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1. Introduction
Conversational agents, also referred to as virtual assistants
or chatbots, are now a default service offered by most web-
sites and companies. They are used to fulfill a wide range
of needs depending on the sector where they are deployed.
For example, banks use them on their websites in order to
assist customers in selecting the products that are suitable
for them. The capabilities of these conversational agents are
always improving thanks to the recent advances in the field
of natural language processing (NLP) which aims at making
machines able to understand and/or generate human language.
In this work, we explore the possibility of implementing a

conversational agent that could be helpful to the users of sci-
ence gateways; in particular, the D4Science gateway and its
virtual research environments (VREs) [3].

Generally, the users of these VREs are researchers or sci-
entists and they are usually working with research artifacts
like papers and datasets. They work collaboratively on their
research of interest while exploiting the resources of the VRE
which include datasets, papers, a social network and com-
puting resources. Therefore, it is essential to explore the
possibility of providing a conversational assistant that can
make it easier for a VRE user to navigate through the content
of the VRE. In other words, this work is motivated by the need
to have a way to assist scientists while reducing the human
effort involved.

This prototype represents a first step in a larger project
that aims at using artificial intelligence in supporting VRE
users. As such, we focus on an initial set of tasks that the
agent is going to be able to perform. More specifically, the
core outcome of this project is a conversational agent, Janet1,
that is capable of:

1. Answering questions based on the VRE content;

2. Summarizing papers shared by VRE co-workers;

3. Retrieving papers, datasets and posts upon the user’s
request;

4. Recommending papers and datasets to users based on
their interests;

1The name was inspired by a fictional character, a know-it-all robot, from
The Good Place comedy.
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5. Chatting with users in a meaningful way;

6. Responding to certain commands that aid the user in
exploring the tool and the environment.

To this aim, we develop a set of finetuned models that
are capable of doing general tasks that are needed to achieve
this initial set of capabilities. These models include an intent
classifier, an entity extractor, an ambiguous query classifier,
an offensive language classifier, a neural retriever and a set of
language generators. In addition, we preprocess some publicly
available datasets and we had to create others manually in
order to finetune these models. and finally, we report all our
findings and provide directions for the future steps that can be
followed to improve our conversational agent.

This report is organized as follows: Sec. 2 describes the
overall system architecture; Sec. 3 describes the implementa-
tion of Janet; Sec. 4 describes the deployment of Janet into
one VRE; Finally, Sec. 5 concludes the report and proposes a
set of future enhancements.

2. The Architecture
In this section, we discuss the overall system architecture of
Janet describing its main components and their functionali-
ties. Janet is designed with modularity, self-improvement and
context-awareness in mind. This means that it is built to be
aware of the contents of the specific VRE it is serving and is
capable of correcting and improving its behavior with time. It
is made up of two main components: a master and a worker.

The master is responsible for training the models used
to reply to the user. It is also responsible for managing the
collected feedback data that will be used to run a learning
algorithm in order to improve those models.

The worker, however, runs at the level of the VRE; thus,
it is responsible for managing the contents of that VRE. It has
been inspired by the general architecture (Figure 1) described
in [1] which consists of multiple components; mainly, it
must include an interface to get the input via text or speech, a
message analyzer to understand the input, a dialog manager, a
knowledge layer to find the answer to the query and finally a
response generator. Thus, the Janet worker contains a natural

Figure 1. General Architecture of Conversational Agents

language understanding (NLU) module that is responsible
for extracting the intents and entities of a given query while
employing a coreference resolution mechanism as well as a
query rewriter that takes into account the dialog history. It

also contains an offensive language classifier as well as an
ambiguous query classifier.

The dialog history is managed by the second component
which is the dialog manager which keeps track of past conver-
sations in order to maintain the conversational context. The
dialog manager also decides the next action to take by select-
ing the appropriate response generation mechanism depending
on the current state.

In addition to these two components, a response genera-
tion module makes use of the current models inside the master
in order to form an answer. Mainly, it contains a retriever to
fetch relevant content from the VRE, a number of language
generators and a recommender to suggest content to the users
based on their interests.

