
Score vs. Winrate in Score-Based Games: which
Reward for Reinforcement Learning?

Luca Pasqualini
University of Siena, Italy
pasqualini@diism.unisi.it

Gianluca Amato
University of Chieti-Pescara, Italy

gianluca.amato@unich.it

Marco Fantozzi
Italy

marco.fantozzi@gmail.com

Rosa Gini
ARS Toscana, Italy

rosa.gini@ars.toscana.it

Alessandro Marchetti1
University of Chieti-Pescara, Italy
alessandro.marchetti@unicampus.it

Carlo Metta
ISTI-CNR Pisa, Italy
carlo.metta@isti.cnr.it

Francesco Morandin
University of Parma, Italy

francesco.morandin@unipr.it

Maurizio Parton
University of Chieti-Pescara, Italy

maurizio.parton@unich.it

Abstract—In the last years, the DeepMind algorithm Alp-
haZero has become the state of the art to efficiently tackle
perfect information two-player zero-sum games with a win/lose
outcome. However, when the win/lose outcome is decided by
a final score difference, AlphaZero may play score-suboptimal
moves because all winning final positions are equivalent from
the win/lose outcome perspective. This can be an issue, for
instance when used for teaching, or when trying to understand
whether there is a better move. Moreover, there is the theoretical
quest for the perfect game. A naive approach would be training
an AlphaZero-like agent to predict score differences instead of
win/lose outcomes. Since the game of Go is deterministic, this
should as well produce an outcome-optimal play. However, it is
a folklore belief that “this does not work”.

In this paper, we first provide empirical evidence for this belief.
We then give a theoretical interpretation of this suboptimality
in general perfect information two-player zero-sum game where
the complexity of a game like Go is replaced by the randomness
of the environment. We show that an outcome-optimal policy
has a different preference for uncertainty when it is winning or
losing. In particular, when in a losing state, an outcome-optimal
agent chooses actions leading to a higher score variance. We then
posit that when approximation is involved, a deterministic game
behaves like a nondeterministic game, where the score variance
is modeled by how uncertain the position is. We validate this
hypothesis in AlphaZero-like software with a human expert.

Index Terms—reinforcement learning, AlphaZero-like algo-
rithms, score-based games

I. INTRODUCTION

The game of Go has been a landmark challenge for AI
research since its very beginning. It is very suited to AI, with
the importance of patterns and the need for deep exploration,
and very tough to actually solve, with its whole-board features
and subtle interdependencies of local situations. Nowadays, AI
has reached a superhuman level in the game of Go with the
well-known DeepMind algorithm AlphaGo Zero [1] (AGZ),
a zero-knowledge evolution of AlphaGo [2] (AG). A more
general version of the algorithm, AlphaZero [3] (AZ), might

Funded by INdAM groups GNSAGA, GNCS and GNAMPA. Computa-
tional resources provided by CLAI lab of Chieti-Pescara.

1Alessandro Marchetti is a PhD student enrolled in the National PhD in
Artificial Intelligence, XXXVII cycle, course on Health and life sciences,
organized by Campus Bio Medico University of Rome.

even be able to tackle efficiently the whole class of perfect
information two-player zero-sum games.

In perfect information two-player zero-sum games where
the win/lose outcome is given by a final score difference
and no other rewards during the game, maximizing this
score difference is still an open and important question, see
the detailed discussion in [4, Introduction]. In fact, AZ-like
algorithms play suboptimal moves in the endgame, see for
instance [5, moves 210 and 214, page 252]. The open-source
clean room implementation of AGZ known as Leela Zero [6]
(LZ) is also known to play suboptimal moves, see Section 4.4
in [7].

