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Abstract. The large and diverse availability of mobility data enables
the development of predictive models capable of recognizing various types
of movements. Through a variety of GPS devices, any moving entity,
animal, person, or vehicle can generate spatio-temporal trajectories. This
data is used to infer migration patterns, manage traffic in large cities,
and monitor the spread and impact of diseases, all critical situations
that necessitate a thorough understanding of the underlying problem.
Researchers, businesses, and governments use mobility data to make
decisions that affect people’s lives in many ways, employing accurate
but opaque deep learning models that are difficult to interpret from a
human standpoint. To address these limitations, we propose Geolet, a
human-interpretable machine-learning model for trajectory classification.
We use discriminative sub-trajectories extracted from mobility data to
turn trajectories into a simplified representation that can be used as
input by any machine learning classifier. We test our approach against
state-of-the-art competitors on real-world datasets. Geolet outperforms
black-box models in terms of accuracy while being orders of magnitude
faster than its interpretable competitors.

Keywords: Trajectory Classification · Interpretable Machine Learning ·
Mobility Data Analysis · Explainable AI

1 Introduction

The increasing diffusion of GPS-capable electronic devices, such as mobile phones,
vehicles, and trackers, contributes to generating massive amounts of mobility
data [9]. In general, any moving entity can generate spatio-temporal trajectories,
which companies, governments, and researchers use to address many crucial
applications [1]. Thus, mobility data affect the livelihoods of millions of people.

One of the most common tasks in this field is trajectory classification, i.e.,
predicting the class label of an object based on its movement [5,9,14]. Trajectory
classifiers, for example, can differentiate between cars, taxis, buses, pedestrians,
and bikes, recognize the movement of various animals, and infer people’s jobs
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based on their routines. In [14] it is presented a survey comparing state-of-the-art
trajectory classification approaches. The authors emphasize the main challenges
in this field, namely the need for robust experimental evaluations across multiple
datasets and the lack of advances in the state-of-the-art. Moreover, the majority
of surveyed works are based on complex, black-box models such as Support
Vector Machines (SVM), Multilayer Perceptrons (MLP), and deep Convolutional
Neural Networks (CNN), which are inherently not interpretable from a human
standpoint [7]. This can be a significant problem in high-stakes applications where
the explanation aspect of machine learning models is critical for establishing
trust in automated decision systems [11].

EXplainable Artificial Intelligence (XAI) for trajectories is an extremely
under-explored topic in the literature. For this reason, we take inspiration from
studies on XAI from time series [18], and specifically shapelets [22] to present
the GEOgraphic ShapeLET classifier Geolet, an interpretable classification
approach for trajectory data. First, Geolet uses geographic partitioning to
segment the input data into subtrajectories. These subtrajectories are normal-
ized and filtered in order to take only the most discriminative ones. They are
then exploited to convert the input trajectories into a simplified, interpretable
representation that can be used as input by any machine learning classifier. We
evaluate Geolet on five datasets and against state-of-the-art alternatives, con-
sidering multiple quantitative metrics. Furthermore, we qualitatively show that
the proposed approach produces interpretable and easy-to-read explanations.

2 Related Works

The problem of trajectory classification consists in building a predictive model
from labeled historical trajectories to classify new ones [6,9]. Trajectory classifiers
can be divided into different families. Classical approaches usually extract global,
or local features from the data, whereas modern approaches tend to directly
process the raw trajectories with complex, deep learning-based models.

Global features-based approaches extract features like velocity change, duration,
speed, etc. from the whole trajectory [14]; they can be highly effective for simple
datasets, where similar properties are maintained throughout the entire path.
However, these methods are insufficient for more articulated trajectories in which
the target class is linked to an event occurring in a trajectory portion.

