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ABSTRACT Efficiency and efficacy are desirable properties for any evaluation metric having to do with
Standard Dynamic Range (SDR) imaging or with High Dynamic Range (HDR) imaging. However, it is
a daunting task to satisfy both properties simultaneously. On the one side, existing evaluation metrics
like HDR-VDP 2.2 can accurately mimic the Human Visual System (HVS), but this typically comes at a
very high computational cost. On the other side, computationally cheaper alternatives (e.g., PSNR, MSE,
etc.) fail to capture many crucial aspects of the HVS. In this work, we present NoR-VDPNet++, a deep
learning architecture for converting full-reference accurate metrics into no-reference metrics thus reducing
the computational burden. We show NoR-VDPNet++ can be successfully employed in different application
scenarios.

INDEX TERMS Deep learning, HDR imaging, objective metrics, no-reference.

I. INTRODUCTION
The quality of natural/synthetic images is commonly assessed
either through user studies or through objective metrics. This
step is especially important to assess the quality of a com-
pression/restoring/enhancing algorithm.

Although a user study is very reliable in terms of the
quality of results, it is rather cumbersome to run since a
considerable amount of time (spanning fromweeks tomonths
in some cases) is often required, given that a large number
of participants and images should be involved. Furthermore,
such studies require a careful design to avoid biases, and they
can be very expensive since some money has to be invested
in order to attract the participants’ interest. As a result,
objective metrics are typically preferred for assessing image
quality; the monetary cost is greatly reduced while, at the
same time, these metrics can be employed to evaluate real-
time applications. Although suchmetrics do not require users,
they represent fairly reliable solutions, especially when these
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metrics take into account different aspects of the human
visual system (HVS) or when they provide an accurate sim-
ulation of relevant aspects of it. An example of this last case
is HDR-VDP 2.2 [32], which is, by now, a well-established
metric for HDR and SDR imaging used in standardization
committees. Unfortunately, HDR-VDP 2.2 presents twomain
limitations: i) its high computational cost prevents its use in
real-time applications or large databases (e.g., standardiza-
tion); ii) it requires a reference image, whichmay not be avail-
able in many cases (e.g., TV live broadcasting). Recently,
some efforts have been paid into designing more compu-
tationally efficient metrics for specific problems. However,
the most popular and reliable metrics, such as TMQI [27],
[37] for assessing the quality of tone-mapped images,
still require a reference image, which is a severe limiting
factor.

All the above-mentioned problems make it evident the
necessity of new objective metrics that (i) can be run in real-
time, (ii) do not require a reference image or a ground truth,
and (iii) mimic accurately the original reference-based met-
rics. In this paper, we propose NoR-VDPNet++, an efficient
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deep learning architecture for converting full-reference accu-
rate metrics into no-reference metrics.

The rest of this paper is organized as follows.
In Section II, we review previous efforts in the field.
In Section III, we explain our NoR-VDPNet++ architecture
in detail. In Section IV, we turn to describe the dataset and
the training strategy we use, while in Section V, we report our
experiments. In Section VI, we demonstrate how our system
fares in real applications. Finally, Section VII wraps up, also
offering pointers to potential directions for future work.

II. RELATED WORK
Nowadays, image quality evaluation through the use of objec-
tive metrics has become of high importance. Objective met-
rics are not only used for quality assessment in benchmark
studies but are also used to monitor/guide the performance
of algorithms such as 3D renderers, encoders, enhancement,
deep-learning training, etc. In this work, we consider Image
Quality Metrics (IQMs) which predict a single global quality
score for the entire image.

IQMs can be divided into Fully-Reference (FR) and
No-Reference (NR) methods. While FR-metrics receive as
input a pair of images (i.e., the ground truth and the dis-
torted images), the NR-metrics has only the distorted image
as input. In this section, we will focus on state-of-the-art
NR-based IQMs approaches only, which is the scenario of
our study.