This phenomenon is rooted in the win/lose reward in the
reinforcement learning (RL) pipeline. Giving a reward of 1
(win) or 0 (lose) at the end of the game means that agents
maximize just the winrate (that is, the expected win/lose
outcome) and could play sub-optimally with respect to the
expected score difference. It is a folklore belief that replicating
the AZ pipeline using the score difference as a primary target,
instead of the Boolean outcome, is unsuccessful. A qualitative
argument is that the score difference is unlikely to be a
successful reward because without knowledge of the win/lose
outcome, the agent will give the same importance to each score
point. But when the score difference is close to zero, a single
point may change the outcome of the game, thus inducing
instability in the agent strength. Note that this only happens
because the perfect play is out of reach: if the training was
to reach a perfect play, win/lose and score difference rewards
would produce agents that are equivalent from the win/lose
point of view, because the game of Go is deterministic.

As a matter of fact, there are at least two different RL
approaches that proved somewhat successful in maximizing
the score: KataGo [8] and SAI [7]. KataGo does include score
estimation, but only as a secondary target: the value to be
maximized is a linear combination of winrate and expectation
of a nonlinear function of the score difference, not the score
difference itself. In SAI, the winrate is modeled as a two
parameters family of sigmoids σα,β : while α can be seen as
the final score difference, α and β are learned indirectly by
training σα,β against the classical Boolean reward.

ar
X

iv
:2

20
1.

13
17

6v
2

 [
cs

.A
I]

 9
 J

an
 2

02
3

mailto:pasqualini@diism.unisi.it
mailto:gianluca.amato@unich.it
mailto:marco.fantozzi@gmail.com
mailto:rosa.gini@ars.toscana.it
mailto:alessandro.marchetti@unicampus.it
mailto:carlo.metta@isti.cnr.it
mailto:francesco.morandin@unipr.it
mailto:maurizio.parton@unich.it

Still, humans do use score estimations instead of win/lose
outcome estimations while playing score-based games. The
research question we address in this paper is to what extent a
win/lose-based optimal play can be achieved by a score-based
optimal play. In simpler words: if I play to maximize the score
in a win/lose game, do I lose more often?

This very question has different answers in different cases
that are better-detailed in II. In a deterministic game suffi-
ciently simple to allow for exact computation of the opti-
mal play, maximizing the expected score difference yields
also optimal win/lose-based play. However, if the game is
nondeterministic, maximizing the expected score difference
does not always give optimality from the point of view of
the winrate (even at optimal play). We elaborate on this
unexpected behavior and show that score variance is the key
to understanding this suboptimality, see IV. In a game that
is deterministic but so complex that optimal play can only
be roughly approximated, we support the mentioned folklore
belief by training LZ-Score (LZS), an instance of LZ on the
9×9 board, using score difference as a target. We show that
the training is successful, see III-A, but converges prematurely
to a player weaker than a corresponding AGZ-like player, see
III-B. Finally, in V, we detail the creation of LZS.

II. CONCEPTUAL FRAMEWORK

We consider two fully competitive agents playing in a
perfect information finite sequential game, whose win/lose
outcome (hereafter, simply outcome) is decided solely by a
final score difference. The game can be deterministic, with
no chance involved like the game of Go, or nondeterministic
with chance events, like backgammon. The agents can be
score-based or outcome-based, according to whether they min-
imize/maximize the expected score difference or the expected
win/lose outcome (hereafter, simply winrate). For each agent,
we call minimax optimal any (it is not necessarily unique)
theoretical optimal policy for that agent’s target. A backward
induction argument shows that, in deterministic games, any
minimax-optimal policy for the score-based agent would be
also minimax optimal for the outcome-based agent, that is, to
win in a win/lose game one can actually maximize the score.

However, in deterministic but very complex games where
optimal policy is out of reach, maximizing the score may still
lead to a suboptimal play from the winrate perspective. We
empirically validate this claim by training LZ-Score (LZS), an
AZ-like score-based agent, and by evaluating its performance
with a human-in-the-loop and a quantitative approach, see III.

One interpretation of this incoherence between score-based
and outcome-based play is that in complex deterministic
games, the value approximation is far from being optimal, and
therefore the agent plays in partial ignorance. Partial ignorance
can be modeled with the fact that, to the agent’s eyes, the
game is nondeterministic, and in this case, a minimax-optimal
policy for the score-based agents is no longer guaranteed
to be minimax optimal for the outcome-based agents. In
order to understand this phenomenon, we build a family of
nondeterministic games where the minimax-optimal policy for

the score-based agents is not optimal for the outcome-based
agents, and elaborate that score variance is the key statistics
to understand this behavior, see IV.