Local features-based approaches try to mitigate these problems by segmenting
the trajectory into subtrajectories and extracting features from them. In [21],
the authors extract statistical features from the segments of the trajectory, first
globally and then locally. Finally, they compare Random Forest, Gradient Boost-
ing Decision Tree and XGBoost as classification models. In [20], it is proposed a
semi-supervised clustering approach coupled with a majority voting ensemble
classifier to learn a metric that brings similar data closer and distances elements
with different labels. The first two methods can be viewed as pseudo-interpretable
procedures, depending on the classification model used after the dataset transfor-
mation. A Random Forest, for example, can be used to determine the average
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importance of each variable. However, the main issue is that interpretability varies
depending on the complexity of the extracted features and the number of weak
learners in the ensemble. To the best of our knowledge, the only fully interpretable
trajectory classifier is Movelets [5]. Indeed, the idea behind Movelets is to
extract discriminative segments from the trajectory and, similarly to the shapelet
transform for time series [22], convert the dataset into a new representation
that stores the shortest distances between each trajectory and subtrajectory. In
line with shapelets, subtrajectories can be used to understand the logic of the
classifier [18]. While promising, the proposed method is computationally complex
as it generates all possible subtrajectories and is not suitable for large datasets.
Furthermore, only the space dimension is used to compute the distance between
trajectories and subtrajectories. Thus, the trajectories must be resampled to
constant time intervals, and only equal-length subtrajectories can be compared.

Recently, neural networks have been used in trajectory classification ap-
proaches to achieve superior performance in a faster manner. Recurrent Neural
Networks (RNN) and Convolutional Neural Networks (CNN), often used with
time series data, can be easily extended to trajectories. In [8], the authors propose
TraClets, a CNN-based method that represents a trajectory as an image and
uses a CNN to solve the trajectory classification task. MARC [13] deals with
trajectories augmented with semantic textual dimensions, exploiting the GPS
data and information in the textual dimensions. Finally, Rocket [4], the state-of-
the-art classifier for multivariate time series, can be easily applied to trajectories
to achieve fast and extremely accurate performance. Unfortunately, Rocket, RNN,
and CNN models lead to a non-interpretable prediction. For this reason, several
XAI approaches have been proposed to address the issue. Still, they can only
output explanations as saliency maps [3, 15], highlighting the importance of each
observation towards the classification.

Given the limitations of the literature, we propose a method for classifying
trajectories based on local feature extraction. Geolet attempts to overcome
the interpretability limitations of black-box models, and optimize accuracy and
runtime, which is often the main problem of feature extraction-based methods.

3 Background and Problem Setting

In this section, we define all the concepts necessary to understand our proposal.
We define a trajectory as follows:

Definition 1 (Trajectory). A trajectory X is a sequence of spatio-temporal points
X = {(x⃗1, t1), . . . , (x⃗m, tm)} ∈ Rm×3 where the spatial vectors x⃗j = (latj , longj)
are sorted by increasing time tj , i.e., ∀1 ≤ j < m we have tj < tj+1.

In a sense, trajectories can be viewed as multivariate time series containing
two signals, i.e., the latitude and longitude, recorded at non-constant sampling
rates [5,8,19]. A trajectory classification dataset is a set of trajectories with a
vector of labels attached. Formally:
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Definition 2 (Trajectory Classification Dataset). A trajectory classification
dataset D = (X ,y) ∈ Rn×m×3 is a set of n trajectories, X = {Xi . . . , Xn}, with
a vector of assigned labels (or classes), y = {y1, y2, . . . , yn} ∈ Nn.

For simplicity of notation, we use a single symbol m to denote the lengths of the
trajectories, even if a trajectory dataset can contain instances having a different
number of observations. We define the trajectory classification problem as follows:

Definition 3 (Trajectory Classification). Given a trajectory classification dataset
D, trajectory classification is the task of training a function f from the space of
possible inputs to a probability distribution over the class values in y.

The resulting trajectory classification function f takes as input a trajectory X
and returns y according to what f learned, i.e., y = f(X). In general, y can
either be a discrete label or the probability of X belonging to a specific class.
Thus, given a trajectory classification dataset D, our objective is to solve a trajec-
tory classification problem by realizing an interpretable trajectory classification
function f that allows to understand the reasons for a decision y = f(X).
A fundamental aspect to introduce our proposal is the notion of subtrajectory :

Definition 4 (Subtrajectory). Given a trajectory X of length m, a subtrajec-
tory S = {(s⃗j , tj), . . . , (s⃗j+l, tj+l)}, of length l ≤ m, is an ordered sequence of
consecutive values such that 1 ≤ j ≤ m− l + 1.

