguing that SLD cannot be used “as is” in contexts where the
training and test sets are resulting from AL strategies such as ALvRS, ALvRUS and ALvUS. We
propose to further investigate this issue in future works, to explore possible solutions that might
enable the usage of the SLD algorithm.

4.5 Discussion

In this chapter we have explored and analysed different strategies for improving the performance of
the MINECORE risk minimisation framework for technology-assisted review in e-discovery (Oard
et al., 2018). Specifically, we have concentrated on strategies for improving the posterior probabil-
ities that Step 1 of the MINECORE workflow provides as input to Step 2 of the same workflow,
an improvement that we measure in terms of reduction in the overall cost of the review process
that MINECORE brings about. We have formulated two research questions (RQ1 and RQ2), that
correspond to two possible strategies for improving these probabilities.

RQ1 poses the problem of which policy is the best for training the two classifiers that return
these posterior probabilities; the policies we consider are passive learning (PL), active learning via
relevance sampling (ALvRS), active learning via uncertainty sampling (ALvUS), and a combina-
tion of the two latter policies that we call active learning via relevance and uncertainty sampling
(ALvRUS). The results of our experiments show that ALvRUS is unquestionably the best such
policy, thus indicating that reaching a balance between “exploration” (the US component) and
“exploitation” (the RS component) proves a key step in generating better training sets for MINE-
CORE. Passive learning proves instead the worst such policy, which confirms the analogous results
obtained for one-phase TAR systems (see Cormack, Grossman (2014)).

In RQ2 we instead pose the problem whether an application of the well-known SLD algo-
rithm (Saerens et al., 2002), whose goal is to improve the quality of the posterior probabilities in
contexts affected by prior probability shift (PPS), could indeed prove beneficial for MINECORE.
Here, the results are less uniform, and show that the application of SLD often decreases (instead
of increasing) the quality of the posterior probabilities, especially when some active learning policy
has been used to train the classifiers; unfortunately, SLD always brings about a deterioration in the
quality of these probabilities when ALvRUS (that had proved the “winning” policy for RQ1) has
been used to train the classifiers. Additional experiments that we have run unequivocally show that
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Figure 4.5: ALvRS, ALvUS, and ALvRUS posteriors for the positive class, before and after the
application of SLD. |L| = 2000.
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the reason why SLD tends to perform badly when the classifiers have been trained via active learn-
ing, is that active learning generates not only prior probability shift (which SLD has been designed
for) but also sampling bias (for which SLD is not equipped). This raises the question whether
using other active learning strategies that attempt to maximise diversity / representativeness of
the training data (thereby doing away with sampling bias) could allow SLD to be used profitably;
this proves a difficult path to follow, though, since active learning techniques that maximise diver-
sity tend to be too expensive, from a computational point of view, for the typical problem sizes
encountered in TAR.

However, when we take RQ1 and RQ2 altogether, the answer returned by our experiments is
unequivocal: the best course of action consists of (i) using ALvRUS for training the classifiers, and
(ii) not using SLD in the attempt to further improve the posterior probabilities.

In future work we would like to investigate (for RQ1) the use of active learning techniques that
are both computationally efficient and diversity-preserving, as well as (for RQ2) variants of the
SLD algorithm that are also robust to the presence of sampling bias.



Chapter 5

SALτ : Efficiently stopping TAR
via SLD

In Chapter 4, we have unsuccessfully tried to leverage the SLD algorithm in an AL process in
order to improve both the posterior and prior estimates of a classifier. SLD showed detrimental
behaviours, bringing to an extremization of the probability distribution, i.e. the fact that most, if
not all, posterior probabilities are pushed to either 1 or 0. In this chapter, we give an extensive
analysis of the phenomenon, and propose a solution to adjust and enable the SLD algorithm in AL
scenarios. We leverage our modified version of SLD (called “SLD for Active Learning”, or SALτ )
to create a new stopping rule for TAR systems: we show that our algorithm is able to deliver good
prevalence estimations, which in turn can better quantify the number of relevant items remaining
in the unlabelled set; we use the new prevalence estimates to stop the TAR process well in advance
with respect to previous state-of-the-art baselines, while keeping the same capabilities of reaching
the target recall. A preliminary analysis on SLD and active learning was published in Esuli et al.
(2022). The follow-up paper, which introduces SALτ , is instead currently under review at the Data
Mining and Knowledge Discovery journal.1 The code to reproduce our experiments is publicly
available at https://github.com/levnikmyskin/salt.

5.1 Introduction

As previously mentioned in Chapters 1 and 2, one of the most challenging issues in TAR applications
is the so-called “when-to-stop” problem: deciding when to stop the AL process, in order to jointly
minimize the annotation effort and satisfy the information need, e.g., finding all (or almost all)
documents relevant to a research question. Recently, IR literature has proposed many stopping
methods (Cormack, Grossman, 2016a; Li, Kanoulas, 2020; Oard et al., 2018; Yang et al., 2021a):
the when-to-stop issue is usually tackled by either changing the sampling policy of the AL algorithm,
by crafting task-specific heuristics and/or by estimating the current achieved recall (see Chapter 2,
Sections 2.3.4 and 2.3.5). In this chapter, we focus on the latter approach and propose a new
technique based on the Saerens-Latinne-Decaestecker (SLD) algorithm (Saerens et al. (2002), see
also Section 2.4), adapting it to the CAL workflow typically adopted in TAR processes.

1https://www.springer.com/journal/10618/?IFA
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This chapter is structured as follows: in Section 5.2 we analyze the shortcomings of the SLD
algorithms when used “as-is” in AL scenarios. We then propose a solution to this problem, our own
method in Section 5.3. Experiments and results are discussed in Sections 5.4 and 5.5. Section 5.6
concludes.

5.2 An analysis of the shortcomings of SLD in active learn-
ing scenarios

Chapter 4 (as well as our work in Esuli et al. (2022)) has shown how SLD can have disastrous
behaviours in AL contexts, leading to an extremization of the posterior probability distribution,
i.e., the fact that most (if not all) posterior probabilities Pr(⊕|x) are dragged to either 0 or 1.
Experiments from Esuli et al. (2022) and Chapter 4 show that when SLD is applied to the Rand(pol)
version of an AL policy, be it either ALvRS or ALvUS, the phenomenon of corruption of posteriors
does not happen. The cause of the issue is thus to be found in the document selection policy, and
in the fact that both ALvRS and ALvUS produce a sampling bias (Dasgupta, Hsu, 2008; Krishnan
et al., 2021), which leads to a dataset shift where PrL(y) ̸= PrU (y) and PrL(x|y) ̸= PrU (x|y).

Sampling bias emerges from AL algorithms due to both the selection policy pol and the initial
seed S. S is usually very small (in many TAR applications, it may consist of a single positive
instance). Considering the ALvRS policy,2 the classifier trained on S will have high confidence on
documents similar to the few ones contained in S. As the AL process continues, the training set L
will diverge from the underlying data distribution. A classifier trained on such a biased training set
can hardly make sense of the whole document pool. Indeed, Dasgupta, Hsu (2008, §2) show that
the classifier can be overly confident in attributing the negative label to a cluster of data which
actually contains several positive instances. A visual representation of the sampling bias is shown
in Figure 4.1c in Chapter 4, which shows how the document selection is extremely focused on one
small region of the positive instances.

When it comes to the classifier capability of estimating the prevalence of relevant documents
in the unlabelled set U , this means that its estimates are going to be much lower than those of a
classifier trained on a random and representative sample of the same population: we can see this
in Table 5.1, where we compare the prevalence estimates of a calibrated SVM classifier trained on
the ALvRS training set (at different sizes) and the same classifier trained on a controlled random
sample of the pool, with same size and same positive prevalence (we call ALvRS SVM and Rand(RS)
SVM, the two SVMs trained on the two different training sets); these results were measured on the
datasets generated in the experiments for Chapter 4. The estimate is the average of the posterior
probabilities for the relevant class Pr(⊕|x) for all x ∈ U . The last two columns of the table report
the true prevalence of the positive class in L and U , showing the strong PPS generated by AL
techniques; clearly, the shift is stronger if the prevalence of the positive class pP (⊕) is already
fairly low to start with (which is usually the case in many TAR applications). In this scenario,
the classifier usually overestimates pU (⊕), given its bias on pL(⊕) prevalence, which is what we
see for Rand(RS) SVM. The values in the table seem to indicate that the ALvRS-based estimates
are better than the Rand(RS) ones. We argue that this is actually due to the sampling bias: the
classifier is very likely underestimating the prevalence of those positive clusters it does not know

2As mentioned several times throughout this thesis, ALvRS (or rather CAL) is the preferred AL policy in TAR
applications. Hence, we usually write about (or give more attention to) ALvRS rather than the other AL policies in
this chapter.
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p̂U (⊕)
Size of L ALvRS Rand(RS) pL(⊕) pU (⊕)

2000 0.048 0.141 0.500 0.058
4000 0.065 0.158 0.709 0.040
8000 0.063 0.121 0.686 0.013

16000 0.008 0.064 0.405 0.003
23149 0.004 0.048 0.284 0.002

Table 5.1: Prevalence estimates of an SVM classifier trained on a ALvRS and Rand(RS) training
set respectively, compared to true prevalences of the L and U sets. These results were measured on
the datasets generated in the experiments for Chapter 4.

about; the end result is that the output prevalence estimate is much lower than the Rand(RS) and
incidentally closer to the real prevalence of U .

In order to better visualize how sampling bias affects the AL trained classifier, we give a visual
representation of this phenomenon on a synthetic dataset:

1. We generate an artificial dataset consisting of 10,000 data items with four clusters (blue,
yellow, purple and pink in Figure 5.1). Blue and yellow clusters are the positive clusters (i.e.,
every item in these clusters has a positive ⊕ label); purple and pink clusters are the negative
clusters (i.e., every item in these clusters has a negative ⊖ label). Notice that negative clusters
are much more populated than positive ones (i.e., the overall positive prevalence is low);

2. We start the active learning process with two positive items coming from one of the positive
clusters and 10 negative items, randomly sampled from the negative clusters. We then anno-
tate 500 documents with the ALvRS policy and generate an analogous training set with the
Rand(RS) policy. The two training sets are shown with “X” markers in Figure 5.1a and 5.1b,
for ALvRS and Rand(RS) respectively;

3. We show the estimated (and the true) proportion of positive items remaining in each clus-
ter, for a Calibrated SVM trained on the ALvRS and Rand(RS) training sets respectively.
Furthermore, we show in the title the true pU (⊕) and estimated prevalence (pALvRS

U (⊕) and
pRand
U (⊕)) on the test set.

In Figure 5.1a we see how the AL process annotates a specific subregion of positive items. This
in turn “misleads” the classifier to output a much lower prevalence than the Rand(RS) classifier
for the clusters it has never seen during training; notice that, being the overall positive prevalence
quite low, the prevalence estimates of the AL classifier seem better than the Rand’s.

5.2.1 How is sampling bias related to SLD failures in active learning
contexts?

The reason why sampling bias is a key element in our analysis lies beneath the main assumptions
made in SLD on the posterior probability distribution of the classifier: SLD reasonably assumes to
be in the scenario represented by the Rand(RS) policy rather than the AL one. More precisely, it
assumes that there is no dataset shift on the conditional probability Pr(x|y) between the labelled
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(a) ALvRS training set (marked with X) and prevalence estimation of an SVM trained
on this training set. We report a Rand(RS) trained classifier estimation as well for
completeness. The blue and yellow clusters are the “positive” clusters, whereas the
pink and purple ones are the “negative” ones.