Finally, there is an overall worker manager which takes
care of collecting feedback from the user in order to build the
dataset that will be used by the master to update the models.
It is also responsible for indexing the content of the VRE
in a way that makes it usable by the models and collecting
information about the user’s interests. In other words, it is
responsible for managing the knowledge of the worker.

Figure 2 summarizes the overall architecture of the de-
scribed system.

Figure 2. System Architecture
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This design is chosen as it satisfies the requirements of the
problem at hand, which is designing a conversational agent for
virtual research environments which is capable of assisting the
users with their tasks. To this aim, the agent should be open-
domain since the tasks are not defined apriori within a VRE;
therefore, the agent should be informative and conversational
rather than task-oriented. In doing so, and following the CIR
system paradigm explained by [7] and shown in Figure 3, the
agent will have general purpose components that can be used
to achieve a wide range of tasks, starting with the initial set
described in Sec. 1.

Figure 3. CIR System General Architecture by Gao et al.
[7]

In addition, the response generation should be intelligent
and so it should utilize advanced AI techniques for either the
retrieval and/or the generation of an answer. Finally, following
the state of the art, the agent should follow the general modular
architecture described previously.

3. The Implementation

3.1 Natural Language Understanding (NLU) Module
This component of the Janet worker is responsible for the first
stage of the pipeline processing the user’s input. It consists
of a number of sub-modules that are used to understand the
input of the user.

The first step is to resolve the coreferences in the user’s
input using the conversation history. This is achieved by
means of a pre-trained neural coreference resolver2. It works
by using deep learning to cluster tokens that refer to the same
entity together in one cluster which can then be used to replace
the coreferences with the original mention.

After the coreference resolution, it extracts the intent of
the modified query and checks the confidence score.

If the score is above a certain threshold, which was set by
us to be 50%, it extracts the entities and checks if the query is
offensive in order to flag it as offensive if this is the case. If
the entities set is empty and the intent requires the presence of
entities, the query is flagged as unclear. Otherwise, the query
is considered clear and is passed to the dialog manager.

2https://github.com/explosion/projects/tree/v3/experimental/coref

If the confidence score of the intent is below the threshold,
however, the query is passed to the ambiguous query classifier
in order to decide if it is ambiguous.

If it was found ambiguous, an attempt to rewrite the query
by a pre-trained neural rewriter is performed. Then, the intent,
entities and offensive flag are computed. If the intent score
is still below the threshold or if the ambiguous classifier still
believes the query is ambiguous, or if the entities set of certain
intents is empty, the query is considered ambiguous and is
flagged as such. Otherwise, the query is clear and gets passed
to the dialog manager.

If the ambiguous query classifier flags the query as unam-
biguous, however, then the entities set is extracted and if it’s
empty for certain intents, the query is flagged as ambiguous.
If the query passes this final test, it is considered clear. The
flow chart in Figure 4 summarizes this process, where the
solid line represents the flow if the query does not go through
the query rewriting step whereas the dashed line shows the
flow when the query is rewritten.

Figure 4. Natural Language Processing Module Flowchart

In conclusion, the NLU module contains 4 classifiers (i)
the intent classifier, (ii) the entities extractor, (iii) the ambigu-
ous query classifier, and, (iv) the offensive language classifier.
It also includes a one sequence to sequence model that is
responsible for rewriting the query, when needed, consider-
ing the conversation history in an effort to disambiguate an
ambiguous query.

Regarding the intent classifier, the term intent describes
the purpose or the aim of a given query. That is why it is an
essential component in the natural language understanding
pipeline. In the initial version of the conversational agent,
we support a set of general purpose intents that will be used
by the dialog manager to choose the appropriate response
generation mechanism. It is, however, important to clarify
that the term intent does not refer to tasks like in traditional
conversational agents. Rather, it is just a way to let the dialog
manager decide which components to use for generating the
response.