Subtrajectories can be used for classification purposes, similarly to shapelets, by
selecting the most discriminative ones w.r.t. the target label, depending on some
statistical measure. Mutual Information [17] is commonly used for classification
purposes, measuring the dependency between continuous and discrete variables.
Once the most discriminative subtrajectories are found, the dataset can be trans-
formed in a simpler representation, via the subtrajectory transform. Formally:

Definition 5 (Subtrajectory Transform). Given a trajectory dataset X and a set
S containing h subtrajectories, the Subtrajectory Transform converts X ∈ Rn×m×3

into a real-valued matrix T ∈ Rn×h, obtained by taking the Best Fitting of each
trajectory X ∈ X , and each subtrajectory S ∈ S.

Usually, the best fitting of S in each X is computed by taking the minimum
distance via a sliding window of length l. The most used distance functions
to compare sequential data are the Euclidean distance and Dynamic Time
Warping [2]. However, both have drawbacks when applied to trajectories. First,
the Euclidean distance requires trajectories to have the same number of points,
which is uncommon in real data. Secondly, both DTW and Euclidean distance
implicitly need a constant sampling rate, which is not always guaranteed. For this
reason, in our proposal, we adopt a distance specifically designed for trajectories,
i.e., the Interpolated Route Distance (IRD) [19], which allows the comparison of
trajectories having different lengths and sampling rates. IRD uses the temporal
dimension to align two trajectories and, if two observations do not occur at the
same time-step, values are projected by interpolating the information. In other
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Fig. 1. Examples of partitioning. From left to right: original trajectory, Geohash, SAX.

words, given two trajectories, IRD calculates the distance between them for each
timestamp. If a timestamp is not present in the other time series, IRD uses the
neighboring timestamps to interpolate the values and estimate a position.

4 Geolet

This section presents the GEOgraphic ShapeLET classifier (Geolet), an inter-
pretable classification approach for trajectory data. Geolet is our answer to the
problem of designing an interpretable trajectory classification function f for a
trajectory classification task. Geolet first partitions trajectories into multiple
segments, yielding candidate subtrajectories. Secondly, it normalizes and filters
them to produce a set of prototypical subtrajectories. Then, Geolet trans-
forms the dataset using the Subtrajectory Transform. Finally, any interpretable
classification model can be used to classify the transformed data.

Partitioning. Several approaches can be used to partition a trajectory:
binning approaches like Symbolic Aggregate Approximation (SAX) [10], or geo-
graphical ones like Geohash [16] (Figure 1). SAX [10] is a discretization technique
to convert time series into a sequence of symbols. It is usually applied by sliding
window [12], creating a collection of SAX words that can be interpreted as time
series subsequences. We extend SAX to trajectories by applying the approach
independently to latitude and longitude signals, converting both into symbol
sequences. In layman’s terms, multiple coordinates in a trajectory are binned
into a single symbol that represents an area. The converted signals are then
used to generate a new symbol for each pair of observed symbols. The specific
hyperparameters’ configurations are detailed in Section 5. Another partitioning
approach is Geohash [16], an indexing system encoding a rectangular geographic
area into strings of letters and digits. Geohash divides the Earth into 32 regions
via a bit array, associating each area with one of the symbols in [0-1a-z]. Then the
process is repeated recursively until the algorithm reaches the desired accuracy.

Normalization. Following the partitioning phase, the segments must be
normalized so that the domains of the various partitions overlap. This can
be accomplished with a Geohash normalization or a FirstPoint normalization.
In the Geohash normalization, the bottom-left vertex latitude and longitude
of the Geohash cell are subtracted from the coordinates of each point of the
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subtrajectories. Intuitively, this is equivalent to overlapping each rectangle of the
Geohash partitioning. On the other hand, in the FirstPoint normalization, the
latitude and longitude of the first point of the subtrajectory are subtracted from
the coordinates of each point of the subtrajectory. Intuitively, this is equivalent
to overlapping the first point of each subtrajectory.