(b) The Rand(RS) policy training set (marked with X), used for the Rand classifier
in Figure 5.1a.

Figure 5.1: ALvRS and Rand(RS) applied to synthetic data.
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set L and U , i.e. that PrL(x|y) = PrU (x|y). If this assumption holds, the trained classifier will have
a bias on L which will “uniformly” translate (i.e., in our artificial example, the bias is consistent
for all regions of the graph) to the posterior probabilities PrU (⊕|x) on the unlabelled set. In a
PPS scenario, this means that the classifier estimate of the prevalence (i.e., the average of the
classifier posteriors) will be closer to L, and that they can be “adjusted” consistently across the
whole distribution. Nonetheless, when using an active learning policy such as ALvRS or ALvUS,
we not only generate prior probability shift, but we also affect the distribution of the conditional
probability Pr(x|y), such that PrL(x|y) ̸= PrU (x|y).3

Let us now focus on one of the key updates in SLD: the priors ratio (Line 13 of Algorithm 2),
which is later multiplied by the posteriors. This is defined as:

P̂r
(s)

U (⊕)

PrL(⊕)
(5.1)

This linear relation is represented by the red line of Figure 5.2. When P̂rU (⊕) = PrL(⊕), the ratio
is 1, and posteriors do not change. However, as P̂rU (⊕) drifts further away from PrL(⊕) (recall that
this latter quantity is constant for all iterations in SLD), the ratio becomes progressively smaller,
resulting in a multiplication of PrU (⊕|x) by a number very close to 0.4 We argue this is one of the
main culprits of degenerated outputs from SLD.

In other words, let us assume that PrL(x|y) = PrU (x|y), and that L is then a representative
sample of U . A classifier trained and biased on L will tend to shift any prevalence estimate toward
PrL(⊕). When the classifier estimated P̂rU (⊕) is lower (or higher) than PrL(⊕), SLD deems the true
PrU (⊕) to be even lower (or higher). Indeed, this works very well when the previous assumption
holds, e.g., for Rand(pol). As a matter of fact, SLD has been a state-of-the-art technique for
prior and posterior probabilities adjustments in PPS for 20 years. However, ALvRS and similar
techniques generate a PrL(x|y) ̸= PrU (x|y) type of shift (as well as PPS), and, as a result, we cannot
apply SLD update with confidence: we should rather find a way to apply a milder correction, when
possible, or no correction at all when we have no way of estimating how “far” we are from the
former assumption.

5.3 Adapting the SLD algorithm to active learning

As discussed in the previous section, in AL scenarios, the priors ratio defined in the SLD algorithm
should be milder in order to avoid extreme behaviours. A simple but possibly effective action is to
directly add a correction factor τ to the priors ratio equation, so that:

• when τ = 1, we get the original SLD algorithm;

• when τ = 0, the ratio always equals 1, i.e., we do not apply any correction;

• all other intermediate values adjust the ratio, making it milder with respect to SLD original
ratio.

3As noticed in Section 2.1.1, this is not properly a “concept shift”: with concept shift we also assume that, given
the same x, the label y might change between L and U . Moreover, concept shift also assumes that PrL(y) = PrU (y);
this is clearly not the case, as we also generate PPS (see also Moreno-Torres et al. (2012, §4.4)).

4This is the case for low prevalence scenarios, typical of TAR. The opposite case is the one with very high
prevalence, in which the posteriors for the relevant class are all pushed to 1.
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We thus define a correction to the priors ratio of SLD:

δ = −

[
τ ·

(
− P̂r

(s)

U (y)

P̂r
(0)

U (y)
+ 1

)
− 1

]
(5.2)

the new ratio, which we call δ, will then be multiplied by the posteriors at every SLD iteration.
We show how τ affects the slope of the ratio in Figure 5.2. We call our method “SLD for Active
Learning” or SALτ for short. The complete algorithm is reported in Algorithm 3. In the next
section we detail how we set the value of τ .

5.3.1 Estimating SALτ τ across active learning iterations

We have seen that SLD works on the output of a Rand(RS)-based classifier (see Esuli et al. (2022)
and Chapter 4). We can build our estimate of τ for SALτ by measuring how much the ALvRS
classifier posteriors are more or less distributed like those of a Rand(RS) classifier. The more
ALvRS posteriors diverge from Rand(RS) ones, the milder SLD correction should be, up to the
point where we do not use SLD at all.

Let us consider the posteriors for the relevant class, i.e., Pr(⊕|x): we collect a vector A of
posteriors Pr(⊕|x) for all documents in U for the classifier trained on the ALvRS training set, and
an analogous one R for the classifier trained on the Rand(RS) training set. We define τ as the
cosine similarity between these two vectors:

τ = cosine similarity(A,R) =
A · R

||A|| ||R||
(5.3)

Since Pr(⊕|x) ≥ 0 by definition of probability, the cosine similarity is naturally bounded between
0 and 1, a required property of our τ parameter. In other words, we apply the SLD update when
AL posteriors are similar to posteriors for which we know the assumption made in SLD holds (i.e.,
PrL(x|y) = PrU (x|y), see Section 5.2); we apply an accordingly milder correction the further the
AL posteriors are from this assumption.

Equation 5.3 would be a good solution, as well as an impossible one, since the Rand(pol) policy
requires knowledge of the labels (e.g., relevancy) for the entire data pool.

We thus resort to an heuristic formulation based on the evolution of the classifier during the
iterations of the AL process.5 Given the batch of documents Bi reviewed at the i-th iteration, we
define Aϕi and Aϕi−1 as:

Aϕi
= Pr(i)(⊕, x) = ϕi(x)|x ∈ Bi (5.4)

Aϕi−1
= Pr(i−1)(⊕, x) = ϕi−1(x)|x ∈ Bi (5.5)

i.e., the posteriors on Bi returned by the classifiers ϕi and ϕi−1. The τ parameter is then defined
as the cosine similarity between Aϕi

and Aϕi−1. The assumption we make is that:

• at early iterations, there will not likely be substantial differences between the two vectors
(thus making the cosine similarity useless);

5This idea of leveraging previously annotated batches is more or less similar to what Callaghan, Müller-Hansen
(2020) proposed in their method (see also Section 2.3.4).
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Figure 5.2: The τ -based correction to the priors ratio of SLD that we propose. The value of this
ratio (i.e., the y axis) is multiplied by the posteriors during SLD iterations. Notice that when τ = 1
we get the SLD original ratio, whereas when τ = 0 we multiply the posteriors by 1, i.e. we do not
change the classifier posteriors.
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Algorithm 3: The SALτ algorithm. Changes with respect to SLD are highlighted.

Input : Class priors PrL(yj) on L, for all yj ∈ Y ;
Posterior probabilities Pr(yj |xi), for all yj ∈ Y and for all xi ∈ U ;

Correction factor τ ;

Output: Estimates P̂rU (yj) on U , for all yj ∈ Y ;
Updated posterior probabilities Pr(yj |xi), for all yj ∈ Y and for all xi ∈ U ;

1 // Initialization

2 s← 0;
3 for yj ∈ Y do

4 P̂r
(s)

U (yj)← PrL(yj); // Initialize the prior estimates

5 for xi ∈ U do

6 Pr(s)(yj |xi)← Pr(yj |xi); // Initialize the posteriors

7 end

8 end

9 // Main Iteration Cycle

10 while stopping condition = false do
11 s← s+ 1;
12 for yj ∈ Y do

13 P̂r
(s)

U (yj)←
1

|U |
∑
xi∈U

Pr(s−1)(yj |xi); // Update the prior estimates

14 δ ← −
[
τ ·

(
− P̂r

(s)
U

(y)

P̂ r
(0)
U

(y)
+ 1

)
− 1

]
;

15 for xi ∈ U do
16 // Update the posteriors

17 Pr(s)(yj |xi)←
δ · Pr(0)(yj |xi)∑

yj∈Y

δ · Pr(0)(yj |xi)
;

18 end

19 end

20 end

21 // Generate output

22 for yj ∈ Y do

23 P̂rU (yj)← P̂r
(s)

U (yj) ; // Return the prior estimates

24 for xi ∈ U do

25 Pr(yj |xi)← Pr(s)(yj |xi); // Return the adjusted posteriors

26 end

27 end
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• however, later on in the AL process this could help us obtain an estimate of how much
sampling bias is affecting the classifier.

Let us consider the ALvRS policy, in a scenario similar to the one depicted in Figure 5.1a, that is,
overall prevalence is low and we start with a small seed set: in the first iterations we are likely going
to find many positive items; that is, when we compare ϕi and ϕi−1 predictions on Bi they are likely
to be similar, since the “clusters” of data available to ϕi are probably the same that were available
to ϕi−1. However, as we review all the positive items in a cluster, the process is forced to explore
items in the neighbour clusters. This is when the cosine similarity should be effective: by comparing
the posterior distribution of ϕi to that of ϕi−1 for the same Bi documents, we should be able to
assess the impact of the new documents on the classifier. Indeed, if ϕi accessed previously unseen
clusters, the posteriors on Bi might radically change and, in turn, roughly give us an estimate of
how much sampling bias was affecting ϕi−1 predictions.

Finally, let us consider one last issue: we said that in the first AL iterations Aϕi
will likely be

similar to Aϕi−1
, and their distance cannot be used as an indication of sampling bias. How can

we establish when to use our method and when to fallback to the classifier posteriors? In lack of
better solutions (which we defer to future works), we introduce a hyperparameter α:

• at every iteration i, we apply SALτ and obtain a new set of posterior probabilities PrSALτ (⊕|x)

and a prevalence estimation PrSALτ (⊕) (computed as
∑X

x PrSALτ (⊕|x)
|X| );

• we measure the Normalized Absolute Error (NAE) between the estimated prevalence and the

true prevalence of batch Bi, where NAE(PrBi(y), P̂r
SALτ

Bi
(y)) is defined as (notice we used

NAE in Chapter 3 as well, see Equation 3.10):

NAE =

∑Y
j=1 |PrBi

(y) − P̂r
SALτ

Bi
(yj)|

2(1 − min
yj∈Y

PrSALτ

Bi
(yj))

(5.6)

• if NAE > α we do not use our SALτ method.

The simple intuition behind this heuristic is that when the NAE between the true prevalence and
the prevalence estimation of SALτ is too high, then the estimates of SALτ are likely going to be
poor on the rest of the pool as well.

To recap, we give below an overview of how SALτ integrates into the active learning process
(see Algorithm 4):

1. at each iteration i we employ an active learning policy, annotating a batch Bi of b documents,
which are added to the training set L;

2. we train a classifier ϕi on L;

3. at each iteration i > 1, we compute the cosine similarity between the two vectors of scores
Aϕi = ⟨Prϕi(⊕|x) ∀ x ∈ Bi⟩ and Aϕi−1 = ⟨Prϕi−1(⊕|x) ∀ x ∈ Bi⟩. The cosine similarity will
be used as the τ parameter in SALτ ;

(a) we obtain a new set of posterior probabilities PrSALτ (⊕|x) and a new prevalence estimate
PrSALτ (⊕) on U , using SALτ on the posteriors coming from ϕi−1;
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4. we compute NAE between SALτ prevalence estimate for Bi and the true prevalence of Bi.
If this is lower than a threshold α, we consider SALτ -based probabilities to be the correct
ones, otherwise we fall back to ϕi-based probabilities. In a TAR process this means that we
can use SALτ -based probabilities to estimate the recall and decide when to stop reviewing
documents.