III. EVALUATION

A. Qualitative evaluation against a human player

Fifteen games were played between the best LZS network
and Carlo Metta, a strong amateur player1. Ten games were
played with 400 visits, that is, the same setting as games in
the quantitative evaluation described in III-B, while five games
were played with 20,000 visits, to test a stronger player.

A thorough analysis of such games shows that training
has been successful in producing a consistent player, which,
however, exhibits some unusual characteristics when compared
to other artificial agents. The match ended with a score of 14-1
in favor of the human player: although LZS found itself in a
position of clear advantage several times, it was only able to
win one game, one of those with 20,000 visits. LZS showed
some peculiar and not always desirable features. LZS certainly
has a direct and aggressive style. It does not seem to admit
sacrificing a few stones for better final results, e.g. move 17
in game 6, nor to foresee sacrifice on the opponent’s side, see
e.g. move 16 in game 9. This is clearly in contrast with the
flexibility shown by other artificial agents.

Another striking situation occurred several times: when in
balanced positions, LZS attempted to further increase the score
difference, rather than settling for a narrow victory, in such
an aggressive and self-delusional way that it resulted in an
inevitable defeat. See for instance move 21 in game 8. It may
be argued that this phenomenon was a direct effect of the LZS
training scheme.

B. Quantitative evaluation against SAI

To estimate the Elo rating for LZS networks promoted
in training, we compared one every four of them against a
calibration panel of 32 SAI networks, whose Elo ranged from
683 to 3501, with 400 visits. Elo ratings were then estimated
by maximum likelihood, as in Rémi Coulom’s Bayes Elo [9].

In Fig. 1 we compare LZS with run 1 of SAI, trained for
a comparable number of self-plays, with the same network
architecture and weights. see [7]. This comparison shows that
during training LZS had consistently lower values of Elo. The
last increase in the size of the network, at 900,000 games, did
not yield any relevant improvement in the following 400,000
games, thus confirming that LZS was converging prematurely
to a weaker player. After 200,000 games the two curves
are approximately parallel, with an Elo difference of around
1,500 points. This is a remarkable difference in strength: the
interpretation of the Elo formula means that, at the same
level of training, LZS would win against SAI with probability
10−(1500/400), i.e. less than once every 5000 games.

1Player profile on EGD, the European Go Database: https://www.
europeangodatabase.eu/EGD/Player Card.php?&key=14713996.

https://www.europeangodatabase.eu/EGD/Player_Card.php?&key=14713996.
https://www.europeangodatabase.eu/EGD/Player_Card.php?&key=14713996.

0

1,000

2,000

3,000

4,000

5,000

6,000
El

o

200,000 400,000 600,000 800,000 1,000,000 1,200,000 1,400,000
Games

SAI LZS

Fig. 1. Elo ratings of all the promoted networks from LZS and from run 1
of SAI 9×9, as a function of the cumulative number of self-play games.

IV. SUBOPTIMALITY OF SCORE-OPTIMAL POLICY IN A
WIN/LOSE OUTCOME SETTING

In this section we give a theoretical interpretation of the
suboptimality of maximizing the score, considering two much
simpler settings in which the complexity is replaced by the
randomness. In both settings, we show that suboptimality is
a common behavior, and it is associated with the fact that
the outcome-optimal policy has a different preference for
uncertainty when it is winning or losing. When in a losing
state, an outcome-optimal agent chooses actions leading to a
higher score variance. According to strong human players, this
is in fact what human players do too.

In the rest of this section, we consider a single agent instead
of two fully-competitive agents. By the analysis in [10, Section
4.3], this is not a restrictive hypothesis.

A. Multi-armed bandit

We start by proving that in the multi-armed bandit case,
score-based optimality does not imply outcome-based opti-
mality.