Filtering. After the partitioning and normalization phases, depending on
the dimensionality of the data, we might end up with an enormous amount of
subtrajectories. As a result, a filtering phase is carried out to reduce computational
complexity and produce a smaller set of relevant subtrajectories. In this phase,
subtrajectories are filtered by selecting a subset following some specific criterion.
In the shapelet literature, these criteria can be unsupervised, such as random
sampling and clustering, or supervised using statistical approaches, such as
the Mutual Information or the Chi-squared test [12], that are used to find the
subsequences that better discriminate between different classes. We experiment
with both unsupervised and supervised approaches in Section 5.

Transform. Once a set of representative subtrajectories is found, the sub-
trajectory transform can be applied, transforming trajectories in a simpler rep-
resentation, containing the Best Fitting (BF) between each trajectory in the
original dataset and each extracted subtrajectory. For time series, the distance of
choice is usually the Normalized Euclidean Distance (ED), however, as detailed
in Section 3, this is not always the best choice for trajectories. Therefore, given
a trajectory X of length m and a subtrajectory S of length l, the BF can be
computed in different ways. For the Normalized Euclidean distance, a sliding
window of size l is used to compare S with each subtrajectory of X. Formally,

BFED(X,S) =
m−l+1
min
j=1

(ED(Xj:j+l, S))

where Xj:j+l denotes a subtrajectory of X from j to j + l. On the other hand,
defining the notion of best-fitting with DTW is not trivial. Indeed, using the
same approach adopted for ED would limit the purpose for which DTW exists.
Hence, we propose a similar approach, but where we use an expanded sliding
window of length l′ > l:

BFDTW(X,S) =
m−l′+1
min
j=0

(DTW(Xj:j+l′ , S)).

Finally, since IRD exploits the time dimension to interpolate points when two
time series do not have the same sampling rate, we calculate the sliding window
size not w.r.t. the number of observations, but w.r.t. the time interval between
the first observation of the subtrajectory S and its last timestamp tl. Formally,

BFIRD(X,S) =
m−l+1
min
j=1

(IRD(Xj:j+tl , S)).

This formula describes the calculation of the best fitting with IRD, using a sliding
window where the length is defined not as the number of features but as the time
interval. The sliding window length must correspond to the minimum number of
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Table 1. Datasets description.

animals vehicles seabirds geoLife taxi

# trajectories 102 381 108 5,977 121,312
avg length (std) 173 (56) 601 (230) 2,904 (1162) 8,100 (15178) 55 (22)
avg ∆time (std) 3.75 (6) 83 (596) 100 (0) 3.88 (12) 15 (0)

∆ time min-75%-max 0-4-258 0-30-53,857 100-100-100 0-2-665 15-15-15
target class (#classes) species (3) category (2) species (3) transport (2) call type (3)

points necessary so that the trajectory time interval from j to j + tl is as close
as possible to the subtrajectory’s length.

Independently of the distance function adopted, the original dataset X is
transformed in a simplified matrix representation T . We experiment both with
continuous and discretized subtrajectories in Section 5. The transformed dataset
T can be paired with any classification algorithm, having the advantage of a
more interpretable data representation.

5 Experiments

We experiment with Geolet quantitatively on five datasets and we report visual
examples to show the benefits of an interpretable-by-design trajectory classifier.

Datasets. The trajectory classification datasets are described in Table 1.
For animals the task consists in recognizing different species. For vehicles

we want to distinguish between buses and trucks. For seabirds the task is
recognizing flying trajectories of three species of seabirds. For geolife, due to
the high number of classes and to the unbalancing, we simplify the problem to
recognizing trajectories of public vs private means of transport. Finally, for taxi,
the objective is to distinguish among different types of taxi calls within one month
of observations. We highlight that, state-of-the-art interpretable classification
methods are experimented only on very small datasets like animal and vehicles.
Each dataset is divided in train/test with a ratio 70/30%.