Algorithm 4: SALτ integration within an active learning process

Input: Pool of documents P to be reviewed; Active learning policy a;
Initial seed set S; Batch size b; Budget t; threshold value α;

1 i← 0 ;
2 L← S;
3 ϕi ← train clf(L);
4 Bi ← select via policy(ϕi, a, P, b);
5 L← L ∪ Bi;
6 while |L| < t do
7 i← i+ 1;
8 U ← P \ L;
9 ϕi ← train clf(L);

10 Ai ← ⟨Prϕi(⊕|x) ∀x ∈ Bi−1⟩;
11 Ai−1 ← ⟨Prϕi−1(⊕|x) ∀x ∈ Bi−1⟩;
12 τ ← cosine similarity(Ai, Ai−1);

13 PrSALτ (⊕|x)← SALτ(Pr
ϕi−1(⊕|x) ∀x ∈ U, P̂r

ϕi−1

L (⊕), τ);
14 if NAE(PrBi−1(⊕), P̂r

SALτ

Bi−1
(⊕)) < α then

15 // The new posteriors can be used to, e.g., estimate recall

16 Pr(⊕|x)← PrSALτ (⊕|x) ∀x ∈ U ∪ Prϕi(⊕|x) ∀x ∈ L;

17 R̂←
∑L

x Pr(⊕|x)∑P
x Pr(⊕|x) ;

18 end

19 Bi ← select via policy(ϕi, a, P, b);
20 L← L ∪ Bi;

21 end

5.3.2 Mitigating SALτ recall overestimation: SALm
τ

As it will be clear in the results section (Section 5.5), SALτ achieves significant improvements with
respect to the compared methods. However, SALτ also tends, in some cases and especially for
higher recall targets, to overestimate the recall, stopping the TAR process too early. Leaving the
study of more complex approaches to future work, we propose a simple way to mitigate the issue of
recall overestimation by raising by a margin value the target recall given in input to the method.
We call this variant SALm

τ (SALτ with margin m), which trades off an increment in annotation
costs for a safer TAR process that reduces the early stops. SALm

τ is actually SALτ with the only
difference being the usage of a target recall Rm determined as a function of the target recall R and
the margin m:
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Rm = R + (1 −R)m (5.7)

The margin m ranges from 0 to 1. When m = 0, SALm
τ = SALτ ; when m = 1, Rm = 1. A low

value means fully trusting SALτ , a high value means accepting to label more documents to avoid
early stops. In order to avoid adding a free parameter to the method, we decided to set m = R,
following the intuition that it is crucial to guarantee a given target recall R, the closer R is to 1.
Equation 5.7 thus becomes:

Rm = R + (1 −R)R = 2R−R2 (5.8)

We call this configuration SALR
τ and comment upon its results in Section 5.5. We defer to future

works the exploration of more informed methods to set m, which could possibly enable a more
convenient trade-off between annotation costs and proper recall targeting.

5.4 Experiments

5.4.1 Using SALτ to stop a TAR process

The SALτ algorithm can be tested in any AL scenario where we need to improve priors and poste-
riors. In this chapter, we focus on testing SALτ capabilities for TAR: our goal is to stop the review
process as soon as a target recall R is reached, lowering the review cost.

We test the SALτ algorithm with three configurations:

1. the SALτ formulation of Algorithm 4;

2. SALR
τ , i.e., with margin, as described in Section 5.3.2;

3. SALτCI, a variant of SALτ that uses the confidence interval heuristic from the QuantCI
technique (Yang et al., 2021a).

Notice also that, following Yang et al. (2021a), we only focus on one-phase TAR baselines (SALτ

is also a one-phase algorithm) which work inside a CAL process and, as such, do not change the
sampling policy. As observed in Yang et al. (2021a, §2), we argue that these latter methods (called
interventional methods) are (i) less efficient than AL (i.e., they usually trade off annotation costs
for a safer recall estimation) and (ii) less applicable in real case scenarios, where reviewers are often
limited to using a specific AL policy (i.e., usually CAL) provided by a specific software. Given this,
we compare against the following well-known methods (see Chapter 2):

1. The Knee method by Cormack et al. (Cormack, Grossman, 2015a);

2. The Budget method by Cormack et al. (Cormack, Grossman, 2015a)

3. The CHM method by Callaghan et al. (Callaghan, Müller-Hansen, 2020);

4. The QuantCI method by Yang et al. (Yang et al., 2021a);

Following an approach similar to Yang et al. (2021a), we will not use the random sampling part
of CMH in our experiments and only use its heuristic method as a stopping rule; notice, however,
that the random sampling and the confidence level estimation which follows the heuristic stopping
criterion is applicable to any of the other methods we explore in this chapter (including our own
SALτ method).
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5.4.2 The active learning workflow

We run the same active learning workflow for all tested methods. In most TAR applications (Cor-
mack, Grossman, 2015a; Yang et al., 2021a), we usually have only a single positive document to
start the active learning with, called the initial seed: for our experiments, we decide to seed the
active learning process with an additional negative document randomly sampled from the document
pool P ; that is, our initial seed set S consists of a positive and a negative document, randomly
sampled from P .

As mentioned earlier, the active learning policy we pick is CAL (see Section 2.3.1) since this is
the most common policy used in TAR tasks. As the batch size b, we follow Yang et al. (2021a) and
set it to 100. The classifier we use in all our experiments is a standard Logistic Regression, as this
is also the classifier of choice in most (if not all) one-phase TAR applications. We test the target
recalls values {0.8, 0.9, 0.95}.

5.4.3 Datasets

We run our experiments on two well-known datasets, which we illustrated in Section 2.6: the
RCV1-v2 and the CLEF Technology-Assisted Reviews in Empirical Medicine (EMED) datasets
(specifically, the dataset made available for the CLEF 2019 edition). Both datasets have been
already used to test TAR frameworks and algorithms, e.g., the MINECORE framework (Oard
et al., 2018), the QuantCI stopping technique (Yang et al., 2021a) and Li, Kanoulas (2020)’s
autostop framework. Regarding RCV1-v2, we use (in these experiments) a random sample of
10,000 documents, both for computational reasons, and to keep RCV1 pool size close to that of
CLEF. We also use a sample of the Jeb Bush Email collection to set SALτ α hyperparameter.

All text is converted into vector representation first converting it to lowercase, removing English
stopwords and any term occurring in more than 90% of the documents in P ; vectors are weighted
using tf − idf .

Jeb Bush Email collection

The Jeb Bush’s emails collection consists of 290,099 emails sent and received by the former governor
of Florida Jeb Bush. We used the subset published by Grossman et al.:6 the sample consists of 9
topics, with 50,000 documents. For each document and topic, a relevance judgment is available.
We do not run experiments on this sample, but only use it to set the hyperparameter α (see
Section 5.3.1).

5.5 Results

We run each of the experiments defined in the previous section 20 times, using a different randomly
generated seed set S each time (the same random seed set for all methods compared); we set α = 0.3
(Section 5.3.1), as this was the best-performing value in a hyperparameter search conducted on the
Jeb Bush dataset. Thus, the results reported for a dataset are the average of the evaluation measure
applied to all seed sets and all classes for that dataset. We also defined three equal-sized bins sorted
by class prevalence (Very low, Low, and Medium) to show how the different methods performed with
different level of imbalance between relevant and non-relevant documents. The average prevalence

6https://github.com/hical/sample-dataset

https://github.com/hical/sample-dataset
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for the classes in the three bins of RCV1 is 0.002, 0.012, and 0.084, and for CLEF is 0.005, 0.027,
and 0.117.

Tables 5.2 and 5.3 report the MSE and RE values, tables 5.4 and 5.5 report the IC values (see
Section 2.5). The three most competitive models are SALτ , SALR

τ and the Budget method. For the
MSE and RE metrics our SALτ and SALR

τ stopping rules bring about consistent and substantial
improvements for lower target recalls (0.8 and 0.9). When R = 0.95, the Budget method performs
slightly better instead.

With respect to the IC measure, SALτ shows the lowest costs in almost all configurations, closely
followed by SALR

τ . The most relevant reduction of cost shown by SALτ and SALR
τ , with respect

to the compared methods, is for the Very Low prevalence bin. This is an important result, as the
“needle in a haystack” scenario is the most common in TAR. The Budget method has comparable
costs for high target recall values and in higher prevalence bins.

As we anticipated, SALτ tends to stop the TAR process too early. This can be seen in the box
plots in Figure 5.3, which show at which real recall values the different stopping rules decided to
halt the review process. The average recall value for SALτ is always higher than the target recall,
i.e. the expected value of recall satisfies the target recall requirement. Yet, it is evident how for
higher recall targets, the distribution of recall values produced by SALτ goes under the target not
only for the tail of the distribution, as it happens for Budget and Knee, but also for a portion of the
center part of the distribution. Most TAR tasks require to match the target recall in a much larger
portion of the cases. By simply adding a margin that is a function of the target recall, SALR

τ shifts
the distribution of the reached recall values up. Its distribution is similar to the Budget method’s,
with slightly increasing costs with respect to SALτ but still lower than the other tested methods.

To sum up, SALτ makes SLD usable in AL and TAR processes, solving the issues observed in
Chapter 4. SALτ brings consistent and substantial improvements, especially for medium/high (0.8,
0.9) target recalls; for higher targets, it tends to stop too early. SALR

τ solves this issue without a
significant increase in annotation costs with respect to SALτ , finding a very good trade-off between
annotation costs and proper target recall matching. In future works we propose to investigate more
informed methods to mitigate SALτ target recall overestimation, as well as testing SALτ and SALR

τ

with other sampling techniques (e.g. Li, Kanoulas (2020)).

5.6 Discussion

In this chapter, we introduced a new method called SALτ (and its variations SALR
τ and SALτCI)

to improve posterior probabilities and prevalence estimates in an active learning review process;
more specifically, we tested our method as a “when-to-stop” stopping rule for TAR tasks. SALτ

is a variant of the well-known SLD algorithm: our algorithm was designed to enable the usage of
SLD in AL and TAR processes, solving the issues observed in Chapter 4. Experiments have shown
that SALτ still tends to slightly overestimate the true recall as it gets close to one, stopping the
process too early. SALR

τ solves this issue, without significantly increasing the review cost compared
to SALτ . In the experiments, SALR

τ has consistently improved over state-of-the-art methods by
improving the estimation of prevalence and thus stopping the TAR process much earlier than other
methods.