The intents supported for the initial version are an expan-
sion of the goals described in Section 1. They include: (a)
question-answering (QA), (b) chitchatting, (c) retrieving a cat-
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alogue item (papers or datasets) and posts, (d) summarizing a
paper, (e) affirmation, (f ) negation, (g) listing catalogue items
(papers and datasets) and VRE topics, (h) asking for help

To achieve the highest accuracy, and to allow the compo-
nent to be maintain its performance when it is retrained after
adding new intents in the future, a BERT-based model was
chosen to implement the intent classifier. In particular, the
distilled version of BERT was chosen as it has computational
benefits while maintaining a high accuracy for classification
tasks [16]. The dataset used to train this model was curated
manually. It contains examples for each of the mentioned in-
tents. Those examples are in the form of <text, intent> which
were used in order to fine-tune the distilled BERT with a clas-
sification head attached to it. In total, the dataset contains
275 sentences that are classified into one of 14 intents that
more or less cover the goals described above. For instance,
we have sentences like ”what can you do?”, ”can you help
me?” labeled with the intent corresponding to asking for help.
Another example is ”get me a paper about neural networks”
which is labeled as question-answering. A final example is
”what’s your name?” which is labeled as chitchatting as it
corresponds to small talk with the agent.

The entities extractor, however, is a supplementary compo-
nent to the intent classifier because some of the intents cannot
be resolved directly by the response generator without hav-
ing a deeper understanding about what they are about. More
specifically, for the intents related to finding a resource or
summarizing a paper, it is probably more helpful to extract
more information from the query. In particular, the infor-
mation that was considered for this initial version include
the topic of interest, the type of the resource, the title of the
resource, the author of the resource and the exact date of pub-
lication. These are important in the process of identifying
those resources in order to execute the user’s queries on those
resources. Therefore, we manually curated a dataset whose
examples are on the form of <text, entities> where entities is
a list of tuples containing an entity label and the start and end
indices of the character span of that entity in the text. This
dataset contains 97 tuples where each tuple is a sentence plus
the entities within it. For instance, a sentence like ”get me
a paper about reinforcement learning”, will have the index
span corresponding to ”reinforcement learning” labeled as
topic. Whereas the sentence ”summarize a paper about neural
networks authored by OpenAI” will have the index span cor-
responding to ”neural networks” as topic and the index span
corresponding to ”OpenAI” as author.

Similar to the intent classifier, the entity extractor is also a
transformer model, RoBERTa, which is based on BERT and
is the base of the state of the art token classifiers [11].

As for the ambiguous query classifier, we made use of the
public dataset ConvAI3 [2] which contains queries that are
labeled based on their degree of ambiguity from 1 to 4, where
1 representing a clear query and 4 representing an ambiguous
one. So, the dataset is composed of examples on the form
<query, ambiguity degree>. A suitable model for this task

was again the distilled BERT similar to the intent classifier.
Regarding the offensive language classifier, it is a binary

classifier that would determine if a query is inappropriate.
This is important in our context because our conversational
agent is designed with self-improvement in mind and as it will
improve itself in the future using the user’s queries and user’s
feedback. Thus, it is important to have this component in
order to keep the responses appropriate when we are using the
user’s feedback in the future. We used the Hate Speech and
Offensive Language Dataset [5] which is publicly available
on kaggle.com. It contains tweets in English that have been
labeled via crowd-sourcing as neutral, offensive or hateful.
The labeling was done after getting the judgement of a number
of labelers and then performing a majority voting to determine
the final label of each tweet. Hence, the dataset is made up
of examples on the form <text, label>. Finally, just like the
intent classifier, the distilled BERT model was used to develop
this component.