Competitors. We compare Geolet against two state-of-the-art methods,
i.e., Movelets [5] and Rocket [4]. Movelets, similarly to Geolet, is an
interpretable trajectory classifier that extracts discriminative subtrajectories and
uses them to transform the dataset. The Movelets algorithm requires setting
the minimum and maximum length of the generated subtrajectories. We use the
default implementation values for animals and vehicles. Furthermore, we limit
the maximum length to the logarithm of the number of maximum observations per
trajectory for seabirds, geolife, and taxi. Rocket is a not interpretable time
series classifier that transforms the dataset by applying random convolutional
kernels to generate multiple feature maps that capture different data trends.
The only hyperparameter to choose for Rocket is the number of convolutional
kernels, which is set to 10, 000 as recommended by the authors [4].

Geolet Parameters Setting.1. For Geolet, we use Geohash as a partition-
ing algorithm, FirstPoint normalization, Mutual Information (as implemented by

1
Code available at: github.com/cri98li/Geolet

https://shorturl.gg/rHWqbP
https://shorturl.gg/rHWqbP
https://shorturl.gg/6UvNY8f
https://shorturl.at/hRW09
https://shorturl.gg/nwjOx
https://github.com/cri98li/Geolet
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scikit-learn) for filtering subtrajectories, and IRD as a distance measure. With
this configuration, Geolet requires two hyperparameters: the Geohash precision
(prec), and the number of subtrajectories to extract (ns). We set the optimal
parameters via grid-search on the training set2.

Geolet Alternative Implementations. For a fair benchmarking of Geo-
let, we devise some alternative versions that are still interpretable but extract
explanations using different processes.

First, we compare the geographic-based segmentation of Geolet against a
purely SAX-based approach. For this purpose, we apply the SAX approximation,
as detailed in Section 4. We name this baseline MrSQM-T because, as part
of the filtering phase, we adopt MrSQM [12], a time series approach that
extracts the top symbolic subsequences using the Chi-squared test. MrSQM-T
randomly generates k configurations of the triples l, w, α where l is the size
of the sliding window, w is the SAX word length, and α is the alphabet size.
MrSQM-T generates these sets using the same seed to guarantee that the
previous configurations remain the same as k increases. The optimal value of k is
set to 25 for animals and 11 for vehicles. In the experiments, we observe that
MrSQM-T achieves good accuracy but requires a great computational effort,
resulting in high runtimes, even for these relatively simple datasets.

Secondly, we aim at comparing the supervised subtrajectory selection of
Geolet and MrSQM-T against an unsupervised one. For this purpose, we
use a clustering approach to filter the extracted subtrajectories. Specifically,
after Geohash segmentation and partitioning, prototypical subtrajectories are
extracted through K-Medoid, using the Normalized Euclidean distance. Once the
cluster centroids are extracted, they are compared using a sliding window to the
original subsequences. Each trajectory is encoded with the identifier of the cluster
centroids it contains. We name this baseline TrAC, Trajectory Approximation-
based Classifier. TrAC requires four hyperparameters, i.e., the Geohash precision
prec, the number of cluster k to use with K-Medoids (it also identifies the number
of symbols in the alphabet), the sliding window length w, and the number of
symbols subsequences topss to select based on the Mutual Information score. For
each parameter, we performed a grid-search3.

We highlight that, besides Geolet, MrSQM-T and TrAC are original con-
tributions and do not exist in the literature as interpretable trajectory classifiers.

5.1 Classification Performance

Since Geolet, Movelets, Rocket, MrSQM-T and TrAC perform a trans-
formation of the original data, any classification model can be applied to the
transformed dataset. To compare the transformations fairly, we adopted the

2
animals: prec = 2 ns = 21; vehicles: prec = 6 ns = 20; seabirds: prec = 5 ns = 50; geolife:
prec = 6 ns = 50; taxi: prec = 5 ns = 50.