For future work, we propose to investigate more informed methods to mitigate the overestimation
of target recall of SALτ , as well as to test SALτ and SALR

τ with other sampling techniques (e.g.,
Li, Kanoulas (2020)).
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All Very Low Low Medium
MSE RE MSE RE MSE RE MSE RE

Recall=0.8

Budget 0.032 0.222 0.038 0.243 0.030 0.215 0.028 0.208
CHM 0.036 0.238 0.038 0.245 0.037 0.239 0.034 0.229
Knee 0.034 0.229 0.040 0.249 0.034 0.230 0.028 0.208
Quant 0.039 0.248 0.040 0.250 0.040 0.249 0.038 0.245
QuantCI 0.040 0.249 0.040 0.250 0.040 0.250 0.039 0.247
SALτ 0.029 0.182 0.048 0.233 0.026 0.185 0.013 0.127
SALR

τ 0.027 0.194 0.031 0.208 0.028 0.199 0.021 0.176
SALτCI 0.031 0.213 0.040 0.250 0.038 0.243 0.016 0.146

Recall=0.9

Budget 0.007 0.087 0.009 0.105 0.006 0.080 0.005 0.076
CHM 0.009 0.107 0.010 0.111 0.010 0.109 0.008 0.102
Knee 0.008 0.094 0.010 0.111 0.008 0.094 0.005 0.076
Quant 0.010 0.111 0.010 0.111 0.010 0.111 0.010 0.110
QuantCI 0.010 0.111 0.010 0.111 0.010 0.111 0.010 0.111
SALτ 0.010 0.076 0.019 0.100 0.006 0.073 0.003 0.053
SALR

τ 0.006 0.078 0.007 0.085 0.006 0.075 0.005 0.072
SALτCI 0.009 0.103 0.010 0.111 0.010 0.111 0.007 0.087

Recall=0.95

Budget 0.001 0.035 0.002 0.048 0.001 0.030 0.001 0.027
CHM 0.002 0.051 0.003 0.053 0.003 0.053 0.002 0.049
Knee 0.002 0.040 0.002 0.052 0.002 0.040 0.001 0.028
Quant 0.002 0.052 0.003 0.053 0.003 0.053 0.002 0.052
QuantCI 0.002 0.053 0.003 0.053 0.003 0.053 0.002 0.052
SALτ 0.006 0.044 0.012 0.057 0.003 0.041 0.002 0.034
SALR

τ 0.002 0.037 0.002 0.040 0.002 0.039 0.001 0.031
SALτCI 0.002 0.051 0.003 0.053 0.003 0.053 0.002 0.048

Table 5.2: MSE and RE results on RCV1 (best result, second).
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All Very Low Low Medium
MSE RE MSE RE MSE RE MSE RE

Recall=0.8

Budget 0.035 0.230 0.035 0.229 0.031 0.219 0.038 0.242
CHM 0.038 0.245 0.039 0.248 0.038 0.242 0.038 0.244
Knee 0.039 0.245 0.040 0.249 0.037 0.241 0.039 0.245
Quant 0.039 0.247 0.040 0.249 0.039 0.248 0.038 0.243
QuantCI 0.040 0.249 0.040 0.250 0.040 0.250 0.039 0.248
SALτ 0.026 0.173 0.032 0.173 0.017 0.146 0.029 0.201
SALR

τ 0.028 0.192 0.027 0.177 0.026 0.195 0.030 0.204
SALτCI 0.036 0.235 0.040 0.250 0.034 0.224 0.035 0.230

Recall=0.9

Budget 0.008 0.093 0.008 0.093 0.006 0.084 0.009 0.104
CHM 0.010 0.109 0.010 0.111 0.010 0.109 0.010 0.108
Knee 0.009 0.107 0.010 0.111 0.009 0.103 0.009 0.107
Quant 0.010 0.110 0.010 0.111 0.010 0.110 0.010 0.108
QuantCI 0.010 0.111 0.010 0.111 0.010 0.111 0.010 0.111
SALτ 0.014 0.093 0.024 0.110 0.005 0.068 0.013 0.101
SALR

τ 0.007 0.088 0.007 0.081 0.006 0.084 0.008 0.099
SALτCI 0.010 0.110 0.010 0.111 0.010 0.109 0.010 0.111

Recall=0.95

Budget 0.002 0.042 0.002 0.050 0.001 0.030 0.002 0.046
CHM 0.002 0.052 0.003 0.053 0.002 0.052 0.002 0.051
Knee 0.002 0.049 0.002 0.052 0.002 0.045 0.002 0.049
Quant 0.002 0.052 0.003 0.053 0.003 0.053 0.002 0.052
QuantCI 0.003 0.053 0.003 0.053 0.003 0.053 0.003 0.053
SALτ 0.010 0.064 0.021 0.094 0.002 0.037 0.007 0.060
SALR

τ 0.003 0.047 0.004 0.059 0.001 0.034 0.002 0.048
SALτCI 0.003 0.053 0.003 0.053 0.003 0.053 0.003 0.053

Table 5.3: MSE and RE results on CLEF.
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All Very Low Low Medium
Cu Ce Cm Cu Ce Cm Cu Ce Cm Cu Ce Cm

Recall=0.8

Budget 2855 28550 2855 4865 48653 4865 1258 12581 1258 2393 23932 2393
CHM 3738 37383 3738 5742 57424 5742 2545 25453 2545 2891 28911 2891
Knee 4303 43026 4303 7574 75741 7574 2868 28683 2868 2422 24219 2423
Quant 6355 63550 6355 7660 76596 7660 6439 64392 6439 4969 49687 4969
QuantCI 8714 87140 8714 10000 100000 10000 9813 98129 9813 6362 63623 6362
SALτ 961 9403 1051 639 6091 774 775 7724 787 1462 14342 1586
SALR

τ 1153 11518 1160 697 6936 713 939 9386 942 1817 18167 1817
SALτCI 6444 64436 6447 10000 100000 10000 7766 77660 7766 1607 16049 1614

Recall=0.9

Budget 2856 28551 2859 4865 48653 4865 1258 12581 1259 2395 23934 2404
CHM 5228 52281 5228 7943 79434 7943 4049 40487 4049 3656 36564 3656
Knee 4304 43027 4308 7574 75741 7574 2869 28684 2869 2425 24221 2436
Quant 7764 77637 7764 8842 88420 8842 7952 79518 7952 6503 65029 6503
QuantCI 9682 96821 9682 10000 100000 10000 10000 100000 10000 9056 90559 9056
SALτ 1135 10526 1502 814 6727 1441 895 8785 967 1690 16014 2083
SALR

τ 1667 16223 1867 1761 16428 2285 1016 10059 1061 2205 21993 2231
SALτCI 8688 86861 8696 10000 100000 10000 10000 100000 10000 6103 60981 6127

Recall=0.95

Budget 2915 28610 3154 4904 48691 5057 1343 12666 1684 2450 23989 2676
CHM 6754 67539 6754 9665 96650 9665 5950 59503 5950 4622 46222 4622
Knee 4332 43055 4448 7575 75742 7578 2897 28712 3012 2480 24276 2711
Quant 8694 86944 8694 9466 94656 9466 8895 88948 8895 7729 77290 7729
QuantCI 9927 99266 9927 10000 100000 10000 10000 100000 10000 9782 97821 9782
SALτ 1445 11575 2723 1174 7316 3138 1123 9490 1894 2029 17856 3111
SALR

τ 2259 21098 2920 2910 26272 4165 1308 11855 1855 2529 24888 2709
SALτCI 9712 97066 9738 10000 100000 10000 10000 100000 10000 9146 91287 9223

Table 5.4: IC measure on RCV1. Regarding the meaning of the different cost structures (Cu, Ce

and Cm), we refer the reader to Section 2.5.2.
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All Very Low Low Medium
Cu Ce Cm Cu Ce Cm Cu Ce Cm Cu Ce Cm

Recall=0.8

Budget 1656 16556 1656 2986 29860 2986 1125 11253 1125 855 8554 855
CHM 2442 24418 2442 4768 47678 4768 1733 17328 1733 825 8248 825
Knee 3173 31726 3173 6219 62189 6219 2295 22947 2295 1004 10042 1004
Quant 3329 33289 3329 6512 65120 6512 2575 25750 2575 900 8998 900
QuantCI 5145 51449 5145 10095 100954 10095 4172 41715 4172 1168 11678 1168
SALτ 601 5666 753 685 6451 860 628 6190 668 490 4357 730
SALR

τ 732 7222 773 789 7686 882 858 8583 858 547 5397 580
SALτCI 4657 46438 4714 10095 100954 10095 3131 31304 3136 743 7056 912

Recall=0.9

Budget 1656 16556 1656 2986 29860 2986 1125 11253 1125 855 8554 855
CHM 3271 32706 3271 6435 64351 6435 2430 24300 2430 947 9466 947
Knee 3173 31726 3173 6219 62189 6219 2295 22947 2295 1004 10042 1004
Quant 4187 41870 4187 8053 80532 8053 3397 33970 3397 1111 11108 1111
QuantCI 5524 55238 5524 10095 100954 10095 4956 49556 4956 1520 15204 1520
SALτ 777 6447 1366 996 7316 2172 774 7345 948 561 4679 978
SALR

τ 1027 9547 1348 1324 11087 2282 1052 10518 1054 704 7036 707
SALτCI 5336 53355 5336 10095 100954 10095 4391 43908 4391 1520 15204 1520

Recall=0.95

Budget 1729 16629 2025 3206 30080 4085 1127 11255 1134 855 8554 856
CHM 4016 40155 4016 7849 78490 7849 3106 31058 3106 1092 10918 1092
Knee 3173 31726 3174 6219 62189 6219 2295 22948 2298 1004 10042 1004
Quant 4767 47671 4767 9010 90100 9010 4022 40215 4022 1270 12698 1270
QuantCI 5537 55371 5537 10095 100954 10095 4995 49954 4995 1520 15204 1520
SALτ 999 7235 2225 1435 8158 4186 925 8310 1344 638 5238 1146
SALR

τ 1309 11302 2105 1974 14482 4313 1148 11370 1196 805 8053 806
SALτCI 5537 55371 5537 10095 100954 10095 4995 49954 4995 1520 15204 1520

Table 5.5: IC measure on CLEF.
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Figure 5.3: Box plots of actual recall reached by the methods, given a target recall: 0.8 (left), 0.90
(center), 0.95 (right). First three plots are measured on RCV1, last three on CLEF.
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This chapter also concludes our work on the SLD algorithm; in the next and last chapter before
conclusions, we will focus exclusively on systematic reviews, and specifically on the possibility of
transferring knowledge between systematic review topics, studying whether it is possible to leverage
zero-shot rankings to enhance the document retrieval process.
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Chapter 6

Transfer learning for model
portability in TAR

In this last chapter of our thesis, we focus exclusively on systematic reviews. One of the substantial
differences between e-discovery and the production of systematic reviews is that, for the latter, we
can find real-world datasets, i.e., previously conducted systematic reviews. Can we leverage these
previous review efforts to pre-train a (deep learning) model? Would this bring to a good zero-
shot (i.e., without training the model with in-domain data) initial ranking? The recent literature
has shown how big deep learning architectures (such as BERT or GPT) are also good zero-shot
learners (Wei et al., 2021; Zhong et al., 2021). Does this hold in systematic reviews, where we have
very small training sets, and “needle-in-a-haystack” scenarios? And, if it does, can we leverage a
zero-shot ranking to bootstrap the CAL process? Finally, can we continuously train deep learning
models in the active learning process? We try to answer these questions in this chapter, showing
that deep learning models such as BioBERT are indeed capable of transferring knowledge between
SR topics, albeit failing to deliver consistent results when continuously trained in an active learning
scenario. Nonetheless, in our concluding analysis we show that there might be several promising
aspects where future research might focus in order to enable the active training of deep learning
models. The work presented in this chapter was published in Molinari, Kanoulas (2022).