The query rewriter model is a generative sequence-to-
sequence model whose purpose is to take as input an am-
biguous query with possible references to past utterances and
to output a history-independent query that can be used as a
stand-alone query. In other words, its main job is to remove
the dependence of the query on the history of the conversa-
tion. In order to achieve this goal, we made use of an existing
T5 [15] model3 that was finetuned on the publicly available
CANARD dataset [6] which is a dataset containing examples
on the form <query, history, modified query> where history
is an ordered list of previous utterances in the conversation.
The creators of the model modified the dataset in order to
change the history into a string where a special token is used
as a separator between each utterance and the next. Then the
query was appended in the end along with the separator in
order to have the query and the history in one text sequence.
This is because they made use of the transformer model, T5 ,
which is a text2text model that takes as input a text sequence
and outputs a target text sequence. In the end, they used the
pre-processed dataset whose examples are now on the form
of <text, target text>, where text is the history along with the
potentially ambiguous history-dependent query and target text
is the modified history-independent query, in order to finetune
the T5 model. We chose to make use of this publicly available
model as training generative models proved to be very time
consuming and also because it did not make sense to repeat
the training process they did on the same dataset, which is
the only existing benchmark for query rewriting as far as we
know.

3.2 Dialog Manager Module
The dialog manager is simply the working memory of the
whole system. It contains two data structures; the current state
and the chat history.

The current state is simply the output of the NLU compo-
nent in addition to two more flags; one to determine if it is

3https://huggingface.co/castorini/t5-base-canard
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the start of the conversation and another to determine if the
user is inactive. The output of the NLU is nothing but the
modified query, the intent of the query, the extracted entities,
the offensive flag and the ambiguous flag.

The chat history, however, is nothing but a list of the most
recent n exchanges, where one exchange includes the user’s
prompt and the agent’s response to the prompt. In order to
make it easier to manipulate by the NLU, it is stored in two
modes; a concatenated string mode with no separators and
another one with a separator. The former is useful for the
coreference resolution while the latter is useful for the query
rewriter.

For the purpose of this project, and since the task space
is not huge, it was sufficient to implement it as a finite state
machine where it takes actions based on the current state.

The following finite-state machine in Figure 5 describes
the way the dialog manager selects its next action. The states
are represented by circles while the actions are represented by
squares.

Figure 5. Dialog Manager Finite-State Machine

3.3 Response Generation Module
This module is the one responsible for providing an answer to
the user’s query. In order to achieve this, it has access to all
the knowledge contained within the VRE which is provided
by the worker manager module which is explained in section
3.4. Moreover, it contains three vital models which together
compose the core of this component; i.e., the content retriever,
the language generator and the recommender.

The retriever represents the knowledge of the agent. This
is because it is able to retrieve the most relevant content from
the content index which can be further exploited by other com-
ponents in order to generate the answer. It is based on dense
information retrieval as it basically transforms the content
into dense vectors which can later be indexed for fast retrieval
via similarity metrics like distance or cosine similarity. In
order to have the best performance, a sentence transformer
was used to model this component. The one we used was
the mpnet-base sentence transformer which maps paragraphs
into dense 768-dimensional vectors as shown in figure 6: In

Figure 6. Sentence Transformer

order to train this model, we used different sources to create a
general purpose dataset. We manually came up with questions
about articles in the user manual of D4Science. Then, we
augmented them with question-context pairs extracted from
the publicly available MS-Marco v2.1 dataset [14], PUBMED
QA dataset [9], QASPER dataset [4], and ScienceQA dataset
[12]. The sentence transformer was finetuned used this large
combined dataset whose examples are on the form of <query,
context>.

In general, this retriever is used to compute vector repre-
sentations of the content inside the VRE. These vectors are
then indexed via FAISS [10] for fast retrieval as shown in
figure 7. Whenever a query is given to the retriever, it would

Figure 7. Indexing Documents

encode it; i.e., transform it into its vector representation and
then, using the index, it would quickly find the most relevant
content that could possibly answer it.