Typically, NR IQMs are based on statistical information
derived from the distorted image [19], [31], [35], [40]. For
example, NIQE [31] first computes 36 highly regular natural
scene statistics from an input image, to then compute the
distance from these and a multi-variate data-driven Gaussian
fit. Recently, NR metrics based on machine learning made
their appearance. Mittal et al. [30] proposed to extract locally
normalized luminance coefficients (LNLCs) to quantify pos-
sible losses of naturalness in the image due to the presence of
distortions. Subsequently, a support vector regressor (SVR) is
trained to predict, from LNLCs, a proxy of human perception
called BRIQUE index. Similarly, Kundu et al. [26] introduced
Higrade, an NR-metric for tone-mapped images based on
the extraction of log-domain gradients and an SVR. Regard-
ing convolutional neural networks (CNNs), Kang et al. [22]
proposed one of the first approaches where they presented
a simple NR CNN architecture for predicting quality scores
that correlate with user experiments. Kottayil et al. [24] intro-
duced anNR-IQA deep learning scheme for HDR images that
correlates with mean opinion scores. Kim and Lee [23] deal
with the absence of ground truth by employing local quality
maps derived by FR-IQMs as intermediate regression targets.
This approach requires pre-training the FR-IQM model on
data where the ground truth is available. The approach by
Bosse et al. [11] is purely data-driven and does not rely on
hand-crafted features or other types of prior domain knowl-
edge about the HVS or image statistics. Zhu et al. [39]
proposed MetaIQA to improve the prediction capabilities of

a CNN-based metric through pre-trained architectures. Here
the meta-knowledge shared by people during the evaluation
of the quality of images with various distortions is learned
and adapted to unknown distortions.

Recently, CNN-based architectures have been employed to
transfer the knowledge of an algorithm into the parameters
of a convolutional network able to produce real-time predic-
tions. This was achieved for both the FR scenario [2] (i.e.,
DIQM which mimics HDR-VDP 2.2 [32] and DRIIM [5]
with uses a reference) and theNR scenario [9] (i.e., NoRVDP-
Net which mimics HDR-VDP 2.2 without a reference).

In this work, we present NoR-VDPNet++, an improved
variant of NoR-VDPNet [9] that achieves higher accu-
racy while maintaining its real-time nature. In particular,
we present the following contributions with respect to pre-
vious art:

• NoR-VDPNet++ is a NR version of FR CNN-based
metric [2], which distills HDR-VDP 2.2 and DRIIM [5]
with high accuracy and efficiency. In this work,
we extend NoR-VDPNet architecture testing normaliza-
tion layers.

• We apply NoR-VDPNet and NoR-VDPNet++ to
obtain a no-reference TMQI [37] to assess the qual-
ity of tone-mapped images and a no-reference HDR-
VDP 2.2 to assess the quality of inverse tone-mapped
images.

• We present two novel datasets: the former composed
of tone-mapped HDR images using different tone map-
ping operators, and the latter composed of inverse
tone-mapped images using different inverse tone map-
ping operators.

III. DISTILLING IMAGE QUALITY METRICS
NoR-VDPNet [9] accomplishes the conversion of HDR-
VDP 2.2 [32] into a NR model encoded as a CNN. This
is attained by training a CNN architecture (see the left-most
architecture in Figure 1) using a medium dataset (e.g., more
than 50,000-100,000 examples with/without reference) of
SDR/HDR images for different scenarios such as SDR distor-
tions detection (blur, noise, quantization, etc.), JPEG-XT [3]
compression artifacts, tone/inverse tone mapping evaluation,
etc. Each example pair consists of a distorted image and
the ground truth quality value that HDR-VDP 2.2 or TMQI
calculates using its reference; see Figure2. Note that the key
for distilling HDR-VDP 2.2 or TMQI into a no-reference
metric comes down to omitting the reference during training.

In this work, we explore techniques aimed at improving
the stability of the training phase of the previous version
NoR-VDPNet and increasing accuracy at inference time. The
resulting model, which we dub NoR-VDPNet++, comes in
two flavors, one that uses Batch Normalization [21] as a way
to counter the internal covariate shift, and another that instead
uses the more recent ReZero [6] normalization layer to speed
up training convergence. We experiment with both variants
and discuss the merits of each.
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FIGURE 1. The network architecture of NoR-VDPNet (left) and NoRVDPNet++ (right): Batch Normalization or ReZero are added to each convolution layer.

FIGURE 2. The process for creating a sample for our NR datasets. We use
a FR metric for computing the quality value between the ground truth and
the distorted images. Then, the sample is created by discarding the
ground truth; the input for the network is the distorted image and the
target output to minimize is the computed quality value Q.