6.1 Introduction

In this chapter we explore the possibility of using previous systematic reviews (SR) in order to pre-
train a model, which is later used for a zero/few shot classification (or ranking) of a new, unseen,
review topic. More specifically, we investigate two research questions:

RQ1. Can we transfer the knowledge acquired on previous systematic reviews, and if so, to which
extent?

RQ2. Can we keep training our pre-trained models in the active learning process?

We will test a classical logistic regression and two deep learning architectures: one is the well-
known BioBERT (Lee et al., 2020) model (i.e., BERT trained on biomedical data), and the other
is a transformer-based architecture which computes attention between documents instead of tokens

107
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(Pobrotyn et al. (2020), see also Section 6.3). All of our experiments in this chapter are conducted
on the CLEF 2019 dataset (see Section 2.6.2).

6.2 Related work

Regarding the usage of pre-existing systematic reviews to pretrain a model which is later applied
to a new systematic review topic, an interesting work (as well as the first one attempting such an
experiment, to the best of our knowledge) is Cohen et al. (2009). In this study, the authors train
an SVM algorithm on 23 previously conducted SRs and later apply it to one unseen topic, using a
Leave-One-Out setup; the experimental results show how such an approach is able to consistently
deliver better results than the baseline. That said, they assume the availability of topic-specific
training data, which we do not in this chapter (shifting the context to a real zero-shot scenario).

A more recent work where a transfer learning approach is leveraged is Lagopoulos, Tsoumakas
(2020). Here, the pre-training of a model on previous SRs is part of a larger framework, which deals
with all the stages of a systematic review. The experiments conducted are focused on the whole
pipeline rather than the effectiveness of the training procedure. Nonetheless, their results show that
pre-training can indeed be useful and that knowledge can be transferred between different topics.
Pickens (2021) conducts several experiments to measure whether “portable” models can be trusted
(and whether they are effective) in TAR applications; however, their experimentation mostly focuses
on in-topic training (i.e., the training set (source) is coming from the same distribution of the test
(target) set).

Most of these approaches experiment with machine learning algorithms such as SVM or logistic
regression: Deep Learning (DL) models are usually not considered fit for such a task, as they depend
on too many parameters (and data is usually scarce) and are easily outperformed by classic ML
algorithms (Yang et al., 2021c). That said, there has been some work on testing DL models for TAR
applications: Yang et al. (2021c) tried to use a just-right fine-tuned BERT (Devlin et al., 2019) in
the active learning process for e-discovery. BERT is first fine-tuned with the masked language task
on the available documents, and later continuously trained for a fixed number of epochs during the
active learning review process. Their results show how in some cases BERT can actually achieve
slightly better results than linear models, but postpone further experimentation to future works.
Similarly, Zhao et al. (2021) explored whether several models (BERT, logistic regression) trained
(or fine-tuned) on a given training set can perform well on new data not seen during training: they
showed how pre-training can usually bring to good performances, but the results are not consistent
across all tested datasets (i.e., the pre-trained models can completely fail to transfer knowledge in
some cases).

The main difference between this chapter and most works we found in the literature is that,
while the different learning architectures that we test (see Section 6.3.1) are first trained/fine-tuned
on a set of previous systematic reviews topics for which we have the reviewers’ final decisions, they
are later tested on a previously unseen SR topic. We assume not to have any kind of training
data for this latter test topic. The reviewer’s opinion is elicited via an active learning approach:
in particular, we employ the CAL algorithm as the main and only active learning approach to
emulate data annotation in our experiments. As we will see in more details in Section 6.5, the CAL
algorithm will be both used as a baseline (using a classical logistic regression as its classifier) and
as the active learning methodology to continuously train our transfer-learning models. Regarding
its implementation, we follow the configuration described in Cormack, Grossman (2015a) (unless
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differently stated), where we use an exponentially increasing batch size b, starting from b = 1, and
using the title of the topic as the seed (and only known) positive document.

6.3 Methodology and experimental design

6.3.1 Learning algorithms

With the goal of understanding whether we can transfer information between different systematic
review topics, we explore and employ different learning architectures:

• a classical Logistic Regression (LR) classifier, which is one of the well-established standard
learning models used in TAR for systematic reviews literature;

• the BioBERT architecture (Lee et al., 2020), a BERT (Devlin et al., 2019) based model
specifically trained on scientific and medical data which could thus be expected to achieve
good performances on our task. We fine-tune it with a pairwise loss;

• a deep learning model based on the transformer architecture (Vaswani et al., 2017) where the
self-attention mechanism is actually computed between documents and not between tokens.
This model was first proposed in Pobrotyn et al. (2020); we refer the reader to the original work
for a more thorough and in-depth explanation of this model. We test the model by maximizing
the NDCG metric, more specifically we implement the deterministic NeuralNDCG (Pobrotyn,
Bia lobrzeski, 2021). We call this model the DL Ranker or Ranker;

• we also test the same architecture with a cross-entropy loss; we call this model the DL
Classifier or Classifier;

The reasons behind our choice to test another deep learning architecture other than BioBERT are
strongly tied to the learning setting we are confronted with in systematic reviews: firstly, despite
having a decently sized training set when we merge together past systematic reviews, the testing and
fine-tuning of our models is done on single topics, whose sizes may be very small (i.e., few hundreds
of documents, with a very low positive prevalence); we believe that having less parameters to
learn might ease the learning/fine-tuning of models when continuously trained in an active learning
process. The second reason that motivates us in using the ranker model of Pobrotyn et al. (2020) is
that we would also like to compare the more traditional classification and/or pairwise approaches
(i.e., the logistic regression and BioBERT) to a list-wise capable architecture.

6.3.2 Data preprocessing

As explained in Section 6.3.1 we experiment with different architectures, which require different
data representation and organization:

• The Logistic Regression, the DL Ranker and the DL Classifier are trained with the same data
representation. We see this in detail in Section 6.3.2;

• We train the BioBERT model with a pairwise loss, where the aim of the model is that of
correctly prioritizing one of the documents in the pair. For this reason we merge together
pairs of documents as explained in Section 6.3.2;
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• Since we compare with the CAL baseline (as implemented in Cormack, Grossman (2015a)),
we also need a representation suited to its logistic regression; we simply default to a standard
tf-idf representation.

We will now look more in details to the different techniques we use to preprocess our data before
feeding it to the models.

Document embeddings and list-wise structure

For the LR, the DL Ranker and DL Classifier models, we preprocess data by tokenizing each
document and transforming it into a fixed-dimensional vector of features. The title of the topic
(i.e., the research question of the SR) is prepended to the text of each document. More precisely,
for each document we have a feature vector v of size E = 768. This vector v is the average of the
non-finetuned BioBERT embeddings for the tokens of a document d ∈ D.

The architecture used for the DL Ranker and Classifier requires a matrix s × E of document
embeddings as input (where s stands for sequence). Ideally, s should be equal to the number
of documents we need to rank (i.e., s = |L| or s = |U |) but the computational costs would be
unsustainable when we have thousands of documents to rank. We have thus to pick a value of
s < |{L,U}|. Due to hardware constraints, we choose s = 1000 in our experiments. Moreover, we
also fix the batch size b = 512 such that the DL Ranker and Classifier are finally fed a b × s × E
matrix as input, and return a b× s× o matrix as output, where o is the number of neurons in the
output layer (this is always 2 for the Classifier and we set it at 100 for the Ranker, see also Pobrotyn
et al. (2020); Pobrotyn, Bia lobrzeski (2021) for the original implementation). For the DL Ranker,
we then take the average on the third dimension, such that we have a matrix b×s of scores for each
document. For the DL Classifier, we also “augment” the training set L with a pre-defined number
of documents randomly sampled from other topics (we sample a number equal to 20% of |L| size):
this should help the classifier to generalize better over the different topics; clearly, this cannot be
done with the DL Ranker, as it would not make sense to rank documents for a topic qi higher than
a topic qj or viceversa.

Finally, each sequence s is built by randomly sampling s examples from the dataset without
replacement. Notice that since we only elaborate a sequence s of documents for every batch, when
applying the model to the test topics we first classify/rank all batches and then aggregate the scores
together to obtain the ranking/classification output for each d ∈ U .

Pairwise document representation

We use this pairwise representation for the BioBERT fine-tuning. For n times, we randomly pick
a relevant and an irrelevant example and we combine them together: a “new” document is then
formed, where we have the title of the SR topic separated by a [SEP] token from the text of the
first document, which is in turn separated by another [SEP] token from the text of the second
document. Whether the relevant document is first or last is decided by a fair coin flip. Since
BioBERT needs many data points to be fine-tuned, for any L ∈ Q, we set n = 1.2 · |L|, creating a
training set which is 20% larger than the original size of L.

TF-IDF

The classical tf-idf representation is only used for the logistic regression trained in the CAL
algorithm used as a baseline. This representation is built using the tfidfvectorizer class exposed
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by scikit-learn1 API.

6.3.3 Rankings and evaluation measures

As explained in Section 6.2, we use the CAL algorithm as a baseline in our experiments. We use
a standard non-pretrained logistic regression (which we call NP Logistic) as the CAL’s learner.
Notice that, clearly, comparing CAL’s performances with the zero-shot rankings is not a fair com-
parison since the NP Logistic has access to and is continuously trained on in-topic data.

Furthermore, throughout our experiments, we will report metrics and results on two different
types of ranking:

• A ranking which is the output of a model (be it a set of probabilities or a vector of scores) on
the set of all documents to be ranked. We call this full reranking;

• The ordering of the documents resulting from the CAL process, that we call the CAL or-
dering. More precisely: at every iteration of CAL, we take the top k documents and have a
reviewer annotating them. What we call CAL ordering is then the order in which the reviewer
annotates the documents throughout the process.

Evaluation metrics

In order to evaluate the models rankings or the CAL ordering, we use two of the most well-known
metrics in TAR literature: Mean Average Precision (MAP) and Work Saved Over Sampling (WSS,
see Section 2.5). Average Precision (AP) is computed as:

AP =
1

rel

∑
j

Precision(j), (6.1)

where rel is the number of relevant documents and Precision(j) is the precision at the jth item.
We take the average of this metric over all the testing topics, calling it MAP.

6.4 Implementation details

The aim of our experimentation is to answer research questions RQ1 and RQ2 (see Section 6.1).
Unless otherwise stated, we train our DL Ranker and DL Classifier models for 500 epochs, using
the Adam optimizer (Kingma, Ba, 2015). BioBERT2 is instead fine-tuned with a classification
head with two output neurons for a maximum of 10 epochs. However, we employ a typical early
stopping strategy with patience on the loss set to 10 update steps, which in practice usually stops
the training set before reaching 10 epochs. The DL models (except for BioBERT) are implemented
using the PyTorch Python library,3 whereas for the Logistic Regression we use the standard scikit-
learn library4 implementation (code will be made available in the near future).

As anticipated, for the DL Ranker and Classifier we experiment with two different losses: we
use (i) a Cross-Entropy loss for the DL Classifier model; given the extremely unbalanced datasets

1https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.