Proposition 1. Consider a 2-armed bandit where each action
i ∈ {1, 2} yields a random score reward rscore(i) ∈ R,
with Gaussian distribution N (µi, σ

2
i) and an outcome reward

routcome(i) ∈ {0, 1} defined as routcome(i) := 1rscore(i)>0. Then
there are choices of the parameters for which:

E[rscore(1)] > E[rscore(2)],E[routcome(1)] < E[routcome(2)] (1)

Indeed this happens if and only if µ1 > µ2 > 0 and σ1 >
σ2

µ1

µ2
, or µ2 < µ1 < 0 and σ1 < σ2

µ1

µ2
.

Proof. Compute E[routcome(i)] = P (rscore(i) > 0) = Φ(µi

σi
),

where Φ denotes the cumulative distribution function. By the
monotonicity of Φ and assuming (1) we get µ1 > µ2 and
µ1

σ1
< µ2

σ2
. This implies that µ1 and µ2 must have the same

sign, and from that, we deduce the thesis.

We can interpret Proposition 1 as a selective preference for
lower or higher variance: if the two rewards have different

optimal actions, then either the environment is “winning”
(positive µi’s and over 50% probabilities of outcome 1), thus
σ1 > σ2, and the outcome reward prefers the lower variance
action, or the environment is “losing”, thus σ1 < σ2, and it
prefers the higher variance action.

B. Suboptimality in nondeterministic MDPs

More generally, let M := (S,A, r,P) be a finite, episodic,
and tabular Markov Decision Process (MDP), where S is the
state space, A is the action space, r is the reward function
and P : S × A → ∆(S) is the transition model. To model a
game where the win/lose outcome is given by a final score,
we make the additional assumption that S contains a subset
of “leaves” SL, that is, states s from which every action a
takes to the terminal state with probability 1 and reward r(s)
depending on s but not on a. The reward is received only at
the end of the game: r(s) = 0 for all s ∈ S −SL. We denote
by rscore this score reward, and by Mscore := (S,A, rscore,P)
the game where the reward is given by the score.

Correspondingly, Moutcome := (S,A, routcome,P) denotes a
game with the same state space, action space, and transitions
asMscore, but with a win/lose outcome. Here routcome is related
to rscore by routcome(s) := 1rscore(s)>0.

Any policy π : S → PD(A) induces value functions on
Mscore and Moutcome. We denote these value functions by
vscore
π , voutcome

π , qscore
π and qoutcome

π . In particular, if πscore and
πoutcome are optimal policies for Mscore and Moutcome respec-
tively, then voutcome

πscore
(s) represents the probability of winning,

starting from s and following a score-based optimal play, in
the game Moutcome. With this notation, our research question
becomes whether strict inequality may sometimes hold in

voutcome
πscore

(s) ≤ voutcome
πoutcome

(s) = sup
π
voutcome
π (s). (2)

Claim. In a nondeterministic MDP, πscore can be subopti-
mal in Moutcome.

To prove this claim, we exhibit a class of MDPs that are
exactly computable and for which the strict inequality can be
numerically verified. We consider tree-like MDPs with two
parameters b (state branch) and d (depth), that we call action-
shared tree MDPs (an example in Fig. 2). More precisely, these
trees are defined as follows: nonterminal states are partitioned
by levels ` = 0, . . . , d, with b` states at level `. Each state s
has a unique set Cs of b “children” states at level ` + 1 to
which one can transition, independently of the action. From
the bd leaves at level d, every action a takes to the terminal
state with probability 1 and a reward independent of a.

In our numerical experiments, we fixed the state branch
b and the depth d, and then we randomly generated the
remaining parameters (all independently): the rewards rscore(s)
for all leaves s, as integers taken uniformly in [−bd, bd]; the
transition probabilities (p(s′|s, a))s′∈Cs for all nonterminal
(s, a), from a b-dimensional Dirichlet distribution with all
parameters equal to 1, and p(·|s, a) = 0 outside Cs.