The language generator, however, is responsible for any
sequence-to-sequence operations that the agent can perform.
This includes QA, summarization, chitchat and clarifying
question generation. The way it works is that it takes a query,
appends some information to it that would help answer it in a
good way then generate an answer. The current state of the
art sequence-to-sequence models are again transformers and
we chose to use the T5 model [15] for experimental purposes.
This is because it implements an encoder-decoder architecture
which is a desirable model architecture in order to implement
the retrieval-augmented language generation when needed.
Furthermore, we wanted to see if we can have just one gener-
ator for all the sequence-to-sequence operations we support
or if we need to have one for each operation. T5 provides
the possibility of performing multi-task training by simply
appending a task prefix to each training example. For exam-
ple, a QA training example can be on the form <question:
text context: text, answer> where question: and context: are
QA-specific prefixes. So, we wanted to conduct experiments
to see if we can have one model for all our operations or if it is
better to have one for each. To this end, we collected different
training data for each of our operations and appended them
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with appropriate task prefixes.
For the QA, we had the same dataset used for the retriever

except that we appended the questions to the contexts in one
string and we had the answer as our target.

For the summarization operation, we made use of the Ope-
nAI Summarize From Feedback dataset [17] and the XSum
dataset [13].

Finally, for the chitchat operation, we used the PersonaChat
dataset [18] which includes conversations between humans
where one of them has to maintain a certain personality that
is represented by a sequence of sentences.

In the end, we ended up with 3 specific datasets that we
then concatenated to generate a bigger multi-purpose dataset
where each example is on the form <text, target text> and
text is simply the query augmented with useful data and task
specific prefixes.

In addition, we used a separate dataset for the clarifying
question generator. Namely, we used ConvAI3 [2] which
contained a number of ambiguous queries along side the ap-
propriate clarifying question. We removed the queries that
had an ambiguity score of 1 and 2 and we only considered
those with scores 3 and 4. So, we had a dataset whose train-
ing examples are on the form <ambiguous query, clarifying
question>.

The recommender component is made up of a list of can-
didate recommendations that can be given to the user. This
list is updated whenever new material is added to the VRE or
whenever new user interests are detected. It basically makes
use of the retriever to encode the user’s interests and then it
encodes the tags associated with the VRE material also using
the retriever. Then, it computes the cosine similarity between
these two representations and if it is above a certain threshold,
then the material gets added to the list of current recommen-
dations. Then, when making a recommendation, it picks at
random one of the generated recommendations and marks
it as recommended, to avoid recommending it again, and it
forms a recommendation sentence based on the metadata of
the recommended material.

As explained previously, depending on the current dialog
state, the dialog manager selects a certain mode to let the
response generator know how to generate the response. We
support 9 different modes of operation: help upon start, recom-
mendation, rejecting offensive queries, question-answering,
chitchat, retrieving a resource (paper or dataset) or a post,
summarization, asking for help, listing resources, and clar-
ification. The help upon start, the listing of resources, the
asking for help and the rejection of offensive queries are triv-
ial modes as they return a fixed response depending on the
case. The recommendation mode is also trivial as it just emits
the recommendation generated by the recommender which
was explained previously.

The question-answering response generation makes use
of both the retriever and the generator. First, the processed
query of the user gets encoded by the retriever in order to
get its vector representation. Then, the indexed document

collection is searched to find the most relevant text which
then gets appended to the query. Finally, the concatenated
sequence containing the question and the context is given to
the generator which then generates the answer.

Regarding the pipeline of chitchatting, it is pretty simple.
It makes use of a generator; however, the query gets a little
bit modified. Basically, in order to add personality to the
replies, and to enable the agent to respond to questions about
itself, we append a couple of sentences that describe the agent,
preceded by the special token <persona>, to the query. Then,
we return the generator’s response.

In order to support the functionality of finding a resource
and potentially operating on it, we had to keep a state variable
to hold the metadata of the resource of interest. Then, using
the extracted information from the query; i.e., the entities
regarding mainly titles and topics, we performed a similarity
search. This similarity search was done on the titles versus
the title extracted from the query, and the resource with the
title that matches the query title the most is returned if the
cosine similarity score is above a certain threshold. In order
to compute this cosine similarity, the retriever was used to
encode the titles and the query title into vectors and then the
scoring was done normally. The same pipeline was applied
in the case of topics as well. If no resource was found after
performing these steps, then we perform an index search using
the entire query by encoding it into a vector using the retriever
and comparing it to the vector encodings of the descriptions
of all the resources, or the text of all posts in the case of post
retrieval. The most recently obtained paper, dataset or post are
kept in a data structure in order to allow the user to reference
them in the future without having to specify them in detail.