TfidfVectorizer.html
2The pre-trained model is downloaded from the HuggingFace Hub, available at https://huggingface.co/models
3https://pytorch.org/
4https://scikit-learn.org/stable/

https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
https://huggingface.co/models
https://pytorch.org/
https://scikit-learn.org/stable/
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(see Section 2.6), we also use fixed class weights of 0.2 and 0.8 for the negative and positive
class respectively. Furthermore, for all of our experiments with the DL models, we use only one
transformer encoder layer; we leave experimentation with different number of encoders and attention
heads to future works. (ii) For the ranking loss function, we directly maximize an approximation of
the NDCG metric, more precisely the deterministic Neural-NDCG (Pobrotyn, Bia lobrzeski, 2021).
While we refer the reader to Pobrotyn, Bia lobrzeski (2021) for implementation details, we notice that
in order to approximate the permutation matrix that would sort the input, we have a temperature
parameter τ which we can use to control the degree of approximation (when τ = 0 we get the exact
permutation matrix): we found this parameter to be highly susceptible to the size of the data fed
to the model, but we postpone any precise analysis on this to future works.

For the fine-tuning of the BioBERT model, we use a pairwise loss function usually known as
the Margin (or Margin Ranking) loss. That is, given two scores xi and xj , and a label y = 1 when
xi should be higher than xj and y = −1 viceversa, the loss is computed as:

L(xi, xj , y) = max(0,−y · (xi − xj) + m) (6.2)

where m is the margin, which we actually set to 0, following the PyTorch implementation default5

as of version 1.10.1.
All of our experiments are run on a maximum of two NVIDIA Tesla T4 GPU (with 16GB of RAM

each) on a multi-processor machine (kindly made available by the Computer Science department
of the University of Pisa). Training times are not particularly demanding, as the BioBERT fine-
tuning took around 36 hours, whereas 20 minutes were enough for the DL models and as little as
28 seconds for the logistic regression.

6.5 Results

We show in this section the experiment results both for our first and second research questions
(RQ1 and RQ2, see Section 6.1). We also present the results of a hyperparameter search for the
DL models (Section 6.5.3): this last section should serve as a basis for further research, in order to
understand how and where future works might focus to successfully continuously train DL models
in active learning scenarios.

6.5.1 RQ1: Can we transfer knowledge?

In order to answer this first question, we train our models on our training topics and apply them
to the testing topics without any further training, to see whether we can actually obtain a good
zero-shot ranking of the documents.

Evaluating the zero-shot ranking As stated in Section 6.3.3, we compare our results (full
reranking) with the document ordering coming from Cormack’s CAL classical implementation (what
we called the CAL ordering). We show the Mean Average Precision (MAP) of the zero-shot rankings
in Table 6.1; we also show the MAP for the CAL ordering and the CAL’s NP Logistic ranking after
10 documents have been annotated (which we might call a few-shots NP Logistic). Notice how
all the zero-shot models achieve rather good performances, obtaining a better MAP than the few-
shots NP Logistic. BioBERT seems to be the best model, closely followed by the Logistic Regression

5https://pytorch.org/docs/stable/generated/torch.nn.MarginRankingLoss.html

https://pytorch.org/docs/stable/generated/torch.nn.MarginRankingLoss.html
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CAL ordering NP Logistic Zero-shot rankings
(no pre-training)

DL Rank. DL Class. BioBERT LR

MAP 0.240 ±0.178 0.126 ± 0.132 0.211 ± 0.168 0.185 ± 0.163 0.226 ±0.162 0.219 ± 0.166

Table 6.1: MAP for the zero-shot rankings. We show the CAL ordering and CAL’s NP Logistic full
reranking after 10 documents have been annotated for comparison. Best result overall is in bold,
whereas the best result among the zero-shot rankings is underlined.

NP Logistic DL Rank. DL Class. BioBERT LR

R@10 0.012 ± 0.017 0.028 ± 0.022 0.029 ± 0.040 0.069 ±0.055 0.046 ± 0.032

Table 6.2: Recall@10 (R@10) for the different pre-trained models and the NP Logistic baseline after
annotating 10 documents. Notice the recall is measured on what we called the full reranking and
not on the CAL ordering. All the pre-trained zero-shot models obtain a higher Recall@10.

(LR). As expected, the CAL baseline is able to achieve a stronger MAP than the zero-shot rankings’
(since its logistic regression is being trained on in-topic data). Nonetheless, this shows that the
pre-trained models are able to successfully transfer knowledge between topics.

Jump-starting the CAL algorithm To test if our zero-shot rankings are beneficial to the
reviewing process (i.e., if we can achieve a higher recall earlier), we propose to jump-start the CAL
algorithm from the top-10 documents coming from our zero-shot rankings. With “jump-starting”
CAL we mean:

1. we pre-train a model on the training topics;

2. we rank the current new (and unseen) topic and take the model top-10 documents;

3. we obtain the labels for these 10 documents;

4. we train CAL’s logistic regression on these 10 documents (using tf-idf features) and start
the CAL algorithm from there, following Cormack, Grossman (2015a) thereafter.

Notice that, for some topics, the pre-trained models failed to retrieve any positive instance in the
top-10 documents: the DL Classifier failed on 3 topics out of 7, of which the DL Ranker failed
on 2 and BioBERT and the LR failed on 1; hence, we show results averaged on 4 topics out of
7. We first show the Recall@10 (on the full reranking) in Table 6.2: notice how the zero-shot
rankings effectively jump-start the CAL process from a higher recall; BioBERT proves to be the
most effective algorithm to jump-start with. We show the WSS@{85, 95, 100}% and the MAP
averaged across the topics in Table 6.3. Notice that the “ranking” here is actually the ordering of
the documents collected at the end of the CAL process (CAL ordering). The results show how the
higher initial recall translates to better performances on the average WSS scores with respect to the
NP Logistic baseline, even though they are not consistently in line with the metrics taken on the
zero-shot setup and the Recall@10: i.e., the top-10 documents coming from the DL Classifier or the
pre-trained LR seem to be able to better jump-start the CAL process, despite BioBERT was the
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CAL ordering
NP Logistic DL Rank. DL Class. BioBERT LR

WSS@85% 0.494 ± 0.241 0.501 ± 0.245 0.499 ± 0.243 0.501 ± 0.243 0.508 ±0.254
WSS@95% 0.475 ± 0.304 0.466 ± 0.205 0.480 ±0.159 0.457 ± 0.328 0.460 ± 0.334
WSS@100% 0.372 ± 0.306 0.371 ± 0.297 0.373 ± 0.304 0.369 ± 0.307 0.378 ±0.304
MAP 0.357 ± 0.134 0.378 ± 0.151 0.387 ± 0.136 0.468 ±0.124 0.399 ± 0.133

Table 6.3: WSS@{85, 95, 100}% and MAP for the jump-started CAL. The NP Logistic is the
classical CAL implementation, starting from a seed document. The other columns indicate from
which ranking we take the top-10 documents that jump-start the CAL algorithm. Average is on 4
out of 7 topics.

best model in terms of MAP (Table 6.1) and Recall@10 (Table 6.2). Furthermore, the DL Classifier
was the worst of the three pre-trained models in both Tables 6.1 and 6.2, but the CAL process
jumpstarted from its top-10 documents shows better WSS performances at the 95% thresholds than
the other models. Regarding the MAP, the pre-trained models can effectively jump-start the CAL
algorithm as seen for the WSS; notice that the top-10 documents from BioBERT manage to keep
the advantage we saw in Table 6.1 for the MAP metric. From these results, overall, we conclude
that the pre-training can actually improve on the baseline performances both in terms of MAP and
WSS; however, as reported by Zhao et al. (2021) as well, knowledge transfer can fail in some cases.

6.5.2 RQ2: Can we keep training our DL models in the active learning
process?

In our experiments so far, we have showed results on the zero-shot rankings from our models, or
when using them to jump-start the CAL process. We did not, however, leverage the pre-trained
DL models in the active learning process: can these models actually be trained in such a scenario?
To understand this, we run another set of experiments with the same setup as before, but where
we actually keep training our DL models during the active learning review process. Training a DL
model in such a scenario is not a trivial task, since many hyperparameters have to be taken into
account: epochs, cross-entropy class weights (to counteract class imbalance) and learning rate are
just some of the hyperparameters we deal with. Regarding epochs, Yang et al. (2021c) fine-tune
BERT in the AL process for 10 and 30 epochs (based on the dataset), albeit with no clear rationale
behind the choice of the number of epochs; however, they also point out how crucial it is to have
“just-right” tuning of the model.

Lacking a validation set, however, we run a first batch of experiments where we arbitrarily
set these hyperparameters. Due to the high computational costs of fine-tuning BioBERT at every
iteration, we decided against using it in this part of the experiments for RQ2; moreover, we argue
that these very large language models are impractical to fine-tune in such a scenario, both due
to their computational costs and to the disproportion between the high number of parameters to
fine-tune and the size of training data. Regarding the DL Ranker and Classifier:

• we train the models for 50 epochs at each CAL iteration;

• we keep the class weights in the Cross-entropy loss at 0.2 and 0.8 for the negative and positive
class respectively;
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CAL ordering
NP Logistic DL Rank. DL Class. LR

WSS@85% 0.494 ± 0.241 0.504 ± 0.242 0.468 ± 0.234 0.508 ±0.254
WSS@95% 0.475 ±0.304 0.460 ± 0.321 0.475 ±0.204 0.460 ± 0.334
WSS@100% 0.372 ± 0.306 0.249 ± 0.207 0.297 ± 0.131 0.378 ±0.304
MAP 0.357 ± 0.134 0.351 ± 0.120 0.368 ± 0.138 0.399 ±0.133

Table 6.4: WSS@{85, 95, 100}% and MAP for the CAL orderings where we keep training the DL
models inside the CAL process. Notice that the LR is not continuously trained and results are the
same as reported in Table 6.3. Average is still on 4 topics out of 7.

• we use a learning rate of 0.001.

We show the results of such experiments in terms of WSS and MAP on the CAL ordering (Table 6.4).
As we can clearly see from the table, continuously training these models during the CAL process
has inconsistent effects on the metrics: with respect to the jump-started CAL results (Table 6.3),
the DL Ranker only improves for the WSS@85% metric, showing slight to substantial decrease in
performances for all other metrics. The DL Classifier is no different and exhibits a consistent loss
of performances for all metrics. In summary, fine-tuning these models in an active learning process
seems unadvisable: we think this might be due to (i) the small number of documents we usually
have for fine-tuning (especially in the first CAL iterations), (ii) the training set size constantly
changing (possibly too slowly), (iii) a number of parameters to update which is too large with
respect to the training data, (iv) many hyperparameters which might need better adjustment in
such a scenario.

We believe that a much better solution in this case might be to employ Adapter modules (Houlsby
et al., 2019), freezing the rest of the network. This also allows us, in terms of computational costs,
to fine-tune BioBERT.

Notice Given the amount of hyperparameters involved, the absence of a validation set, and the
small set of training topics, we have decided to show the impact of different hyperparameters directly
on the testing topics, when using (and not using) adapter layers. These results should serve as a
basis for further research on the matter and as a mean to better understand whether it is possible
at all to properly train such big models (especially in BioBERT case) in a CAL setting, where the
overall number of documents span from a few hundreds to a few thousands.

6.5.3 Hyperparameter search

As mentioned, we conduct a hyperparameter search study where we analyze the variation in Mean
Average Precision due to the learning rate, the number of epochs, and the percentage of documents
assessed at every CAL iteration. We conduct this hyperparameter search directly on the testing
topics: these experiments should be taken as an effort to understand why the DL models failed when
continuously trained (see Section 6.5.2) and, possibly, where to look for a solution in future works;
in other words, the aim of these experiments is not to compete with a baseline (which would not
be fair, since we are testing hyperparameters directly on the test set), but rather to show the most
promising directions to take in order to enable DL models to be actively trained. For this reason,
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we sometimes omit results when they are not particularly good or interesting (i.e., not exhibiting
a pattern that we might exploit in the future), as to avoid cluttering the chapter with too many
figures.