For each MDP so generated, we computed by value it-
eration the optimal policies πscore, πoutcome and the optimal

S0=root

A0 +0.00 A1 +0.00

S1, level 1

A0 +0.00 A1 +0.00

S2, level 1

A0 +0.00 A1 +0.00

S3, level 2

A0 +0.00 A1 +0.00

S4, level 2

A0 +0.00 A1 +0.00

S5, level 2

A0 +0.00 A1 +0.00

S6, level 2

A0 +0.00 A1 +0.00

S7, value=8.0

T15

A0 +8.00 A1 +8.00

S8, value=4.0

A0 +4.00 A1 +4.00

S9, value=-2.0

A0 -2.00 A1 -2.00

S10, value=-6.0

A0 -6.00 A1 -6.00

S11, value=5.0

A0 +5.00 A1 +5.00

S12, value=6.0

A0 +6.00 A1 +6.00

S13, value=3.0

A0 +3.00 A1 +3.00

S14, value=6.0

A0 +6.00 A1 +6.00

67.89% 32.11% 72.08% 27.92%

62.53% 37.47% 90.15% 9.85% 57.57% 42.43% 99.64% 0.36%

29.01% 70.99% 81.70% 18.30% 90.69% 9.31% 58.49% 41.51% 91.47% 8.53% 50.63% 49.37% 38.70% 61.30% 47.51% 52.49%

Fig. 2. A randomly generated action-shared tree MDP with state branch
b = 2, depth d = 3 and 2 actions for each state. Numbers on edges denote
rewards (nonzero rewards only on leaves) and transitions.

1 2 3 4 5 6 7 8 9 10 11 12 13
0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

level

E[voutcome
πoutcome

− voutcome
πscore

]

Fig. 3. The average loss on 2,000 runs in the outcome value function voutcome

passing from the outcome-optimal policy to the score-optimal policy, as a
function of the states level.

value function voutcome
πoutcome

. Then, we computed voutcome
πscore

by policy
evaluation. We finally obtained the average of the difference
voutcome
πoutcome

(s)− voutcome
πscore

(s) as a function of the level of the state,
across the states of each MDP and across all the generated
MDPs. The results are depicted in Fig. 3 and show that
there are MDPs and states for which (2) holds with the strict
inequality, thus proving the claim.

C. Fondness for the variance depends on the odds

As seen for the multi-armed bandit setting, when the score-
optimal policy πscore and the win/lose outcome-optimal policy
πoutcome differ, it is possible to interpret the differences in terms
of variances of the scores of the available actions. A similar
interpretation is possible in the more general MDP setting, as
stated in the following claim.

Claim. When πoutcome is losing, it prefers actions leading
to a higher score variance in Mscore, and vice versa when
it is winning.

Though this claim is too vague to be proved rigorously, we
can support it with the following experiment, performed on
the same simulated action-shared tree MDPs of the previous
section.

0 0.2 0.4 0.6 0.8 1

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0.2

0.4

variance log-ratio

winrate

outcome-optimal policy

score-optimal policy

Fig. 4. Log-ratio for the score variances of the chosen and discarded action,
when the two policies do not agree (median over 100 bins). The two curves
are from the point of view of either policy, with variances computed along
their own trajectories. The x-axis is the best winrate, i.e. the outcome value
from the point of view of the outcome-optimal policy.

1) For assessing the preferences of the win/lose outcome-
optimal policy, let π+ := πoutcome and π− := πscore.

2) For every state-action pair (s, a), we compute the vari-
ance Varπ+(rscore|s, a), that is, the variance of the final
score over trajectories following π+ from (s, a). This
quantity can be computed efficiently as Eπ+ [r2score|s, a]−
(qscore
π+ (s, a))2 by policy evaluation and value iteration.

3) For every state s, let y(s) be the difference
of variance (in a log scale) between the
actions preferred by π+(s) and π−(s),
namely, y(s) := log(Varπ+(rscore|s, π+(s))) −
log(Varπ+(rscore|s, π−(s))).

4) Consider only those states where y(s) 6= 0, that is, those
states for which the action chosen by π+(s) and π−(s)
actually differ. Draw a binned graph of the median of
y(s) against voutcome

πoutcome
(s). The median is computed across

the states in the same x-axis bin in each MDP and across
all generated MDPs.