Batch Normalization [21] has been shown to effectively
help reduce the covariate shift between layers and to allow
for faster and more robust training. Batch Normalization
comes down to independently re-centering and re-scaling the
dimensions of data tensors by using an approximation of
the mean and standard deviation computed on the batch of
examples. Equation 1 describes the computation for the kth
dimension of a vector x = (x(1), · · · , x(m)); µ

(k)
B and σ

(k)
B

stand for the sample mean and sample standard deviation,
respectively, as computed on the batch of examples B.

x̂(k) =
x(k) − µ

(k)
B√(

σ
(k)
B

)2
+ ϵ

. (1)

ReZero [6], on the other hand, was recently proposed as a
novel way for reducing the problems of vanishing and explod-
ing gradients typical of deep learning training with residual
layers. As a residual block, it allows deep architectures to
become deeper while at the same time being much more
efficient than other normalization techniques. The computa-
tion of ReZero between two subsequent layers (l and l + 1)
is described by Equation 2 and comes down to a residual
connection with a trainable parameter (αl) used to modulate
the transformation F of the data tensor.

xl+1 = xl + αlF(xl). (2)

Both variants of NoR-VDPNet++ achieve a lower predic-
tion error than the original NoR-VDPNet and still preserve

real-time performance. When equipped with the ReZero con-
nections, NoR-VDPNet++ produces lower errors in some
scenarios; Figure 1 shows NoR-VDPNet before (left) and
after (right) these changes.

IV. DATASETS AND TRAINING
We trained NoR-VDPNet++ for different scenarios:

• SDR-D: Estimating HDR-VDP2.2 [32] quality value at
different SDR distortions; e.g., blur, noise, quantization,
etc. In this case, we converted 8-bit values into display
referred values.

• TMO: Estimating TMQI [37] score under different tone
mapping operators (TMOs).

• HDR-C: Estimating HDR-VDP2.2 [32] quality value at
different JPEG-XT [4] quality settings.

• ITMO: Estimating HDR-VDP2.2 [32] score under dif-
ferent inverse tone mapping operators (TMOs).

For HDR-C, TMO, and ITMO datasets, we employed
1,478HDR images or IHDR: HDRSurvey [14], StanfordHDR
Dataset [36], the 100-sample from the Laval HDR Panorama
dataset [18], Funt et al.’s HDR Dataset [16], Akyüz’s Dataset
[1], the UBC HDR video dataset [7], and Stuttgart HDR
Video dataset [15].

For the TMO dataset, we applied 18 TMOs (see Figure 6)
to all images in IHDR using the HDR Toolbox [8]. Then,
we ran TMQI using the original HDR images and their tone-
mapped versions, storing the TMQI score as the target output.
The no-reference dataset comprises the tone-mapped images
stored at 8-bit per color channel in the sRGB color space and
its TMQI score.
Regarding ITMO, we applied six inverse tone mapping
operators (ITMOs) to the SDR versions (i.e., with a f-stop that
maximizes the total well-exposed pixels) of the HDR images
in IHDR. These operators are: Akyuz et al. [1], Huo et al. [20],
Kovaleski and Oliveira [25], and Masia et al. [29], Eil-
ertsen et al. [13], and Santos et al. [33]. We ran HDR-
VDP 2.2 between the original HDR images and their inverse
tone-mapped one storing the HDR-VDP 2.2 Q value. The
no-reference dataset comprises inverse tone-mapped images
stored at 32-bit per color channel in the sRGB color space
and its HDR-VDP 2.2 score. To further stress-test differ-
ent input conditions, we applied an exposure augmentation;
i.e., we applied a +1.5-stop and a 3.0-stop increase from a
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FIGURE 3. Scatter plots for the test datasets of all scenarios where we compute the Pearson coefficient of correlation, ρ. From the top to the bottom:
HDR-C, ITMO, SDR-D, and TMQI.
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FIGURE 4. Histograms plots of the error between the predicted Q value and its ground truth for images belonging to the test dataset of each scenario.
From the top to the bottom: HDR-C, ITMO, SDR-D, and TMQI .
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FIGURE 5. An example of the exposure augmentation of the input images
for generating expanded HDR images for the ITMO dataset: (a) The
well-exposed reference HDR image using Gallo et al.’s histogram
method [17]. (b) The same image with the exposure set to +1.5-stop.
(c) The same image with the exposure set to +3.0-stop.

TABLE 1. The size (number of images) of each dataset employed in this
paper.

well-exposed input image (with only clipped highlights); see
Figure 5.