That said, we evaluate the effect of these hyperparameters both when training the whole neural
network and when using adapter layers. For the former case, we show results for the DL Ranker
only, as it was the best DL zero-shot model (not considering BioBERT). For the latter case, we also
show BioBERT results where we vary the learning rate. We test with different configurations:

• the learning rate values range from the default value used in training of 1×10−3, to 1×10−5.
Being BioBERT a completely different model, we test here with the default learning rate6 of
5 × 10−5 and the value suggested by the AdapterHub library7 of 1 × 10−4. Epochs are fixed
at 60 for the Ranker and at 5 for BioBERT;

• for the DL Ranker only, we also test the model by training for 10, 30, 60 and an adaptive
number of epochs (see below) at every CAL iteration. Learning rate is fixed at 1 × 10−4;

• finally, we also train the DL Ranker annotating 5% and 20% of the documents at every
CAL iteration. We indicate the percentage of documents we take at every iteration with ∆d.
BioBERT is fine-tuned with ∆d = 5% only.

By “adaptive number of epochs” we mean that the number of epochs change at every active learning
iteration, as a function of the number of training documents we have collected so far. For these
experiments, we have empirically defined this as:

epochs = min(|Li| · 0.3, 500) (6.3)

where with |Li| we indicate the size of the available training documents at a given iteration i. That
is, the number of epochs is equal to 30% of the training documents, with an upper bound set at 500
(the number of epochs used during the pre-training of the models). We will now comment upon
the learning rates experiments first, and the epochs experiments afterwards.

For the DL Ranker without adapter layers, we show the MAP for the different learning rate
setups; we also show the NP Logistic as a baseline. The average is on all testing topics (as opposed
to results in Section 6.5.1 and 6.5.2). More precisely, we continuously train and evaluate the models
with the following procedure:

1. At iteration i = 0 (i.e., no document has been reviewed yet), all documents are ranked
according to the pre-trained model zero-shot ranking;

2. We compute the AP of this ranking;

3. We review the top ∆d documents and re-train the model;

4. We re-rank the whole pool of documents again and re-compute AP;

5. We repeat this process until all documents have been reviewed.

6This was one of the learning rates used in Devlin et al. (2019), as well as the default in the HuggingFace library.
7https://docs.adapterhub.ml/training.html

https://docs.adapterhub.ml/training.html
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(a) (b)

Figure 6.1: Variation of Mean Average Precision with different learning rates, annotating 5% (left)
and 20% (right) of the documents at each iteration.

Clearly, the NP logistic is an exception, using the systematic review topic query as the initial seed
document and following Cormack, Grossman (2015a) procedure (as it did so far in our experiments,
unless otherwise stated). In other words, at each iteration we take the full reranking (not the CAL
ordering, see Section 6.3.3) and evaluate it. This is useful to understand whether the models under
examination can indeed learn and improve on the previous iteration. Since we cannot exactly take
5% or 20% of the documents for all topics, we bin the results by number of annotated documents
and plot the average of the bins. The results are plotted in Figure 6.1. When ∆d = 5%, we notice
how the default learning rate of 1 × 10−3 causes instability for the Mean Average Precision as the
training set grows. The other two learning rates seem to be much more stable across CAL iterations,
and a learning rate of 1 × 10−4 is capable of achieving MAP values close to the baseline’s at later
stages of the reviewing process. That said, the NP Logistic baseline is clearly the better algorithm
here, achieving and keeping a higher MAP across all iterations. Moreover, Figure 6.1b shows that
reviewing 20% of the documents at every iteration is suboptimal, leading to much lower values of
MAP across all iterations.

Regarding adapter layers, we show the results in Figure 6.2 for the DL Ranker. The plots
show how, when using adapters and ∆d = 5%, a higher learning rate is able to achieve better
performances. As a matter of fact, a learning rate of 1 × 10−3 obtains greater values of MAP
than the baseline, at later stages of the CAL process. Overall, adapter layers seem to bring greater
stability to the learning capability of the model (which is expected, having less parameters to learn).
Finally, we notice once again how using ∆d = 20% brings to overall worse performances than with
∆d = 5%.

We will now move on to analyze the effect of the number of epochs on the performances of
the DL Ranker. As mentioned before, we test with 10, 30, 60 and an empirically defined adaptive
strategy (see Equation 6.3), that we call “Adaptive” in the plots. Since results for the DL Ranker
without adapters were, similarly to the learning rate ones, not particularly interesting, we show
the variation of MAP when using adapters only (Figure 6.3). As we have seen for the learning
rate figures, using adapter layers can indeed bring to a substantial improvement on the average
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(a) (b)

Figure 6.2: Variation of the Average Precision with different learning rates, annotating 5% (left)
and 20% (right) of the documents at each iteration. We only train Adapter layers and freeze the
rest of the network.

precision metric. As a matter of fact, the adaptive number of epochs can, at later stages, achieve
a better MAP than the NP Logistic baseline; again, we notice that overall the gain in performance
is much more consistent with the growth in training set size when using adapters.8 In conclusion,
we could say that, especially when using adapters, the number of epochs is a particularly sensitive
hyperparameter (with respect to learning rate) which must be correctly adapted to the growing
size of the training set; we believe future research on this topic might give new and interesting
prospectives on the trainability of DL models in active learning scenarios.

Regarding the fine-tuning with adapters of the BioBERT algorithm, we only experimented with
two different learning rates: (i) the default BioBERT learning rate in the HuggingFace library, i.e.
5e-5; (ii) the default learning rate in the AdapterHub library, i.e. 1e-4. The number of epochs, on
the other hand, is fixed at 5 and ∆d = 5%. This was done mainly for computational reasons, since,
even with adapter layers, fine-tuning BioBERT can take very long times. Moreover, the results we
were seeing from this initial set of experiments were not promising enough, and we decided against
running further experimentation. As a matter of fact, looking at BioBERT results in Figure 6.4
we notice very poor performances, raising the question whether it is actually possible to train large
language models when the dataset is relatively small, and the update is done in a continual fashion:
indeed, despite testing with two very different learning rates, the results seem to be just slightly
affected, with 5×10−5 being the better of the two, even though not significantly. That said, further
experimentation with different number of epochs might give more promising results.

Finally, so far we have shown metrics on the full reranking, but we have not shown their CAL’s
ordering (which is what a reviewer would actually see). We plot how these orderings change as
a function of the number of epochs (or learning rate, in BioBERT case) when ∆d = 5% and
using adapter layers, to keep the number of plots to a minimum. We can see these orderings in
Figure 6.5. Unsurprisingly, these plots show similar results to the previous ones, with the adaptive

8We also point out that this setup can achieve WSS@95% close to the baseline, albeit not as consistently as the
baseline can.
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(a) (b)

Figure 6.3: Variation of the Average Precision with different epochs, annotating 5% (left) and 20%
(right) of the documents at each iteration. We only train Adapter layers and freeze the rest of the
network.

Figure 6.4: Variation of the Mean Average Precision with different learning rates for BioBERT,
annotating 5% of the documents at each iteration. We only train Adapter layers and freeze the rest
of the network.
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(a) (b)

Figure 6.5: Variation on recall vs percentage of assessed documents due to different learning rates.
Models have been trained with ∆d = 5%. We show the CAL ordering of the different continuously
trained models.

epochs obtaining the best results. That said, differences between the several epoch values tested
are much smaller.9 Furthermore, as we were seeing for the plots on BioBERT rankings, its CAL’s
ordering is also showing rather poor performances.

Finally, one critical aspect to consider when further studying the applicability of large language
models to TAR is also the unavoidable increase in training times: at each active learning iteration
we need to re-train the model, whose cost, when dealing with so many parameters, can be non-
negligible. Indeed, even when only training adapters as we did here, training times can substantially
increase: in order to complete the experiments (on all testing topics), BioBERT with adapters took
about 20 hours; the DL ranker with adapters needed less than 7 minutes and the LR just 20 seconds.

In conclusion, this hyperparameter search can help us give a first tentative picture of what works
and what does not, as well as finding directions for future works:

1. deep learning models, be them very large models or tinier ones, cannot be simply updated
in an active learning process. Despite starting from a more or less good zero-shot capability,
their performances quickly deteriorate when trained in these scenarios;

2. adapter layers can be a good solution for fine-tuning, except when the underlying frozen model
is excessively large (especially compared to the size of the dataset). Indeed, models such as
BioBERT are rather good at transfer learning, but cannot seemingly be fine-tuned in the
CAL process;

3. some of the hyperparameters can be of key importance to the success of the models fine-tuning.
Understanding how to adapt hyperparameters such as the learning rate and the number of
epochs to the increasing training set size, as well as being able to assess how many documents

9This is somehow expected, since, at every iteration, the updated model can only have an impact on the top-k
documents reviewed in the next batch, and not on the previous ones.
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we review at each iteration, can make the difference between a decent model that can compete
with current state of the art and a rather poor one.

Regarding our bullet point 2, it would be interesting to explore, in future works, which type of
adapter layers (e.g., He et al. (2021); Houlsby et al. (2019); Pfeiffer et al. (2020)) can bring about
the most promising increase in performances, and if the peculiar active learning scenario might
require further adaptations or modifications of these techniques to fully leverage the zero-shot
knowledge that we were seeing in Tables 6.1 and 6.2.

Finally, for bullet point 3, the correct choice of hyperparameters can be truly problematic since
we lack a validation set. Indeed, it could be possible to extract a validation set before starting the
review process, but this seems to make sense only when the dataset is large enough (e.g. not when
we are dealing with a few hundreds of documents) and should be compared to a baseline which is
also taking into account the presence of such a validation set. That said, it would be interesting
to explore whether a more or less empirical rule of thumb can be found, which could allow one
to select and/or adapt the hyperparameters without necessarily looking at a validation set; in this
sense, adapting the number of epochs to the size of the current training set seems to be particularly
effective and should be further studied.