5) For assessing the preferences of the score-optimal policy
restart from item 1, but with the role of π+ and π−

reversed: π+ := πscore and π− := πoutcome.
The results are depicted in Fig. 4, with πoutcome in red. The

figure shows that when πoutcome chooses differently from πscore,
if it is losing, then the chosen action will typically lead to a
more uncertain game, with higher variance in the score. If it
is winning, then the opposite happens. Moreover πscore, even
computing variances following its own trajectories, agrees with
the evaluation and typically chooses the opposite criterion.

V. LZ-SCORE

Leela Zero (LZ) [6] is an open-source Go program with no
human-provided knowledge, known as one of the most faithful
re-implementations of AlphaGo Zero (AGZ) [1]. For all intents
and purposes, it is considered an open-source AGZ.

LZ was initially released on 25 October 2017. The neu-
ral networks powering the agent of LZ were trained by a

distributed effort, which was coordinated at the LZ website:
members of the community provided computing resources
by running the client, which generates self-play games and
submits them to the server.

The self-play games were used to train newer networks,
which were then matched against the current best and possibly
promoted according to a process known as gating.

The reinforcement learning pipeline of LZ ended on 15
February 2021. LZ is available at https://zero.sjeng.org/ and
https://github.com/leela-zero/leela-zero.

We developed LZ-Score (LZS) as a fork of LZ, suitably
modified to change the reward from the outcome of the game
to the score difference. While Go is usually played on a 19×19
board, we trained LZ-Score on the 9×9 board, which is still
largely used for the game of Go and is of much simpler
complexity.

SAI is a fork of LZ described in [4, 11, 7, 12]. While LZ
was trained on the 19×19 board only, SAI was trained on
the 9×9 board, hence we choose SAI 9×9 as a benchmark
to assess the strength of LZ-Score. For the purposes of this
work, SAI 9×9 can be considered an AGZ-like software.

A. Setup of LZ-Score

The overall architecture of LZ was replicated in LZS, the
main difference being in the quantity used as target and reward.
To use the integer score difference in the place of the Boolean
game outcome, both during the training (as a target) and in the
inference (as a reward), the following issues were addressed.
• Target for the neural network. The value head of LZ’s

neural network ends with a linear layer with a tanh
activation and is trained against the outcome of the game
in {−1,+1}, with an l2 loss term; in LZS with board
size N = 9, we removed the activation and changed
the target to the score difference of the game, scaled
by a factor 1/N2 in order to keep it inside [−1, 1].
The loss term was amplified by a factor of 20 to make
its average size similar to the one of LZ. The score
difference was computed with Tromp-Taylor rules at the
game completely finished (no resignation allowed).

• Reward for the MCTS. For LZ, the explo-
ration/exploitation tree search is driven by a UCT
formula:

a∗ = argmax
a

(Q(a) + U(a)), Q(a) =
1

|Va|
∑
i∈Va

S(i)

where S(i) is the scaled score difference estimated by the
value head for node i, Q(a) is the mean action value over
the set Va of the visited MCTS tree nodes that follow a,
and U(a) is the same as in [1], with the cpuct constant
raised from 1 to 1.5 to account for the larger variability
of the scaled scores of siblings with respect to the winrate
probabilities.

• Game ending. LZ employs a set of heuristics during
self-plays to avoid uselessly long games. For example,
most games are allowed to end by resignation, when

the winrate drops below 5%, and there are some hard-
coded conditions for passing. These heuristics do not
work anymore in our new setting: to maximize the score,
the agent should keep playing to the very end, so that the
computationally amenable Tromp-Taylor score becomes
equivalent to the proper area score of the game of Go.

Scaling down the board from size N = 19 to size ρN = 9
with ρ < 1 yields several benefits.
• Average number of legal moves at each position scales

down by ρ2. The number of good, meaningful moves
might scale similarly.

• Average length of games scales down by ρ2.
• The suggested number of visits in the MCTS tree might

scale down by as much as ρ4, as can be inferred from
the previous two.