Given that the same HDR image is tone/inverse tone
mapped with different TMOs/ITMOs, this is actually equiv-
alent to performing data augmentation. Therefore, for each
image, all different tone/inverse tone mapped images are
placed either in the training set, in the evaluation set, or in
the test set.

Note that for HDR-C and SDR-D, we extended Scenario 1
and Scenario 2 from Artusi et al.’s work [2] by increasing the
number of samples by 3.8 times and 7 times, respectively.
We achieved that using images from [12] for SDR-D, and the
new images from IHDR for HDR-C.

To further increase the size of the dataset, we per-
formed further data augmentation by applying 90◦/180◦/270◦

rotations and horizontal/vertical image flips. Note that
HDR-VDP 2.2 requires physical values in order to obtain
meaningful results, so images were converted from relative
values to display-referred values. For the SDR-D dataset,
the reference display had the characteristics of nowadays
standard 8-bit display; i.e., the display peak brightness and
black level were, respectively, set to 250 cd/m2 and 0.5 cd/m2.
Regarding ITMO and HDR-C datasets, the reference HDR
display was the DisplayHDR1400 standard1 with a peak
luminance of 1, 400 cd/m2 and a black level of 0.02 cd/m2.
The TMO dataset had no reference display because TMQI
[37] works on normalized values for both the HDR and tone-
mapped images.

Our training machine was an NVIDIA DGX Server
5.2.0 machine equipped with four AMD Epyc 7742 (64-core)
CPUs with 1 TB of memory, and we used a NVIDIA A100
GPU with 40 GB of memory (CUDA 11.3). For implement-
ing NoR-VDPNet++,2 we modified the publicly available

1https://displayhdr.org/
2https://github.com/banterle/NoR-VDPNetpp

TABLE 2. Performance evaluation in terms of MSE (lower is better).
Boldface indicates the best method overall for each scenario.
Superscripts ‡ denotes the method (if any) whose MSE score is not
statistically significantly different from the best one in terms of a
two-tailored t-test in the differences in performance: symbol ‡ indicates
0.01 < p − value; i.e., the methods behave similarly with very high
confidence.

TABLE 3. Training time per epoch in seconds.

code of NoR-VDPNet3 that uses PyTorch 1.3.1 deep-learning
framework. For ResNet-18, we employed the PyTorch imple-
mentation using its original weights and fine-tuning weights
using SDR-D, TMO, HDR-C, and ITMO training sets. Dur-
ing training, we employedAdam as the optimizer with default
parameters and learning rate initialized to 10−5; we halved
the learning rate whenever a plateau was reached. We trained
all our networks for 100 epochs and certified that the opti-
mization search converged in all cases. Typically, conver-
gence is reached after 60 or 70 epochs.

V. RESULTS
In order to assess the quality of the predictions that our new
NR model yields, we compared the Mean Squared Error
(MSE) of the predictions against the FR target quality val-
ues (as produced by HDR-VDP 2.2) for the test datasets of
SDR-D, HDR-C, TMO, and ITMO.

Table 2 reports performance comparisons in terms of MSE
between the original NoR-VDPNet [9], ResNet-18, and the
new variants NoR-VDPNet++ when equipped with Batch
Normalization (BN) or with ReZero (RZ), for SDR-D, HDR-
C, TMO, and ITMO. Statistical significance of the averaged
scores is tested according to a two-tailored t-test at different
confidence levels (α = 0.01 and α = 0.001).

These results reveal some interesting facts. First of all,
there is a clear advantage (i.e., a statistically significant
improvement), in terms of error score, when equipping the
network with sophisticated normalization layers, when com-
pared to the classical NoR variant; see Table 2. Another
interesting aspect that jumps to the eye, is that NoR++BN
and NoR++RZ both perform substantially better, in a sta-
tistically significant sense, than ResNet-18 in terms of error
score. Interestingly enough, this improvement does not come

3https://github.com/banterle/NoR-VDPNet
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FIGURE 6. An example of the 18 TMOs from the HDR Toolbox [8] applied to the So- de-soto HDR image.

FIGURE 7. Timings at inference time for all different tested architectures.

at an extra cost. Indeed, ResNet-18 requires 58 hours for
training on the SDR-D dataset, while NoR++RZ requires
only 11 hours on the same dataset.

Figure 4 shows the error distributions for the test-
ing datasets. Note that, amongst all methods, NoR-
VDPNet++RZ displays the narrowest histogram centered
around 0 for the majority of scenarios.