The clarification mode, however, consists of two different
modes of reply depending on the intents and entities. If the
intent is related to a resource i.e., finding a paper, a dataset
or summarizing a paper, and the entities set is empty and the
data structure keeping the most recently obtained resource
is empty, then the user is prompted to repose their query
specifying some attribute about their resource of interest, like
a title or a topic. If that is not the case, then a clarifying
question is generated using the clarifying question generator
and is sent to the user in order to try to understand their needs.

Finally, the pipeline of summarization is a mix of the
preceding two tasks. Basically, in order to summarize a paper,
it has to be found. This can be done in both ways: either
the paper has been previously mentioned by the user and is
stored in the state variable that we described previously, or
it is mentioned for the first time. In the second case, we
perform the pipeline of finding a resource in order to get
the paper, giving priority to the title over the topic, then we
extract the text and then pass it to a language generator to
generate the summary and return it to the user. In the first
case, we just extract the text from the already obtained paper
and summarize it using the language generator and return the
summary.
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3.4 Worker Manager
This component is responsible for three subtasks; modelling
the user, fetching the VRE content and collecting feedback.

The user subcomponent is responsible for keeping track of
the user’s interests over time. It basically populates a database
with topics extracted from user queries and assigns an interest
value to them. Initially, when a new interest is added, it gets a
high value. However, these interest values decay over time if
they do not occur often in the user’s queries. In other words,
the user’s queries provide insight about their interests which
are then added with high interest value to the database and this
value increases with each occurrence of that specific interest or
decreases gradually over time when they do not appear. These
interests are used in order to provide recommendations to the
user based on their interests. In order to make it practical,
when making recommendations, the system only considers n
interests which have the highest interest value.

The VRE content fetcher is responsible for organizing the
contents; i.e., research papers and datasets, along with their
metadata from the VRE. It then populates different databases
and index structures with this fetched content. Basically, it
creates and maintains and a database of papers metadata, a
database of datasets metadata and a database of raw text con-
tent from the VRE papers and other sources like the social
network. It also creates and maintains different index struc-
tures. This includes an index for the titles of the datasets, an
index for the titles of the papers, an index for the description of
the datasets, and index for the description of the papers and an
index for the raw content of the VRE. These different indices
are populated using the dense representation computed using
the retriever described previously in order to make it faster
to search over the contents of the VRE. So, in other words,
the index contains the vector representation of the content
while the database contains the actual content. In order to stay
up-to-date, this component periodically performs a query to
the VRE in order to fetch newly added content, if any, and
then add it to the current index structure. If the amount of
new content will increase the number of indexed documents
beyond a certain threshold, the index will be trained from
scratch in order to have a more efficient storage to allow for
fast retrieval.

Finally, the feedback of the user is collected by a feedback
collector which then populates a database of feedback that
can be used to enhance the models. Basically, after the agent
provides an answer, the system would ask the user a set of
questions whose answers would build up a dataset that can be
used to retrain and enhance the retriever and the generator. It
can help in developing a reinforcement learning from human
feedback pipeline which is one of the future works that we
recommend in the end of this work.

4. The Deployment
In order to deploy Janet on one of the VREs, it had to be
containerized. Therefore, we made use of Docker in order to
achieve this goal. We created two main containers; one for

the front-end and one for the back-end. Furthermore, there
was an additional container for a POSTGRESQL database
that is used to collect the feedback. It is worth noting that
the deployment of the three containers was orchestrated via
docker-compose.