• The suggested number of layers in the residual convolu-
tional neural network stack scales by ρ.

• The fully connected layers at the end of the neural
network stack are smaller.

To summarize the performance benefits, the total speed
improvement for self-play games can be estimated to be in
the order of ρ9, that is about 10−3. In fact, our resources
allowed us to implement a pipeline with a larger number of
visits. We thus chose the same number of visits of 9×9 SAI,
in order to grant a fair comparison.

B. Reinforcement learning pipeline
Our training was composed of multiple phases, inspired by

the original LZ training process, and by SAI well-documented
pipeline. In particular, we followed almost the same training
procedure as in the first run of 9×9 SAI [7], with the only
exception that we reintroduced gating (i.e. the best network
is replaced only if a stronger one emerges). Gating was
removed in the passage from AlphaGo Zero to AlphaZero,
as it was seen as not being strictly necessary: since we are
experimenting with score-based reinforcement learning, we
considered it more conservative to keep it in our pipeline. In
fact, while we train the network to maximize its score, through
gating we are assessing its capabilities in winning the game.
Each training cycle is called a generation, and it is composed
of the following steps.

1) Self-play. LZS engine uses the current best network to
play a total of 2,000 self-play games (against itself and
sharing the tree search), with the following parameters:
fixed number of visits v depending on the generation
(see the table below), random choice of the first 15
moves (with probability proportional to the visits num-
ber), Dirichlet noise at the root. The agent is allowed
to pass only if there is no other move with an expected
score larger than the Tromp-Taylor score.

generations v w generations v w
0–15 100 4 16–31 150 8

32–47 250 12 48–63 400 16
64–79 600 20 80–∞ 850 24

2) Training. Starting from the current best network, new
training is started over the self-play games of a window

https://zero.sjeng.org/
https://github.com/leela-zero/leela-zero

of the most recent w generations (see the table above).
The number of steps adapts to the number of games
inside the window, with a typical number of 30,000
steps. The batch size is 512.

3) Gating. The newly trained network is matched against
the current best, for a total of 400 games, with the same
number of visits for self-play games and no randomness
in the move choice. The agent is allowed to pass
when UCT selects this move. If at least 55% of the
400 matches are won by the candidate network, it is
promoted to be the new best network.

All games were played with komi 7.5, that is, an additional
7.5 points were added to white player’s Tromp-Taylor score,
to compensate for the fact that black plays the first move.

C. Outcome of the learning pipeline

The learning pipeline was guided by the intermediate results
of the gating matches. In fact, following LZ, at each generation
we estimated the Elo rating of the new network from the
400 games in the gating match, anchoring arbitrarily the first
random network to Elo 0. This rating is clearly overrated (for
example every promoted network is constrained to have at least
34.8 points, –corresponding to a 55% winrate– more than the
previous one), and so we refer to it as uncalibrated Elo. This
estimate was nonetheless adequate to assess when the learning
pipeline stalled: when no new network overcame the gating for
too many generations (empirically chosen), we scaled up the
network size or decreased the learning rate of the training’s
optimizer.

Starting from a random 2 × 64 network (with 2 residual
convolutional blocks of 64 filters), we moved to 4 × 128 at
2,000 games; to 8 × 160 at 154,000 games; to 10 × 192 at
748,000 games; to 12 × 256 at 982,000 games. The learning
rate started at 0.02 and decreased once to 0.002 at 850,000
games. Fig. 5 shows the pipeline results in terms of the
uncalibrated Elo rating.

0

1,000

2,000

3,000

4,000

5,000

El
o

0 200,000 400,000 600,000 800,000 1,000,000 1,200,000
Games

Pass Fail

Fig. 5. Uncalibrated Elo ratings of LZS networks during the learning pipeline.
Blue circles and pink triangles represent networks that respectively passed and
failed gating. In this case, the rating of new networks was estimated only with
the gating matches, yielding noisy and positively biased values. See also Fig. 1
for a more robust estimate.