6.6 Discussion

In this chapter, we explored whether using previous Systematic Reviews (SR) to pre-train machine
learning models can actually bring better performances for a new SR topic, compared to no pre-
training at all. Specifically, we also investigated whether deep learning models such as BioBERT
or other transformer-like architectures can be effective, and to which extent. We conducted experi-
ments on the CLEF TAR 2019 Task 2 dataset, and the results clearly show that pre-trained models
can obtain good zero-shot rankings on both the Mean Average Precision and Work Saved over Sam-
pling metrics (Section 6.5.1). When used with the CAL algorithm, we also see that jump-starting
the active learning process from these zero-shot rankings can actually bring to a higher recall earlier
in the assessment process (Section 6.5.2). Finally, we also noticed how continuously training our
deep learning models results in inconsistent performances (usually, with a detrimental effects on the
evaluation metrics): we then decided to conduct an extensive analysis on a hyperparameter search
(Section 6.5.3). The aim of these latter experiments was to understand how and what we would
need to change or research to effectively train deep learning models in an active learning process.
Our results show that future works should focus on finding and (at least empirically) define a set of
rules to adapt hyperparameters (e.g. epochs and learning rate) to the growing training set size.
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Chapter 7

Conclusion

In this thesis, we have presented four main contributions, developed and published (or currently
under revision) throughout the course of my PhD. All our works are focused on the Technology-
Assisted Review (TAR) field: the main goal of TAR algorithms and frameworks is that of aiding
human reviewers, usually via machine learning, to review a set of documents (usually referred to
as “the pool”), minimizing the time (and cost) spent on the review, as well as maximizing the
number of relevant items found (i.e., the recall). In other words, TAR aims at maximizing the
cost-effectiveness of the review. Our work has exclusively focused on two of the most well-known
application contexts in TAR, that is, e-discovery in civil litigation and the production of system-
atic reviews in empirical medicine. Both fields are characterized by a similar two-stage review: in
e-discovery, the first stage focuses on finding responsive (i.e., relevant) documents, and it is usu-
ally conducted by junior reviewers; in systematic reviews, the reviewer reads only the abstract of
documents, filtering out irrelevant documents. The second stage, in e-discovery, aims at finding
privileged documents (i.e., containing privileged/sensitive information), and it is usually conducted
by senior (more expensive) reviewers. In systematic reviews, the physician reads documents in
their entirety, thus making the second stage more time-consuming. The review process is usually
carried out with an active learning algorithm: the most used is currently Cormack and Grossman’s
Continuous Active Learning (CAL) (Cormack, Grossman, 2014), a variation of the relevance feed-
back policy (Rocchio, 1965) and of the active learning via relevance sampling (ALvRS (Lewis, Gale,
1994)) specifically adapted to e-discovery.

One important difference between the two fields is that, while for e-discovery real-world datasets
are usually not publicly available (as they deal with delicate and privileged information), in system-
atic reviews we have freely available datasets (albeit mostly for the first stage only, as whole papers
are usually under a paywall): we used one of these datasets in our experiments in both Chapter 5
and 6.

7.1 A summary of this thesis

Our work in this thesis has mainly focused on the application of the Saerens-Latinne-Decaestecker
(SLD, Saerens et al. (2002)) algorithm to TAR workflows (Chapters 3, 4 and 5): SLD is an iter-
ative algorithm whose goal is that of adjusting the a posteriori (posteriors) and a priori (priors)
probabilities, coming from a classifier, in Prior Probability Shift (PPS) scenarios (i.e., when the
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prior probability of the labelled set PrL(y) diverges from that in the unlabelled set PrU (y)). Active
learning policies such as CAL tend to generate substantial PPS, and thus SLD could be leveraged to
improve our classifier estimates. However, in the experiments conducted during our work in Moli-
nari (2019b), SLD showed disappointing performances when applied to MINECORE (Oard et al.,
2018), a recent e-discovery cost-sensitive framework.

Chapter 3: In Chapter 3 we gave an in-depth analysis of the SLD algorithm for posterior prob-
abilities adjustments (whose results were published in Esuli et al. (2021)): using the RCV1-v2
dataset to emulate single and multi class scenarios, we ran several experiments where we tested
SLD against a variety of simulated PPS scenarios (from low to high drift). While SLD showed poor
performances for single-label multi-class scenarios, it also obtained good results in the binary clas-
sification task (i.e., the one we are interested in for TAR applications), when we have a moderate
or high PPS. It could thus be suitable for applications in active learning scenarios.

Chapter 4: Following up from the previous chapter, in Chapter 4 we first tried to establish
the best active learning algorithm to generate the training set for MINECORE, comparing two
of the most famous and used policies, i.e., active learning via relevance sampling (ALvRS) and
uncertainty sampling (ALvUS), plus a newly presented ALvRUS policy (active learning via rele-
vance/uncertainty sampling, see Section 4.3.3). This work was published in Molinari et al. (2023).
Experimental results showed that ALvRUS is able to deliver a better training set, which in turns
improve the classifier performances on the unlabelled set as well: moreover, as expected, it also
generates a substantial PPS between the two sets. As argued in Chapter 3, high PPS and binary
classification tasks seem to be the main ingredients for a successful SLD application. Nonetheless,
when applied to AL generated datasets, SLD clearly showed poor performances and, more specifi-
cally, brought to an extremization of the posterior probability distribution, i.e., all (or almost all)
posteriors are either pushed very close to 1 or 0. In order to analyze the problem, we introduced a
new pseudo-oracle policy called Rand, whose goal is that of generating a labelled and unlabelled sets
via a controlled random sampling: that is, given the prevalence pL(y) on the labelled set and pU (y)
on the unlabelled set, we generate two analogous sets LRand and URand with the same prevalences,
but with a completely random document selection policy. This should enable us to understand
whether SLD behaviours are due to some specific PPS or to the document selection policy: indeed,
we find out that SLD extremization does not happen for the Rand policy. We thus hypothesize
that SLD failures are due to the AL policy, and more specifically to what literature calls sampling
bias (Dasgupta, Hsu, 2008; Krishnan et al., 2021): in ALvRS or ALvUS (as well as in ALvRUS) the
document selection is highly influenced by the initial seed set; this means that the AL policy will
draw very similar (and likely uninformative) documents from the pool, hiding from the classifier
whole clusters of relevant items. Of course, this also makes the L set completely diverge from both
the pool P and the U set (i.e., PrL(y) ̸= PrU (y) and PrL(x|y) ̸= PrU (x|y)). Part of this analysis
was also published in Esuli et al. (2022).

Chapter 5: In Chapter 5 we give an in-depth analysis of this phenomenon, showing how sampling
bias strongly modifies the posterior distribution with respect to a similar sampling-bias-free dataset
(i.e., generated with the Rand policy): we show that one of the key equations of SLD and its
assumptions cannot hold in an active learning scenario. SLD posteriors update is thus shown to be
too extreme. Hence, we propose a modification to the original SLD algorithm, introducing a new
parameter τ , in order to avoid these extreme behaviours in SLD: this seems to effectively enable the
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usage of SLD with AL generated datasets. We call our new method “SLD for Active Learning” (or
SALτ ). SALτ leverages the different classifiers generated at each active learning iteration, in order
to estimate the sampling bias effects on the posterior probabilities. SALτ consequently adjusts the
τ parameter, deciding whether to use the original SLD, a “milder” update or no update at all.
Our final goal is then to use SALτ in order to get a better prevalence estimation (with respect to
the classifier or SLD) during the active learning iterations: using the improved estimation, we can
stop the active learning process earlier, while still achieving the required recall targets, resulting in
lower annotation costs. From our experiments, the newly proposed SALτ method, and its variant
SALR

τ , seem to indeed be able to achieve this goal. That said, future works should focus on better
tackling SALτ early stopping issues, possibly defining a more statistically informed method than
what we proposed with SALR

τ ; moreover, it would also be interesting to adapt SALτ and SALR
τ to

other sampling policies. Finally, the paper describing this work is currently under review at the
Data Mining and Knowledge Discovery journal.

Chapter 6: In our last Chapter 6 we focused exclusively on the production of systematic reviews
in empirical medicine. This work was published in Molinari, Kanoulas (2022). In this chapter, we
explored the possibility of leveraging previously conducted systematic reviews to train deep learning
models, which can eventually be applied to new and unseen systematic review topics. As a matter of
fact, while in e-discovery we usually do not possess data from previous reviews, in empirical medicine
datasets are publicly available (at least for the abstract screening stage). We thus investigated two
main research questions: (i) is it possible to transfer knowledge between systematic review topics,
and (if yes) to which extent? (ii) can we keep training these deep learning models in the active
learning process? Regarding the first research question, we pre-trained a BioBERT model and
another transformer-like architecture, as well as a classical logistic regression on the CLEF dataset.
Results show that the deep learning models (and the logistic regression) are indeed able to transfer
knowledge acquired on previous reviews, obtaining a zero-shot ranking with performances close
to a logistic regression trained on in-domain data. We then proposed to “jump-start” the CAL
process from the top-10 documents of the zero-shot rankings: however, despite starting from a
higher recall, the jump started CAL process do not keep a substantial advantage over the classical
CAL (although still showing improved performances). Regarding the second research question, our
experiments have shown that deep learning models are subject to a great deterioration of their
performance when continuously trained via active learning: in particular, BioBERT is the model
whose performance deteriorates the most, making it basically worthless for the task at hand. Given
this, we decided to run experiments using adapter modules (Houlsby et al., 2019), following the
intuition that given the scarce amount of data items, having fewer parameters should deliver better
results. Moreover, we decided to run a hyperparameter analysis to see whether changing or adapting
both the learning rate and the number of epochs may bring improvements. Our results show that,
when running with adapter modules and when adapting the number of epochs to the size of the
training set, smaller deep learning models can be effectively trained in the active learning process,
achieving results close to a standard logistic regression. We finally argue that future work should
focus on more in-depth analysis of which hyperparameters matter most, and how to tune them in
such a low-resource scenario. This would be of key importance, since leveraging previous reviews
could bring to a non-negligible amount of saved annotation effort.
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7.2 Limitations

We believe there are two main limitations to this thesis work:

1. The ubiquitous assumption of having infallible reviewers (Section 2.2.1), i.e., the fact that
the human reviewer is assumed to always give the correct label to the correct item. This
assumption is particularly relevant in Chapters 4 and 5. Chapter 4 analyses and studies the
use of active learning policies in order to build the training set of MINECORE (Oard et al.,
2018), as well as the effects of the SLD algorithm on a classifier trained on this training data.
Hence, the simplifying assumption on reviewers made by Oard et al. (2018) is kept in our
Chapter 4.

Regarding Chapter 5, the assumption is made mostly to keep consistency, and in order to be
able to compare with the baselines, where this assumption is also made.

2. The lack of real data for the e-discovery context. Indeed, while we tried to leverage real
systematic reviews in Chapters 5 and 6, in Chapter 4 we used the same experimental setting
of Oard et al. (2018) and, as such, the e-discovery data was simulated via the RCV1-v2
dataset (see Section 2.6). This was done in Chapter 5 as well, where the algorithms were
tested both on the CLEF EMED dataset and the RCV1-v2 dataset. Of course, this poses the
question of whether, when used in real e-discovery scenarios, the relative performance of the
different algorithms tested (and in particular, of our SALτ method) would remain unchanged.
Unfortunately, this limitation is common to most TAR literature and, hence, to the works
presented in this thesis as well.

7.3 Future works and conclusions

In future works, we propose to further investigate the SALτ method in order to: (i) define a less
empirical solution to its overestimation issues (with respect to SALR

τ ); (ii) test its capabilities of im-
proving posterior probabilities coming from active learning classifiers, both in terms of classification
metrics (such as F1) and calibration metrics (e.g., using brier decomposition, see Section 6.3.3).
Furthermore, regarding the deployment of deep learning algorithms in active learning processes,
we believe further research would be necessary to understand how these models can be effectively
integrated and leveraged in active learning algorithms: indeed, this could lead to larger initial seed
set of documents in low-resource annotation scenarios, as well as to consistently achieve higher
recall targets, earlier.

In conclusion, we believe this thesis has effectively contributed an in-depth analysis of SLD (for
both posteriors and priors adjustment, in passive or active learning scenarios), as well as an effective
method to save consistent annotation effort in TAR workflows; moreover, our SALτ method can
also be employed to obtain better prevalence estimates in any active learning scenario. Finally, this
thesis also gives a contribution towards enabling deep learning algorithms in TAR systems, in order
to leverage their zero-shot capabilities.
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