For a clearer picture, Figure 3 shows the scatter plots
between the predicted value Q̂ and its ground truth Q by also

FIGURE 8. An example in which NoR-VDPNet++ is used to choose
high-quality images from an image collection. NoR-VDPNet++ predicts a
high Q-score (i.e., Q > 70) for sharp images, and a low one (i.e., Q < 60)
for blurred images.

reporting the Pearson correlation coefficient ρ. The scatter
plots exhibit a linear relationship between the inputs and the
predicted values that tend to lie close to the main diagonal.
From these plots, we can notice that ITMO is the most
difficult case overall. This is due to the fact that an inverse
tone mapping operator (both classic methods and especially
deep-learning-based ones) applies many different processing
operations at the same time on the same image.

Training times are reported in Table 3. It is worth noting
that NoR++RZ displays comparable training times to NoR,
while yielding better performance in terms of quality; see
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FIGURE 9. The results of our tone mapping application that maximises the TMQI. We report the maximized predicted TMQI, Q̂, and the real value, Q.

Table 2. In terms of computational efficiency at inference
time, the new architectures maintain real-time performance;
i.e., both variants BN and RZ can issue predictions for
4-MPixel images in less than 24ms; see Figure 7. In our
implementation, RZ is 44% faster than BN at high resolutions
(i.e., >2-MPixel) because the implementation of Equation 1
is computationally more expensive than that of Equation 2.

VI. APPLICATIONS
NoR-VDPNet++ is a real-time metric, meaning that it can
be employed in several optimization-based applications in
which the parameters need to be optimized for a specific
quality metric. A straightforward application of our work
is the selection of high-quality images from an image col-
lection; see Figure 8. This might be particularly useful
for sorting vacation photographs or eliminating low-quality
images in computer vision applications such as Structure-
from-Motion [10] (e.g., removing blurred frames in a 3D
reconstruction). Another interesting application is to use our
metric trained on TMQI to optimize tone mapping operators
parameters. To prove this possibility, we made an application
that try to optimize the parameter of this sigmoid TMO:

Ld =
Lwα

Lwα + µ
Cd =

(
Cw
Lw

)γ

Ld , (3)

where Cw and Cd are, respectively, a HDR and a SDR color
channel; Lw and Ld are, respectively, the HDR and SDR

luminance; α and µ are tone-curve parameters, and γ is
a color saturation parameter. Figure 9 shows tone mapped
images using this optimization process, displaying the TMQI
predicted by the network and its corresponding real value.

The proposed tone mapping optimization can be also
employed for selecting TMO parameters for JPEG-XT [28]
compression using HDR-C results. In a similar way, our met-
ric trained on ITMOcan be employed to optimize inverse tone
mapping operators (be them relying on neural or non-neural
implementations).

VII. DISCUSSION AND CONCLUSION
We have shown that CNN architectures can successfully
distill the knowledge of existing reference metrics like
HDR-VDP 2.2 [32] and TMQI [37]. In this work, we have
presented NoR-VDPNet++, an improved variant of NoR-
VDPNet [9]. This variant achieves more reliable results in
general, and also in a newly introduced scenario, i.e., the eval-
uation of inverse tone mapped images. We also showed NoR-
VDPNet++ outperforms other comparatively more complex
networks like ResNet-18, while at the same time requiring
less time to train, and being faster at inference time.

NoR-VDPNet++ maintains real-time performance,
allowing it to be employed in any real-time constrained appli-
cations such as optimization processes for parameter selec-
tions like tone mapping, image selection from collections
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of photographs, or Structure-from-Motions tasks, to name a
few.

Recent efforts have been paid in order to better understand
how intermediate feature maps of pre-trained CNNs can be
used to predict image distortion similarly to how humans do.
For example, Zhang et al. [38] show a systematic study on
how to evaluate feature maps across different CNN archi-
tectures, obtaining important improvements with respect to
classical objective metrics. Tariq et al. [34], have shown the
existing correlation between the capabilities of pre-trained
CNN features in optimizing the perceptual quality, with their
accuracy in capturing basic human visual perception charac-
teristics. This altogether suggests that more efforts have to
be devoted to better understanding the potential benefits that
using feature maps from pre-trained CNNs as an objective
metric can bring to bear in image/video evaluation. In future
work, we plan to carry out a systematic study in this direction,
analyzing ways for employing these feature maps in NoR-
VDPNet++ in an effective manner.
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