VI. CONCLUSIONS

In this paper, we discuss when and why maximizing the
score in a score-based win/lose game can be suboptimal in
terms of winrate. Since this cannot happen in a deterministic
game, we start with the simplest nondeterministic case, that
is, the multi-armed bandit. We prove that in the multi-armed
bandit, a suboptimal behavior is related to the score variance
and to whether the agent is winning or losing: when losing, the
outcome-based agent prefers actions leading to a larger score
variance, and vice versa. We then define a class of MDPs
modeling score-based win/lose games, and empirically show
that this relation between suboptimal play and score variance is
still valid. Finally, we train a score-based AlphaGo-like agent,
and empirically show that it still behaves suboptimally, despite
the fact that the game of Go is deterministic. This suggests
that for certain problems, very complex deterministic games
can be successfully modeled as nondeterministic, and provides
sound and quantified evidence of the limitations of training a
DRL score-based agent in a win/lose game, a folklore belief
that we had not been able to find in the literature.

REFERENCES

[1] David Silver et al. “Mastering the game of Go with-
out human knowledge”. In: Nature 550.7676 (2017),
pp. 354–359.

[2] David Silver et al. “Mastering the game of Go with deep
neural networks and tree search”. In: Nature 529.7587
(2016), pp. 484–489.

[3] David Silver et al. “A general reinforcement learning
algorithm that masters chess, shogi, and Go through
self-play”. In: Science 362.6419 (2018), pp. 1140–1144.

[4] Francesco Morandin et al. “SAI a Sensible Artificial
Intelligence that plays Go”. In: IJCNN. 2019, pp. 1–8.
DOI: 10.1109/IJCNN.2019.8852266.

[5] Antti Törmänen. Invisible: the games of AlphaGo. Heb-
sacker Verlag, 2017. ISBN: 978-3937499062.

[6] Gian-Carlo Pascutto and contributors. Leela Zero. http:
//zero.sjeng.org.

[7] Francesco Morandin et al. “SAI: A Sensible Artificial
Intelligence That Plays with Handicap and Targets High
Scores in 9×9 Go”. In: ECAI 2020. Vol. 325. 2020,
pp. 403–410. DOI: 10.3233/FAIA200119.

[8] David J Wu. “Accelerating Self-Play Learning in Go”.
In: arXiv (2019). arXiv: 1902.10565.

[9] Rémy Coulom. Bayesian Elo Rating. http://www.remi-
coulom.fr/Bayesian-Elo.

[10] Michael L. Littman. “Markov Games As a Framework
for Multi-agent Reinforcement Learning”. In: Prooceed-
ings of ICML. 1994, pp. 157–163. URL: http://dl.acm.
org/citation.cfm?id=3091574.3091594.

[11] Francesco Morandin et al. “SAI: a Sensible Artificial
Intelligence that plays with handicap and targets high
scores in 9x9 Go (extended version)”. In: arXiv (2019).
arXiv: 1905.10863.

[12] Gianluca Amato and contributors. SAI: a fork of Leela
Zero with variable komi. https://github.com/sai-dev/sai.

https://doi.org/10.1109/IJCNN.2019.8852266
http://zero.sjeng.org
http://zero.sjeng.org
https://doi.org/10.3233/FAIA200119
https://arxiv.org/abs/1902.10565
http://www.remi-coulom.fr/Bayesian-Elo
http://www.remi-coulom.fr/Bayesian-Elo
http://dl.acm.org/citation.cfm?id=3091574.3091594
http://dl.acm.org/citation.cfm?id=3091574.3091594
https://arxiv.org/abs/1905.10863
https://github.com/sai-dev/sai

	I Introduction
	II Conceptual framework
	III Evaluation
	III-A Qualitative evaluation against a human player
	III-B Quantitative evaluation against SAI

	IV Suboptimality of score-optimal policy in a win/lose outcome setting
	IV-A Multi-armed bandit
	IV-B Suboptimality in nondeterministic MDPs
	IV-C Fondness for the variance depends on the odds

	V LZ-Score
	V-A Setup of LZ-Score
	V-B Reinforcement learning pipeline
	V-C Outcome of the learning pipeline

	VI Conclusions