3
prec ∈ [4, 5, 6, 7]; k ∈ [2, 5, 20, 100]; w ∈ [2, 3, 5]; topss ∈ [1, 2, 10, 50] on the training set. Hy-
perparameter choice does not significantly affect the method’s performance. We found constant
accuracy values for most of the hyperparameters tested. There were, however, peaks in the accuracy
score for some values. Thus, for animals we set prec = 4, w = 3 and topss = 2. For the vehicles
prec = 6, w = 3 and topss = 10.
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Table 2. Performance scores, best values in bold.

animals vehicles seabirds geolife taxi

a
cc

u
ra

c
y Geolet 0.935 0.965 0.967 0.861 0.578

Rocket 0.871 0.928 0.667 0.733 0.566
Movelets 0.563 0.921 0.718 - -
MrSQM-T 0.677 0.887 - - -

TrAC 0.742 0.791 - - -
r
u
n
ti
m
e

Geolet 27.6s 50.1s 48m 2.42h 44m
Rocket 2.4s 31.5s 15.7s 29.1m 13.3m

Movelets 25.7s 141m 126.9s - -
MrSQM-T 22.5m 1.16h - - -

TrAC 25.4s 1.18h - - -

same effective model for all five approaches, i.e., a Random Forest classifier as
implemented by the scikit-learn library. The best hyperparameters are found
via grid-search with 10-fold cross-validation4 on the training set.

Results in terms of accuracy and runtime are reported in Table 25. We measure
the execution time of each algorithm from the data preparation phase to the end
of the dataset transformation. Hence, we exclude the time for training the final
model. From a first glance, we can see that Rocket is the method that takes the
least time to execute. As for Movelets, we performed several attempts with the
geolife and taxi, but all the tests ended with an “insufficient memory error”.
In addition, we recorded anomalous results with the animals, which we suspect
was due to a bug in the original code. As for Geolet, we can see that it manages
to get the best results between these two methods, but it takes a longer execution
time. The weakness of Geolet compared to Rocket and Movelets lies in
the number of hyperparameters and configurations from which one can choose,
which is discussed in Section 5.3. TrAC and MrSQM-T perform competitively
w.r.t. Movelets in small datasets, but are both outperformed by Geolet and
Rocket. Moreover, due to their high computational cost, they are hardly usable
when dealing with real-world datasets.

5.2 Geolet Interpretability

This section provides an example of the kind of interpretable classification that
Geolet can provide. We apply Geolet on vehicles with prec = 4 and Geohash
as partitioning method, FirstPoint normalization, Normalized Euclidean distance
and Mutual Information for the transform. Finally, we use a Decision Tree
as a classification model as implemented by scikit-learn, which allows us
to visualize the resulting model graphically and extract rules summarizing its
decision boundaries. In particular, for vehicles, we identified the following rules:

r1 = {dist(X,S4) is low ∧ dist(X,S0) is low} → Bus
r2 = {dist(X,S4) is low ∧ dist(X,S0) is high} → Truck

4
n estimators=range(300, 1500, 300), criterion=[gini, entropy], max depth=range(2, 20, 3)

5
Tests are performed on a machine with CPU: AMD Ryzen 9 3900X; RAM: 32GB; OS: EndeavourOS
Linux. Due to resource limitations, we used 20% of geolife and 70% of taxi.

https://scikit-learn.org/stable/
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Fig. 2. Geolet’s Decision Tree for vehicles (left) and subtrajectories used (right).

Fig. 3. Examples of the Geolet explanation on two instances from vehicles. Left:
instance of the class Bus. Right: instance of the class Truck.

r3 = {dist(X,S4) is high ∧ dist(X,S6) is low} → Bus
r4 = {dist(X,S4) is high ∧ dist(X,S6) is high} → Truck

We highlight that, to ease the understanding, we report “is high”/“is low” instead
of the real distance because it is sufficient to understand the meaning of the rule
without accounting for the specific threshold numbers. Specifically, “low” indicates
that the distance measurement is below the split threshold value, and “high”
indicates that the value exceeds it For instance, dist(X,S4) ≤ 0.3 is translated
into dist(X,S4) is low. The decision tree and the subtrajectories are illustrated in
Figure 2. These rules show that the most representative subtrajectories are those
with indices 0, 4, and 6. We can now understand the decisions of the classifier by
visualizing where the subtrajectories fit within the trajectory. Figure 3 presents the
classification of Geolet for two instances. In particular, the instance belonging
to the class Bus has segments very similar to subtrajectories 0 and 4, and are
instead quite different from subtrajectory 6. On the other hand, the Truck
instance contains almost perfectly the subtrajectory 0, but it is quite different
from 4 and 6.