The back-end service includes all the modules that com-
pose the Janet worker which were all developed in python.
Furthermore, we developed it as a REST API using flask and
python. It has two main post methods; one to post a user
query to agent and the other to post the user feedback. In
addition to the main methods, there is a get method to check
the health of the service, and another post method to establish
the connection and the user credentials with the frontend. In
the beginning, the frontend communicates the user authen-
tication token to the backend, which then sends a signal to
the frontend that it is ready to receive user queries. Upon
receiving a query, it gets passed through the components in
order to generate a response and send it back. It gets analyzed
by the NLU module, then some user interests are extracted
from it depending on the entities of the query. Then, the dia-
log manager updates the history and chooses the next action
which is then passed to the response generator which in turn
generates the response and returns it to be sent to the user.
Upon sending the response, the user is supposed to evaluate
the response and that evaluation is in turn sent back to the
backend which communicates with the database service to
store that evaluation.

As for the frontend service, it was developed using React.
Basically, it implements a chat icon that appears at the bot-
tom of the page which, upon clicking it, renders a chat box
where the conversational interaction between the user and the
agent is displayed. Once the user enters the web page hosting
this service, and after the token authentication step with the
backend is complete, the frontend sends an artificial query
to the backend to display a help message to the user which
would inform them more about the tool and its functionalities.
The user can then submit queries and get replies through the
frontend from the backend. When the user receives back a
reply, a feedback form is displayed to the user where they can
evaluate their satisfaction with the response they got. This
feedback form is also used to collect data which can be used
in the future to enhance the models. Upon submitting the
form, it disappears from the page and the answers get sent to
the backend which in turn stores them into a database.

Janet, was hosted on a dedicated web page that was used
as an iFrame inside one of D4Science VREs; namely, a VRE
titled AssistedLab.

Figures 8 and 9 show the integration of Janet into the
AssistedLab VRE.

After deploying the system, we let users interact with it to
test if the overall system was working; however, the testing
period was short due to time constraints; therefore, the system
was not thoroughly tested. Nonetheless, the testing allowed
us to highlight some of the strengths and weakness points of
Janet. Namely, our attention was drawn to the poor perfor-
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Figure 8. Janet IFrame in AssistedLab VRE

Figure 9. Janet in Operation inside the VRE

mance of the generative models and the strong performance of
the retriever when the VRE collection contains related content
to the query as shown in Fig. 11 and Fig. 10.

Figure 10. Response Usefulness Evaluation

Figure 11. Usefulness of Retrieved Evidence for QA

5. Conclusion and Future Works
In conclusion, we have shown in this report the main design
and architectural decisions that we took in implementing Janet
as the main activity of the thesis project of the author [8]. We
have highlighted the main results we obtained after deploying
it and we acknowledge the fact that more testing is needed to
have more solid results. Nonetheless, from the preliminary
testing, we obtained some insight as to how to proceed in the
near future in order to enhance Janet.

In particular, we noted that due to the limited size of the
training set of the intent classifier (275 examples), misclassi-
fications may happen if the query is very different from the
dataset. We also noted that the retriever would perform accu-
rately in most of the cases when there is relevant content to
the query that can be retrieved from the collection of content.
A possible enhancement is to equip the retriever with the capa-
bility of looking outside the VRE for relevant content in order
to not limit itself to the knowledge contained within the VRE.
We also observed how poorly the generators performed due to
the fact that their training was very time-consuming and we
had a limited time window to complete the project. In fact,
we hypothesize that another reason why we were unable to
build satisfactory generators is that we had to rely on publicly
available general purpose datasets which could be a limitation
as the agent is deployed into a scientific environment. There-
fore, we recommend as future enhancement, to make use of
the facilities already implemented for collecting feedback in
order to utilize reinforcement learning from feedback which
has been proven to dramatically enhance the performance of
generative models.

Furthermore, enhancements should be made to the natu-
ral language understanding module by retraining the intent
classifier with new data and equipping it with more intents.
A particularly interesting enhancement is to allow the intent
classifier to detect multiple intents in the query in order to en-
hance the understanding capabilities of the model. Moreover,
the entity extractor can be developed further to support useful
intents like dates (absolute and relative) and numbers. Finally,
the query rewriter should be also enhanced using the feedback
collected from the users when interacting with the system.

Software availability

The software described in this report is available at Janet-
Backend4 and Janet-Frontend5
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