5.3 Geolet Parameters Sensitivity

In general, it is extremely difficult to define a global heuristic for this approach.
For this reason, we describe here our implementation choices and analyze how
hyperparameters selection affects theGeolet’s results on animals and vehicles,
providing some practical insights and guidelines.
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Fig. 4. Top: accuracy of Geolet varying the number of subtrajectories. Bottom:
comparison of the distance measures in terms of accuracy (left) and runtime (right).
The first two columns are the results obtained using Geohash-RND, and the last two
columns are the results obtained using Geohash-MIG.

Partitioning. In Figure 4 we study how Geohash precision and number of
subtrajectories affect accuracy. Also, we determine the importance of selecting
trajectory using a well-founded criterion such as the Mutual Information Gain
(Geohash-MIG), instead of simply selecting them randomly (Geohash-RND).
IRD is used as distance, and FirstPoint is used as the normalization strategy.
From the results, we can observe that, although random selection (Geohash-
RND) leads to a worse result, it could be a great way to quickly determine the
best precision for Geohash partitioning. The average runtime of Geohash-RND
compared to Geohash-MIG turns out to be 13 times faster for animals and
two times faster for vehicles. On the other hand, by selecting subtrajectories
using Mutual Information (Geohash-MIG), we can achieve better results faster
and with fewer subtrajectories. Regarding animals, we note that increasing the
length of the subtrajectories improves the results.

Normalization. We study here the impact of using different normalization
techniques, i.e., Geohash (Geolet-GH) and FirstPoint (Geolet-FP). Our
experiments show that the accuracy of Geolet-GH is 0.677 for animals and
0.791 for vehicles, while for Geolet-FP is 0.935 for animals and 0.965 for
vehicles. Therefore, we select FirstPoint as normalization for Geolet.

Distance. Finally, we analyze the impact of different distance metrics on
performance. Figure 4 (bottom) shows that the best distance for animals is DTW,
while the best distance for vehicles is ED. However, when the computation
time for the dataset transformation is considered, it is clear that larger datasets
cannot use DTW. Thus, excluding DTW, IRD has the best accuracy score for
animals, while it performs negligibly worse than ED for vehicles. As a result,
our intuition is that: (i) for small datasets, the DTW is the best distance, (ii) for
large datasets with consistent sample rates, ED is the best choice, while (iii) for
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large datasets with variegated sample rates, IRD is the best compromise between
accuracy and runtime.

In summary, the most sensible hyperparameter of Geolet is the precision.

6 Conclusion

We have presented Geolet, an interpretable classifier for trajectory data. Ge-
olet is able to transform trajectory data into a simplified representation that
any classifier can use as an interpretable input source. We have shown that
Geolet outperforms state-of-the-art competitors in terms of accuracy while
remaining competitive in terms of runtime. Besides, Geolet is interpretable,
returning subtrajectory-based explanations that are easily interpretable from a
human standpoint. As future research directions, we intend to improve Geolet’s
performance in terms of accuracy, runtime, and explainability. In this sense,
many extensions are possible. Subtrajectories, can be improved by embedding
properties such as scale and rotation invariance, resulting in a smaller set of
prototypical and interpretable subsequences. Also, Geolet can be extended to
work with data that includes additional features like height and semantic textual
dimensions, as well as data that uses different coordinate systems. To accomplish
this, the modularity of the implementation can be used to introduce new distance
measures, filtering approaches, normalization techniques, and partitioning meth-
ods. Finally, we want to investigate the regression and forecasting tasks, which
are fundamental in this field but remain unexplored from an XAI standpoint.
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